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Abstract

The Feasibility Pump described by Fischetti, Glover, and Lodi [8] and
Bertacco, Fischetti, and Lodi [6] has proved to be a very successful heuristic
for finding feasible solutions of mixed integer programs. The quality of the so-
lutions in terms of the objective value, however, is sometimes quite poor. This
paper proposes a slight modification of the algorithm in order to find better
solutions. Extensive computational results show the success of this variant: for
89 out of 121 MIP instances the modified version produces improved solutions
in comparison to the original Feasibility Pump.
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1 Introduction

A mixed integer program can be stated as

(MIP) min
{

cT x | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I
}

with A ∈ R
m×n, b ∈ R

m, c, l, u ∈ R
n, and I ⊆ N = {1, . . . , n}. Furthermore, let

B ⊆ I be the set of binary variables. For solving such problems it is important
to quickly find feasible solutions of high quality: a good primal bound helps to cut
off suboptimal branches in the search tree of a branch-and-bound based algorithm,
and improvement heuristics like Local Branching [9], guided dives, and RINS [7] can
only be applied after a feasible solution has been found.

Several heuristic methods to produce feasible solutions for (MIP) have been pro-
posed in the literature, including Hillier [14], Balas and Martin [4], Saltzman and
Hillier [19], Glover and Laguna [10, 11, 12], Løkketangen and Glover [16], Glover et
al. [13], Nediak and Eckstein [18], and Balas et al. [3, 5].

The so-called Feasibility Pump was proposed by Fischetti, Glover, and Lodi [8]
and improved by Bertacco, Fischetti, and Lodi [6]. This heuristic turned out to
be very successful in finding feasible solutions even for very hard MIP instances.
However, the quality of these solutions in terms of their objective value is sometimes
poor, which was observed in [6] for MIPs with general integer variables and which
we also confirm in the computational results of Section 3.

This paper suggests a slight modification of the Feasibility Pump. In contrast
to the original version, the modified Objective Feasibility Pump takes the objective
function c of the MIP into account during the course of the algorithm. Computa-
tional results show that the solution quality can indeed be improved by our approach
without losing the ability to find feasible solutions in a reasonable amount of time.

∗Konrad-Zuse-Zentrum für Informationstechnik Berlin, achterberg@zib.de
†Konrad-Zuse-Zentrum für Informationstechnik Berlin, berthold@zib.de

1



The rest of the paper is organized as follows. The remainder of Section 1 reviews
the original version of the Feasibility Pump as described by Bertacco, Fischetti, and
Lodi [6]. Section 2 introduces the modifications included in the Objective Feasibility
Pump. Finally, Section 3 gives computational results on a large test set of 121 MIP
instances from the Miplib 2003 [2], the Mittelmann test set [17], and instances from
Danna et al. [7].

1.1 The Feasibility Pump

The Feasibility Pump heuristic proceeds as follows: First the LP relaxation

(LP) min
{

cT x | Ax ≤ b, l ≤ x ≤ u
}

of (MIP) is solved. Then, for S = B or S = I (see Section 1.2), the LP solution x⋆

is rounded to a vector x̃ = [x⋆]S , with [ · ]S defined by

[x]Sj :=

{

⌊xj + 0.5⌋ if j ∈ S
xj if j /∈ S.

(1)

If x̃ is not feasible, an additional LP is solved in order to find a new point in the LP
polyhedron

P := {x ∈ R
n | Ax ≤ b, l ≤ x ≤ u}

which is, w. r. t. the integer variables of S, closest to x̃, i.e., that minimizes

∆S(x, x̃) :=
∑

j∈S

|xj − x̃j |.

The procedure is iterated using this point as new solution x⋆ ∈ P . Thereby, the
algorithm creates two sequences of points: one with points x⋆ that fulfill the inequal-
ities, and one with points x̃ that fulfill the integrality requirements. The algorithm
terminates if the two sequences converge or if a predefined iteration limit is reached.

