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Abstract. Let Ex be a collection of i.i.d. exponential random
variables. Symmetric Bouchaud’s model on Z

2 is a Markov chain
X(t) whose transition rates are given by wxy = ν exp(−βEx) if x,
y are neighbours in Z

2. We study the behaviour of two correla-
tion functions: P[X(tw + t) = X(tw)] and P

[

X(t′) = X(tw)∀t′ ∈
[tw, tw + t]

]

. We prove the (sub)aging behaviour of these functions
when β > 1.

1. Introduction

We explore in this paper a mechanism for aging of Markovian dy-
namics in complex random media proposed by J. P. Bouchaud. This
mechanism is based on trapping. More precisely if a Markov process
moves in a very complex landscape of energy, it should spend most of
its time in the deep valleys of this landscape; its long time behaviour
should be essentially ruled by three features: the (short) transits be-
tween these valleys, the relative positions of these valleys, and the
(long) exit times from these valleys (which are usually exponentially
distributed with parameters proportional to the (random) depth of the
valley). Aging would then simply be the consequence of the following
mechanism: the older the system is the more space it has explored, the
deeper valley it is stuck in. So that the process essentially stays put
for longer and longer periods of time.

In order to capture the core of this appealing picture, Bouchaud
proposed a very simple effective model of trapping on a graph. Let us
describe it here. Let G = (V , E) be a connected graph. The vertices of
G should be seen as valleys and the graph structure as the description
of the communication between these valleys. The random landscape
is now given by a collection of i.i.d. random variables E = {Ex}x∈V ,
exponentially distributed with mean 1. Ex should be seen as the depth
of the valley at x. We consider a random “Gibbs” measure τ on V
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with mass of vertex x given by

τx = eβEx, (1)

where β > 0 is the inverse temperature. We define Bouchaud’s trap
model as a continuous time Markov chain X(t) on V by the jump rates

wxy = ν exp
[

− β((1− a)Ex − aEy)
]

if x ∼ y, (2)

and zero otherwise. The constant ν fixes only the time scale and will
be fixed later, and a ∈ [0, 1] tunes the influence of neighbouring valleys
on jumping rates. The simplest case is a = 0, then it is clear that the
Markov chain X is a random time change of the simple random walk
on the graph. Notice that the random measure τ is reversible for all
values of a and β.

This model has been introduced in the physics literature (see [Bou92,
MB96, BM97]) on a large complete graph initially as an ansatz for the
dynamics of the Random Energy Model (see [BBG03a, BBG03b] for a
rigorous study). It was then considered on the graph Z

d in [RMB00]
and first time rigorously studied by [FIN02] for d = 1 and a = 0, then
by [BČ02] for d = 1 and general a. We study here Bouchaud’s trap
model on the lattice Z

2 in a = 0 case. This case has been sketched in
[RMB00] with a concept of partial equilibrium which is rather difficult
to justify. For convenience we will choose ν = 1/(2d) = 1/4.

Let us state our aging result. We consider the following two-point
function:

R(tw, tw + t) = P[X(tw + t) = X(tw)|E], (3)

which is the probability that the process is at the same site at time
tw + t as it was at time tw. We prove the aging behaviour for the
function R.

Theorem 1.1. For all β > 1 and a = 0 there exists a function R(θ)
such that for P-a.e. realisation of the environment E

lim
tw→∞

R(tw, tw + θtw) = R(θ). (4)

Moreover, the function R(θ) can be explicitly calculated (see Proposi-
tion 7.1) and it satisfies

lim
θ→0

R(θ) = 1 and lim
θ→∞

R(θ) = 0. (5)

We further study the following two-point function:

Π(tw, tw + t) = P[X(t′) = X(tw)∀t′ ∈ [tw, tw + t]|E], (6)

which is the probability that the process does not jump between the
times tw and t + tw. We show sub-aging behaviour for this two-point
function.



AGING IN TWO-DIMENSIONAL BOUCHAUD’S MODEL 3

Theorem 1.2. For all β > 1 and a = 0 there exists a function Π(θ)
such that for P-a.e. realisation of the environment E

lim
tw→∞

Π

(

tw, tw + θ
tw

log tw

)

= Π(θ). (7)

The function Π(θ) can be again made explicit (see Proposition 8.2) and
it satisfies the same relations (5) as R(θ).

Remarks: 1. Our results stay valid if we replace the condition
that Ex is exponentially distributed with mean 1 by weaker condition

P[τx > 0] = 1 and lim
u→∞

uα
P(τ0 ≥ u) = K with α ∈ (0, 1),

(8)
and K ∈ (0,∞). This condition is easy to verify for the original distri-
bution with α = 1/β, K = 1. For the rest of the paper the condition
(8) is in force, we also assume for simplicity that K = 1. The limiting
functions R(θ) and Π(θ) do not depend on the choice of distribution of
τx verifying these conditions.

2. Unlike as in d = 1 case [FIN02, BČ02] we study here the so called
quenched two-point functions, that means that we obtain (sub)aging
for a.e. environment. The averaged results are an easy consequence
of our theorems. To complete the picture, we recall the results of
[FIN02, BČ02]. It was proved that averaged two-point functions satisfy

lim
tw→∞

ER(tw, tw + θtw) = R1(θ)

lim
tw→∞

EΠ(tw, tw + θt(1−a)/(1+α)
w ) = Π1,a(θ).

(9)

Note also that in d = 1 the analogous quenched results are not valid.
3. The d ≥ 3, a = 0 case is treated in [Čer03]. Very similar re-

sults are obtained there. Theorem 1.1 stays valid without any change,
even the function R(θ) is the same. Theorem 1.2 should be modified
slightly. For the two-point function Π the same type of limit as for R
should be considered, to reflect the fact that the simple random walk
in d ≥ 3 visits any site only finitely many times. It was shown there
limtw→∞ Π(tw, tw + θtw) exists.

4. The case d = 2, a > 0 is much harder and will be treated else-
where. In this case Bouchaud’s trap model is not longer time change
of the simple random walk but some type of reversible random walk in
random environment.

5. The choice ν = 1/4 assures, that the mean waiting time of X at
site x is equal to τx. Therefore, the process X(t) stays at the site x an
exponentially distributed time with mean τx and then it jumps with the
equal probability to one of the four neighbouring sites. Formally, let
Xd(i), i = 0, 1, . . . , denote a discrete time simple random walk on Z

2

started at origin, and let ei be a collection of i.i.d. exponential random
variables with mean one. We use S(n) to denote the “time change” of
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the simple random walk

S(n) =

n−1
∑

i=0

eiτXd(i). (10)

Then X(t) = Xd(j) if S(j) ≤ t < S(j +1). Since the random variables
τx and Ex are directly related by (1) we abuse terminology slightly, and
call τx also depth of the trap at x. Actually, we do not use Ex later in
this paper and the word “depth” refers always to τ .

The results of both theorems can be described heuristically in the
following way. After time tw the system is typically in a trap whose
mean waiting time is of order tw/ log tw (as can be seen from Theo-
rem 1.2). After passing a time of that order in the trap the process X
makes excursions from it and returns there of order log tw times before
time (1 + θ)tw. Then X leaves the neighbourhood of this trap and
continues to explore the lattice.

We describe here the strategy that will be used to prove both the
theorems. Let n ∈ N. We consider the process X(t) only before the
exit from the disk D(n) with the area m2nn1−α around the origin.
The constant m will be chosen later in order that the walk can stay
a sufficiently long time inside D(n). We are interested mainly in the
time that the walk spends in traps that are deeper than ε2n/α/n, for
ε � 1 to be fixed later (such traps will be referred to as deep traps).
In the disk D(n) there are approximately mn/εα such traps. Since the
probability of hitting a particular point in D(n), that is sufficiently far
from the walk initial point, before the exit from D(n) is of order n−1,
the walk has a reasonable chance to hit at least one deep trap. The
constant ε will be chosen small enough to ensure that the walk spends
a negligible proportion of time in shallower traps.

We cut the trajectory of the process X into short parts. Every part is
finished when X exits for the first time the disk of area 2nnγ around the
initial point of the part. At this moment a new part is started. Clearly,
we should take γ < 1−α. For every such part we look at the time that
the walk spends in the traps which we have specified in the previous
paragraph. It will be proved that, with overwhelming probability, the
walk hits at most one such trap in every part. Moreover, the same
trap is almost never hit again in the next parts before the exit from
D(n). To the i-th part of the trajectory we associate a random variable
si that we call score of that part, and that is roughly the time spent
by X in the deep trap that was hit during this part (the score will be
defined in Section 2). It will be proved that for n sufficiently large the
random variables si are essentially independent and the well rescaled
trajectory of the sum

∑

si converges to a pure jump, increasing Lévy
process. It will be also shown that this sum is a good approximation
for the well rescaled time change S(n).
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The proof of both theorems relies on the fact that the events that we
are interested in, that is the probabilities of staying a long time at the
same place, mainly occur if well rescaled values of times tw and t + tw

falls into one jump of the Lévy process from the previous paragraph, or
more precisely if the intersection of the range of the Lévy process with
the rescaled interval [tw, t + tw] is empty. Probability of such an event
is easy to calculate using arcsine law for Lévy processes (see [Ber96]).

The theorems are proved in Sections 7 and 8 where the reader can
also find the explicit expressions for functions R(θ) and Π(θ). The proof
of the convergence of well rescaled sums of scores occupies Sections 2–6.

Throughout the paper we will deal with typically non integer objects
such as

√
n2n or 2nnγ for discrete valued processes. In these contexts

it is to be understood that the quantity referred to is the integer part.

2. The coarse-graining of X(t)

We introduce some notations needed later. We use Dx(m), and
Bx(m) to denote the disk, resp. the box, with area m around the site
x. If x is omitted the disk (box) is centred around the origin. Both
these objects are understood as subsets of Z

2. In the following we will
very often use the claim that the disk D(m) contains m sites from Z

2,
although it is not precisely true. Precisely D(m) will be the disc of
radius r, where r is the infimum of the radii of discs centred at the
origin containing at least m lattice points. Any error we introduce by
this consideration will be negligible for m large enough.

Let n ∈ N large. We consider the process X(t) before the first exit
from the disk D(n) ≡ D(m2nn1−α). We write

Λd(n) = inf{i ∈ N : Xd(i) /∈ D(n)},
Λ(n) = inf{t ∈ R : X(t) /∈ D(n)} (11)

for the exit times of discrete, resp. continuous, time process from D(n).
We will often skip the dependence on n in our notation.

We use T M
ε (n) to denote the set

T M
ε (n) =

{

x ∈ D(n) :
ε2n/α

n
≤ τx <

M2n/α

n

}

. (12)

If M or ε are omitted, it is understood M = ∞, resp. ε = 0. The
constants ε and M will be chosen later. However, we always suppose
that ε � 1 � M . We call the traps from T ε shallow traps, T M

ε is the
set of deep traps, and TM is the set of very deep traps. We will show
that as M becomes large the probability of hitting a point in TM before
time of order 2n/α (which is the time that X typically spends in D(n))
will be negligible, while as ε becomes small the amount of time spent
by process X before time of order 2n/α in sites of T ε will be very small.
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We write E(n) for the set of sites that are sufficiently far from the
set T M

ε (n),

E(n) = D(n) \
⋃

y∈T M
ε (n)

Dy(2
nn−κ). (13)

The constant κ = κ(α) can be taken arbitrarily large, but will be fixed
while n → ∞. The value κ = 5/(1 − α) is sufficient for our purposes.
The role of the set E(n) will be clarified later.

Further, we introduce a function L(u) satisfying

P[τ0 ≥ u] = u−αL(u). (14)

From (8) we know that limu→∞ L(u) = 1. It is also not difficult to see
that L is bounded.

We write χ(A) for the indicator function of the set A. We use the
letters C , c to denote positive constants that have no particular impor-
tance. The value of these constants can change during computations.
On the other hand, the letter K is reserved for constants with particular
meaning.

