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The Line Connectivity Problem∗

Ralf Borndörfer Marika Neumann Marc E. Pfetsch

Abstract

This paper introduces the line connectivity problem, a generaliza-
tion of the Steiner tree problem and a special case of the line planning
problem. We study its complexity and give an IP formulation in terms
of an exponential number of constraints associated with ”line cut con-
straints”. These inequalities can be separated in polynomial time. We
also generalize the Steiner partition inequalities.

1 Introduction

The line connectivity problem (LCP) can be described as follows. We are
given an undirected graph G = (V, E), a set of terminal nodes T ⊆ V , and a
set of lines L (simple paths) defined on the graph G, see the left of Figure 1
for an example. The lines have nonnegative costs C ∈ RL

+ and cover all
edges, i.e., for every e ∈ E there is an ℓ ∈ L such that e ∈ ℓ. The problem
is to find a set of lines L′ ⊆ L of minimal cost such that for each pair of
distinct terminal nodes t1, t2 ∈ T there exists a path from t1 to t2, which is
completely covered by lines of L′.

LCP is a generalization of the Steiner tree problem (STP) since we get
an STP if all lines have length one. In contrast to the STP with nonnegative
costs, see [4, 5] for an overview, the optimal solution of the line connectivity
problem does not have to be a tree. There can be two lines that form a
cycle, but both are necessary to connect two terminal nodes, see the right
of Figure 1. However, an optimal solution of LCP is minimally connected,
i.e., if we remove a line from the solution, there exist at least two terminals
which are not connected.

LCP is a special case of the line planning problem in which passenger
routes are not fixed a priori, see [2] and the references therein for a detailed
definition. Line planning deals with finding a set of lines and corresponding
frequencies such that a given demand can be transported. Usually, the
objective is to minimize cost and/or travel times. If we neglect travel time,
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Figure 1: Example of a line connectivity problem.

capacity, and frequency constraints, the line planning problem reduces to
LCP, namely, all stations that are departures or destinations of a passenger
trip have to be connected by lines. Since line planning problems can not
be solved to proven optimality for medium-sized and large instances, it is of
interest to analyze LCP.

This article is structured as follows. In Section 2 we investigate the
complexity of the LCP. An IP formulation and a polynomial time separation
algorithm for a class of line cut inequalities associated with this formulation
is proposed in Section 3. A polyhedral analysis is sketched in Section 4.

2 Complexity of LCP

Since the line connectivity problem is a generalization of the Steiner tree
problem [5], it is strongly NP-hard in general. The complexity of two im-
portant special cases, for which the STP can be solved efficiently, is as
follows:

Proposition 2.1. 1. LCP is polynomially solvable for |T | = 2.

2. LCP is NP-hard for T = V .

Sketch of proof. 1. We can construct a directed graph D′ similar to the
one in Section 3 below. A shortest path in D′ between two terminal nodes
corresponds to a minimal cost connected line set in G.

2. We reduce the set covering problem to the line connectivity problem.
In a set covering problem we are given a finite set S, a set M ⊆ 2S , and a
positive integer k. The problem is to find a subset M′ ⊆ M, |M′| ≤ k, such
that for all s ∈ S there exists an M ∈ M′ with s ∈ M .

Given a set covering instance, we define a line connectivity problem
in a graph G = (V, E) as follows: The nodes are V = S ∪ {v} with v

being one extra node. We first assume a complete graph and remove all
edges that are not covered by a line after the construction of the lines. Let
V = {v := s0, s1, s2, . . .}. For each set M ∈ M order the elements in M and
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construct a line beginning in node v and passing all nodes of M in the given
order. The cost of this line is 1.

It can be easily seen that a cover M′ with less than k elements exists if
and only if we find a line set connecting all nodes with cost smaller or equal
to k.

3 An Integer Programming Formulation

An integer program for LCP can be formulated as

(LCPcut) min
∑
ℓ∈L

Cℓ xℓ

s.t
∑

ℓ∈Lδ(W )

xℓ ≥ 1 ∅ ( W ∩ T ( T

xℓ ∈ {0, 1}.