In order to determine a point

x⋆ := argmin{∆S(x, x̃) | x ∈ P} (2)

in P , which is nearest to x̃, the following LP is solved:

min
∑

j∈S:x̃j=lj

(xj − lj) +
∑

j∈S:x̃j=uj

(uj − xj) +
∑

j∈S:lj<x̃j<uj

dj

s.t. Ax ≤ b

d ≥ x − x̃

d ≥ x̃ − x

l ≤ x ≤ u.

(3)

The variables dj are introduced to model the nonlinear function dj = |xj − x̃j | for
integer variables xj that are not equal to one of their bounds in the rounded solution
x̃.

1.2 Implementational Issues

In the course of the algorithm, two main problems arise: First, the procedure can be
caught in a cycle. That means, the same sequence of integer and LP-feasible points
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is visited over and over again. Second, the progress in driving the integer points
towards feasibility might be very slow. In [8] and [6] the first problem is handled
by performing a so-called restart each time an integer point x̃ is generated that
was already visited in a prior iteration. In a restart a random perturbation step is
executed, which shifts some of the variables randomly up or down and installs this
perturbed vector as a new integer point x̃ to continue the search.

To handle the second issue, the Feasibility Pump algorithm as described by
Bertacco, Fischetti, and Lodi [6] is subdivided into three stages. At the first stage,
a couple of iterations (so-called pumping rounds) are performed just on the binary
variables S = B by relaxing the integrality conditions on the general integer vari-
ables. The first stage is stopped

• after an LP solution x⋆ was found with all binary variables being integral,

• the “fractionality” measure

fS(x⋆) :=
∑

j∈S

f(x⋆
j ) with f(x⋆

j ) :=
∣

∣x⋆
j − ⌊x⋆

j + 0.5⌋
∣

∣ and S = B

could not be decreased by at least p = 10% in a certain number of iterations,
or

• a pumping round limit is reached.

If the first stage does not yield a feasible solution, the second stage invokes pump-
ing rounds taking all integer variables S = I into account. As initial integer point x̃
one chooses a point visited in Stage 1 which was closest to the LP polyhedron. The
second stage is aborted for analogous reasons as Stage 1 (using different parameter
settings), or if 100 restarts have been performed in Stage 2.

If still no solution is found, a third stage is executed. Using a point x̃ from
Stage 2 closest to P , the MIP

min
{

∆I(x, x̃) | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I
}

(4)

is processed by a MIP solver which stops after the first feasible solution is found.
One expects that the nearly feasible point x̃ has integer feasible points in its vicinity.
It is therefore likely that the MIP solver finds a feasible solution early in the search
process if the objective function of (4) is used.

2 The Objective Feasibility Pump

Finding a high-quality solution of a MIP means to find a point x ∈ R
n satisfying

three conditions: x ∈ P , xj ∈ Z for all j ∈ I, and cT x is as small as possible. The
Feasibility Pump generates sequences of points fulfilling the first and the second
criteria, respectively, hopefully resulting in a point which satisfies both. However,
despite the computation of the starting point, which is chosen to be the optimum of
the LP relaxation, the third condition is disregarded. Therefore, the solution quality
is usually rather poor, see Section 3.

For 0-1 MIPs Fischetti, Glover, and Lodi [8] address this issue by updating an
objective limit each time a new solution has been found and calling the Feasibil-
ity Pump again on this restricted MIP. For MIPs with general integer variables
Bertacco, Fischetti, and Lodi [6] propose to apply local search strategies like Local
Branching [9] or RINS [7] to improve the solution.
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We take a different approach. Instead of instantly discarding the original objec-
tive function of the MIP, we gradually reduce its influence and increase the weight
of the artificial objective function ∆S( · , x̃) of the Feasibility Pump. The hope is
that we still converge to a feasible solution but concentrate the search on the region
of high-quality points.

In the remainder of the paper we assume c 6= 0. Our modification of the Fea-
sibility Pump replaces the distance function ∆S( · , x̃) by a convex combination of
∆S( · , x̃) and the original objective function vector c:

∆S
α(x, x̃) := (1 − α)∆S(x, x̃) + α

√

|S|

‖c‖
cT x with α ∈ [0, 1]. (5)

Here, ‖ · ‖ is the Euclidean norm of a vector. Note that
√

|S| is the Euclidean norm
of the objective function vector of (3). We compute x⋆ using ∆S

α instead of ∆S in (2)
by appropriately modifying the objective function of (3). In each pumping round
α is geometrically decreased with a fixed factor ϕ ∈ (0, 1), i.e., αt+1 = ϕαt and
α0 ∈ [0, 1]. With increasing iteration index t, this puts the emphasis more and more
towards feasibility and decreases the influence of the original objective function.
Note that you can obtain the original Feasibility Pump by choosing α0 = 0.

