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STRATEGIES FOR TIME-DEPENDENT PDE CONTROL USING AN INTEGRATED
MODELING AND SIMULATION ENVIRONMENT. PART TWO: PROBLEMS WITH
INEQUALITY CONSTRAINTS

IRA NEITZEL, UWE PRUFERT, THOMAS SLAWIG

ABsTRACT. In the first part of this article, we have shown how time-dependent optimal control for partial
differential equations can be realized in a modern high-level modeling and simulation package. In this second
part we extend our approach to (state) constrained problems. “Pure” state constraints in a function space
setting lead to non-regular Lagrange multipliers (if they exist), i.e. the Lagrange multipliers are in general Borel
measures. This will be overcome by different regularization techniques.

To implement inequality constraints, active set methods and interior point methods (or barrier methods) are
widely in use. We show how these techniques can be realized in the modeling and simulation package CoMsoL
MULTIPHYSICS.

In contrast to the first part, only the one-shot-approach based on space-time elements is considered. We
implemented a projection method based on active sets as well as a barrier method and compare these methods
by a specialized PDE optimization program, and a program that optimizes the discrete version of the given
problem.

1. INTRODUCTION

In the paper [14] we show how time-dependent optimal control problems can be solved using the equation-
based modeling and simulation environment ComMsoL MULTIPHYSICS'. In this paper we extend this approach
to solve time-dependent optimal control problems subjected to pointwise state constraints.

Throughout this paper we consider optimal control problems of the form

(1) min j(y, u)
subject to
y— By = ug in Q
(2) n-Vy+ay = us on ¥
y(0) = wo in Q

and to pointwise constraints y, < Sy +yu < y, (box constraints) or y. < By + yu (unilateral constraints). The
constraints may be given on the whole space-time domain @ or on the boundary 3.

In contrast to elliptic PDEs, only for space-dimension N = 1 the control-to-state-operator S maps L?(Q)
into L*°(Q). For boundary controlled problems, we do not have such regularity. This lack of regularity demands
an additional assumption on the optimal state: we demand that the optimal state y* is a function in L°°(Q).

Even now, caused by the fact that for “pure” state constraints the associated Lagrange multipliers are i.g.
Borel measures, some regularization techniques are necessary. For constraints given on the same domain as the
control we can use the well investigated Lavrentiev regularization, see e.g. the works [18] or [16]. In the case
of boundary control and constraints given on the space-time domain the Lavrentiev regularization cannot be
applied. Here, some different regularization concepts are developed, examples can be found in [19] and [15].
The structure and underlying theory of the optimal control problem should be kept in mind when considering
appropriate discretization schemes. When applying standard FEM discretization as in COMSOL MULTIPHYSICS,
measures should be avoided. We therefore mainly consider regularized problem formulations in our experiments.

In this paper, we investigate two possible methods to handle state constraints. First, we use the regular-
ization suggested in [15] in the parabolic boundary controlled case and the classical Lavrentiev regularization
as discussed in [11] in the case of distributed control. The optimality system can in this case via a projection
formula be implemented by a min/max-function.
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Second, we test some barrier methods to eliminate the pointwise state constraints. In [17], Schiela shows
that some barrier methods do not need any additional regularization if their order is arbitrary high; i.e. in
some sense, barrier methods are self-regularizing. Here, the integration of a path-following algorithm into
CoMsoL MULTIPHYSICS needs only minor changes in comparison to the solution of problems without inequality
constraints, see [14] for the numerical treatment of such problems using CoMSOL MULTIPHYSICS.

This paper is organized as follows: In Section 2 we specify the optimality conditions and quote some results
concerning the existence and uniqueness of a minimizer for the given class of problems.

In the following two sections, we describe different methods to handle inequality constraints algorithmically.

In Section 4, we show how the optimality condition can be implemented in COMSOL MULTIPHYSICS scripts.
Some examples illustrate the properties of our approach.

2. OPTIMALITY CONDITIONS FOR PROBLEMS WITH INEQUALITY CONSTRAINTS

Let an optimal control problem (OCP) be given as

y 0q 0 O,
minj(y,u) = 2y(T) - valis@ + 2y — el + 2y — sl
K Ry
3) +5 luolliz i) + 5 luslias)
subject to the parabolic PDE
ye — V- (VAy) +agy = ug+f in Q
(4) n-Vy+ay = us+g on %
y(0) = o in Q

and to the pointwise (box) constraints

(5) Yo <TY+ Aug < yp ace. in Q
or to the (lower) unilateral constraints?

(6) Ye < TY + Auga.e. in Q.

Here, let Q@ ¢ R, N € N, be a bounded domain with C%!-boundary I if N = 2, and a bounded interval in R if
N = 1. Moreover, for @ = Q x (0,7, we consider the data ug € L*(Q), f € L=(Q), ux € L%(X), g € L=(%),
Y =T x(0,7), and yo € C(Q2). Further, A = (a;;()), i,j = 1,..., N is a symmetric matrix with a;; € C17(Q),
~v € (0,1). It is assumed to satisfy the following condition of uniform ellipticity: There is an m > 0 such that

AMA(@)A > m|A?  forall A € RY and all z € Q.

