
Heuristics of the

Branch-Cut-and-Price-Framework SCIP

Timo Berthold∗

Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany
berthold@zib.de

Summary. In this paper we give an overview of the heuristics which are inte-
grated into the open source branch-cut-and-price-framework SCIP. We briefly
describe the fundamental ideas of different categories of heuristics and present
some computational results which demonstrate the impact of heuristics on the
overall solving process of SCIP.

1 Introduction

A lot of problems arising in various areas of Operations Research can be
formulated as Mixed Integer Programs (MIP). Although MIP-solving is
an NP-hard optimization problem, many practically relevant instances
can be solved in reasonable time. The standard exact method for solving
MIPs is branch-and-cut, a combination of LP-based branch-and-bound
and cutting plane techniques. Besides that, heuristics (Greek eÍr�svkein –
to find) are incomplete methods which quickly try to construct feasible
solutions of high quality, but without any guarantee to find one.

In state-of-the-art MIP-solvers like the branch-cut-and-price-frame-
work SCIP (Solving Constraint Integer Programs) [1, 3] heuristics play
a major role in finding and improving feasible solutions at early stages
of the solution process. This helps to reduce the overall computational
effort, guides the remaining search process, and proves the feasibility
of the MIP model. Furthermore, a heuristic solution with a small gap
to optimality often is sufficient for practical applications.

Overall, there are 23 heuristics integrated into SCIP version 1.00.
They can be roughly subclassified into four categories: rounding, div-
ing, objective diving, and large neighborhood search heuristics. In the

∗ Supported by the DFG Research Center Matheon Mathematics for key technolo-

gies.

2 Timo Berthold

remainder, we will give a short introduction into these strategies and
afterwards we will present some computational results. For more detail,
we refer to Achterberg [1] and Berthold [6].

2 Rounding Heuristics

All rounding heuristics in SCIP work in the following way: they take an
LP-feasible but fractional point – normally the optimum of some LP-
relaxation – and iteratively round the fractional variables. Thereby, the
number of fractional variables is reduced one by one in each iteration
step (except if a shift is performed, see below). Regarding rounding
heuristics, the most important issue is, not to loose the LP-feasibility
during the iteration process, or if so, try to immediately recover LP-
feasibility.
There are four rounding heuristics in SCIP:

• Simple Rounding only performs roundings, which assure to keep
feasibility;

• Rounding conducts roundings, which potentially violate some con-
straints and reduces existent violations by further roundings;

• Shifting is allowed to change (shift) the values of integral or contin-
uous variables in order to recover feasibility;

• Integer Shifting proceeds like Shifting, but does not consider con-
tinuous variables. If it succeeds, it solves an LP in order to set the
continuous variables to their optimal value.

Each of these procedures is an extension of the ones which are listed
before it. The latter are more powerful, but also more expensive in
terms of running time and therefrom they are applied less frequently.

3 Diving Heuristics

The principal idea of diving heuristics comes from the branch-and-
bound procedure. They iteratively round some fractional variable and
resolve the LP-relaxation, simulating a depth-first-search in the tree.
In doing so, diving heuristics use a special branching rule which tends
towards feasibility and not primary towards a good subdivision of the
problem, as common branching rules do.

The six diving heuristics implemented in SCIP mainly differ in the
applied branching rule. It chooses a variable with:

• Fractional Diving: smallest fractionality;

Heuristics of the Branch-Cut-and-Price-Framework SCIP 3

• Coefficient Diving: smallest number of potentially violated rows;
• Linesearch Diving: greatest difference of root solution and current

LP solution;
• Guided Diving: smallest difference to the best known integral solu-

tion;
• Pseudocost Diving: smallest ratio of estimated objective increase if

rounding to either direction;
• Vectorlength Diving: smallest ratio of potential objective change and

number of affected constraints.

In [6], it is shown that none of them dominates the others in terms of
performance.

4 Objective Diving Heuristics

Heuristics of this category iteratively manipulate the objective function
and resolve the LP-relaxation in order to reach an integral vertex of the
LP-polyhedron. They perform “soft roundings” by adding punishment
terms to the objective instead of performing “hard roundings”, i.e.,
fixing variables like the heuristics of Sections 2 and 3.

There are actually three objective diving heuristics in SCIP: Objec-
tive Pseudocost Diving, Rootsolution Diving and the Objective Feasi-
bility Pump. In our computational studies, the latter one proved to be
superior to the others.

The Feasibility Pump was first described by Fischetti et al. [10, 5],
the version which is implemented in SCIP was introduced by Achter-
berg and Berthold [2]. By taking the original objective of the MIP into
account, the Objective Feasibility Pump is able to produce solutions of
a much better objective value in a comparable running time.

5 LNS Heuristics

Large neighborhood search (LNS) heuristics solve a sub-MIP of the
original MIP in order to investigate a neighborhood of a special point,
e.g., the best known integral solution (incumbent). This sub-MIP is cre-
ated by fixing a sufficient number of variables or adding very restrictive
constraints. The hope is that the sub-MIP is much easier to solve, but
still contains solutions of high quality.