The introduction of ∆S
α requires a modification of the cycle detection step in the

Feasibility Pump algorithm. Especially during the first pumping rounds it might
happen frequently that integer points are revisited, because of the higher resemblance
of subsequent functions ∆S

α( · , x̃). Reaching the same point once again, however,
does not automatically imply that the process runs into an infinite cycle like in the
original heuristic. This is due to the fact that we are now using different directions
∆S

αt
in different iterations t in contrast to the old ∆S , which only depends on the

current integer point x̃. After α was decreased sufficiently, it is likely that the
algorithm leaves the cycle. We therefore remember the visited points as pairs (x̃, αt)
and conduct a restart at iteration t only if the point x̃ was already visited at iteration
t′ < t with αt′ − αt ≤ δα and δα ∈ [0, 1] being a fixed parameter value.

Instead of modifying the cycling detection as described above, one could also use
different concepts like tabu lists (see, e.g., Glover and Laguna [12]). However, we
tried to retain the proceeding of the original Feasibility Pump as close as possible
in order to obtain good comparability between the two versions.

The pseudocode of the modified Feasibility Pump reads as follows.

Algorithm 2.1 (Objective Feasibility Pump)
Stage 1:

1. Initialize x⋆ := argmin{cT x | x ∈ P}, S := B, x̃ := [x⋆]S , t := 0, maxIter :=
maxIterST1, maxStalls := maxStallsST1, restarts := 0, L := ∅.

2. If x̃ did not change since the last iteration, round the T most fractional vari-
ables x⋆

j , j ∈ S, to the other side compared to x̃j (with T being a parameter).

3. While there exists (x̃′, αt′) ∈ L with x̃′ = x̃ and αt′ − αt ≤ δα, perform a
random perturbation on x̃ (see [6]) and set restarts := restarts + 1.

4. If x̃ is feasible for (MIP) → stop.

5. Set L := L ∪ {(x̃, αt)}. Set t := t + 1, αt := ϕαt−1.

6. If t > maxIter , goto next stage.
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7. Solve x⋆ := argmin{∆S
αt

(x, x̃) | x ∈ P}.

8. If x⋆ = x̃, goto next stage.

9. If fS(x⋆) did not decrease by at least a fraction p ∈ (0, 1) in the last maxStalls

pumping rounds, goto next stage.

10. Set x̃ := [x⋆]S . Goto Step 2.

Stage 2:

1. Initialize x̃ to be an integer point of Stage 1 with minimal ∆B(x, x̃), x ∈ P .
Set t := 0, S := I, maxIter := maxIterST2, maxStalls := maxStallsST2,
restarts := 0, L := ∅.

2. Perform Steps 2 to 10 of Stage 1, but if restarts > maxRestarts in Step 3, goto
Stage 3, and if x⋆ = x̃ in Step 8, stop.

Stage 3:

1. Solve MIP (4) with x̃ being an integer point of Stage 2 with minimal ∆I(x, x̃),
x ∈ P . Stop after the first feasible solution has been found.

3 Computational Results

This section compares the performances of the Feasibility Pump described in [6] and
the Objective Feasibility Pump described in this paper. We thank Livio Bertacco,
Matteo Fischetti, and Andrea Lodi for sending us the source code of their original
version, in which we incorporated our ideas, thereby making a direct comparison
possible. All computations were performed on a 3.4 GHz Pentium-4 with 512 KB
cache and 3 GB RAM. CPlex 9.03 [15] was used as underlying LP solver. We set
a time limit of one hour in all runs.

3.1 Test Set and Settings

The computations were performed on a wide test set consisting of 121 instances
taken from

• Miplib 2003 [2],

• the MIP collection of Mittelmann [17], and

• the instances used in [6], which are described in [7].