We define now the coarse-graining of the trajectory of the process X.
Let γ < 1 − α. We set jn

0 = 0, and then we define recursively

jn
i = min{k > jn

i−1 : Xd(k) /∈ DXd(jn
i−1)

(2nnγ)}, (15)

with the convention that the minimum of an empty set is equal to infin-
ity. We use xn

i to denote the starting points of the parts of trajectory,
xn

i = Xd(j
n
i ). The range of Xd between the times j and k is denoted

by Xd[j, k), i.e. Xd[j, k) = {Xd(l) : j ≤ l < k}.
We will now define the score sn

i of the part Xd[j
n
i , jn

i+1). Let λ1 be
the first time when Xd hits a deep trap after the start of this part,

λ1 = min{k ≥ jn
i : Xd(k) ∈ T M

ε }. (16)

Let y = Xd(λ1) be the first visited deep trap after time jn
i . Further,

let λ2 be the exit time from the disk Dy(2
nn−κ),

λ2 = min{k > λ1 : Xd(k) /∈ Dy(2
nn−κ)}. (17)

The last time that we need is

λ3 = min
({

k > λ1 : Xd(k) ∈ T M
ε \y

}

∪{k ≥ λ2 : Xd(k) ∈ T M
ε }

)

. (18)

It is the first time after λ1 when Xd hits a deep trap, but we do not
consider the successive hits of the trap y before the time λ2, so it is
possible that Xd(λ3) = y

If λ1 < λ2 ≤ jn
i+1 ≤ λ3, jn

i+1 ≤ Λd, and y is farther than
√

π−12nn−κ

from the border of Dxn
i
(2nnγ), we define the score associated with in-

terval [jn
i , jn

i+1) by

sn
i =

λ2
∑

k=λ1

ekτyχ(Xd(k) = y). (19)
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The last condition assures that the movement of X inside Dy(2
nn−κ) is

not influenced by the border of Dxn
i
(2nnγ). If λ1 ≥ jn

i+1 and jn
i+1 ≤ Λd,

we set sn
i = 0. In both previous cases the score is simply the time spent

in the first visited deep trap. In all other cases we set sn
i = ∞. This

value has no particular meaning, it only marks the parts of trajectory
where something “unusual” happens. By unusual we mean essentially
that

(a) Xd[j
n
i , jn

i+1) contains two deep traps, and so λ3 < jn
i+1,

(b) Xd exits D(n) before jn
i+1, and so Λd < jn

i+1,
(c) Xd returns to the first deep trap after exiting a disk of area

2nn−κ around it, i.e. again λ3 < jn
i+1,

(d) Disk Dy(2
nn−κ) intersects the complement of Dxn

i
(2nnγ), i.e. X

hits a deep trap that is too close to the border of Dxn
i
(2nnγ).

We will study the behaviour of the trajectory of the process

Y n(t) =
1

2n/α

btn1−α−γc
∑

i=0

sn
i . (20)

The value of this process becomes infinite if any of the possibilities from
the previous paragraph happen. Therefore, we will redefine Y n. Let
J1(n) be the index of the first part of trajectory where sn

i is infinite,
J1(n) = min{i : sn

i = ∞}. For technical reasons we introduce another
three bad events. Let

J2(n) = min{i : xn
i+1 /∈ E(n)}, (21)

that means that the end of the J2-th part of the trajectory is too close
to some deep trap. The reason why we introduce this time is that when
a part of the trajectory starts too close to some deep trap, the chance
of hitting this trap is large, and thus the value of the score is strongly
influenced by the mean waiting time of this trap.

For similar reasons we introduce

J3(n) = min
{

i : dist(xn
i , D(n)c) ≤

√
π−12nnγ

}

, (22)

i.e. the J3-th part is the first part that starts too close to the border of
D(n) and X can therefore exit from the large disk during it.

Further, let

J4(n) = min{i : Xd[0, j
n
i ) ∩ T M

ε ∩ Xd[j
n
i , jn

i+1) 6= ∅}, (23)

which means that Xd returns during part J4 to some deep trap visited
in previous parts of the trajectory. Let J(n) = min{J1(n), . . . , J4(n)}.
The value of J is the index of the first part of the trajectory where at
least one of the following bad events happens

(i) Xd visits two different deep traps
(ii) Xd can exit D(n)
(iii) Xd returns to some deep trap y (possibly visited in previous

parts) after exiting Dy(2
nn−κ)
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(iv) the end of this part of trajectory is too close (in the sense of
(21)) to some deep trap.

(v) Xd hits a deep trap that is too close to the border of Dxn
i
(2nnγ).

Note that (iii) includes (c) from the previous list, (ii) contains (b), and
(i), (v) is same as (a), (d).

Let now s̃n
i be a suitably chosen collection of i.i.d. random variables

whose distribution will be defined later (see proof of Proposition 7.1).
We set

s̄n
i =

{

sn
i if i < J(n),

s̃n
i otherwise.

(24)

We redefine the process Y n by

Y n(t) =
1

2n/α

btn1−α−γc
∑

i=0

s̄n
i . (25)

We want to compare this process with the well rescaled time change
S(n), namely with

S̄n(t) =
1

2n/α
S(jn

btn1−α−γc). (26)

To this end we should control several quantities. First, we should
estimate the time spent in the shallow traps, that is in T ε (Section 3).
Second, we need to control the probability that Xd hits TM before Λ,
because we did not include the very deep traps into the definition of
the score (Section 4). Finally, we need to be sure that the value of J is
large enough, otherwise the process Y n has no relevance for our model
(Section 5).

If all these condition are satisfied, that means that Y n is a good
approximation of S̄n at least at the start of the trajectory, we should
study the behaviour of the sequence Y n. We will show that it converges
to a certain Lévy process (Section 6).

3. The shallow traps

As we already noted in the previous section, we want to show that
the proportion of time that X spends in the shallow traps is negligible.
It will be shown later that the time that X needs to leave disk D(n) is
of order 2n/α. We thus need to prove that the time spent in T ε can be
made arbitrarily small with respect to 2n/α. This is the result of the
following lemma, whose proof occupies the rest of this section.

Lemma 3.1. There exists K1 = K1(m) independent of ε such that for
P-a.e. random environment τ and for n large enough

E

[

Λd−1
∑

i=0

eiτXd(i)χ{Xd(i) ∈ T ε}
∣

∣

∣
τ

]

≤ K1ε
1−α2n/α. (27)
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Recall that Λd is the first time that the discrete time process Xd

leaves the disk D(n). To prove this lemma we first describe the dis-
tribution of the shallow traps in the disk D(n). We divide the shal-
low traps into several groups. Let i0(n) be the integer satisfying 1 ≤
ε2−i0(n) 2n/α

n
< 2. For any i ∈ {1, . . . , i0(n)}, recall that

T ε2−i+1

ε2−i =
{

x ∈ D(n) : ε2−i 2
n/α

n
≤ τx < ε2−i+1 2n/α

n

}

. (28)

Let C be a large positive constant. We use H1 = H1(n, C, ε) to denote
the event

H1(n, C, ε) =
{

τ :
∣

∣T ε2−i+1

ε2−i

∣

∣ ≤ Cnε−α2iα, ∀i ∈ {1, . . . , i0(n)}
}

. (29)

We show that H1 occurs with an overwhelming probability.

Lemma 3.2. There exists K2 independent of ε such that for n large
enough and for some positive constants C and c.

P[H1(n, K2, ε)] ≥ 1 − Cn exp(−cn). (30)

The proof is postponed.

Convention. At this place it is convenient to introduce one conven-
tion. Later in this paper we will need different properties of the envi-
ronment that we will denote Hi, i = 1, 2, . . . For all these properties we
will prove a result that allows an application of Borel-Cantelli lemma.
When we prove such result we will suppose that these properties are
verified. We thus may ignore a set of “unusual” environments whose
probability is zero .

Proof of Lemma 3.1. The proof is divided into two parts. We first
bound the time spent in “very” shallow traps: let ξ be large enough
such that

(1 − ξ)(1 − α) + 1 < 0. (31)

We define the set S of very shallow traps by

S =
{

x ∈ D(n) : τx ≤ 2n/αn−ξ � ε2n/α/n
}

. (32)

Let GD(n)(·, ·) denote the Green’s function of the discrete time simple
random walk in the disk D(n). Then we have

E

[

Λd−1
∑

j=0

ejτXd(j)χ{Xd(j) ∈ S}
∣

∣

∣
τ

]

=
∑

x∈D(n)

GD(n)(0, x)τ (x)χ{x ∈ S},

(33)
The Green’s function can be bounded by (see (224) in Appendix A)

GD(n)(0, x) ≤ cn for all x ∈ D(n). (34)

We thus have

E

[

Λd−1
∑

j=0

ejτXd(j)χ{Xd(j) ∈ S}
∣

∣

∣
τ

]

≤ cn
∑

x∈D(n)

τ (x)χ{x ∈ S}. (35)
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Let i1(n) be the integer satisfying

2−1+n/αn−ξ ≤ 2−i1(n)ε
2n/α

n
≤ 2n/αn−ξ, (36)

that is i1(n) ∼ (ξ − 1) log2 n. The expression (35) is bounded from
above by

cn
∑

x∈D(n)

τ (x)χ{τ (x) ≤ 2} + cn

i0(n)
∑

i=i1(n)

∑

x∈D(n)

τ (x)χ{x ∈ T ε2−i+1

ε2−i }. (37)

By Lemma 3.2 and (31) this can be bounded by

≤ 2cnm2nn1−α + Cn

i0(n)
∑

i=i1(n)

ε2−i+1 2n/α

n
· nε−α2iα

≤ Cnε1−α2n/α

i0(n)
∑

i=i1(n)

2i(α−1) + o(2n/α)

≤ Cε1−α2n/αn1+(1−ξ)(1−α) + o(2n/α) = o(2n/α).

(38)

This finishes the first part.
In the second part we bound the time spent in T ε \ S. We treat

separately the time spent in T ε2−i+1

ε2−i for i ∈ 1, . . . , i1(n), where i1(n) is
defined as above. Let K ′ be a large positive constant and let A(n, i)
be the event

A(n, i) =
{

∑

x∈T ε2−i+1

ε2−i

GD(n)(0, x)τ (x) ≥ K ′2n/αε1−α2−i(1−α)
}

. (39)

From the definition of T ε2−i+1

ε2−i we have

P[A(n, i)] ≤ P

[

2
∑

x∈T ε2−i+1

ε2−i

GD(n)(0, x) ≥ K ′nε−α2αi
]

. (40)

By Lemma 3.2, there are at most K2nε−α2iα sites in T ε2−i+1

ε2−i P-a.s. for

large n. For i = i1(n) this number is of order n1+α(ξ−1), for all others
i’s it is smaller.

Let yi, i = 1, . . . , Rn, be a collection of uniformly, independently
chosen points in D(n). By an easy combinatorial argument it is possible
to prove that if Rn is o(2n/2n(1−α)/2), then the probability that two of
them are at the same place tends to zero. Since this is evidently satisfied
for the number of sites in any of T ε2−i+1

ε2−i , we can bound the sum in (40)
by the sum over the random collection yi, i = 1, . . . , K2nε−α2iα. For
any small, positive c and for n large enough we thus have

P[A(n, i)] ≤ (1 + c)P
[

2
K2nε−α2iα

∑

i=1

GD(n)(0, yi) ≥ K ′nε−α2αi
]

. (41)
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It is known that there exist constants λ and C not depending on n
such that (see Lemma A.2 for proof of this claim)

E
[

exp
(

λGD(n)(0, y1)
)]

≤ C. (42)

By standard argument we can thus choose K ′ not depending on i such
that

P[A(n, i)] ≤ c exp(−c′nε−α2iα). (43)

Since i1(n) � n, we get by summation

P

[

i1(n)
⋃

i=1

A(n, i)
]

≤ cn exp(−c′nε−α), (44)

and thus for n large enough none of A(n, i) occurs P-a.s. However, if it
is the case, we have (using also the result of the first part of the proof)

E

[

Λd−1
∑

j=0

ejτXd(j)χ(Xd(j) ∈ T ε)
∣

∣

∣
τ

]

≤
i1(n)
∑

i=0

K ′2n/αε1−α2−i(1−α) + o(2n/α) ≤ K12
n/αε1−α. (45)

This finishes the proof. ˜

It remains to show Lemma 3.2.