Moreover, functions ag € L*(Q), yq € L>(Q), yo € L>() are given. In the case of box-constraints, the
functions y,, y» € C(Q) satisfy y,(x,t) < yp(x,t) for all (z,t) € Q and it holds y,(x,0) < yo < yp(z,0) a.e. in
Q.

By the continuity of y, and y;, there is some cg > 0, such that

(7) Yo (@, 1) — ya(a,t) > cq V(z,t) €Q
holds. Moreover, we define the solution space
W(0,T) = {y € L*(0,T; H'(Q)) | v € L*(0,T, H'(Q)*)}.

Theorem 2.1. For any triple (ug + f,us + g,y0) € L*(Q) x L*(X) x L*(Q) the initial value problem (4) admits
a unique solution y € W(0,T). It holds

lyllwo,r) < ¢(llug + fllzz@@) + llus + gll2es) + lvoll2)) -
For the proof we refer to Wloka [21], or Lions [10].

Theorem 2.2. Let Q be a bounded domain with C*'-boundary. Further let ug + f € LP(Q), us, + g € L4(%)
and yo € L>(Q) be given. For every p > N/2+ 1 and s > N + 1, the weak solution of (2) belongs to
L>(Q)NC([6,T] x Q) for all 5 > 0. There is a constant ¢ not depending on (u, f,g), such that

Iyl (@) < cllug + fllLr(q) + llus + gllzas) + lvollL=()-
If yo € C(Q), then y € C(Q).

2In this paper, we only consider unilateral constraints of lower type y. < By+~yu. The theory for upper constraints Sy +~u < y.
is completely analogous.
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Remark 2.3. In the case of boundary control, we have only us + g € L?(X), so that the assumption ¢ > N + 1
of Theorem 2.2 is not fulfilled. In the case of distributed control, for space dimension N > 1 the assumption
p > N/2 + 1 is not fulfilled. In both cases, we do not have the necessary regularity of the state y. For that
reason, to obtain optimality conditions or Lagrange multipliers at all, we have to assume that the optimal state

belongs to C(Q).

2.1. Control constraints. Setting 7 = 0 and A = 1, the mixed control-state box-constraints (5) become pure
control constraints y, < u < y, a.e. in @ and the unilateral constraint (6) becomes y. < u.

Theorem 2.4. Let us,, ug, be optimal solutions to problem (1) with associated optimal state y*. The adjoint
state p is the solution of the adjoint equation

—pt =V (VAp) +aop = 0o(y" —yq) in Q
n-Vp+ap = Osy" —ys) on %
p(T) = ba(y™(T) —yo) in Q.
Further, ug, and ug, hold the projection formulas
uQ (Jj, t) = P["/a (w’t)ﬁ‘/b (:p,t)] {_l‘{Qp(x’ t)} " Q
* 1
us(2,t) = Py (2.4).(2.0)] {—@p(m, t)} on X.

The numerical treatment of control constrained problems is widely discussed in the literature, cf. [6],[3],[9], so
we abstain from giving some examples.

2.2. Pure state constraints. Setting A = 0 and 7 = 1, the constraints become pure state constraints y, <
Y < Yp.
Theorem 2.5. Let u* € L*(Q) x L%(X) be the optimal solution of problem with associated optimal state

y* € C(Q). Then u* and y* fulfill together with the adjoint state p the adjoint equation

—pt = V- (VAp) +aop = 0oy" —yq) — 1q +n¢ in Q
n-Vp+ap = Os(y" —ys) — ps +1s on %
p(T) = 0ay™(T)—ya) — pa+no inf,

the gradient equation
kQp+ug =0 a.ein Q, and  kKyp+uy =0 a.e on X,

and the complementary slackness conditions

J[ @ =) dnotzty = 0 [ = w0 dustety = 0
Q =
J[ =y dnown = o [f =) dnstaty = o
o b
ug(z,t) > 0 ae inQ y(z,t) — yo(z,t) > 0 a.e. inQ
ng(z,t) > 0ae inQ yp(x,t) —y(z,t) > 0 ae. in Q.
ps(z,t) > 0ae inX
ns(xz,t) > 0ae inX

Note, that the Lagrange multipliers uq, ps, ng, Mx Mo, end nq, if existent, are in general regular Borel
measures. This lack of reqularity motivates the reqularization by mized control-state constraints.

2.3. Mixed control-state constraints. Let A > 0 and 7 > 0 be given. These mixed control-state constraints
can be seen as model-given or in the case of 7 > A > 0 as regularization of pure state constraints by perturbation
of the state constraint by a small quantity of the control. This technique is well know under the term Lavrentiev
regularization. Here we scale the constraints such that 7 =1, A > 0.