Four of the five LNS heuristics available in SCIP are improvement
heuristics, i.e., they take some feasible solution as a starting point:

4 Timo Berthold

• Local Branching [11] adds a distance constraint which allows only a
certain number of variables to differ from their value in the incum-
bent;

• RINS [9] fixes variables which take identic values in the current
node’s LP-relaxation and the incumbent;

• Crossover [6] fixes variables which take identic values in a certain
number of feasible solutions;

• Mutation [6] randomly fixes variables to their incumbent value.

In contrast to these four, RENS [6, 7] is an LNS rounding heuristic.
It fixes all variables which take integral values in the optimum of the
LP-relaxation (often more than 90%) and changes the bounds to the
nearest integers for fractional variables. This implies that all integer
variables of the sub-MIP are binary.

By completely solving the RENS sub-MIP, one is able to determine
whether a point can be rounded to an integral solution and which one
is the best possible rounding. Furthermore, a slightly restricted version
of RENS proves to be a reasonable start heuristic.

6 Computational Results

The computational experiments reported here were obtained with SCIP
version 0.82b running on a 3.80 GHz Intel Pentium 4 with 2 GB RAM,
using CPLEX 10.0 as underlying LP-solver. We chose a test set of 129
instances taken from the Miplib 3.0 [8], the Miplib2003 [4] and the
MIP collection of Mittelmann [12].

First, we evaluated the individual impact of the 15 heuristics which
are used by default. For each heuristic, we investigated the change of
performance caused by deactivating it. We compared the geometric
means of the running time and the number of branch-and-bound-nodes
taken over the 97 instances which could be solved to optimality within
an hour, using SCIP with default settings. For the other instances we
compared the primal-dual gap after running SCIP for an hour.

We observed that deactivating a single heuristic only has a small
impact; the geometric means of the running time and the number of
branch-and-bound-nodes always changed by less than 5%, except for
the Objective Feasibility Pump (12% and 30%, respectively).

On the other hand, deactivation of all available heuristics leads to a
significant deterioration: the geometric mean of the running time and
the number of branch-and-bound-nodes raises by a factor of two, the
remaining gap by about 50%. There are considerably less instances

Heuristics of the Branch-Cut-and-Price-Framework SCIP 5

which are solved to optimality within an hour, or for which at least one
feasible solution is found, respectively.

 1000

 1100

 1200

 1300

 1400

 1500

 0 20 40 60 80 100

bo
un

d

time (seconds)

Optimal Objective
Primal Bound With Heuristics

Dual Bound With Heuristics
Primal Bound Without Heuristics

Dual Bound Without Heuristics
Solution Found By: Relaxation

Feaspump
Crossover

Rens

Fig. 1. Instance aflow30a: developing of primal and dual bound if SCIP runs
with (dark) and without any heuristics (light)

Figure 1 exemplarily shows the developing of the primal and dual
bound for two runs of SCIP 0.82b with an instance taken from the
Miplib2003 [4]: one with the default heuristics and one without any
heuristics activated.

As expected, SCIP with heuristics is faster in finding the first fea-
sible solution, an optimal solution and proving the optimality. We also
observe that the dual bound raises faster immediately after feasible so-
lutions were found and that even the first improvement by an integral
node LP-relaxation occurs at an earlier step in time. This is due to the
fact that with the knowledge of a good primal bound, one is able to
prune suboptimal nodes, fix additional variables, which itself leads to
stronger cuts and so forth.

All these results emphasize that heuristics are an important part of
a branch-cut-and-price-framework and point out the importance of the
interaction between different heuristics.

6 Timo Berthold

References

1. T. Achterberg. Constraint Integer Programming. PhD thesis, Technische
Universität Berlin, 2007.

2. T. Achterberg and T. Berthold. Improving the Feasibility Pump. Discrete
Optimization, Special Issue 4(1):77–86, 2007.

3. T. Achterberg, T. Berthold, M. Pfetsch, and K. Wolter. SCIP (Solving
Constraint Integer Programs). http://scip.zib.de.

4. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Re-
search Letters, 34(4):1–12, 2006. http://miplib.zib.de.

5. L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic
for general mixed-integer problems. Discrete Optimization, Special Issue
4(1):77–86, 2007.

6. T. Berthold. Primal Heuristics for Mixed Integer Programs. Master’s
thesis, Technische Universität Berlin, 2006.

7. T. Berthold. RENS - Relaxation Enforced Neighborhood Search.
ZIB-Report 07-28, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
2007. http://opus.kobv.de/zib/volltexte/2007/1053/.

8. R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh. An updated
mixed integer programming library: MIPLIB 3.0. Optima, (58):12–15,
1998.

9. E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced
neighborhoods to improve MIP solutions. Mathematical Programming A,
102(1):71–90, 2004.

10. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming A, 104(1):91–104, 2005.

11. M. Fischetti and A. Lodi. Local branching. Mathematical Programming B,
98(1-3):23–47, 2003.

12. H. Mittelmann. Decision tree for optimization software: Benchmarks for
optimization software. http://plato.asu.edu/bench.html.