Proof of Lemma 3.2. We first study the size of T ε2−i+1

ε2−i for some fixed

index i. The probability pn,i that a site in D is in T ε2−i+1

ε2−i is

pn,i = ε−α nα

2n
2iα

[

L
(

ε2−i 2
n/α

n

)

−
(1

2

)α

L
(

ε2−i+1 2n/α

n

)]

. (46)

Recall that L defined in (14) is bounded, so the expression in the
brackets can be bounded from above uniformly in i by some constant
depending only on the function L. Hence,

pn,i ≤ cε−α nα

2n
2iα. (47)

Applying exponential Markov bound we get for λ > 0, using (47) and
the fact that (1 + 1/n)n ≤ e,

P
[
∣

∣T ε2−i+1

ε2−i

∣

∣ ≥ K2nε−α2iα
]

≤ exp(−λK2nε−α2iα)E
[

exp
(

λ
∣

∣T ε2−i+1

ε2−i

∣

∣

)]

= exp(−λK2nε−α2iα)
[

(1 − pn,i) + pn,ie
λ
]m2nn1−α

≤ exp
[

nε−α2iα(−K2λ + mceλ)
]

.
(48)

If K2 is chosen large enough, the expression in the parentheses is neg-
ative and thus the required probability decreases exponentially. The
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probability of Hc
1 satisfies

P[Hc
1] = P

[

i0(n)
⋃

i=1

(
∣

∣T ε2−i+1

ε2−i

∣

∣ ≥ K2nε−α2iα
)]

≤
i0(n)
∑

i=1

exp
{

nε−α2iα(−K2λ + mceλ)
}

≤ i0(n) exp
{

nε−α(−K2λ + mceλ)
}

.

(49)

Since i0(n) ≤ n/α, the proof is finished. ˜

4. Very deep traps

In this section we estimate the probability of hitting a very deep
trap. The aim is to show that these sites may be neglected from the
analysis.

Lemma 4.1. For every δ > 0 and m there exists M such that for n
large enough and for P-a.e. environment τ

P
[

X(t) hits TM(n) before Λ(n)|τ
]

≤ δ. (50)

Proof. The standard large deviation argument gives

P[|TM(n)| > Cnm/Mα] ≤ C ′ exp(−cnm/Mα) (51)

for some constants C , C ′ and c. We can thus take P-a.s. n large enough
such that |TM(n)| ≤ Cnm/Mα. Let A be an uniformly chosen random
subset of D(n) with Cnm/Mα elements. Then

P
[

P[X hits TM before Λ|τ ] > δ
]

≤ P
[

P[X hits A before Λ|A] > δ
]

.
(52)

Further, let {yi}, i = 1, . . . , Cnm/Mα be a collection of independently,
uniformly chosen random points in D(n). As in the previous section we
can replace A by this collection. The expression (52) is then bounded
by

≤ (1 + c)P
[

Cnm/Mα
∑

i=1

P[X hits yi before Λ|yi] ≥ δ
]

(53)

for some small positive c. Since the terms in the sumation are inde-
pendent, we can bound the last expression, using again the exponential
Markov inequality, by

≤ (1+ c) exp(−δλn)E
[

exp
(

λnP[X hits yi before Λ|yi]
)]Cnm/Mα

. (54)

The inequality (226) from Appendix A applied on the disk D(n) gives

E
[

exp
(

− (n log 2/2 + o(n))P[X hits y1 before Λ]
)]

≤ C. (55)
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Therefore, taking λn = b log
√

π−1m2nn1−α, b < 1

P
[

P[X hits TM before Λ|τ ] > δ
]

≤ exp
{

− δcn + c′mn/Mα + o(n)
}

.
(56)

The lemma then follows by taking M large enough and applying Borel-
Cantelli argument. ˜

5. J is large enough

To justify the approximation of S̄n by Y n we should now prove that
the index of the first bad part, J , is large enough. More precisely,
we should show that one can choose κ and m such that, with large
probability, the index J of the first bad part of the trajectory of X is
sufficiently large for our purposes.

Lemma 5.1. For any δ, k, and P-a.e. τ there exist m and κ not
depending on ε and M such that for n large enough

P
[

J(n)nα+γ−1 ≥ k|τ
]

≥ 1 − δ. (57)

To prove this lemma we should verify that all events described in
Section 2 happen with low probability. This is the goal of all following
technical lemmas. The proof of Lemma 5.1 can be found at the end of
this section.

Event (i). The most complicated part of the proof is to show that
X does not hit two deep traps during one part of the trajectory. The
following lemma is a little bit more precise than is needed to bound
J , however, we will need this more precise result later. We use pM

ε to
denote the factor ε−α − M−α.

Lemma 5.2. Let

Vx0(n) =
∑

y∈T M
ε

Px0

[

Xd hits y before exiting Dx0(2
nnγ)|τ

]

, (58)

where Px0 denotes the law of the simple random walk Xd started at x0.
Then for any δ and P-a.e. τ there exists n0 such that for all n > n0

and x0 ∈ E(n) (see (13) for definition of E(n)),

K(1 − δ)pM
ε

n1−α−γ
≤ Vx0(n) ≤ K(1 + δ)pM

ε

n1−α−γ
(59)

with K = (log 2)−1.

To prove this lemma we should describe the distribution of the deep
traps inside D(n). This description is contained in Lemmas 5.3 and 5.4.

First, we will show that the deep traps are distributed almost ho-
mogeneously around the disk. Let ν < γ < 1 − α and let H2 =
H2(n, δ, ε, M) be the set of configurations of the environment satisfy-
ing the “homogeneity” condition:

H2 =
{

τ :
∣

∣T M
ε ∩ Bx(2

nnν)
∣

∣ ∈
[

(1 − δ)pM
ε nν+α, (1 + δ)pM

ε nν+α
]

for all x such that Bx(2
nnν) ⊂ D(n).

} (60)
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Lemma 5.3. For any ε, M , and δ there exist positive constants C and
c such that for n large enough

P[H2] ≥ 1 − Cn1−α−νδ−2 exp(−cnν+α). (61)

Proof. We divide the complement of H2 into two parts. First, we treat
the case when there is a region in D where there are not enough deep
traps. Let A be the event that there is a square of area 2nnν in D(n)
where there are less than (1 − δ)pM

ε nν+α sites from T M
ε (n),

A = {∃x ∈ D :
∣

∣T M
ε ∪ Bx(2

nnν)
∣

∣ < (1 − δ)pM
ε nν+α, Dx(2

nnν) ⊂ D}.
(62)

We use G to denote the grid b2n/2nν/2δ/5cZ
2. Every square of area

2nnν contains at least one square of area 2nnν(1− δ/2) with the centre
in G for n sufficiently large. Hence, if A is true, then there is a square
of area 2nnν(1 − δ/2) which has centre x ∈ G, and which contains less
than (1−δ)pM

ε nν+α sites. We use Ax to denote the last event. We have

P[A] ≤
∑

x

P[Ax] = C ′δ−2n1−α−ν
P[Ax], (63)

where the sum runs over all x ∈ G such that Bx((1−δ/2)2nnν) ⊂ D. We
used the obvious fact that P[Ax] does not depend on x. The probability
of Ax can be bounded using standard methods. Take η > 0. For n
large enough, the probability p that a site is in T M

ε (n) is larger than
(1 − η)pM

ε 2−nnα. For λ > 0 we have

P[Ax] ≤ exp(λ(1 − δ)nν+αpM
ε )

[

(1 − p) + e−λp
]2nnν (1−δ/2)

≤ exp(λ(1 − δ)nν+αpM
ε )

[

1 + (e−λ − 1)
(1 − η)nαpM

ε

2n

]2nnν (1− δ
2
)

.

(64)

If n is large enough, the last expression is bounded by

P[Ax] ≤ exp
[

nν+αpM
ε

(

λ(1 − δ) + (e−λ − 1)(1 − η)2(1 − δ/2)
)]

. (65)

It is not difficult to show that for any δ there exist η and λ such that
the exponent is negative. Hence, we have

P[A] ≤ C ′n1−α−νδ−2 exp(−c′nν+α). (66)

In the second part of the proof we exclude the possibility that there
are places in D where the deep traps are too dense. Let B be the event
that there is a square of area 2nnν intersecting D(n) where is more
than (1 + δ)ε−αnν+α sites from T M

ε (n). The probability of B can be
bounded exactly in the same way as the probability of A, one should
only consider the squares with area 2nnν(1 + δ/2) and centres in G.
We thus have

P[H2(n)c] ≤ P[A ∪ B] ≤ Cn1−α−νδ−2 exp(−cnν+α). (67)

This finishes the proof. ˜
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The lemma we have just proved is not precise enough to bound the
probability of hitting traps that are closer than

√
2nnν to the starting

point. The following lemma will serve us for that bound. Again, it
describes some sort of homogeneity of the environment

We consider the events H3(i) = H3(i, n, ε, M),

H3(i) =
{

∃x ∈ D(n) :
∣

∣Bx(2
n+in−κ) ∩ T M

ε

∣

∣ ≤ 4 log2 n(1 ∨ 2inα−κε−α)
}

,
(68)

where a ∨ b denotes the maximum of a, b. We define H3 by

H3 =
∞
⋂

i=−1

H3(i). (69)

Observe that 2n+in−κ � 2nnν for fixed i and n large enough. So, we
study here much smaller squares than in the previous lemma. Hence,
the description of the homogeneity is more precise in this direction. On
the other hand, we prove only the upper bound on the number of the
deep traps in these squares and this bound is also “weaker” than the
previous bound.

Lemma 5.4. There exists a constant C such that

P[H3] ≥ 1 − Cn−3. (70)

Proof. Fix some i and consider the lattice Gi = Z
2
√

2n+in−κ. If there
is x such that |Bx(2

n+in−κ) ∩ T M
ε | ≥ 4 log2 n(1 ∨ 2inα−κε−α), then

there is a point y ∈ Gi such that By(4 · 2n+in−κ) contains more than
4 log2 n(1 ∨ 2inα−κε−α) sites from T M

ε . The number of squares with
area 4 · 2n+in−κ and centres in Gi that intersect D(n) is bounded by
Cn1−α+κ2−i.

Consider now one such square. The probability that it contains too
many sites from T M

ε can be bounded by standard arguments

P
[

|B(4 · 2n+in−κ) ∩ T M
ε | ≥ 4 log2 n(1 ∨ 2inα−κε−α)

]

≤
c exp

(

− λ4 log2 n(1 ∨ 2inα−κε−α) + 4pM
ε (eλ − 1)2inα−κε−α

)

. (71)

Since α − κ < 0, we can choose λ such that for n large enough the
last expression is bounded by (1/2)log2 n. Summation over i and over
all squares that intersect D(n) gives us

P[Hc
6 ] ≤

∞
∑

i=−1

C2−in1−α+κ(1/2)log2 n ≤ Cn−3. (72)

˜

We now have all ingredients to prove Lemma 5.2.

Proof of Lemma 5.2. We can suppose that x0 is the origin. We use ξ
to denote the exit time from D(2nnγ). Let γ′ be a constant satisfying
ν < γ′ < γ. We divide the sum V0(n) into two parts. First, we sum
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over all deep traps that are far enough from the origin. Precisely,
we consider the deep traps that are in D(2nnγ) \ D(2nnγ′

). Let I1

denotes the sum over such traps. We use I2 to denote the sum over the
remaining deep traps.

To show the upper bound on I1, we cover the set D(2nnγ)\D(2nnγ′

)
by squares of area 2nnν and centres in

√
2nnνZ

2. Let x1, . . . , xR denote
the set of centres of such squares that intersect D(2nnγ) \ D(2nnγ′

).
Since ν < γ′, the size of each such square is negligible with respect to its
distance to the origin. All deep traps in such squares have thus almost
the same chance to be hit. We use expression (223) from Appendix A
to estimate probability that X hits some point before exiting from
D(2nnγ). Let rn be the radius of this disk, rn =

√
π−12nnγ .

I1 ≤
R

∑

i=1

∑

yj∈Bxi (2nnν )

yj∈TM
ε

(

1 − log |yj|
log rn

+ O(n−2)
)

=

R
∑

i=1

∣

∣Bxi(2
nnν) ∩ T M

ε

∣

∣

(

1 − log |xi|
log rn

+ O(n−1+(ν−γ′)/2)
)

, (73)

where we use the estimate

log |yj|
log rn

− log |xi|
log rn

= O(n−1+(ν−γ′)/2) (74)

that is valid for any yj ∈ Bxi(2
nnν).