Here, Lδ(W ) := {ℓ ∈ L | ∃ e ∈ δ(W )∩ ℓ} is the set of all lines that cross a cut
δ(W ) at least one time. If δ(W ) with ∅ ( W ∩T ( T is an (s, t)-cut we call
Lδ(W ) an (s, t)-line cut or shortly line cut. We call L′ a minimal (s, t)-line
cut with respect to x if

∑

ℓ∈L′

xℓ = min{
∑

ℓ∈L̃

xℓ | L̃ is an (s, t)-line cut}.

We call the inequalities in (LCPcut) line cut constraints. Their number can
be exponential in the size of the input. We therefore propose an efficient
separation algorithm that decides whether a given point x∗ is valid for the
LP-Relaxation of (LCPcut) or finds a violated line cut constraint. It will turn
out that this problem can be formulated as a max flow/min cut problem in
a suitable auxiliary digraph. The construction is as follows: We are given a
graph G = (V, E), a set of lines L, and two distinct nodes s, t ∈ T ⊆ V . Each
line ℓ ∈ L has a value xℓ ≥ 0. We construct a directed graph D′ = (V ′, A′)
with node set

V ′ = {s} ∪ {t} ∪ {vℓ, wℓ | ℓ ∈ L}

and the following arcs a ∈ A′ and capacities ca

(s, vℓ) csvℓ
= xℓ if s ∈ ℓ, ∀ ℓ ∈ L

(vℓ, wℓ) cvℓwℓ
= xℓ ∀ ℓ ∈ L

(wℓ′ , vℓ) cw
ℓ′

vℓ
= min{xℓ, xℓ′} ∀ ℓ, ℓ′ ∈ L, ℓ 6= ℓ′, ℓ and ℓ′ have

a node v ∈ V \{s, t} in common
(wℓ′ , t) cw

ℓ′
t = xℓ′ if t ∈ ℓ′, ∀ ℓ′ ∈ L.

Figure 2 illustrates this construction.
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Figure 2: Left: Graph G with four lines (ℓ1 = {s, d}, ℓ2 = {s, a}, ℓ3 = {d, c, a, b, t}, ℓ4 =
{c, t}) with value 0.5 and two terminal nodes s and t. Right: Corresponding directed
graph D′. Here, each arc has capacity 0.5. The dashed arcs are of the form (wℓ′ , vℓ). The
minimal (s, t)-cut has value 0.5.

Lemma 3.1.

1. Each simple (s, t)-path has the form (s, vℓ1 , wℓ1 , . . . , vℓk
, wℓk

, t), k ≥ 1.

2. The only arc with target node wℓ is (vℓ, wℓ), ∀ ℓ ∈ L.

3. The only arc with source node vℓ is (vℓ, wℓ), ∀ ℓ ∈ L.

4. There is a directed (s, t)-cut with minimal capacity in D′ such that all
arcs over this cut are of the form (vℓ, wℓ), ℓ ∈ L.

Proof. The first three parts can easily be seen. Consider part 4. Assume
(s, vℓ) is in a minimal cut. Then we can replace this arc by (vℓ, wℓ) with the
same value because this is the only arc with source node vℓ (Part 3). With
a similar argument we can replace (wℓ′ , t) by (vℓ′ , wℓ′). Assume (wℓ′ , vℓ),
ℓ 6= ℓ′, is in the cut and xℓ ≤ xℓ′ . Then we can replace this arc by (vℓ, wℓ)
with same capacity because of Part 3 and cw

ℓ′
,vℓ

= min{xℓ, xℓ′}. If xℓ′ ≤ xℓ,
we can replace it by (vℓ′ , wℓ′) with same capacity because of Part 2 and the
definition of the capacities.

Proposition 3.2. There is a one-to-one correspondence between minimal
directed (s, t)-cuts in D′ and minimal (s, t)-line cuts in G of the same ca-
pacity.