In all runs we used the parameter settings for the Feasibility Pump as suggested
in [6], as follows. The maximum number of total iterations for Stages 1 and 2 were
set to maxIterST1 = 10000 and maxIterST2 = 2000. The maximum number of
iterations without a pumping cycle of at least p = 10% improvement were set to
maxStallsST1 = 70 and maxStallsST2 = 600. The shifting in Step 2 is applied
on a random number of T ∈ [10, 30] variables, but only variables xj with current
fractionality f(x⋆

j ) > 0.02 are regarded as shifting candidates. For the unmodified
Feasibility Pump we set α0 = 0, so as to deactivate all modifications. For the
Objective Feasibility Pump we set α0 = 1, ϕ = 0.9, and δα = 0.005.

Because we wanted to investigate the performance of the Feasibility Pump used
as a root node heuristic inside a MIP solver, we applied the MIP preprocessing
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of CPlex prior to running the Feasibility Pump algorithm itself. This usually
avoids difficulties with the scaling of degenerated objective functions in the modified
distance function ∆S

α, see Equation (5). For example, some instances in our test
set have objective functions consisting of only a single artificial variable which is
defined as a linear combination of several other variables by an equality constraint.
Such equations lead to unbalanced situations in the calculation of ∆S

α, since in this
case the norm ‖c‖ of the objective function is misleading. We observed that MIP
preprocessing usually resolves this issue.

We also applied CPlex 9.03 to the problem instances in order to compare the
Feasibility Pump to the primal heuristics of a state-of-the-art MIP solver. We de-
activated all cutting planes as they are also not used in the Feasibility Pump, and
stopped CPlex after the root node was solved and the heuristics were applied.

3.2 Results

Table 1 and Table 2 compare the performance of the two Feasibility Pump versions.
The left hand sides show the results of the original version proposed by Bertacco,
Fischetti, and Lodi [6]. The central columns show the results of the Objective
Feasibility Pump described in this paper. As an additional comparison the results
of CPlex’ root node heuristics are displayed in the right hand side columns. The
column ‘Objective’ contains the objective values of the feasible solutions that were
found with either algorithm. A bar ‘–’ means that no solution was found within
the time limit of one hour, or, in the case of CPlex, before branching took place.
Values marked with a star ‘⋆’ indicate instances where the heuristic found an optimal
solution. ‘Gap’ denotes the percentage gap γ to the optimal or best known solution
of the corresponding instance. It is printed in bold face if the corresponding version
of the Feasibility Pump produced a solution with a better or equal value than the
other version. The gap is calculated as

γ := 100 ·
(c̃ − c⋆)

|c⋆|

with c̃ being the value of the heuristic solution and c⋆ being the optimal or best
known solution value of the instance. If c̃ = c⋆ = 0 we define γ := 0. If c̃ > c⋆ and
c⋆ = 0 we define γ := ∞. The instances displayed in italics in the tables are those
for which we do not know the optimal solution. In this case we compare to the best
solution we know, which was either generated by CPlex 9.1 running for an hour
with default settings, retrieved from the Miplib 2003 web site [1], or produced by
one of the Feasibility Pump versions.

Column ‘Time’ shows the time in seconds to find a solution. The first geometric
means at the bottom of Table 2 are calculated over the 116 instances for which a
solution was found by both versions of the Feasibility Pump. The second geometric
means are calculated over the 77 instances for which all three algorithms, including
CPlex, found a solution. In the calculations of the geometric means individual
values smaller than 1 are replaced by 1.

As one can see in the tables the Objective Feasibility Pump produced a strictly
better solution than the original version in 89 out of 121 cases, whereas the un-
modified Feasibility Pump ranked first in 17 cases. For 11 instances both versions
computed the same objective value, and for 4 instances both versions were not able
to find any feasible solution within one hour. Only for one instance, namely acc-6,
the original version could find a solution while the Objective Feasibility Pump did
not succeed.
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The running times usually differ only slightly in terms of absolute numbers. Only
on some instances the Objective Feasibility Pump was significantly slower, namely
on air04, dano3mip, momentum3, mzzv42z, rd-rplusc-21, the three dano instances,
on qap10, acc-6, and neos16. However, for all those instances except acc-6 a
better solution was found. The Objective Feasibility Pump was substantially faster
on momentum1, protfold, t1717, icir97 potential, and neos10. Nevertheless,
the solutions on these instances are at least as good as the ones of the unmodified
Feasibility Pump. The quality improvement can also be seen in the geometric means:
the mean gap to the optimal or best known solution was reduced from 43.9% to
23.3%, while the running time increased only slightly.