From Lemma 5.3 we know that for n large enough |Bxi(2
nnν)∩T M

ε | ≤
nν+αpM

ε (1 + δ/2) and thus

I1 ≤
R

∑

i=1

nν+αpM
ε (1 + δ/2)

(

1 − log |xi|
log rn

+ O(n−1+(ν−γ′)/2)
)

. (75)

We now replace the summation by integration making again an error
of order O(n−1+(ν−γ′)/2). I1 is thus bounded from above by
∫

D(2nnγ)\D(2nnγ′
)

nν+αpM
ε

2nnν

(

1 +
δ

2

)(

1 − log |x|
log rn

+ O(n−1+(ν−γ′)/2)
)

dx.

(76)
The integration gives

I1 ≤
nα+γ−1pM

ε

log 2

(

1 +
δ

2

)

(1 + o(1)) ≤ nα+γ−1pM
ε

log 2

(

1 +
3δ

4

)

(77)

for n large enough. This finishes the proof of the upper bound for
I1. The proof of the lower bound is analogous. After a very similar
calculation we get

I1 ≥
nα+γ−1pM

ε

log 2

(

1 − 3δ

4

)

. (78)
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We should now estimate the sum I2 over all sites x ∈ T M
ε ∩(D(2nnγ′

)\
D(2nn−κ)). The disk D(2nn−κ) can be excluded since by the assump-
tions of the lemma x ∈ E(n) and so there are no deep traps in this
disk. We cover the domain by objects comprising eight squares of area
2n+in−κ whose union is the square, centred at the origin, of nine times
larger area with the middle square cut off. The parameter i takes values
in the set {−1, 0, 1, . . . , (γ′ + κ) log2 n}. We use this covering because
if the trap is too close to origin, we should know more precisely its po-
sition to estimate its hitting probability. Our covering becomes clearly
finer when the origin is approached.

Any point inside the i-th object from the previous paragraph has
distance from origin at least

√
2n+in−κ/2. In each of the eight squares

there is, by Lemma 5.4, at most 4 log2 n(1∨ 2inα−κε−α) sites from T M
ε .

By formula (223) for the hitting probability of a point in D(2nnγ) we
have

I2 ≤ 8

(γ′+κ) log2 n
∑

i=−1

[

1− log(
√

2n+in−κ/2)

log rn
+ O

(2−n−inκ

log rn

)

+ O(log−2 rn)

]

· 4 log2 n(1 ∨ 2inα−κε−α).
(79)

The expression in the brackets can be easily bounded by Cn−1 log n
with some large constant C . Hence,

I2 ≤ C

(γ′+κ) log2 n
∑

i=−1

log n

n
log2 n(1 ∨ 2inα−κε−α). (80)

Since the expression inside of the summation is increasing in i, the last
display can be trivially estimated by (γ′ +κ) log2 n times the last term.
This gives

I2 ≤ Cnα+γ′−1 log4 n � nα+γ−1pM
ε

log 2

(

1 +
δ

4

)

. (81)

Putting together (77), (78), and (81) we get

nα+γ−1pM
ε

log 2
(1 − δ) ≤ I1 ≤ V0(n) = I1 + I2 ≤

nα+γ−1pM
ε

log 2
(1 + δ). (82)

This finishes the proof of Lemma 5.2. ˜

Using exactly the same approach as above and Lemma 5.6 below we
show

Lemma 5.5. For x ∈ T M
ε , let us redefine

Vx(n) =
∑

y∈T M
ε \{x}

Px

[

Xd hits y before exiting Dx(2
n+1nγ)|τ

]

, (83)



18 G. BEN AROUS, J. ČERNÝ, AND T. MOUNTFORD

where Px denotes the law of the simple random walk Xd started at x.
Then for any δ and P-a.e. τ there exists n0 such that for all n > n0

and all x ∈ T M
ε ,

Vx(n) ≤ CpM
ε

n1−α−γ
. (84)

Let H4 = H4(n, ε) be the event

H4(n, ε) =
{

τ : min{|x − y| : x, y ∈ Tε(n)} ≥ 2
√

π−12nn−κ
}

. (85)

The constant 2 before the square root is not necessary for the current
application, but it will be used later.

Lemma 5.6. There exists constant C = C(ε, m) such that

P[H4] ≥ 1 −Cn1+α−κ. (86)

Proof. Let B(x) be the event

B(x) =
{

x ∈ Tε(n)
}

∩
{

∃y ∈ Tε(n), |y − x| ≤ 2
√

π−12nn−κ
}

. (87)

Then

P[B(x)] ≤ C
n2α−κ

2n
ε−2α. (88)

and the result follows by summation over all x ∈ D(n). ˜

The following lemma is an easy consequence of Lemma 5.2. It is the
actual estimate of the probability of hitting a deep trap.

Lemma 5.7. For any δ > 0 and P-a.e. τ , there exists n0 such that for
n > n0 and for all x ∈ E(n), the probability that the simple random walk
started at x hits exactly one site from T M

ε (n) before exiting Dx(2
nnγ)

is in interval
(

K(1 − δ)pM
ε nα+γ−1,K(1 + δ)pM

ε nα+γ−1
)

. (89)

The probability that it hits more than one deep trap is bounded by

P[X hits at least two sites from T M
ε ] ≤ Cn2(α+γ−1)(pM

ε )2 (90)

for some positive constant C.

Proof. Let T M
ε ∩Dx(2

nnγ) = {x1, . . . , xL}. Assume that some point xi

was hit by X before the exit from D(2nnγ).
We apply now Lemma 5.5 and the Strong Markov property. We thus

have
∑

j 6=i

P[X hits xj|X hit xi] ≤ Cnα+γ−1pM
ε . (91)
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The Bonferroni inequalities give

P[X hits T M
ε ] ≤

∑

i

P[X hits xi] ≤ K(1 + δ)pM
ε nα+γ−1

P[X hits T M
ε ] ≥

∑

i

P[X hits xi] −
1

2

∑

i

∑

j 6=i

P[X hits xi and xj]

≥ K(1 − δ)pM
ε nα+γ−1 − C(pM

ε )2n2(α+γ−1) ≥ K(1 − 2δ)pM
ε nα+γ−1

(92)

for n large enough. Similarly we get from the Strong Markov property
and Lemma 5.5

P[X hits at least two points from T M
ε ] ≤ C(pM

ε )2n2(α+γ−1). (93)

This finishes the proof of Lemma 5.7. ˜

Event (iv). To find a lower bound for J , we should further verify
that the probability that a part of the trajectory ends too close to some
deep trap is small.

Lemma 5.8. For P-a.e. τ , the probability that the simple random walk
started at arbitrary x ∈ D(n) exits Dx(2

nnγ) at some point that is in
D(n) \ E(n) is smaller than Cn2−κ/2−γ/2.

Proof. We start again with the description of the properties of the
environment. Let rn be the radius of the disk D(2nnγ). We use
Ax(2

nnγ) to denote the annular ring with the centre x, the inner

radius rn −
√

π−12nn−κ, and the outer radius rn +
√

π−12nn−κ. Let
H5 = H5(n, ε, M) be the event

H5 =
{

τ : |T M
ε (n) ∩ Ax(2

nnγ)| ≤ n2 for all x ∈ D(n)
}

. (94)

Lemma 5.9. For n large there exist constants C and c such that

P[H5] ≥ 1 − C2nn1−α exp(−cn2). (95)

Proof. There are less than C2nnγ/2−κ/2 points in the annulus Ax(2
nnγ).

The probability that a trap is in T M
ε (n) is of order pM

ε 2nn−α. The
standard application of Markov inequality gives

P
[

|Ax(2
nnν) ∩ T M

ε (n)| > n2
]

≤ exp(−c(ε, M)n2). (96)

The result follows by summation over all x ∈ D(n). ˜

We can now finish the proof of Lemma 5.8. We use the fact that
probability of exiting the disk of radius R in a particular point at
its border is O(1/R) (see [Law91] Lemma 1.7.4). From Lemma 5.9
we know that there are less than n2 deep traps in annulus Ax(2

nnγ).

This implies that there are at most cn2
√

2nn−κ points on the border of
Dx(2

nnγ) that are close to some deep trap. The required probability
is thus bounded from above by

C
√

2−nn−γn2
√

2nn−κ = Cn2−κ/2−γ/2. (97)
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˜

Event (v). The next lemma excludes the possibility of hitting a
deep trap that is too close to the border of the disk with area 2nnγ

around the starting point.

Lemma 5.10. For any x ∈ D, the probability that the random walk
started at x hits a deep trap in Ax(2

nnγ) before the exit from Dx(2
nnγ)

is smaller than Cn2−γ/2−κ/2.

Proof. We need to estimate the probability that we hit some point y
that is in the distance smaller than

√
π−12nn−κ from the border of

Dx(2
nnγ). We use (224) to estimate this probability. The advantage

of (224) against (223) is that the error terms are much smaller. Since
for any disk D centred at x

GD(x, y) = Px[X hits y before exit from D]GD(y, y) (98)

and GD(y, y) ≥ 1, we know that Px(X hits y) ≤ GD(x, y). According
to Lemma 5.9 there are at most n2 deep traps in Ax(2

nnγ). We thus
have

Px[X hits T M
ε ∩ Ax(2

nnγ) before exiting Dx(2
nnγ)]

≤ 2n2

π

[

log
√

π−12nnγ − log
(

√
π−12nnγ(1 − n−γ/2−κ/2)

)

+ O(2−n/2)
]

≤ − cn2 log(1 − n−γ/2−κ/2) ≤ Cn2−γ/2−κ/2.
(99)

This finishes the proof. ˜

Event (iii). Finally, we need to show that X almost never returns
to a deep trap after exiting a disk of area 2nn−κ around it. We do
not need to consider the traps that are closer than

√
π−12nn−κ to the

border of D because hitting such traps has already been dealt with
when considering (ii) and (v) defining the “bad” event.

Lemma 5.11. There exists a constant C such that for any x satisfying
Dx(2

nn−κ) ∩ D(n)c = ∅, the probability that X returns to x before Λ
after exiting disk Dx(2

nn−κ) is smaller than Cn−1 log n.

Proof. Let pret denotes the required probability and let ξ be the first
time when X exits Dx(2

nn−κ). Obviously, ξ < Λ. By the Markov
property

GD(x, x) =
Λ

∑

i=0

Px[Xd(i) = x] =

ξ
∑

i=0

Px[Xd(i) = x] +
Λ

∑

i=ξ+1

Px[Xd(i) = x]

= GD(2nn−κ)(0, 0) + pretGD(x, x).
(100)
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Hence,

pret = 1 − GD(2nn−κ)(0, 0)

GD(x, x)
≤ 1 − GD(2nn−κ)(0, 0)

G2D(0, 0)
, (101)

where 2D denotes the disk with centre the origin and twice the radius
of D. Using the expression (225) we get

pret ≤ 1 − log(2nn−κ) + O(1)

log(2 · 2nn1−α) + O(1)
≤ Cn−1 log n. (102)

This finishes the proof. ˜

Proof of Lemma 5.1. We have now all ingredients to prove Lemma 5.1.
We should prove that the probability that some of the events (i)–(v)
from Section 2 happen during first Cn1−α−γ parts can be made very
small. We will use J(i), . . . , J(v) to denote the first part where (i), . . . ,
resp. (v) occurs.

The simplest condition is (ii). This condition requires that X cannot
exit D during the good part of the trajectory. That means that starting
point of a part of the trajectory satisfying (ii) should be in the annular

ring with the outer radius
√

π−1m2nn1−α (which is the radius of D)

and the inner radius
√

π−1m2nn1−α −
√

π−12nnγ. The sequence of
starting points xn

i is a random walk on Z
2. It follows from the invariance

principle for random walks that the law of J(ii)n
α+γ−1m−1/2 converges

as n → ∞ to the exit time for a standard two dimensional Brownian
motion from the unit disk, having started at the origin. In particular
this distribution does not put mass at the value 0 and does not depend
on m.