Theorem 2.6. Let u* be the optimal solution of problem with associated optimal state y*. Then u* and y*
fulfill together with the adjoint state p the adjoint equation

—pt = V- (VAp) +aop = 0o(y" —vyq) —pg+nq mQ
n-Vp+ap = Os(y" —ys) —ps+ns  onX
p(T) = 0ay™(T) - ya) in €,
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the gradient equation

kop+u" —v (g —ng) = 0ae inQ
ke —v(us —ng) = 0a.e. onX

and the complementary slackness conditions

(" + A" —ya) po 0 a.e. in @ (Y"+ M —ya) us = 0ae onX

(yp — A" —y")ng = 0ae inQ (yp — A" —y")ns = 0Oae onX
pg(z,t) > 0ae inQ y*(z,t) + Mt (z,t) — ya(z,t) > 0 a.e. inQ
no(x,t) > 0ae inQ yp(z,t) — Mu*(z,t) — y*(x,t) > 0 ae inQ.
ps(z,t) > 0ae inX
ne(z,t) > 0ae inX

Here, the Lagrange multipliers 1g, us, 1q, and nx. are reqular L*-functions.

2.3.1. Problem case: state constraints given on the space-time domain and control given only on the boundary.
One standard problem is the following:

. 0 Ry
®) minj(y,u) = 2y - valizg) + o lusliam

subject to the boundary controlled PDE
-V (VA tay = 0 nQ
(9) n-Vy+ay = oauyg on X
y(0) = wo in Q
and to the pointwise constraints in the interior of the space-time domain
(10) Ye <y a.e. in Q

The Lagrange multiplier is usually a Borel measure on the space-time domain ). The standard Lavrentiev
regularization cannot be applied because the control u is not defined in ). Here, the new approach in [19] (for
an elliptic PDE) or [15] (for a parabolic PDE) will help to overcome this problem.

The Lavrentiev-like regularization. We replace (8)—(10) by the problem

. 0 Ky €
(11) min j(y, w,v) = 7Q||y —yoll72) + 7||04w||2L2(2) + 5””“%2(62)
subject to the state equation
ye — V- (VAy) +apy = 0 in Q
(12) i-Vy+ay = o’w on¥
y(0) = o in Q,
to the additional equation
—wy — V- (VAw) +aow = v inQ
(13) n-Vw+ow = 0 onX
w(T) = 0 inQ

and to the state constraints with modified Lavrentiev-type regularization®

(14) Ye <y+ Av a.e. in Q.

In [15] convergence for vanishing Lavrentiev parameters is shown if € is chosen according to € = coA!t¢t,
cg>0and 0<c < 1.

Theorem 2.7. Let (y*,v*,w*) be the optimal solution of (11)—(14). Then there exist adjoint states p,q €
W(0,T), and a Lagrange multiplier ug € L*(Q) such that the following first-order optimality conditions hold:

3The idea behind this regularization is, to introduce an auxiliary distributed control v which is coupled with u by an adjoint
equation, u = S*v, where S denotes the solution operator of the state equation and S* its adjoint. Here, w is the solution of the
adjoint equation and wu its trace. Cf. [15].
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State and adjoint equation

ye— V- (VAY") +apy™ = 0 inQ
(15) i-Vy*+ay* = a’w§ onX
—p =V (VAp) +aop = 0q(y" —yo) —pe @
(16) -Vp+ap = on %
p(T) = in Q.
Control and second adjoint equation
1 A
—wy — V- (VAW™) + qow™ = —Eq—l—;pQ in Q
(17) - Vw* + aw* = on %
w*(T) in Q
@ —V-(VAQ)+aq = 0 in Q
(18) i-Vg+aqg = o (ksws+p) on¥
q0) = 0 in Q.
Gradient equation
(19) e +qg—Apg = 0ae inQ.
Complementary slackness conditions
(NQv Y+ A — yc)Lz(Q) = 0
(20) g > 0ae in@
v+ —y. > 0ae in@Q

The proof is given in [15]. Here, the Lagrange multiplier is a regular L?-function. Note, that the equations
(17) and (18) are from the same type as the state equation (15) and the adjoint equation (16).

3. ALGORITHMS TO HANDLE STATE CONSTRAINTS

3.1. The barrier method. Barrier methods replace the inequality constraints by adding an arbitrary barrier

(or penalty) term to the objective functional.

Definition 3.1. Let z; = z;(y, u) be the implementation of the boundary conditions (5) or (6) i.e. z1 = Sy +
YU—Ya, 22 = Yo—PBYy+7u, or z3 = By+yu—y.. Forall ¢ > 1 and p > 0 the functions g;(z; i; ¢) : Ry — RU{+o0}

defined by
—pIn(z;)
9i(2;159) = e
(q— 1)z

for i = 1,2, 3 are called barrier functions of order q.

tq=1
tg>1

Definition 3.2. Let Gp; := {(y,u) €Y X U |ya < By +vyu < yp} and Gun; = {(y,u) €Y x U |y, < By + yu}.
We call Gy; and G,,; resp. the admissible set concerning the inequality constraints. Further, let

E :={(y,u) €Y x U|(y,u) fulfill the state equation (4)}.

We define by

0 zeM

xm(z) =

oo otherwise

the indicator function on the set M.

