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Fare Planning for Public Transport∗

Marika Neumann

Abstract

In this paper we investigate the fare planning model for public
transport, which consists in designing a system of fares maximizing
the revenue. We discuss a discrete choice model in which passengers
choose between different travel alternatives to express the demand as
a function of fares. Furthermore, we give a computational example for
the city of Potsdam and discuss some theoretical aspects.

1 Introduction

The design and the level of fares influence the passenger volume and con-
sequently the revenue of a public transport system. Therefore, they are an
important instrument to improve the profitability of the public transport
system or to achieve other goals, e.g., to provide access to public transport
for the general public.

Some articles in the literature deal with different approaches to find op-
timal fares for public transport. Hamacher and Schöbel [6] develop a model
for designing fares and zones maximizing the similarity to a given fare sys-
tem, e.g., a distance dependent one. Kocur and Hendrickson [7] and De
Borger, Mayeres, Proost, and Wouters [5] introduce models for maximizing
the revenue and the social welfare, respectively, subject to several budget
constraints. The majority of the literature on public transport fares, how-
ever, discusses only theoretical concepts, e.g. marginal cost pricing (Peder-
sen [8]) and price elasticities (Curtin [4]).

In this article, we want to investigate a model to compute the fares that
optimize the revenue for the public transport. This model is called the fare

planning model. The main advantage of our approach is the inclusion of the
public transport network. This allow us to distinguish different travel routes,
e.g. between means of transportation like bus or subway, between slow and
fast, short and long routes. Therefore it is possible to design complex and
optimal fare systems.
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This work is a summary of the master thesis “Mathematische Preispla-
nung im ÖPNV”, that I wrote at the Zuse Institute Berlin. The advisor was
Prof. Dr. Grötschel. Some parts of the master thesis were published in the
Operations Research Proceedings 2005 [3], another summary can be found
in [2]. The theoretical results in Section 3.2 include some new aspects.

2 General Fare Planning Model

We consider a traffic network whereas the nodes V represent the stations and
D ⊆ V ×V is a set of origin-destination pairs (OD-pairs or traffic relation).
Furthermore, we are given a finite set C of travel choices. A travel choice
can be a certain ticket type, e.g., single ticket or monthly ticket. Moreover,
it can be a combination of a ticket type and a number of trips, which are
performed within a certain time horizon, e.g., 40 trips with a monthly ticket
in one month.

Let pi
st : Rn → R+ be the price function for travel choice i ∈ C and

OD-pair (s, t) ∈ D, i.e., it determines the price for the given travel choice
and the given OD-pair. The price function depends on a fare vector ~x ∈ Rn

+

of n ∈ N fare variables x1, . . . , xn, which we call fares in the following.
The demand functions di

st(~x) measure the amount of passengers that travel
from s to t with travel choice i, depending on the fare system ~x; they are
assumed to be nonincreasing.

We denote by ~dst(~x) the vector of all demand functions associated with
OD-pair (s, t) and by ~d(~x) = (~dst(~x)) the vector of all demand functions.
Analogous notation is used for (pi

st(~x)). The revenue r(~x) can then be
expressed as

r(~x) := ~p(~x)T~d(~x) =
∑

i∈C

∑

(s,t)∈D

pi
st(~x) · di

st(~x) .

With this notation our general model for the fare planning problem is:

(FPP) max ~p(~x)T~d(~x)
s.t. ~x ∈ P .

(1)

All restrictions on the fare variables are included in the set P ⊆ Rn. Here,
one can also include social and political aspects like a minimum level of
demand or a maximum level of fares.

In the model (FPP) we assume constant costs and a constant level of ser-
vice. In further investigations we included costs and maximized the profit,
i.e., revenue minus costs. Other possible objectives were considered as well,
e.g., maximization of the demand with respect to cost recovery. The goal
is to make a first step with (FPP) towards a decision support tool for op-
timizing fare systems. We show the practicability of (FPP) on a prototype
example in Section 3.1.