It is thus possible to fix m large enough such that

P[J(ii)n
α+γ−1 ≥ k|τ ] ≥ 1 − δ/4. (103)

From the same reason we can choose K > k such that

P[J(ii)n
α+γ−1 ≤ K|τ ] ≥ 1 − δ/4. (104)

Hence, outside a set of probability δ/2 the number of parts before J(ii)

is in interval (kn1−α−γ , Kn1−α−γ). We use A to denote this event.
Conditionally on A, we will show that

P
[

min(J(i), J(iii), J(iv), J(v)) ≤ J(ii)

∣

∣τ , A
]

→ 0 as n → ∞. (105)

The claim of the lemma is then an easy consequence of this fact and
the previous paragraph. Observe that (105) means that in the majority
of cases the first bad event that happens is the possibility of exit from
D. The probability of all other events is negligible.

We start with condition (iv). According to it, the part is bad if its
end is not in E(n). Lemma 5.8 states that the probability that this
happens during a particular part of trajectory is of order n2−κ/2−γ/2.
Since the number of parts before J(ii) is bounded by Kn1−α−γ, the

probability that (iv) happens is bounded by Kn3−α−γ/2−κ/2. However,
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κ can be chosen large enough to assure that this bound converges to 0.
We thus have

P[J(iv) < J(ii)|τ , A] → 0. (106)

Using a very similar reasoning and Lemma 5.10 we get exactly the same
estimate for condition (v). Hence,

P[J(v) < J(ii)|τ , A] → 0. (107)

Condition (i) requires that X does not visit two deep traps during one
part of the trajectory. We use B to denote the event A∩{J(iv) > J(ii)}.
We show

P[J(i) < J(ii)|B, τ ] → 0. (108)

Since we assume that J(iv) ≥ J(ii), we can apply Lemma 5.7. It claims
that probability of hitting two deep traps during one part is of order
n2(α+γ−1). By the same argument as before we can bound the proba-
bility in (108) by Knα+γ−1 and it tends to 0 as n → ∞.

The last condition (iii) demands that X does not return to a deep
trap after exiting the disk of area 2nn−κ around it. For one partic-
ular trap probability of such event can be bounded by cn−1 log n by
Lemma 5.11. According to Lemma 5.2, the probability of visiting a
deep trap during one part of the trajectory is of order nα+γ−1. Let N
denotes the number of visited deep traps before Λ. Conditionally on
B, it is not difficult to show using Markov inequality that

P[N ≥ n1/2|B, τ ] ≤ Cn−1/2. (109)

We have thus
P[J(iii) < J(ii)|B, τ ]

≤ P[J(iii) < J(ii)|B, τ , N ≤ n1/2]P[N ≤ n1/2|B, τ ] + P[N ≥ n1/2|B, τ ]

≤ cn−1/2 log n + Cn−1/2 → 0 as n → ∞.
(110)

The claim (105) that follows easily from (106)–(110). This finishes the
proof of Lemma 5.1. ˜

6. Properties of the score

In this section we will prove the convergence of the sequence of pro-
cesses Y n to a Lévy process. This result is contained in Proposition 6.5.
Recall that Y n was defined in (25) as a well rescaled sum of scores.
Hence, we should first study the properties of the score.

The score of the i-th part of the trajectory depends on the history
only through its starting point xn

i . We thus associate to every point
x ∈ E(n) the random variable sx, which has the same distribution as
the score of a part of the trajectory of X that is started at x. We
can ignore the points in D(n) \ E(n) because we do not consider the
parts of trajectory started in this set (see definition of J). We have got
already some information which can help us to describe the distribution
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of the random variables sx. According to Lemma 5.7, the probability
of hitting two deep traps in the disk Dx(2

nnγ) is of order n2(α+γ−1),
and the probability of hitting one deep trap is with high precision
KpM

ε nα+γ−1. Otherwise X does not hit any deep trap. In the last case
sx = 0 (if none of (i)–(v) of Section 2 happen).

We want now to study more precisely the distribution of sx condi-
tionally on sx < ∞. To achieve it we should gain more information
about the depth of the trap that X hits as the first. The idea behind
the proof is that as n increases the density of deep traps becomes lower,
and the hitting measure of T M

ε charges more and more sites. The dis-
tribution of the depth of the first visited trap should be thus close to
the original distribution of the depth of the trap conditioned on being
between ε2n/α/n and M2n/α/n.

To prove this heuristics we divide the set of deep traps into several
parts and we estimate the probability of hitting each of them. Let h(x)
be a function satisfying

h(x) ≥ (log x)−1, lim
x→∞

h(x) = 0, (111)

and (with L defined in (14))

L(2n/αn−1x)− 1 = o(h(n)) for all x ≥ ε. (112)

Such function exists because limx→∞ L(x) = 1. Let zn(i) satisfy ε =
zn(0) < zn(1) < · · · < zn(R) = M and zn(i + 1)− zn(i) ∈ (h(n), 2h(n))
for all i ∈ {0, . . .R − 1}.

We now estimate the probability of hitting a trap in T
zn(i+1)

zn(i) . We

use pn
i to denote

pn
i = zn(i)

−α − zn(i + 1)−α. (113)

Lemma 6.1. For any δ > 0 and P-a.e. τ there exists n0 such that for
all n > n0, for all x ∈ E(n), and for all i = {0, . . . , R−1} the probability

that the simple random walk started at x hits a trap in T
zn(i+1)
zn(i) before

the exit from Dx(2
nnγ) is in the interval

[

K(1 − δ)nα+γ−1pn
i ,K(1 + δ)nα+γ−1pn

i

]

. (114)

Proof. The proof is very similar to the proof of Lemma 5.2. We should
first improve the bounds on the homogeneity of the environment that
we have proved in Lemma 5.3.

Let H6 = H6(n, δ, ε, M) be the event that for every square Bx(2
nnν)

in D(n) and for every i ∈ {0, . . .R−1} the number of sites in T
zn(i+1)

zn(i) ∩
Bx(2

nnν) is in the interval
[

(1 − δ)nα+νpn
i , (1 + δ)nα+νpn

i

]

. (115)

We prove that H6 occurs P-a.s. for n large enough.
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Lemma 6.2. For any δ there exist constants c and C such that for n
large enough

P[H6] ≥ 1 − C log(n)n1−α−νδ−2 exp
(

− cnν+αh(n)
)

. (116)

Using this lemma it is not difficult to finish the proof of Lemma 6.1.
We will not give the detailed reasoning, because the proof follows
the same line as the proof of Lemma 5.2. The only change is that
Lemma 6.1 should be used instead of Lemma 5.3. ˜

Proof of Lemma 6.2. To show that H6 occurs P-a.s. for n large enough
we will need the following technical lemma that estimates the proba-

bility that a trap is in T
zn(i+1)
zn(i) .

Lemma 6.3. For any η > 0 there exist n0 such that for all n ≥ n0 and
all i = 0, . . . , R − 1

P
[

0 ∈ T
zn(i+1)
zn(i)

]

∈
(

(1 − η)
nα

2n
pn

i , (1 + η)
nα

2n
pn

i

)

. (117)

Proof. Let g(x) = L(x) − 1. Then by (14) we have

P
[

0 ∈ T
zn(i+1)
zn(i)

]

= P

[

τ0 ∈
[

zn(i)
2n/α

n
, zn(i + 1)

2n/α

n

)]

=
nα

2n

[

pn
i +

g(2n/αn−1zn(i))

zn(i)α
− g(2n/αn−1zn(i + 1))

zn(i + 1)α

]

. (118)

We should thus show that

g(2n/αn−1zn(i))

zn(i)α
− g(2n/αn−1zn(i + 1))

zn(i + 1)α
= o(pn

i ). (119)

However, this is obviously true since

pn
i = (zn(i))

−α − (zn(i + 1))−α ≥ ch(n) (120)

for some c depending only on M , and g(2n/αn−1zn
j ) = o(h(n)) by (112).

˜

The remaining part of the proof of Lemma 6.2 is analogous to the
proof of Lemma 5.3. We only explain the appearance of the additional
factors log(n) and h(n) that are in (116) but not in (61). The loga-
rithm before the exponential is due to the summation over all possible
values of i and (111). The factor h(n) inside the exponent comes from
Lemma 6.3 which replaces the bound on p before (64), and from the
existence of constants c(ε, M), C(ε, M) such that

ch(n) ≤ 1

zn(i)α
− 1

zn(i + 1)α
≤ Ch(n). (121)

This finishes the proof. ˜
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Using Lemma 6.1 we can now describe the behaviour of random
variables sx. Due to condition (ii) from Section 2, all good parts of the

trajectory starts at sites that are in the distance larger than
√

π−12nnγ

from the border of D(n). That is why we introduce E0(n) = {x ∈ E(n) :
Dx(2

nnγ) ∩ D(n)c = ∅}. The random variables sx then satisfy

Lemma 6.4. For P-a.e. random environment τ

lim
n→∞

max
x∈E0(n)

1 − E[exp(− λsx

2n/α )|sx < ∞, τ ]

nα+γ−1
= F (λ),

lim
n→∞

min
x∈E0(n)

1 − E[exp(− λsx

2n/α )|sx < ∞, τ ]

nα+γ−1
= F (λ),

(122)

with

F (λ) = F (λ; ε, M, α) = K
(

pM
ε −

∫ M

ε

α

1 + K′λz
· 1

zα+1
dz

)

(123)

and K′ = π−1 log 2.

Proof. By Lemmas 5.2, 5.8, and 5.10 we know that if κ is large enough,
P[sx = ∞] = O(n2(α+γ−1)). Since this probability is much smaller than
any other probability that will be used in the following computation,
the conditioning on sx < ∞ has almost no effect. Actually,

E

[

exp
(

− λsx

2n/α

)
∣

∣

∣
sx < ∞, τ

]

= P[sx < ∞|τ ]−1
E

[

exp
(

− λsx

2n/α

)

χ{sx < ∞}
∣

∣

∣
τ

]

= E

[

exp
(

− λsx

2n/α

)
∣

∣

∣
τ

]

(

1 + O(n2(α+γ−1))
)

.

(124)

If the process X hits deep trap y in Dx(2
nnγ) and nothing unusual

happens, then the random variable sx is a sum of a geometrically dis-
tributed number of exponential random variables with mean τy. The
mean of the geometrically distributed number of visits of y is equal to
GD(2nn−κ)(0, 0), where by (225)

GD(2nn−κ)(0, 0) =
2

π
log

√
π−12nn−κ +O(1) =

n

π
log 2+O(log n). (125)

Since the geometrically long sum of exponential random variables is
again exponentially distributed, the score sx is in this case an expo-
nential random variable with mean τy(n log 2/π + O(log n)). This im-
plies that conditionally on hitting a trap with the depth τy the Laplace
transform of sx/2

n/α equals

E

[

exp
(

− λsx

2n/α

)
∣

∣

∣
τy

]

=
1

1 + λτy2−n/α(n log 2/π + O(log n))
. (126)

We now estimate the Laplace transform E
[

exp(−λsx2
−n/α)|τ

]

. We
start with a lower bound. Choose δ > 0. By Lemmas 5.7, 6.1, and
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expression (126) we have for n large enough

E

[

exp
(

− λsx

2n/α

)
∣

∣

∣
τ

]

≥
(

1 − (1 + δ)KpM
ε nα+γ−1

)

+ Knα+γ−1

R
∑

i=1

1 − δ

1 + λzn(i)

2n/α
2n/α

n
n
π

log 2 + o(1)

( 1

(zn
i−1)

α
− 1

(zn(i))α

)

.

(127)

The last expression can be bounded from bellow by

1 −Knα+γ−1

(

pM
ε −

∫ M

ε

α

1 + K′λz

1

zα+1
dz

)

− δCnα+γ−1pM
ε , (128)

with C being a constant not depending on δ. The last expression
together with (124) give

lim sup
n→∞

max
x∈E0(n)

1 − E[exp(− λsx

2n/α )|sx < ∞, τ ]

nα+γ−1

≤ K
(

pM
ε −

∫ M

ε

α

1 + K′λz

1

zα+1
dz

)

+ CδpM
ε . (129)

Since δ can be taken arbitrarily small, the proof of the upper bound for
the first expression in (122) is finished. The proof of the lower bound
for the second expression in (122) is completely similar. ˜

We can finally show the convergence of the sequence Y n to a Lévy
process (see [Ber96] for complete treatment of Lévy processes). The
following proposition will be used later to prove aging.