The comparison to CPlex yields that the Feasibility Pump in both versions
performs very well in finding an initial solution: the original version only fails on
4, the modified version on 5 instances, while CPlex cannot find a solution in the
root node for 43 instances. The Objective Feasibility Pump, however, produced
solutions that are much closer to the ones of CPlex w. r. t. quality. It could even
find the optimal or best known solution in 12 cases, whereas this was achieved only
9 times by the original Feasibility Pump and only 8 times by CPlex. These two
properties—the ability to find solutions and their quite good quality—show that the
Objective Feasibility Pump is indeed a reasonable root node heuristic.

The different behavior of the two Feasibility Pump versions is displayed in Fig-
ure 1 for selected problem instances. The figures show the evolution of the objective
values of the LP solutions x⋆ and their fractionalities f I(x⋆) during the course of
the algorithm. The graphs on the left hand side arise from the unmodified version,
while the ones on the right hand side arise from the Objective Feasibility Pump.

In the upper plots (aflow40b) one can see that the original version of the Feasi-
bility Pump rapidly left the region of small objective values while the fractionality
measure decreased quite fast. However, the algorithm was not able to drive the
solution to integrality before restarting at iteration 10. At this point, the objective
value was already far away from the optimal solution value of 1168. In contrast,
the Objective Feasibility Pump stayed much closer to the optimal solution but did
not decrease the fractionality measure as fast. Nevertheless, after 15 iterations a
feasible solution was found with an objective value that was already exceeded after
four iterations of the unmodified Feasibility Pump.

The two plots of rococoB11-010000 show an example where both versions pro-
duced a similar solution in the same number of iterations, although the two algo-
rithms behaved differently. Again, the unmodified Feasibility Pump increased the
objective value and decreased the fractionality faster than the Objective Feasibility
Pump.

The bottom plots (rout) show a situation where the Objective Feasibility Pump
is inferior. The original version performed 35 restarts, most of which can be seen
as spikes in the fractionality graph. The last random perturbation at iteration 96
“coincidentally” produced a feasible solution. The Objective Feasibility Pump did
not succeed to drive the fractionality to a value less than 0.5 until the last two
iterations. Only six restarts were performed. Interestingly, the cycle between two
points from iteration 12 to 30 was left without a restart just by decreasing α.

As already shown by Fischetti, Glover, and Lodi [8] and Bertacco, Fischetti, and
Lodi [6] the Feasibility Pump is a useful heuristic for mixed integer programming,
because it usually finds feasible solutions in a reasonable amount of time. Our results
show that the modification presented in this paper further improves the Feasibility
Pump: the quality of the resulting solutions is substantially enhanced with only a
slight increase in the running time.
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Original Feasibility Pump Objective Feasibility Pump CPLEX 9.03