We can now re-define our basic problems without any constraints. Let g;(z;; u; ¢) be barrier functions to the
given inequality constraints. Then we eliminate all constraints by defining the new problems
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Algorithm 1 Path-following

Choose 5, 0 <o <1 arbitrary.
choose some starting values for yp, pi
while pup > eps
solve the optimality condition
F(Yrt1, k1, Prr1; i) = 0
by Newtons method with starting value
(yk,ur,px) up to a accuracy 4.
If it fails, increase o <1 and try again.
set pg41 =pr -0, k=k+1;

end
(21) min fy; (y, u) = j(y, u) — / > 0izily, w), s q) dadt + xpi(y, u) + x5 (y, )
o i€l
(bilateral constraints) or
o i€l

(unilateral constraint). Obviously, these are unrestricted problems. First we observe that every pair (y,u)
that holds f(y,u) < oo is feasible with respect to the inequality constraints and the equality constraints.
The functional f;; and f,,; are coercive, convex, and lower semi-continuous. This optimal control problem is
equivalent to the problem (1) with pure state constraints. The following theorem from Schiela [17] yields the
existence of a unique minimizer for problems (21) and (22).

Theorem 3.3. Let f: Z = (Y,U) — R be a proper, convez, lower semi-continuous functional of the form (21)
or (22), resp. Let f be coercive for all u < pg. Further, let E be a sequentially compact subspace of Z.

The problems (21) and (22) have for every u > 0 a unique minimizer z, = (y,,u,). Moreover, z, is strictly
feasible almost everywhere in Q) and bounded in Z uniformly in p € [0, po].

The next theorem provides necessary first order optimality conditions. We write Ly = u, where L is the
differential operator associated with the PDE (4).

Theorem 3.4. Let the general assumptions given in Theorem 3.3 hold and let z = (y, u) be the unique minimizer
of (21) or (3.3).
Then there are (jy,ju) = j € 05(2), m € 0g(2(y,u), 1, q) € Y*, and p € domL* such that

Jy+m+Lp = 0
jutg 2y u)imag) = 0
Ly—u = 0

holds. If y is strictly feasible, then Og = g/(z(y, u)z/ (y,u)) and m is unique. If 0j(z) contains only one element,
and i > 0, then m and p are unique in Y* and U*, respectively.

For a detailed presentation we refer again to [17], cf. Proposition 4.2 and Theorem 4.3. The differential
operator L* is nothing else but the usual adjoint equation.
We use the last theorems to implement the path-following Algorithm 1.

Note 3.5. Theorem 3.3 provides for fixed ) a unique solution. To find that solution, we have to solve the
optimality conditions given by Theorem 3.4. In the spirit of [14], we want to do this by using CoMsoOL
MULTIPHYSICS solving the optimality conditions, i.e. a system of non-linear coupled PDEs, by Newtons method.
Unfortunately, we have no information concerning the convergence radius of Newtons method, so we cannot
ensure the convergence of the path-following method. However, if we found a solution for some iy, we can
decrease the path parameter p by setting px = opg—1 - In the worst case, this o will almost be one so that the
algorithm runs into emptiness.
For further details we refer to [20, 16].

3.2. The projection method. Our projection method replaces the complementary slackness conditions by a
projection. In some sense, this is an implementation of the well known active set strategy. One can show that
the complementary slackness conditions (20) are equivalent to

pQ = max {O,MQ + C(yc - Av* — y*)} )
6



cf. [7] for an arbitrarily chosen fixed ¢ > 0. Equation (19) yields pg = 5 (ev* + ¢). Choosing ¢ = 5 > 0 as in
[19], we obtain a projection formula for the Lagrange multiplier

(23) o = mw{&iq—;;@*—%@JD}aﬂinQ

Now, we have to solve an optimality system consisting of the PDEs (15), (16), (17), and (18), and the
projection (23). In Section 4.1.2 we present some details of the implementation of these method in our CoMsSOL
MULTIPHYSICS-code.

3.3. The penalty method by Ito and Kunisch. The penalty method replaces the state constraint by a
modified objective functional. We consider only the case with state constraints given on the space-time domain
Q. The problem reads now

.. HQ 9 92
minj(y,u) = 7||y(T)_leliZ(Q)7Q|‘y_yQ||%2(Q) +7||y—y2\|%2(2)
"9 ull2a gy + Elulldacs, + /Iv +m\mm+/|vyzm+m|Mﬁ

subject to the state equation (4).
Here, 7]g, tig are arbitrary functions that belong to L?(Q) and v € R, v > 1 is a regularization parameter.
We obtain the Moreau-Yosida regularized multipliers

pq = max{0, fig + 7 (ya — )}
ne = max{0,7g + 7 (Ya — y)}-
Without proof we consider the optimality system

ye—V-(AVy) = ug+f inQ —pt — V- (AVp) = 0oy —yq)+ng —He inQ
n-Vy+ay = oalugs+g) onX n-Vy+ay = 0Os(y—ys) on X
y(0) = wo in y(T) = 6a(y(T) —ya) in O
(24) kou+p = 0 in Q pg = max{0,v(ye —y)}
ksu+p = 0 onX ng = max{0,7(y—u)},

where we choose 779 = fig = 0. For details see [8].

