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Abstract

This paper introduces the line connectivity problem, a generaliza-
tion of the Steiner tree problem and a special case of the line planning
problem. We study its complexity and give an IP formulation in terms
of an exponential number of constraints associated with "line cut con-
straints”. These inequalities can be separated in polynomial time. We
also generalize the Steiner partition inequalities.

1 Introduction

The line connectivity problem (LCP) can be described as follows. We are
given an undirected graph G = (V, E), a set of terminal nodes T C V', and a
set of lines L (simple paths) defined on the graph G, see the left of Figure 1
for an example. The lines have nonnegative costs C &€ ]Ri and cover all
edges, i.e., for every e € E there is an £ € L such that e € £. The problem
is to find a set of lines L’ C L of minimal cost such that for each pair of
distinct terminal nodes t1,to € T there exists a path from t; to ta, which is
completely covered by lines of L’.

LCP is a generalization of the Steiner tree problem (STP) since we get
an STP if all lines have length one. In contrast to the STP with nonnegative
costs, see [4, 5] for an overview, the optimal solution of the line connectivity
problem does not have to be a tree. There can be two lines that form a
cycle, but both are necessary to connect two terminal nodes, see the right
of Figure 1. However, an optimal solution of LCP is minimally connected,
i.e., if we remove a line from the solution, there exist at least two terminals
which are not connected.

LCP is a special case of the line planning problem in which passenger
routes are not fixed a priori, see [2] and the references therein for a detailed
definition. Line planning deals with finding a set of lines and corresponding
frequencies such that a given demand can be transported. Usually, the
objective is to minimize cost and/or travel times. If we neglect travel time,
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Figure 1: Example of a line connectivity problem.

capacity, and frequency constraints, the line planning problem reduces to
LCP, namely, all stations that are departures or destinations of a passenger
trip have to be connected by lines. Since line planning problems can not
be solved to proven optimality for medium-sized and large instances, it is of
interest to analyze LCP.

This article is structured as follows. In Section 2 we investigate the
complexity of the LCP. An IP formulation and a polynomial time separation
algorithm for a class of line cut inequalities associated with this formulation
is proposed in Section 3. A polyhedral analysis is sketched in Section 4.

2 Complexity of LCP

Since the line connectivity problem is a generalization of the Steiner tree
problem [5], it is strongly NP-hard in general. The complexity of two im-
portant special cases, for which the STP can be solved efficiently, is as
follows:

Proposition 2.1. 1. LCP is polynomially solvable for |T| = 2.
2. LCP is NP-hard forT =V.

Sketch of proof. 1. We can construct a directed graph D’ similar to the
one in Section 3 below. A shortest path in D’ between two terminal nodes
corresponds to a minimal cost connected line set in G.

2. We reduce the set covering problem to the line connectivity problem.
In a set covering problem we are given a finite set S, a set M C 2°, and a
positive integer k. The problem is to find a subset M’ C M, |M'| < k, such
that for all s € S there exists an M € M’ with s € M.

Given a set covering instance, we define a line connectivity problem
in a graph G = (V, E) as follows: The nodes are V. = S U {v} with v
being one extra node. We first assume a complete graph and remove all
edges that are not covered by a line after the construction of the lines. Let
V = {v:=sg, s1,2,...}. For each set M € M order the elements in M and



construct a line beginning in node v and passing all nodes of M in the given
order. The cost of this line is 1.

It can be easily seen that a cover M’ with less than k elements exists if
and only if we find a line set connecting all nodes with cost smaller or equal
to k. O

3 An Integer Programming Formulation

An integer program for LCP can be formulated as

(LCPeyt) min Y. Cypxy
Lel

s.t >ooxy >1 bCcWwWnTCT
ZGL(;(W)

Ty € {0, 1}.

Here, Lsyyy := {€ € L|3e € (W) N£} is the set of all lines that cross a cut
§(W) at least one time. If §(W) with § C WNT C T is an (s, t)-cut we call
Ly an (s, t)-line cut or shortly line cut. We call L' a minimal (s,t)-line
cut with respect to x if

Z Ty = min{z z¢| L is an (s, t)-line cut}.

Lel’ V=33

We call the inequalities in (LCPy;) line cut constraints. Their number can
be exponential in the size of the input. We therefore propose an efficient
separation algorithm that decides whether a given point z* is valid for the
LP-Relaxation of (LCP,,;) or finds a violated line cut constraint. It will turn
out that this problem can be formulated as a max flow/min cut problem in
a suitable auxiliary digraph. The construction is as follows: We are given a
graph G = (V, E), a set of lines L, and two distinct nodes s,t € T' C V. Each
line £ € L has a value 2y > 0. We construct a directed graph D' = (V', A’)
with node set
V' ={stu{t}U{v,we|l € L}

and the following arcs a € A’ and capacities ¢,

(s,v¢) Covy = Tf ifsel,VlelL

(ve,we)  Copuw, = T4 veeL

(wer,ve)  Cwpo, = min{zg,zp} VL €L, L# L, £ and ¢ have

a node v € V\{s,t} in common
(UJg/,t) Cwpt = Tpr ifte 5/, v e L.