Proposition 6.5. For P-a.e. realisation of the environment, the se-
quence of processes Y n(t) converges weakly in the Skorokhod topology
on D([0,∞)) to the Lévy process Y (t) with the Lévy measure

ρ(dx) =
αK
K′

∫ M

ε

1

zα+2
exp

(

− x

K′z

)

dz dx. (130)

Proof. We first prove the weak convergence of finite dimensional dis-
tributions. Let 0 = t0 < t1 < · · · < t`. We will show the convergence
of Laplace transforms. By definition of Y n

E

[

exp
(

−
∑̀

i=1

λi

(

Y n(ti)−Y n(ti−1)
)

)]

= E

[

∏̀

i=1

∏

j∈B(n,i)

exp
(

− λi

2n/α
sn

j

)]

,

(131)
where B(n, i) = {bn1−α−γti−1c + 1, . . . , bn1−α−γtic}.

If j < J , then the random variables sn
j are determined by behaviour

of X, otherwise they are equal to s̃n
j . Since s̃n

j ’s are independent of all
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other randomness, we can write

=
∞

∑

k=0

P[J = k]E
[

∏̀

i=1

∏

j∈B(n,i)
j<J

exp
(

− λi

2n/α
sn

j

)
∣

∣

∣
J = k

]

E

[

∏̀

i=1

∏

j∈B(n,i)
j≥J

exp
(

− λi

2n/α
s̃n

j

)
∣

∣

∣
J = k

]

. (132)

At this place it is necessary to define the distribution of s̃n
j . We

require that s̃n
i ’s satisfy the same relation as sx in the limit, i.e.

E

[

exp
(

− λ

2n/α
s̃n

j

)]

= 1 − F (λ)nα+γ−1. (133)

We have obviously chosen the s̃n
j ’s in the way that the second expecta-

tion in (132) does not pose any problems. We should thus control only
the first one.

Let y = {y0, . . . , yk} ∈ E(n)k+1. We use xn to denote the sequence
xn

0 , . . . , x
n
k of starting points of the parts of the trajectory. We have

E

[

∏̀

i=1

∏

j∈B(n,i)
j<k

exp
(

− λi

2n/α
sn

j

)]

=
∑

y

P[xn = y]E
[

∏̀

i=1

∏

j∈B(n,i)
j<k

exp
(

− λi

2n/α
sn

j

)
∣

∣

∣
xn = y

]

. (134)

Only the last term of the product depends on yk. We can thus sum
over all possible values of the endpoint of the last part. Let x′

n, resp.
y′, denote the sequences xn and y without the last element. We get

=
∑

y′

P[x′
n = y′]E

[

∏̀

i=1

∏

j∈B(n,i)
j<k

exp
(

− λi

2n/α
sn

j

)
∣

∣

∣
x′

n = y′
]

. (135)

Conditionally on the value xn
k−1, the random variable sn

k−1 is indepen-
dent of the rest. The expectation in the last formula can be thus written
as

E

[

∏̀

i=1

∏

j∈B(n,i)
j<k−1

exp
(

− λi

2n/α
sn

j

)
∣

∣

∣
x′

n = y′
]

E

[

exp
(

− λr

2n/α
sxn

k−1

)
∣

∣

∣
sxn

k−1
< ∞

]

,

(136)
where the index r satisfies k − 1 ∈ B(n, r). According to Lemma 6.4,
the second expectation can be bounded from above by

1 − (1 − δ)F (λr)n
α+γ−1 (137)

if n is large enough.
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We can now repeat the same manipulation with the last but one
value of j, etc. At the end, putting the result of this iteration into
(132), we get

E

[

exp
(

−
∑̀

i=1

λi

(

Y n(ti) − Y n(ti−1)
)

)]

≤
∏̀

i=1

(

1 − (1 − δ)F (λi)n
α+γ−1

)bn1−α−γ (ti−ti−1)c
. (138)

Taking the limits we obtain

lim sup
n→∞

E

[

exp
(

−
∑̀

i=1

λi

(

Y n(ti) − Y n(ti−1)
)

)]

≤ exp
[

−
∑̀

i=1

(1 − δ)F (λi)(ti − ti−1)
]

. (139)

In the same way we obtain a lower bound. Since δ was arbitrary we
have

lim
n→∞

E

[

exp
(

−
∑̀

i=1

λi

(

Y n(ti) − Y n(ti−1)
)

)]

= exp
[

−
∑̀

i=1

F (λi)(ti − ti−1)
]

. (140)

The corresponding Laplace transform of Y (t) is easy to calculate.
We have

E

[

exp
(

−
∑̀

i=1

λi

(

Y (ti) − Y (ti−1)
)

)]

= exp
[

−
∑̀

i=1

Ψ(λi)(ti − ti−1)
]

,

(141)
where Ψ(λ) is the Laplace exponent of Y . By Lévy-Khintchine formula
it is equal to

Ψ(λ) =

∫ ∞

0

(1 − e−λx)ρ(dx). (142)

An easy integration gives the same result as (140).
To prove the weak convergence it remains to verify that the sequence

Yn is tight. We use Theorem 16.8 from [Bil99]. We should show that
for any N and δ1, δ2 there exist a, n0, and η such that

(i) P[ sup
t∈[0,N ]

|Yn(t)| ≥ a] < δ1 for all n > n0

(ii) P[w(Y n, η, N) ≥ δ2] < δ1 for all n > n0,

where

w(f, η, N) = inf
{ti}

max
0<i≤r

sup{|f(s) − f(t)| : s, t ∈ [ti−1, ti)} (143)
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and the infimum runs over all finite collections {ti} such that 0 <
ti − ti−1 < η, t0 = 0, and tr = N .

Proof of (i) Since Y n are increasing, (i) is equivalent to the tight-
ness of the sequence Y n(N). From convergence of finite dimensional
distribution we know that the Laplace transforms of Y n(N) converge to
LY (N)(λ) = E[exp(−λY (N))]. It is sufficient to verify that this Laplace
transform satisfies limλ→0 LY (N)(λ) = 1. However, LY (N) is continuous
and

LY (N)(0) = exp(−NF (0)) = exp
[

− NK
(

pM
ε −

∫ M

ε

α

zα+1
dz

)]

= 1.

(144)
Proof of (ii) According to Lemma 5.7, the expected number of jumps

of Y n in the interval [0, N ] can be bounded by some constant C not
depending on n. Markov inequality then gives the existence of some C ′

such that the probability that the number of jumps of Y n exceeds C ′ is
smaller than δ1/2 for all n large enough. If the number of jumps is finite,
we can take {ti} being the superset of the set of all jumps. The process
Y n is then constant on any interval [ti−1, ti) and thus w(Y n, η, N) = 0.
This completes the proof of Proposition 6.5. ˜

7. Proof of aging

We prove here the following proposition that is a more precise version
of Theorem 1.1.

Proposition 7.1. For P-a.e. realisation of the environment τ and for
every 0 < θ < ∞

lim
t→∞

R(t, t + θt) =

∫ 1/1+θ

0

sinαπ

π
uα−1(1 − u)−α du ≡ R(θ). (145)

An easy calculation gives

Corollary 7.2. The function R(θ) satisfies

lim
θ→0

R(θ) = 1 and lim
θ→∞

R(θ) = 0. (146)

Proof. I. We introduce some additional notation. Let Z(t) = Z(t; ε, M)
be a Lévy process with the Lévy measure

ρ′(dx) =
αK
K′

(

∫ ε

0

+

∫ ∞

M

) 1

zα+2
exp

(

− x

K′z

)

dz dx, (147)

independent of the processes Y, Y n. We define the new family of pro-
cesses,

Ỹ n(t) = Y n(t) + Z(t) and Ỹ (t) = Y (t) + Z(t). (148)
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The advantage of this new class is that the Lévy measure of Ỹ is given
by

ρ(dx) + ρ′(dx) =
αK
K′

∫ ∞

0

1

zα+2
exp

(

− x

K′z

)

dz dx

=
α2Γ(α)K(K′)α

xα+1
dx,

(149)

and thus Ỹ is an α-stable subordinator. As an easy consequence of the
previous section we know that the sequence Ỹ n converges weakly to Ỹ
whatever the values chosen for ε and M . Let Rn = R(Ỹ n), R = R(Ỹ )

denote the range of Ỹ n, resp. of Ỹ .
Fix θ > 0. Let δ1, δ2 > 0 be arbitrarily small but fixed. We will now

fix the values of M , m, ε as functions of δ1, δ2 and n as a function of
δ1, δ2 and t . First, let n(t) be the integer satisfying

1 ≤ t

2n(t)/α
< 21/α. (150)

Obviously, n(t) → ∞ as t → ∞. In this section n = n(t) is always
connected with t via (150). We use s = s(t) to denote the rescaled
value of t, s = t2−n(t)/α. By (150) s satisfies 1 ≤ s < 21/α. In the same

way we rescale the value (1 + θ)t. The process Ỹ n that we will use to
approximate the time change S̄n should be thus relevant until the level
(1 + θ)s < (1 + θ)21/α. Let t0 be such that

P[Ỹ (t0) < (1 + θ)21/α] < δ1. (151)

By the weak convergence of Ỹ n to Ỹ we can take t (and so n = n(t))
large enough such that

P[Ỹ n(t)(t0) ≥ (1 + θ)21/α] > 1 − 2δ1. (152)

There are J(n) relevant parts of the trajectory of the process X. For
every time unit we need n1−α−γ parts. So, we should choose m in such
a way that

P[J(n)nα+γ−1 ≥ t0] > 1 − δ1. (153)

By Lemma 5.1, this can be done independently of ε and M . Let A1 be
the event

{

Ỹ n(t0) ≥ (1 + θ)s and J(n) ≥ t0n
1−α−γ

}

. Then, by (152)
and (153),

P[A1] ≥ 1 − 3δ1. (154)

We can now fix the values of ε and M . Later, we want to work with
the processes Ỹ n instead of Y n. We should thus guarantee that the
artificial addition of process Z is not relevant. We take ε1 and M1,
such that

P[Z(t0; ε1, M1) > δ2] < δ1. (155)

We want also safely ignore the error introduced by the very deep and
the shallow traps. By Lemma 4.1, we can take M2 such that

P[X hits TM2 before Λd(n)] < δ1. (156)
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Further, by Lemma 3.1, we know that there is a constant K1 (not
depending on ε, M or n), such that τ -a.s. for n (or equivalently t)
large enough

E

[ 1

2n/α
· time spent in T ε before Λd(n)

∣

∣

∣
τ

]

≤ K1ε
1−α, (157)

and thus

P

[ 1

2n/α
· time spent in T ε before Λd(n) > δ2

∣

∣

∣
τ

]

≤ δ−1
2 ε1−αK1. (158)

Let us take ε2 such that δ−1
2 ε1−α

2 K1 < δ1. The constants ε and M are
then defined by

ε = min(ε1, ε2) and M = max(M1, M2). (159)

This choice of constants ensures that the distance between the re-
scaled time change S̄n and the process Ỹ n is small. Precisely, let

A2 =
{

|S̄n(t) − Ỹ n(t)| ≤ 2δ2 ∀t ≤ t0
}

. (160)

Then our choice of constants gives

P
[

A2|A1

]

≥ 1 − 3δ1. (161)

Let A = A1 ∩ A2. Then from (154) and (161) follows that for t large
enough

P[A] ≥ 1 − 6δ1. (162)

II. Later we will take the limit n → ∞ for fixed value of s ∈ [1, 21/α]
instead of taking limit t → ∞. We will show that this limit does not
depend on s. To be able to show the existence of the limit t → ∞ we
will need uniformity of convergence in s. The proof of the following
auxiliary lemma is left to the reader.

Lemma 7.3. Let Pu(s, Y ) = P
[

[s, s + u] ∩ R(Y ) 6= ∅
]

for Y being Ỹ n

or Ỹ . Then for any u < θ21/α

lim
n→∞

Pu(s, Ỹ
n) = Pu(s, Ỹ ) (163)

uniformly for s ∈ [1, θ21/α].

III. We now study the event G(t) =
{

X(t) = X((1 + θ)t)
}

for t
large. We divide the probability space into three disjoint parts,

E1(n, s) =
{

dist(s,Rn) ≤ 2δ2 or dist((1 + θ)s,Rn) ≤ 2δ2

}

E2(n, s) =
{

dist(s,Rn) > 2δ2, dist((1 + θ)s,Rn) > 2δ2 and
(

s, (1 + θ)s
)

∩ Rn 6= ∅
}

E3(n, s) =
{

[s − 2δ2, (1 + θ)s + 2δ2] ∩Rn = ∅
}

.