2



3 Fare Planing with a Discrete Choice Model

Our model expresses passenger behavior in response to fares by the demand
function di

st. In this section, we use discrete choice models, especially the
logit model, to obtain a realistic demand function. Therefore we assume
that the passengers have full knowledge of the situation and act rationally
with respect to the change of the fares. A thorough exposition of discrete
choice analysis and logit models can be found in Ben-Akiva and Lerman [1].

In a discrete choice model for public transport, each passenger chooses
among a finite set A of alternatives for the travel mode, e.g., single ticket,
monthly ticket, bike, car travel, etc.

We consider a time horizon T and assume that a passenger which travels
from s to t performs a random number of trips Xst ∈ Z+ during T , i.e.,
Xst is a discrete random variable. We assume that passengers do not mix
alternatives, i.e., the same travel alternative is chosen for all trips. Further-
more, we assume an upper bound N on Xst. The travel choices are then
C = A × {1, . . . , N}.

Associated with each travel choice (a, k) ∈ C and each OD-pair (s, t) ∈ D

is a utility U
a,k
st , which may depend on the passenger. Each utility is the sum

of an observable part, the deterministic utility V
a,k
st , and a random utility,

or disturbance term νa
st. For (a, k) ∈ C we consider the utility U

a,k
st (~x) =

V
a,k
st (~x) + νa

st that depends on the fare system ~x.
Assuming that each passenger chooses the alternative with the highest

utility, the probability of choosing alternative a ∈ A in case of k trips is

P
a,k
st (~x) := P

[

V
a,k
st (~x) + νa

st = max
b∈A

(V b,k
st (~x) + νb

st)
]

. (2)

In case of the logit model, which introduces the Gumbel distribution
for the disturbances νa

st, this probability can explicitly be computed by the
formula

P
a,k
st (~x) =

eµV
a,k
st (~x)

∑

b∈A

eµV
b,k
st (~x)

=
1

1 +
∑

b∈A\{a}

eµ(V b,k
st (~x)−V

a,k
st (~x))

. (3)

Here µ > 0 is a scale parameter for the disturbances νa
st.

We write d
a,k
st (~x) for the amount of passengers choosing (a, k) ∈ C, i.e.,

traveling k times during T with alternative a from s to t and similarly p
a,k
st (~x)

for the price of this travel. It follows that

d
a,k
st (~x) = dst · P

a,k
st (~x) ·P[Xst = k] = dst ·

eµV
a,k
st (~x)

∑

b∈A

eµV
b,k
st (~x)

·P[Xst = k],
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where dst is the entry of the OD-matrix corresponding to (s, t) ∈ D. The
revenue can then be written as:

r(~x) =
∑

a∈A′

N
∑

k=1

∑

(s,t)∈D

p
a,k
st (~x) · da,k

st (~x) = ~p(~x)T~d(~x) ,

where A′ is the set of public transport alternatives. This formula expresses
the expected revenue over the probability spaces of Xst and disturbances νa

st.
Note that r(~x) is continuous and even differentiable if the deterministic

utilities V
a,k
st (~x) (and the price functions p

a,k
st (~x)) have this property.

3.1 Example with three Alternatives

In this section, we illustrate our discrete choice approach with a real world
example for the city of Potsdam. We want to optimize the the current
fare system including a single ticket (S) and a monthly ticket (M) for two
different tariff-zones. The third travel alternative is the car (C), i.e., A =
{M, S, C}. We consider a time horizon T of one month. The prices for
public transport involve two fares for each tariff-zone; xs, the single ticket
fare, and xm, the monthly ticket fare. We write ~x = (xs, xm) and set the
prices for alternatives single, monthly ticket, and car to

p
S,k
st (~x) = xs · k, p

M,k
st (~x) = xm, and p

C,k
st (~x) = Q + q · ℓst · k.

For alternative “car”, the price is the sum of a fixed cost Q and distance
dependent operating costs q. The parameter ℓst denotes the shortest distance
between s and t in kilometers for a car. We set Q = 100 e and q = 0.1 e.