4. NUMERICAL TESTS USING CoOMSOL MULTIPHYSICS

4.1. A boundary controlled problem. Our first example was originally given by Betts and Campbell in [4].
Let Q = [0, 1] and the time interval I = (0,5) be given. The problem formulation reads as follows

.. 1 K
min j(y,u) = §||y —yallp + §||U||2L2(z)

subject to
—Ay = 0 inQ
(25) y = u onX
y(0) = 0 inQ

and the pointwise state constraints

Ye <y  ae. inQ@.
The state constraint is given by y.(x,t) = sin(z)(sin(7t/5)) — 0.7, the function y4 = 0 and let x be given as
1073.

The Dirichlet-boundary condition is difficult in two ways: Neither can they be handled by finite element
methods in the usual way, cf. [2], nor are optimality conditions derived easily.

A possible way to overcome this problem is to approximate the Dirichlet-boundary conditions by Robin
boundary conditions: For some « >> 1 arbitrary chosen, we replace (25) by 7i- Vy+ ay = au on X. Some results
concerning convergence analysis can be found in [1]. * We use Robin boundary conditions for a correct finite
elements implementation of the state equation as well as for a correct implementation of the adjoint equation.
We choose o = 102. In the following, we assume that there is a continuous optimal state which ensures the
existence of optimality conditions wherever we consider an unregularized problem.

4ComsoL MULTIPHYSICS uses this technique for solving Dirichlet boundary problems by default. In this way it is possible to
implement the “wrong given” boundary conditions directly in ComsoL MuLTIPHYSICS, where it will be corrected by using a Robin
formulation with a well-chosen parameter « internally.
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4.1.1. The barrier method. Theorem 3.4 provides a more or less abstract formulation of the optimality system.
To receive an implementable optimality condition, e.g. a system of PDEs, we use a formal Lagrange technique.
We define the Lagrange function

L(y,u,p;p) = jy,u) — //(yt — Ay)p dxdt

Q
2
—//ﬁ-Vy—|—a(y—u)pdxdt—//y_y dxdt.
by Q ‘

Formal derivation yields the optimality system

2

H . - = i
—p—Ap = y—yi———— inQ v = Ay Oa inQ
(Y = ve) n-Vy+ay = ——p onXx
n-Vp+ap = 0 on % kQ
p(T) = 0 in O y(0) = wo in Q)
where we replaced the control by the adjoint p using the relation xu + p = 0 a.e. on X. With a formal re-
implementation of an approximation of the Lagrange multiplier 7,, by 7, := @iLTP’ we have the additional

relations 7, (y — y,)? = p? and 17, > 0 a.e. in Q, and (y — y,)? > 0 a.e. in Q. In the following excerpts of the
CoMsoL MuLTIPHYSICS-code we show how this condition is implemented by using a complementary function
of Fischer-Burmeister type. We chose eps = 0.0008 and o = 1/2. In this paper, we present only the essentials
of the CoMsoL MULTIPHYSICS-script we used to solve the examples. For a more detailed presentation we refer
to [14] and the web-side
www.math.tu-berlin.de/Strategies-for-time-dependent-PDE-control.html
Definition of the complementary function:
fem.equ.ga = { { {’-yx?> °0°} {’-px’> 20’} {°0° °0°} } };
fem.equ.f = { {’-ytime’...
‘ptimety-eta’...
’(y-y_a(x,time))~2+eta...
-sqrt (eta~2+(y-y_a(x,time) ) ~4+2*mu~2) °} };
The boundary conditions:

fem.bnd.r = {{’y’> ’0’ ’eta’};
{70) 0 ’eta’};
{707 ’P’ ’eta’} };
fem.bnd.g = {{°0’ 20’ ’0°};
{’-alpha/kappa*p-alpha*y’ ’-alpha*p’ 20°’};
{’O’ ’O, ’0’} };
The heart of the program, the path following loop:
fem = adaption(fem,’ngen’,1,’Maxiter’,50,’Hnlin’,’on’);
muO=1e-1;
while mu0>0.0008,
muO=mu0*0.5;
fem.const{4} = num2str(mul);
fem.xmesh = meshextend(fem) ;
fem = femnlin(fem,’init’,fem.sol,...
‘out’,’fem’,’Hnlin’,’off’, ’Maxiter?’,50);
end

4.1.2. The projection method. Most of the code is the same as for the barrier method, we briefly sketch the
differences and give some hints for implementing the regularized optimality system.
The definition of the variables: all PDE variables are on second order, the Lagrange multiplier is discretized
with linear finite elements.
fem.dim = {’y’ ’w’ ’p’ ’q’ ’mu’};
fem.shape = [2 2 2 2 1];
% parameters:
fem.const = {’alpha’ ’1e+3’> ‘’kappa’ ’1le-3’...
>lambda’ ’le-6’ ’epsilon’ ’1e-9°};
The definition of the optimality system. In the last line of the definition of f we implement the projection
formula.