Name Objective Gap % Time Objective Gap % Time Objective Gap % Time

10teams 958 4 1 952 3 5 – – 0

a1c1s1 17762 53 1 16076.6 39 1 21029.4 81 0

aflow30a 2549 120 0 4105 254 0 1304 13 0

aflow40b 7682 558 0 2049 75 0 – – 0

air04 58608 4 15 57298 2 164 56843 1 5

air05 30883 17 3 26942 2 8 27578 5 2

arki001 7.75064e+06 2 12 7.70474e+06 2 10 – – 0

atlanta-ip 166.014 75 45 138.012 45 56 – – 95

cap6000 -2.37503e+06 3 0 -2.42701e+06 1 0 -2.44946e+06 0 0

dano3mip 1000 43 30 769.25 10 383 761.9 9 145

danoint 93 42 1 87 32 3 66.5 1 0

disctom -5000⋆
0 9 -5000⋆

0 11 – – 16

ds – – 3600 – – 3600 615.992 117 107

fast0507 245 41 20 179 3 21 177 2 39

fiber 4.01694e+06 890 0 1.20751e+06 197 0 471805 16 0

fixnet6 9283 133 0 4807 21 0 4435 11 0

gesa2-o 4.91411e+07 91 0 2.6504e+07 3 0 – – 0

gesa2 2.82478e+07 10 1 2.67652e+07 4 1 2.58091e+07 0 0

glass4 5.20005e+09 333 0 3.10003e+09 158 0 – – 0

harp2 -6.06939e+07 18 0 -5.58762e+07 24 0 -7.31719e+07 1 0

liu 6378 444 0 4100 250 1 5268 349 0

manna81 -12891 2 0 -12894 2 0 -13164⋆ 0 3

markshare1 362 36100 0 194 19300 1 1095 109400 0

markshare2 1523 152200 0 365 36400 0 346 34500 0

mas74 18692.3 58 0 19033.1 61 0 14372.9 22 0

mas76 72860.6 82 0 50124 25 0 40005.1⋆ 0 0

misc07 4100 46 1 3425 22 0 – – 0

mkc -288.01 49 0 -289.95 49 0 -499.464 11 0

mod011 -2.38751e+07 56 0 -4.56201e+07 16 1 -5.14737e+07 6 0

modglob 3.08143e+07 49 0 2.10876e+07 2 0 2.07868e+07 0 0

momentum1 359238 229 818 346535 218 223 – – 26

momentum2 – – 3600 – – 3600 – – 40

momentum3 509585 38 272 420724 14 599 – – 2229

msc98-ip 3.02737e+07 30 34 3.02655e+07 30 38 – – 57

mzzv11 -11286 48 118 -17688 19 112 – – 59

mzzv42z -12472 39 22 -15470 25 78 – – 33

net12 337 57 8 337 57 14 – – 37

noswot -26 37 0 -40 2 0 -40 2 0

nsrand-ipx 78240 53 0 89120 74 1 56000 9 0

nw04 19124 13 3 17856 6 9 17056 1 1

opt1217 -16⋆
0 0 -16⋆

0 0 -16⋆ 0 0

p2756 91972 2844 2 89266 2757 3 3555 14 0

pk1 78 609 0 83 655 0 31 182 0

pp08a 12180 66 1 10940 49 0 8070 10 0

pp08aCUTS 10750 46 0 8530 16 0 8050 10 0

protfold -10 67 683 -12 60 268 – – 11

qiu 1945.5 1564 0 625.709 571 0 94.6865 171 0

rd-rplusc-21 173065 1 375 171182⋆
0 790 – – 15

roll3000 18812 46 0 24417.6 89 6 – – 0

rout 1720.82 60 0 1773.95 65 0 1768.21 64 0

set1ch 72987.8 34 1 84167.5 54 0 67334.5 23 0

seymour 527 25 1 445 5 3 435 3 10

sp97ar 9.57074e+08 44 3 9.40566e+08 42 3 6.75288e+08 2 13

stp3d – – 3600 – – 3600 – – 2036

swath 1630.8 192 3 1280.95 130 13 1405.58 152 0

t1717 237564 23 556 195779 1 171 – – 27

timtab1 1.51227e+06 98 1 1.33858e+06 75 1 – – 0

timtab2 1.91798e+06 58 1 1.73262e+06 42 4 – – 0

tr12-30 269910 107 0 163794 25 0 – – 0

vpm2 19.5 42 0 15.25 11 0 16.25 18 0

Table 1. Comparison of original feasibility pump and objective sensitive version
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Original Feasibility Pump Objective Feasibility Pump CPLEX 9.03