(164)

This division has the following reason. On event A2 and therefore
on event A, to precision 2δ2, any interval that does not intersect Rn

corresponds to a time period that X spent in Dy(2
nn−κ) around some
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deep trap y. Heuristically the points of the range correspond to times
when the walk did not meet any deep trap for a long time.

We wish to show that essentially event G(t) is the same as event
E3(n, s). Obviously

P[G(t) ∩ E3(n, s)] ≤ P[G(t)]

≤ P[E3(n, s)] + P[E1(n, s)] + P[G(t) ∩ E2(n, s)] (165)

We should thus estimate all quantities in the last display. When E1

occurs, at least one of the values s, (1 + θ)s is too close to Rn. Hence,
we cannot know precisely what happens with the process X in this
situation. However, the probability of E1 is small. Indeed,

P[E1] ≤ P[dist(s,Rn) ≤ 2δ2] + P[dist((1 + θ)s,Rn) ≤ 2δ2]. (166)

If n is large, we can bound the first term in the last expression by

P[dist(s,Rn) ≤ 2δ2] ≤ δ1 + 1 − P[R ∩ [s − 2δ2, s + 2δ2] = ∅]. (167)

The constant δ1 comes from the approximation of Rn by R and by
Lemma 7.3 can be chosen independent of s. Since Ỹ is a stable subor-
dinator, the probability P[R ∩ [s − 2δ2, s + 2δ2] = ∅] can be evaluated
using formulas from Lemma B.1,

P[dist(s,Rn) ≤ 2δ2] ≤ δ1 + 1 − P[g(s + 2δ2) < s − 2δ2]

= δ1 + 1 −
∫

s−2δ2
s+2δ2

0

sinαπ

π
uα−1(1 − u)−α du ≤ Cδ1 + C ′δ1−α

2 (168)

for some constants C , C ′ independent of s. In the same way we can
estimate the second probability from (166). We have thus

P[E1] ≤ Cδ1 + C ′δ1−α
2 . (169)

If A occurs, then the realisation of E2 means that X(t) is in disk
Dy1(2

nn−κ) and X
(

(1+θ)t
)

is in Dy2 (2
nn−κ) for some y1, y2 ∈ T M

ε . By
definition of J we have necessarily y1 6= y2, and thus by Lemma 5.6

P[G(t) ∩ E2(n, s) ∩ A] = 0. (170)

Hence,

P[G(t) ∩ E2(n, s)] ≤ 1 − P[A] ≤ Cδ1 (171)

The most interesting event is E3. The probability of E3 can be
calculated in a similar manner to the probability of E1. For n large
enough

∣

∣P[E3(n, s)] − P
[

R ∩ [s− 2δ2, (1 + θ)s + 2δ2] = ∅
]
∣

∣ ≤ δ1, (172)

which implies
∣

∣

∣
P[E3(n, s)] −

∫ 1/1+θ

0

sinαπ

π
uα−1(1 − u)−α du

∣

∣

∣
≤ (Cδ1 + C ′δ2). (173)
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The constants C and C ′ can be chosen again independent of s. Note
also that the main term does not depend on s.

We will now show that P[G(t) ∩E3(n, s)] is close to P[E3(n, s)]. Let
D = D(t, θ) be the event that for some y ∈ T M

ε ,

tn ≡ inf{u : X(u) = y} < t (174)

and

sn ≡ sup{u < inf{v > tn : X(v) /∈ Dy(2
nn−κ)} : X(u) = y} > t(1 + θ).

(175)
Obviously we have that the event {E3(n, s)} \ {G(t)∩E3(n, s)} is con-
tained in the event Ac ∪ (D ∩ ({X(t) 6= y} ∪ {X(t(1 + θ)) 6= y}).
Lemma 7.4. The probability of the event D intersected with {X(t) 6=
y} ∪ {X(t(1 + θ)) 6= y} tends to zero as t tends to infinity.

We use this lemma to finish the proof of Proposition 7.1. For t large
enough we have putting (169) and (171), into (165) we get

P[G(t)] ≤ Cδ1 + C ′δ1−α
2 + P[E3(n, s)]. (176)

Similarly, we obtain the lower bound (for t sufficiently large)

P[G(t)] ≥ P[E3(n, s)] − Cδ1. (177)

Since the expression (173) for E3 and also the constants in error terms
do not depend on s, and since δ1 and δ2 can be taken arbitrarily small,
we have

lim
t→∞

P[G(t)] =

∫ 1/1+θ

0

sinαπ

π
uα−1(1 − u)−α du. (178)

This finishes the proof. ˜

IV. It remains to show Lemma 7.4

Proof of Lemma 7.4. It will suffice to show that

P[X(t) = y|D, tn, y, τ ], P[X(t(1 + θ)) = y|D, tn, y, τ ] (179)

tend to one as t tends to infinity. We will only treat the first probability,
the proof of the second convergence being entirely similar.

The Markov process (X(tn + s) : sn − tn ≥ s ≥ 0), given D, tn, y, τ
is equal in law to the process (U(s) : s ∈ [0, sn − tn]) conditioned on
the event {S > sn − tn} where U and S are constructed as follows:

(i) U stays at site y for an exponential, mean τy, amount of time,
then

(ii) with probability p(n), the probability that a random walk start-
ing at y escapes D ≡ Dy(2

nn−κ) before returning to site y, the process
terminates and S is the termination time. With probability 1 − p(n)
the process U performs an excursion away from y conditioned not to
leave D. At the end of the excursion it returns to y and step (i) resumes
and so on.
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The important point is that the number p(n) is of order 1/n while
(recall y ∈ T M

ε ) the mean time spent at y per visit exceeds ε2n/α/n.
Thus the conditioning event has probability bounded below by C(ε, θ).
Hence it will suffice to show that P[Ū(t − tn) 6= y|τ ] tends to zero as
t tends to infinity τ -a.s. where process (Ū(u) : u ≥ 0) is a Markov
process that alternates staying at site y an exponential amount of time
with mean τy and performing excursions away from y conditioned to
stay within D (again staying at each site a time according to τ ).

We first show that τ -a.s. for t (and therefore n) sufficiently large,
the expected duration of a conditioned excursion from y is very small
compared to τy uniformly over possible y ∈ T M

ε . It is easy to prove
that in the neighbourhood of y there are only traps shallower than
εn−5/(1−α)2n/α/n. Indeed, as in the proof of Lemma 5.6, let

B(y) =
{

y ∈ T M
ε , ∃x ∈ D, τx ≥ εn− 5

1−α
2n/α

n

}

. (180)

Then,

P[B(y)] ≤ C2nn−κ n2αn
5α

1−α

22n
. (181)

The summation over all sites in D(n) gives

P

[

⋃

y∈D(n)

B(y)
]

≤ Cn1+α−κn
5α

1−α (182)

and the claim follows easily by the Borel-Cantelli lemma taking κ large
enough.

Next, we estimate the expected number of visits to z ∈ D \ {y}
during an excursion that does not leave the disk. It is a well known
fact that the expected number of visits of z ∈ Z

2 by the simple random
walk during one excursion from the origin is equal to one. So,

1 = E[# visits of z]

= E[# visits of z|Xd does not leave D]P[Xd does not leave D]

+ E[# visits of z|Xd leaves D]P[Xd leaves D].
(183)

It follows that for n large enough

E[# of visits of z|Xd does not leave D]

≤
(

P[excursion does not leave D]
)−1

≤ (1 − GD(2nn−κ)(0, 0)
−1)−1 ≤ 1 + C/n ≤ 2.

(184)

The expected duration of the i-th excursion, Vi, thus satisfies

E[Vi] ≤ 2
∑

z∈D\{y}

τz ≤ 2
∑

z∈D(n)

τzχ{τz ≤ n−5/(1−α)ε2n/α/n}. (185)
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The last sum can be bounded using Lemma 3.2. Let i2(n) be such that
2−i2(n) ≤ n−5/(1−α) ≤ 2−i2(n)+1. Then, a.s. for n large

E[Vi] ≤ 2
∑

z∈D

τzχ{τz ≤ 2} + 2

i0(n)
∑

i=i2(n)

∑

z∈T ε2−i+1

ε2−i

τz

≤ 4 · 2nn1−α + 2

i0(n)
∑

i=i2(n)

ε
2n/α

n
2−i+1

∣

∣T ε2−i+1

ε2−i

∣

∣

≤ 4 · 2nn1−α + C2n/α

i0(n)
∑

i=i2(n)

2−(1−α)i ≤ C2n/αn−5.

(186)

Since the expected number of excursions of Ū before time (1 + θ)t
is bounded by a multiple of n, the mean of the total time spent by Ū
during the interval [0, (1+θ)t+2n/α/n2] away from y is easily bounded
by C2n/αn−4 for C depending on ε but not on t.

We claim that (for n sufficiently large) for any u ∈ [0, (1 + θ)t],
P[Ū(u) 6= y] ≤ 2C/n2. Suppose not. Then for some u0, P[Y (u0) 6= y] ≥
2C/n2. We have that the expected total time spent by Ū away from y
in interval [u0, u0 + 2n/α/n2] is bounded by C2n/αn−4, so there exists
v0 ∈ [u0, u0 + 2n/α/n2] so that P[Ū(v0) 6= y] ≤ C/n2. On the other
hand, by the Markov property for Ū if λ is the time of the first jump
from y

P[Ū (v0) 6= y] ≥ P[Ū(v0) 6= y ∩ {λ > v0 − u0}]

>
1

2
P[Ū(u0) 6= y] ≥ C/n2. (187)

for n sufficiently large. This contradiction gives the desired result and
with it the lemma is proven.

˜

8. Proof of subaging

In this section we prove the subaging behaviour of the function
Π(tw, tw + t). Recall that this function has been defined as the proba-
bility that X does not jump between tw and tw + t. If we know that at
time tw the process X is in a trap y with depth τy, then this probability
is easy to obtain, by the Markov property

P
[

X(t′) = X(t)∀t′ ∈ [tw, tw + t]
∣

∣τX(tw)

]

= exp
(

− t

τX(tw)

)

. (188)

We should thus gain an information about the depth τX(tw). We would

like to deduce its distribution from the behaviour of processes Ỹ n and
Ỹ , because these are the only objects we really control. It should be
obvious that the depth of the trap where X is at time tw depends on
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the size of the jump of Ỹ n that intersects the level tw/2n/α. Hence,
to find an expression for the function Π(tw, tw + t) we should control
two basic objects. First, the distribution of the size of the jump of Ỹ n

that intersect certain level, and second, the conditional distribution of
τX(tw) knowing the size of this jump.

We start by controlling the size of the jump. Let `n = `n(s) be the
size of the jump of Ỹ n that intersect the level s,

`n(s) = inf{x ∈ Rn : x > s} − sup{x ∈ Rn : x ≤ s}, (189)

and let ` = `(s) be the same size for the limiting process Ỹ . We use
µn

s , resp. µs to denote the distributions of `n(s) and `(s).
The following lemma is a consequence of Proposition 6.5 and the P-

a.s. continuity of the functional Y → inf{x ∈ R(Y ) : x > s}− sup{x ∈
R(Y ) : x ≤ s} in the Skorokhod topology on D([0,∞)).

Lemma 8.1. The sequence µn
s converges weakly to µs uniformly in

s ∈ [1, 21/α], that is for every bounded continuous function g
∫

g(`)µn
s (d`)

n→∞−−−→
∫

g(`)µs(d`) uniformly in s ∈ [1, 21/α].

(190)

As a consequence of the scaling invariance of Ỹ (recall that Ỹ is a
stable subordinator) we get the following relation between the measures
µs,

µs([a, b]) = µ1([a/s, b/s]) (191)

for any interval [a, b] ⊂ (0,∞).

The control of τX(tw) knowing the size of the jump is more compli-
cated. It occupies the majority of the proof of the following proposition
that is a refined version of Theorem 1.2.