Figure 2 illustrates this construction.
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Figure 2: Left: Graph G with four lines ({1 = {s,d}, ¢2 = {s,a}, €3 = {d,c,a,b,t}, s =
{c,t}) with value 0.5 and two terminal nodes s and ¢. Right: Corresponding directed
graph D’. Here, each arc has capacity 0.5. The dashed arcs are of the form (wy,v¢). The
minimal (s, t)-cut has value 0.5.

Lemma 3.1.
1. Each simple (s,t)-path has the form (s,ve,,wy,, ..., v, we,,t), k> 1.
2. The only arc with target node wy is (ve, wy), VL € L.
3. The only arc with source node vy is (vg,wy), VI € L.

4. There is a directed (s,t)-cut with minimal capacity in D' such that all
arcs over this cut are of the form (vg,wy), £ € L. ]

Proof. The first three parts can easily be seen. Consider part 4. Assume
(s,v¢) is in a minimal cut. Then we can replace this arc by (v, wy) with the
same value because this is the only arc with source node vy (Part 3). With
a similar argument we can replace (wgp,t) by (vg,we). Assume (wyr,vy),
¢ # /0, is in the cut and zy < zy. Then we can replace this arc by (vg, wy)
with same capacity because of Part 3 and cy,, », = min{zy, zp }. If zp <z,
we can replace it by (vgr, wy ) with same capacity because of Part 2 and the
definition of the capacities. O

Proposition 3.2. There is a one-to-one correspondence between minimal
directed (s,t)-cuts in D" and minimal (s,t)-line cuts in G of the same ca-
pacity.

Proof. We only show the forward direction. Let §(W') be a minimal (s, t)-
cut in D’. After applying part 4 of Lemma 3.1, let L' = {¢ € L| (v, wy) €
A lvg € W iwe € VAW’ Assume L' is not an (s,t)-line cut. Then there
exists a path from s to ¢ in G that is covered by lines in L\L'. Let ¢1,...,¢,
be the lines that are used in this order when traversing the path. Then

(s, Ve, Wey, ..., Vg, W, ,t) is a path from s to ¢ in D’. This is a contradiction
to the assumption that 6(W’) is a cut in D’.
It can be easily seen that L’ and §(W’) have the same capacity. O



Theorem 3.3. The separation problem for line cut constraints can be solved
in polynomaial time.

Computing for every two terminals s, € T the minimum (s,¢)-cut in
D’ can be done in polynomial time. If and only if the value of this cut is
smaller than 1, we can construct a violated line cut constraint. O

4 Polyhedral Analysis

Let Picp := conv{z € {0,1}” |z satisfies the line cut constraints} be the
line connectivity polytope. We assume that the line connectivity polytope is
non-empty, i.e., the graph G is connected.

Using the results for the set covering polytope of Balas and Ng [1], we
get the following information about Ppcp.

Corollary 4.1.

1. The LCP-polytope Prcp is full dimensional if and only if there exists
no valid cut 6(W) with |Lsw| = 1.

In the following we assume Prcp to be full dimensional.

2. The inequality x¢ > 0 defines a facet of Prop if and only if | Lsayy| > 3
for all W with £ € Lyowy and 9 CWNT CT.

3. All inequalities xy < 1 define facets of Prop.
4. All facet defining inequalities ax > ag for Prop have a > 0 if ag > 0.

5. A line cut inequality is facet defining if and only if the following two
properties are satisfied:
(a) There exists no W', 0 CW'NT C T, such that Lsowry S Lsw)-

(b) For each two W1, Wy, 0 C W; N'T C T, with | Lsowy) \Lsw)| = 1,
1= 1, 2 and L5(W1)\L5(W) = L5(W2)\L5(W), we have

| Lsewy) N Lsews) N Lseny| > 1.

6. The only nontrivial facet defining inequalities for Prop with integer
coefficients and righthand side equal to 1 are the line cut inequalities.

Similar to the Steiner tree problem we can define partition inequalities. Let
P = (V1,..., Vi) be a partition of the node set V' where V; N T # () for
i=1,...,k and k > 3, i.e., P is a Steiner partition. Let Gp be the graph
that arises by contracting each node set V; to a single node.



Lemma 4.2. The line partition inequality
Yo oag-xp>k—1, ag:= (number of nodes in Gp visited by £) — 1
lel

is valid for the line connectivity problem. O

Note that if kK = 2 we get a line cut constraint.

Analogous to the properties which are necessary for a Steiner partition
inequality to be facet defining, c. f. Grotschel and Monma [3], we can for-
mulate the following Proposition.

Proposition 4.3. Let L := {{ € L|ay = 0}. The line partition inequality
is facet defining if the following properties are satisfied.

1. G(V;) is connected by L, i =1,... k.

2. G(V;) contains no line cut L' C L with |L'| =1, i=1,... k.

3. Each line visits at most two nodes in Gp, i.e., ay € {0,1} V¢ € L.

4. The shrunk graph Gp is 2-line-connected, i.e., if we remove any node
with all adjacent lines, the resulting graph is connected. ]

Examples can be constructed in which a line partition inequality is facet
defining, but does not satisfy all of the first three properties of Lemma 4.3.
Indeed, only Property 4 is necessary.

Proposition 4.4. If the shrunk graph Gp is not 2-line-connected, the par-
tition inequality is not facet defining for Prcp. O
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