We assume that the utilities are affine functions of prices and travel
times tast for traveling from s to t with alternative a. The utilities depend
on the number of trips k. More precisely, we set:

U
M,k
st (xM , xS) = −δ1 · xM − δ2 · t

M
st · k + νM

st “monthly ticket”

U
S,k
st (xM , xS) = −δ1 (xS · k) − δ2 · t

S
st · k + νS

st “single ticket”

U
C,k
st (xM , xS) = −δ1 (Q + q · ℓst · k) − δ2 · t

C
st · k − y + νC

st “car”.

Here, δ1 and δ2 are weight parameters; we use δ1 = 1 and δ2 = 0.1, i.e.,
10 minutes of travel time are worth 1 e. In first computations we noticed
that the behavior of the motorists could not be explained only with travel
time and costs. Therefore we introduced an extra positive utility y for the
car indicating the convenience of the car. We set y ≈ 93 e for the first
tariff-zone and y ≈ 73 e for the second tariff-zone to match the current
demand for the given prices in our model. The (discrete) probabilities for
the number of trips are centered around 30 in an interval from 1 to N := 60
for all OD-pairs.
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Figure 1: Left: Revenue function for example single monthly ticket. Right:

Discrete choice demand functions for different µ.

Altogether, the fare planning problem we want to consider has the form:

max
N

∑

k=1

∑

(s,t)∈D

dst ·
xM · eµV

M,k
st (~x) + xS · k · eµV

S,k
st (~x)

∑

b∈A

eµV
b,k
st (~x)

·P[Xst = k]

s.t. ~x ≥ 0

We set µ = 1
30 . Note that the revenue function is differentiable.

The revenue function is shown on the left of Figure 1. The optimal fares
for the two tariff zones are xs = 1.57 (currently 1.45), xm = 43.72 (32.50) for
tariff-zone 1 and xs = 1.79 (2.20) and xm = 48.21 (49.50) for tariff-zone 2.
The revenue increased by about 3% up to 2 129 971e.

3.2 Some Theoretical Results

In this section, we analyze the revenue function in case of a discrete choice
demand function with a small random utility.

The second part of equation (3) emphasizes the importance of the dif-
ference of the deterministic utilities which is weighted by the parameter µ.
The higher µ, the more important is the difference of the deterministic util-
ities for the decision, i.e., the influence of the random utility decreases. The
right of Figure 1 shows a demand function for different values of µ. The
choice is getting deterministic if µ tends to infinity, i.e., P

a,k
st (x) = 1 if a

is the alternative with the maximum deterministic utility and P
a,k
st (x) = 0

otherwise. In this case the demand function becomes a step function.
For further analysis we omit the number of trips k and consider two travel

alternatives with the following utility function V 1
i (x) = −x, V 2

i (x) = −i for
OD-pair i. The demand function for alternative 1 is

di(x) = di ·
e−µ·x

e−µ·x + e−µ·i
.
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Figure 2: Left: Revenue function for a discrete choice demand function for
m = 7 OD-pairs without random utility. Right: Revenue function for the
same example with “small” random utility (µ = 30).

If we set the price functions of alternative 1 to p1
i (x) = x, we obtain for the

revenue function for alternative 1

r(x) =
m

∑

i=1

di ·
e−µ·x

e−µ·x + e−µ·i
· x.

For µ → ∞ r̃(x) := lim
µ→∞

r(x) =
m
∑

i=1
di ·

{

x if x ≤ i

0 otherwise
.

For x = i, i = {1, . . . , m} the revenue function r̃ is not continuous and
has m local maxima, see left of Figure 2. This means, that if the deter-
ministic utility approximates the utility of the alternative quite well (the
random utility is small), the revenue function has m local maxima, see right
of Figure 2.

It is likely to construct examples with upto mn local maxima in case of
n fare variables. Therefore, the better the utilities are known, the closer the
demand function is to reality. On the other hand, more local optima can
appear and the problem may be hard to solve.
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