Proposition 8.2. For P-a.e. realisation of the environment τ ,

lim
t→∞

Π
(

t, t +
θt

log t

)

=

∫ ∞

0

( `π

`π + θα

)1+α

µ1(d`) ≡ Π(θ). (192)

By an easy application of dominated convergence theorem we get

Corollary 8.3. The function Π(θ) satisfies

lim
θ→0

Π(θ) = 1 and lim
θ→∞

Π(θ) = 0. (193)

Proof of Proposition 8.2. We proceed similarly as in the proof of aging.
We take n(t) as in (150) and we define s = s(t) = t/2n(t)/α. Next,
we choose δ1 and δ2, and we set the constants ε, M and m in the
same manner as before. We thus know that the process Ỹ n is a good
approximation of the rescaled time change S̄n. That means that P[A] =
P[A1 ∩ A2] ≥ 1 − Cδ1 with A1, A2 defined as in the previous section.
For the following discussion we will suppose that A occurs and we take
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account of the remaining part of the probability space at the end of
the proof.

As we have already discussed, it is necessary to obtain the conditional
distribution of τX(t) knowing `n(s). Similarly as in the proof of aging
not much can be done if the distance between s and Rn is smaller than
2δ2, because the approximation is not sufficiently precise. However, the
probability of this bad case can be bounded by Cδ1 +C ′δ1−α

2 uniformly
in s in the same way as in (169).

Let E = E(n, s) denote the event dist(s,Rn) > 2δ2. If E occurs,
then the situation is more favourable. We know that X was at time t
inside a disk Dy(2

nn−κ) around some deep trap y = y(n, s). Moreover,
similarly as in Lemma 7.4, we can show

P[X(t) = y(n, s)|E(n, s)] → 1 as t → ∞. (194)

We will thus compute the conditional distribution of τy(n,s) knowing
`n(s) instead of the distribution of τX(t). As we have already discussed
in the proof of Lemma 6.4, the size ` of the jump that is the result of
the visit of y satisfies

2n/α` = τy

ξ
∑

i=1

e′i, (195)

where ξ is a geometrically distributed random variable with mean

GD(2nn−κ)(0, 0) = n log 2/π + o(n) = K′n + o(n), (196)

and e′i are i.i.d., exponential random variables with mean one. It is
convenient to introduce the rescaled depth of trap, σx = τxn/2n/α.
Equation (195) then becomes

` =
σy

n

ξ
∑

i=1

e′i. (197)

As can be seen from Lemma 6.1, the distribution νn of σy converges
weakly to the distribution ν given by

ν(dx) =
α

ε−α − M−α
· 1

xα+1
dx for ε ≤ x ≤ M. (198)

The random variable n−1
∑ξ

i=1 e′i is an exponential random variable
with mean K′ + o(1). Let fn denote its density, and let f denote the
density of the limiting distribution,

f(x) = exp
(

− x/K′
)

/K′. (199)

We use F n
` to denote the distribution function of σy(n,s) conditionally

on `n(s) = `,

F n
` (a) = P[σy(n,s) ≤ a|`n(s) = `]. (200)
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Lemma 8.4. The function F n
` can be written as

F n
` (a) =

∫ a

ε
1
x
fn(

`
x
)νn(dx)

∫ M

ε
1
x
fn( `

x
)νn(dx)

(201)

Proof. We should verify that for any event B that is measurable with
respect to the σ-algebra generated by the random variable `n(s)

∫

B

χ{σy ≤ a}dP =

∫

B

F n
` (a) dP. (202)

It is sufficient to verify the last expression for an event B that has the
form {`n(s) ∈ I} for some interval I ⊂ [0,∞). The left hand side
of (202) can be then written as

∫

B

χ{σy ≤ a}dP =

∫ a

ε

∫

I/x

fn(z) dz νn(dx). (203)

To compute the right hand side we should first find the distribution
of `n(s)

P[`n(s) ≤ u] =

∫ M

ε

∫ u/x

0

fn(z) dz νn(dx). (204)

The right hand side of (202) then equals

∫

I

∫ a

ε
1
x
fn( `

x
)νn(dx)

∫ M

ε
1
x
fn(

`
x
)νn(dx)

d
(

∫ M

ε

∫ `/x

0

fn(z)dz νn(dx)
)

=

∫

I

∫ a

ε
1
x
fn(

`
x
)νn(dx)

∫ M

ε
1
x
fn( `

x
)νn(dx)

(

∫ M

ε

1

x
fn(`/x) νn(dx)

)

d`. (205)

Making the substitution z = `/x and changing the order of integration
it is easy to get the same expression as in (203). This finishes the
proof. ˜

As an consequence of the previous lemma we get

Lemma 8.5. For any bounded continuous function g
∫

g(a)dF n
` (a)

n→∞−−−→
∫

g(a)dF`(a), (206)

where

F`(a) =

∫ a

ε
z−α−2 exp(`/K′z)dz

∫ M

ε
z−α−2 exp(`/K′z)dz

. (207)

Moreover, if K ⊂ (0,∞) compact and g has bounded first derivative,
then the convergence is uniform in ` ∈ K.

Proof. It is easy to show using the weak convergence of νn and proper-
ties of fn that the nominator, resp. the denominator of (201), converge
to

∫ b

ε

1

x
f
( `

x

)

ν(dx), (208)
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with b = a resp. b = M . Inserting (198) and (199) into the last
expression we get

∫ b

ε

1

x
f
( `

x

)

ν(dx) =

∫ b

ε

z−α−2 exp(`/K′z) dz, (209)

which proves the pointwise convergence. The uniform convergence can
be then proved using standard methods. ˜

We have now all ingredients to finish the proof of Proposition 8.2.
Let G = G(t) denote the event

G =
{

X(t′) = X(t)∀t′ ∈ [t, t + θt/ log t]
}

. (210)

Then,

P[G] =

∫ ∞

0

P[G|`n(s) = `]µn
s (d`)

=

∫ ∞

0

P[G|` ∩ (A ∩ E)]
(

1 − P
[

(A ∩ E)c|`
])

µn
s (d`)

+

∫ ∞

0

P[G|` ∩ (A ∩ E)c]P[(A ∩ E)c|`]µn
s (d`) =

(211)

The second integral can be bounded by P[(A ∩ E)c] ≤ Cδ1 + C ′δ1−α
2 .

The first one can be bounded from above by
∫ ∞

0

P[G|` ∩ (A ∩ E)]µn
s (d`) ≡ I(t) (212)

and from below by I(t)− Cδ1 − C ′δ1−α
2 . We should thus compute the

value of I(t). Using (188) we get

I(t) =

∫ ∞

0

∫ M

ε

exp
(

− θtn

a2n/α log t

)

dF n
` (a)µn

s (d`). (213)

Taking t = s2n/α we get

I(s2n/α) =

∫ ∞

0

∫ M

ε

exp
(

− θsα

a log 2 + cn−1 log s

)

dF n
` (a)µn

s (d`). (214)

It is not difficult to show using Lemmas 8.5 and 8.1, uniformly for
s ∈ [1, 21/α],

lim
n→∞

I(s2n/α) =

∫ ∞

0

∫ M

ε

exp
(

− θsα

a log 2

)

dF`(a)µs(d`) ≡ I∞(s). (215)

Inserting (207) into (215) we get

I∞(s) =

∫ ∞

0

∫ M

ε

exp
(

− θsα

a log 2

) a−α−2 exp(−`/K′a)
∫ M

ε
z−α−2 exp(`/K′z) dz

da µs(d`).

(216)
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For any c > 0 the integral
∫ ∞

0
exp(−c/z)z−α−2 dz = c−α−1Γ(α+1). We

introduce the following notation. Let

gc(ε, M) =
1

Γ(α + 1)

(

∫ ε

0

+

∫ ∞

M

)

e−c/zz−α−2 dz, (217)

and

d1 =
θsα

log 2
+

`

K′
and d2 =

`

K′
. (218)

Then

I∞(s) =

∫ ∞

0

d−α−1
1 − gd1(ε, M)

d−α−1
2 − gd2(ε, M)

µs(d`). (219)

The difference between I∞(s) and J(s) ≡
∫ ∞

0
(d2/d1)

1+αµs(d`) is small
for ε small and M large. To see this consider

lim
ε→0

M→∞

I∞(s)

= lim
ε→0

M→∞

[
∫

d−α−1
1

d−α−1
2 − gd2(ε, M)

µs(d`)−
∫

gd1(ε, M)

d−α−1
2 − gd2(ε, M)

µs(d`)

]

.

(220)

Both terms converge due to the monotone convergence theorem, first
one to J(s) and second one to 0 uniformly in s. From the scaling
relation (191) we get that J(s) actually does not depend on s,

J(1) =

∫ ∞

0

( `π

`π + θα

)1+α

µ1(d`). (221)

Since ε → 0 and M → ∞ when δ1, δ2 → 0, there exists a function
h(δ1, δ2) such that h(δ1, δ2) → 0 as δ1, δ2 → 0 satisfying |I∞(s)−J(1)| ≤
h(δ1, δ2) for all s. Using this, (215), (220), and the bounds in the
paragraph after (211) we get that for n larger than some n(δ1, δ2) and
for any s ∈ [1, 21/α]

∣

∣P[G(s2n/α)] − J(1)
∣

∣ ≤
(

Cδ1 + C ′δ1−α
2 + h(δ1, δ2)

)

. (222)

Since δ1 and δ2 can be taken arbitrarily small, the proof is finished. ˜

Appendix A. Some properties of the simple random walk

We summarise here some known properties of Green’s function and
hitting probabilities of the simple random walk on Z

2 that is killed
when it exits the disk D with radius r. Let ξ denote the exit time from
this disk.

The most important formula that we use repeatedly is

P[X hits x before ξ] = 1 − log |x|
log r

+ O
( |x|−2

log r

)

+ O(log−2 r). (223)
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The proof of it can be found for example in Lawler [Law91], Proposi-
tion 1.6.7. We use also a similar expansion for the Green’s function,

GD(0, x) =
2

π
(log r − log |x|) + O(|x|−2) + O(r−1). (224)

For GD(0, 0) there is the following formula ([Law91], Theorem 1.6.6)

GD(0, 0) =
2

π
log r + k + O(r−1). (225)

As an easy consequence of formula (223) we get following lemma:

Lemma A.1. Let y be an uniformly chosen point in D. Then there
exists constant C and b < 1 independent of r such that

E
[

exp
(

b log rP[X hits y before ξ]
)]

≤ C. (226)

Proof. Let a be a positive constant and let Da denotes the disk with
radius a. Then by (223) we have

E
[

exp
(

b log rP[X hits y before ξ]
)]

≤ 1

πr2

∑

y∈Da

exp(b log r) +
1

πr2

∑

D\Da

exp
(

b log rP[X hits y before ξ]
)

≤ C

r2−b
+

1

πr2

∑

y∈D\Da

exp{b log r − b log |y|+ O(|y|−2) + O(log−1 r)}

≤ C +
1

πr2−b

∑

y∈D\Da

C

|y|b ≤ C + Crb−1

∫ r

a

y−b dy ≤ C.

(227)

This finishes the proof. ˜

Similarly we get

Lemma A.2. There exist λ > 0 and C independent of r such that

E[exp(λGD(0, y))] ≤ C. (228)

Appendix B. Some properties of stable subordinators

Let Y be a stable subordinator with the Lévy measure

π(dx) = kx−α−1χ{x ≥ 0} dx, k > 0. (229)

We use R = R(Y ) to denote the range of this process. Let U(dx)
denote its potential measure that is defined by

U(A) =

∫ ∞

0

P(Y (t) ∈ A) dt for any A ∈ B(R). (230)

For every x > 0, let

g(x) = sup{y ∈ R : y ≤ x}, (231)

and let
d(x) = inf{y ∈ R : y ≥ x}. (232)



42 G. BEN AROUS, J. ČERNÝ, AND T. MOUNTFORD

Then it follows from Bertoin [Ber96], Theorems III.2, III.6, and the
discussion following the second theorem that

Lemma B.1. (i) For each fixed x ≥ 0 and every 0 ≤ y ≤ x < z, we
have

P(g(x) ∈ dy, d(x) ∈ dz) = U(dy)π(dz − y). (233)

(ii) For every x > 0 the random variable x−1g(x) has the distribution

sα−1(1 − s)−α

Γ(α)Γ(1 − α)
ds =

sinαπ

π
sα−1(1 − s)−αds (0 < s < 1). (234)
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