% coefficients + rhd side:
fem.globalexpr = {’v’ ’-1/epsilon*q+lambda/epsilon*mu’};
fem.equ.ga = {{{’-yx’ °0°}
{’—WX’ 707}
{’_PX’ 70:}
{’-gqx’> 0’}
{’0’ ’0°}1};
fem.equ.f = { {’-ytime’ ’wtime+v’ ’ptime+y-mu’ ’-qtime’...
’mu-max (0, 1/lambda*q+epsilon/lambda~2. ..
*(ya(x,time)-y))’> } };
Next, the definition of the boundary conditions:
fem.bnd.r = {{’y’ 20’ ’0’ °q’ °0’};
{70, 202 202 (Q? ,0,};
{70’ ,W’ ,P’ 70) ,07} };
{{,O’ ’O, ’O, ’0, ’0’};
{’alpha~2#*w-alpha*y’ ’-alpha*w’ ’-alphaxp’...
’—alpha*q+nu*alpha~2*w+alpha~2*p’ 0};
{70) 202 202 2 QO? )0,}};
The problem was solved by one call of the function adaption. Note that we carry out our numerical experiments
with the choice of A = 1076 and ¢ = 107°.

fem.bnd.g

4.1.3. The penalty method. Analogously to the other examples, we use the gradient equation to replace the
control uy, by —%p.
Altogether, we have to change the code only in four lines. First, we have to define the penalty parameter
% parameters:
fem.const = {’alpha’ ’1e+3’ ’kappa’ ’le-3’ ’gamma’ ’le+3’};
The definition of the right-hand-side reads now
fem.equ.f = { {’-ytime’ ’ptime+y-mu’ ’-mu+max(0,gammax(ya(x,time)-y))’} };
Finally, we have to write the boundary conditions as
fem.bnd.r = { {’y’ ’0° ’mu’};
{°0° ’0’ ’mu-max(0,gamma*(ya(x,time)-y))’};
em.bnd.g = { {°0° 0’ ’0°};
{’-alpha*y-alpha~2/kappa*p’ ’-alphax*p’ ’0°};
{70) 0? 707} };
In our experiments we chose v = 103. For further details see
http://www.math.tu-berlin.de/Strategies-for-time-dependent-PDE-control/

4.1.4. Results. There is no analytically given solution for the Betts-Campbell problem, so we can only compare
solutions computed by different numerical methods. In the barrier method, we compute a solution for pg on
an adaptive mesh before we enter the path following loop. Obviously, the adaption process leads to very small
mesh sizes near the boundaries at time ¢y and where the distance between the state y and the bound y. is
small, i.e. the bound vy, is almost active. In the projection method, the grid-adaption process is done in the
same call of the function adaption that solves the complete problem. In adaption we set the number of new
grid generations ngen to two. Moreover, when applying the projection method and the penalty method, we use
the option hnlin (“highly nonlinear problem”), which results in a smaller damping factor in Newton’s method.
Figure 1 shows both adaptively refined meshes.

Figure 2 shows the control u(7, t) computed by different numerical methods. For a comparison of the results,
we computed two reference solutions by two different methods. First we use the space-time-adaptive interior
point solver described in [16], adapted to boundary problems, and second, we use the quadratic programming
solver from the MOSEK?® package. MOSEK offers an interface to MATLABS that emulates MATLABs quadprog
function (from the optimization toolbox). For that, we have to formulate our problem as a discrete optimization
problem of the form

1
min 2" (2H> 2402

SMOSEK uses an interior point solver. It is an implementation of the homogeneous and self-dual algorithm. For details see
the MOSEK manual [13] and the referred literature there. In fact, both reference solvers are interior point solvers, but the solver
ip-adaptive solves the optimality condition given as PDE (“first optimize, then discretize approach”), MOSEK solves the discrete
optimization problem (“first discretize, then optimize approach”). See the discussion of the different approaches e.g. in [5].

MOSEK is a registered trademark of MOSEK ApS

SMarLaB is a registered trademark of THE MATHWORKS, Inc.
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[16]. We assume that we have given the stiffness

associated with the coefficient a¢, the matrix that contains the boundary integral

-
side vector GG. Further, let the derivative with respect to the time y;

be

< b
ibed in

10

)", b =0, and
Acqz = beg

Aeqz
AinZ

5 Yn — yd(T)7u07 e
e.g. by the implicit Euler formula. y;

M,,

-t, =T) be a discrete time interval and yy

implements the state equation as descr

7tk7"

All meshes computed by CoMsOoL MULTIPHYSICS’ adaption method with one new grid
(Yo — ya(to), --

(Otgr1 + DM + 0tgp1 (K + Q)yp+1 — Myr — 0tpr1Qups1

the mass matrix
ing the state equation can be seen as matrix multiplication

?

FIGURE 1. Adaptive meshes: barrier method (a), projection method (b), and penalty method

(c).

generation. The necessity for mesh refinement on the boundary at time ¢ =~ 2 was detected by

ComsoL MULTIPHYSICS’ mesh-refinement algorithm only in the penalty method.