Proof. We only show the forward direction. Let δ(W ′) be a minimal (s, t)-
cut in D′. After applying part 4 of Lemma 3.1, let L′ = {ℓ ∈ L | (vℓ, wℓ) ∈
A′, vℓ ∈ W ′, wℓ ∈ V ′\W ′}. Assume L′ is not an (s, t)-line cut. Then there
exists a path from s to t in G that is covered by lines in L\L′. Let ℓ1, . . . , ℓr

be the lines that are used in this order when traversing the path. Then
(s, vℓ1 , wℓ1 , . . . , vℓr

, wℓr
, t) is a path from s to t in D′. This is a contradiction

to the assumption that δ(W ′) is a cut in D′.
It can be easily seen that L′ and δ(W ′) have the same capacity.
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Theorem 3.3. The separation problem for line cut constraints can be solved
in polynomial time.

Computing for every two terminals s, t ∈ T the minimum (s, t)-cut in
D′ can be done in polynomial time. If and only if the value of this cut is
smaller than 1, we can construct a violated line cut constraint.

4 Polyhedral Analysis

Let PLCP := conv{x ∈ {0, 1}L |x satisfies the line cut constraints} be the
line connectivity polytope. We assume that the line connectivity polytope is
non-empty, i.e., the graph G is connected.

Using the results for the set covering polytope of Balas and Ng [1], we
get the following information about PLCP.

Corollary 4.1.

1. The LCP-polytope PLCP is full dimensional if and only if there exists
no valid cut δ(W ) with |Lδ(W )| = 1.

In the following we assume PLCP to be full dimensional.

2. The inequality xℓ ≥ 0 defines a facet of PLCP if and only if |Lδ(W )| ≥ 3
for all W with ℓ ∈ Lδ(W ) and ∅ ( W ∩ T ( T .

3. All inequalities xℓ ≤ 1 define facets of PLCP.

4. All facet defining inequalities αx ≥ α0 for PLCP have α ≥ 0 if α0 > 0.

5. A line cut inequality is facet defining if and only if the following two
properties are satisfied:

(a) There exists no W ′, ∅ ( W ′ ∩ T ( T , such that Lδ(W ′) ( Lδ(W ).

(b) For each two W1, W2, ∅ ( Wi ∩ T ( T , with |Lδ(Wi)\Lδ(W )| = 1,
i = 1, 2 and Lδ(W1)\Lδ(W ) = Lδ(W2)\Lδ(W ), we have

|Lδ(W1) ∩ Lδ(W2) ∩ Lδ(W )| ≥ 1.

6. The only nontrivial facet defining inequalities for PLCP with integer
coefficients and righthand side equal to 1 are the line cut inequalities.

Similar to the Steiner tree problem we can define partition inequalities. Let
P = (V1, . . . , Vk) be a partition of the node set V where Vi ∩ T 6= ∅ for
i = 1, . . . , k and k ≥ 3, i.e., P is a Steiner partition. Let GP be the graph
that arises by contracting each node set Vi to a single node.
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Lemma 4.2. The line partition inequality
∑

ℓ∈L

aℓ · xℓ ≥ k − 1, aℓ := (number of nodes in GP visited by ℓ) − 1

is valid for the line connectivity problem.

Note that if k = 2 we get a line cut constraint.
Analogous to the properties which are necessary for a Steiner partition

inequality to be facet defining, c. f. Grötschel and Monma [3], we can for-
mulate the following Proposition.

Proposition 4.3. Let L̃ := {ℓ ∈ L | aℓ = 0}. The line partition inequality
is facet defining if the following properties are satisfied.

1. G(Vi) is connected by L̃, i = 1, . . . , k.

2. G(Vi) contains no line cut L′ ⊆ L̃ with |L′| = 1, i = 1, . . . , k.

3. Each line visits at most two nodes in GP , i.e., aℓ ∈ {0, 1} ∀ℓ ∈ L.

4. The shrunk graph GP is 2-line-connected, i.e., if we remove any node
with all adjacent lines, the resulting graph is connected.

Examples can be constructed in which a line partition inequality is facet
defining, but does not satisfy all of the first three properties of Lemma 4.3.
Indeed, only Property 4 is necessary.

Proposition 4.4. If the shrunk graph GP is not 2-line-connected, the par-
tition inequality is not facet defining for PLCP.
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