We get the recursive formula

discretized and let M be the usual mass matrix associated with linear finite elements.
We set z

Let (0 =tg,---

The matrix A,

matrix K

@ and the right-hand-
backward finite differences,

subject to
Now, solv



with

FE 0 0 0 0 0
4, = —M (Ot;+ )M +5t,(K+Q) 0 : 0 0:Q 0
0 . .. 0 : 0 " 0
0 0 ~M Oty + DM +6t,(K+Q) 0 - 0 0t,Q
and
Yo

. —(0t1 + 1)M + 6t1 (K + Q)ya(t1)
eq =

_(5tn + 1)M + 5tn(K + Q)yd(tn)

The mixed control-state constraints are implemented by A;,z < b;,, within the matrix

E 0 0 A 0 0

Ain==10 " 0 0
o 0 E 0 -+ AE
and the vector by, = — ((ye)g + Ya(to), -, ye(T) + ya(T))". In contrast to quadprog from MATLABs opti-

mization toolbox, MOSEK can handle sparse matrices so that the limitation of the number of unknowns is
lifted.

Note, that the solutions computed by quadprog and ip-solve belong to the unregularized problem formula-
tion since measures do not appear in the optimality systems of the discrete problems. Figure 2 shows the results
for the Betts-Campbell heat transfer problem computed by different solution methods. Note that a typical
behavior of barrier and interior point methods can be observed: Since the lower bound is a concave function,
the methods tend to react more strongly in the first part in order to satisfy y > 7(u) 4+ y. for a 7(u) > 0, where
1 is the path parameter of the barrier /interior point methods. On the other hand, they react more smoothly in
the second part where the values of the bound are decreasing. In some sense, barrier and interior point methods
react to obstacles earlier than the active-set-based methods.

0.6 :
—— penalty
—— projection
0.5 ——quadprog ||

ip solve
0.4 — barrier

0.3

0.2

control u

0.1

FIGURE 2. Solutions of the Betts-Campbell problem. Controls u;, computed by the penalty
method (blue), by the projection method (black), by the MOSEK solver quadprog (red), by
an adaptive interior-point solver (light blue), and by the barrier method (green).

A question of special interest is the behavior of the Lagrange multipliers. In the case of the Betts-Campbell
example, the Lagrange multiplier seems to be a regular Borel measure.
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Barrier meth. | Projection Penalty quadprog | ip-solve
method method

hauto h ot J(y,u) J(y,u)

7 0.2354 0.2260 —* 0.3142 | 0.2500 | 0.2611 0.2661

6 0.2374 0.2261 0.2212 0.1571 | 0.1250 0.2462 0.2512

5 0.2382 0.2261 0.2212 0.0785 | 0.0625 | 0.2393 0.2441

4 0.2382 0.2261 0.2212 0.0393 | 0.0393 | 0.2362 0.2412

3 0.2382 0.2261 0.2212 0.0196 | 0.0156 | 0.2346 0.2396
TABLE 1. Values of J computed by the barrier method and the projection method. For com-

parison, we give results computed by an interior point solver and by quadprog. *No convergence
for raw initial grids.

(a) (b)

FIGURE 4. Lagrange Multiplier to the state constraint computed by the projection method (a)
and by quadprog (b). The effects of the Lavrentiev-like regularization is obvious: the multiplier
to the right looks like a measure, the left one is rather smooth. In the right figure, the edges of
the grid are projected onto the graph. It is necessary to see more then two blue peaks.

4.2. Distributed control with state constraints. Our second example is taken from [16], Example 7.2.
Again, there is no given analytical solution so we can only compare numerically computed solutions. The
problem is given by

. 1 K
min J(y, u) = §||?J(T) - de%Z(Q) + §HU||2L2(Q)
12



subject to

y—Ay = wu in Q,
Ohy+10y = 0 on ¥,
y(0) = o in Q,

and to the state constraint
Y > Yo = min{—-100(¢(¢ — 1) + 2(z — 1)) — 49.0,0.5}  a.e. in Q.

We choose Q2 = (0,1) C R, T = 1. Further, let y4 = 0 and yo = sin (7x) be given. Obviously, this problem fits
in our general setting with o = 10.

4.2.1. The barrier method. The program is very similar to the one in the first example. We define the constraint
in the usual way:
fcns{1}.type=’inline’;
fcns{1}.name=’y_a(x,time)’;
fcns{1}.expr="min(-100* (time* (time-1)+x*(x-1))-49,0.5)7;
In contrast to the first example, the observation ||y(T") — yal|r2(q) works only on € x {T'}, which results in a
different end-condition in the adjoint equation: with y4 = 0, we set p(T") = y. We define the optimality system:
fem.equ.ga = { { {’-yx’> ’0°}
{ b _PX > o 3 }
{’0’ ’0°} } 3}
fem.equ.f = { {’-ytime-1/kappa*p’
’ptime-eta’...
’ (y-lambda/kappa*p-y_a(x,time)) ...
+eta-sqrt(eta~2+...
(y- lambda/kappa*p-y_a(x,time)) ~2+2*mu)’} };
% boundaries: 1:t=0,2:x=pi,3:t=5,4:x=0
fem.bnd.ind = [1 2 3 2];
% boundary conditions:
fem.bnd.r = { {’y-y0o(x)’ ’0° ‘eta’};
{’0’ ,O’ ’eta’};
{’O’ :p_y) ’eta’} };
fem.bnd.g = { {°0° °0> ’0°};
{’-alpha*y’ ’-alphax*p’ ’0°};
{ ) 0 > 0 > o ) } } ;
The last three rows in the definition of fem.equ.f define the Fischer-Burmeister complementary function. The
rest of the code is the same as in Example 1. We choose eps = 1075 and o = 1/2.

4.2.2. The projection method. The parameters of the method are defined in the line
fem.const = {’alpha’ ’le+1’ ’lambda’ ’1le-3’ ’kappa’ ’le-3’};
The only difference to the implementation of the barrier method is the definition of fem.equ.f:
fem.equ.f = { {’-ytime-1/kappa*p’
‘ptime-eta’...
’eta-max (0, 1/kappa*p+lambda/kappa~2*(y_a(x,time)-y))’} };

4.2.3. The penalty method. In the penalty method, we set o = 10, x = 1073, and v = 103.
For implementing the penalty method we replace in the code of the projection method the projection by the
penalty-function:
fem.equ.f = { {’-ytime-alpha~2/kappax*p’...
‘ptime-mu’. ..
’ —mu+max (0, gamma* (ya(x,time)-y))’ } };
For a presentation of the complete source-code of all CoMSOL MULTIPHYSICS-scripts we refer again to our web
page
http://www.math.tu-berlin.de/Strategies-for-time-dependent-PDE-control/

4.2.4. Results. In Figure 5, we present the optimal state and the optimal control computed by the barrier
method, cf. Figure 2 in [16].

As in the first example, we compared the solution of both methods with a solution computed by an interior
point solver and a solution computed by the function quadprog provided by the package MOSEK. In this
example, we refined the initial grid only once. The option hnlin on is used for all methods.

13
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FIGURE 5. Optimal state (a) and optimal control (b)

Barrier Projection Penalty ip-solve | quadprog
method method method
hauto J(y,u) J(y,u) J(y,u) h* J(y,u) J(y,u)
5 0.0012354 0.0012475 | 0.0012754 | 0.1000 | 0.0012137 | 0.0012206
4 0.0012401 0.0012505 | 0.0012780 | 0.0667 | 0.0011921 | 0.0011607
3 0.0012427 0.0012430 | 0.0012703 | 0.0400 | 0.0012249 | 0.0012649
2 0.0012570 0.0012418 | 0.0012696 | 0.0250 | 0.0012327 | 0.0012729
1 0.0012590 0.0012419 | 0.0012696 | 0.0167 | 0.0012357 | 0.0012899

TABLE 2. Values of J by the barrier method and the projection method. For comparison,
we give results computed by an interior point solver with time-adaptivity and by quadprog.
*quadprog: time step-size chosen as half of space mesh-size. ip-solve: adaptive time step-size
between 6.1451 - 10~ and 0.0839.

5. CONCLUSION AND OUTLOOK

As shown in [14] for the unconstrained case, the finite element package COMSOL MULTIPHYSICS can be used
also for solving optimal control problems with state constraints. Again, a knowledge about the optimality system
for the given problem is necessary. From the theoretical point of view, the handling of the state constraints
and their associated Lagrange multipliers is the most difficult problem. To avoid measures in the optimality
systems, we apply different regularization techniques in order to justify the use of standard FEM discretizations.

To handle (state)-constraints algorithmically, three approaches are considered. First, we implement a barrier
method by adding a logarithmic or rational barrier term to the objective functional. The resulting algorithm is
a classical (iterative) path following interior point method. Here, in every step a call of femnlin is necessary.
On the other hand, the self-regularity of barrier methods permits to pass the Lavrentiev regularization if the
order of the rational barrier function is high enough.

Second, via Lavrentiev and Lavrentiev-like regularization we arrive at a projection formula for the Lagrange
multiplier which leads to an interpretation of the active set strategy as a (semi-smooth) Newton method. The
resulting algorithm solved the problem by one call of adaption or femnlin respectively.

Third, we applied a Moreau-Yosida regularization method which can be interpreted as a penalization method
which can be easily implemented with the help of the maximum function. We point out that we used fixed
regularization parameters since we are not interested in the convergence behavior of these methods. It is beyond
the scope of this paper to analyze the choice of regularization parameters in more detail. We refer for example
to [12], where the influence of the Lavrentiev regularization parameter was examined. Instead our main point
was to show the implementability in CoOMSOL MULTIPHYSICS of the regularization techniques.

We confirm our results by computing reference-solutions by two well-proven programs — an interior point
solver based on a formulation of the optimality system as PDE and a quadratic programming solver MOSEK. All
methods produce similar results in a variety up to ten percent. The difference in the results are a combination of
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discretization and regularization effects. Therefore we cannot directly compare the controls defined on different
grids, but we may expect that a well chosen combination of discretization parameters and parameters inherent
to the solution technique such as Lavrentiev parameter, the penalty parameter, or the path parameter in the
interior point method, results in a closer approximation of the “real” solution.

All together, CoMSOL MULTIPHYSICS has the capability of solving optimal control problems with inequality
constraints and offers an efficient alternative for solving such problems by an integrated modeling and simulation

environment.
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