Name Objective Gap % Time Objective Gap % Time Objective Gap % Time

bell3a 9.85707e+07 11121 0 7.21256e+07 8111 0 1.67409e+08 18958 0

bell5 4.81498e+07 437 0 4.08948e+07 356 0 9.50297e+07 960 0

gesa3 3.5368e+07 26 0 2.89813e+07 4 1 2.80236e+07 0 0

gesa3 o 6.76543e+07 142 1 2.87697e+07 3 0 2.79914e+07 0 0

l152lav 4781 1 0 4757 1 0 4755 1 0

stein45 45 50 0 35 17 0 31 3 0

ran8x32 6033 15 0 5817 11 0 5553 6 0

ran10x26 5050 18 0 4833 13 0 4745 11 0

ran12x21 4330 18 0 4231 15 0 4080 11 0

ran13x13 3705 14 0 3820 17 0 3517 8 0

binkar10 1 7170.23 6 0 7156.21 6 1 6874.2 2 0

eilD76 1616.97 83 10 2300.06 160 10 1196.97 35 0

irp 12715.3 5 2 12162.4 0 1 12162.4 0 0

mas284 105336 15 0 99522.7 9 0 93708.1 3 0

prod1 -42 25 0 -53 5 0 -47 16 0

bc1 3.52343 6 2 5.4391 63 2 3.43703 3 2

bienst1 72.9757 56 0 55.5 19 0 56.75 21 0

bienst2 88.2326 62 0 73.6667 35 1 65.25 20 0

dano3 3 629.604 9 25 576.345⋆
0 47 576.396 0 152

dano3 4 646.702 12 26 576.435⋆
0 76 576.435⋆ 0 156

dano3 5 667.574 16 26 576.994 0 106 578.648 0 93

mkc1 -522.815 14 0 -563.1 7 0 -595.82 2 0

neos1 85 347 1 68 258 1 25 32 0

neos2 898.216 97 8 958.977 111 7 – – 0

neos3 1278.4 2241 12 1630.21 2886 8 – – 0

neos4 -4.81256e+10 1 3 -4.8132e+10 1 3 -4.83137e+10 1 1

neos5 -4.81256e+10 1 4 -4.8132e+10 1 3 -4.83137e+10 1 1

neos6 137 65 4 93 12 12 – – 4

neos7 5.2039e+06 621 0 1.10593e+06 53 1 – – 0

nug08 214⋆
0 2 214⋆

0 3 214⋆ 0 5

qap10 442 30 27 386 14 62 366 8 71

seymour1 435.9 6 2 427.063 4 3 412.631 0 11

swath1 499.711 32 1 439.106 16 2 – – 0

swath2 1337.12 247 0 641.544 67 2 – – 0

acc-0 0⋆
0 0 0⋆

0 0 0⋆ 0 0

acc-1 0
⋆

0 2 0
⋆

0 1 0
⋆

0 1

acc-2 0⋆
0 2 0⋆

0 3 – – 4

acc-3 0⋆
0 10 0⋆

0 12 0⋆ 0 4

acc-4 – – 3600 – – 3600 – – 8

acc-5 0⋆
0 1847 0⋆

0 2054 – – 5

acc-6 0⋆
0 1017 – – 3600 – – 5

ic97 potential 4568 15 2 4433 11 2 – – 0

ic97 tension 4487 14 1 4539 15 1 – – 0

icir97 tension 7309 14 8 7288 13 9 – – 0

icir97 potential 7724 17 62 7526 14 24 – – 1

nh97 potential 1598 13 10 1554 10 17 – – 0

nh97 tension 1575 4 10 1511⋆
0 11 – – 0

B10-011000 117462 499 1 108472 453 1 31263 59 1

B10-011001 117109 444 0 108472 404 1 47658 122 1

B11-010000 219275 547 2 215163 535 1 89207 163 4

B11-110001 206342 342 3 208823 347 4 78142 67 13

B12-111111 80931 89 46 83096 94 35 – – 14

C10-001000 255030 2124 0 159137 1288 0 23408 104 0

C10-100001 239789 1135 1 134440 593 1 – – 2

C11-010100 146524 450 1 136976 415 2 90640 241 2

C11-011100 130241 488 1 128149 479 1 32424 46 1

C12-100000 534256 1283 4 456140 1080 5 109230 183 19

C12-111100 115593 209 2 113210 203 2 110131 195 4

neos10 2 100 41 2 100 5 -142 87 18

neos16 458 2 88 451 0 383 – – 0

neos20 -199 54 3 -199 54 7 – – 0

Geom. Mean (116) 43.9 3.2 23.3 3.8 – 2.4

Geom. Mean (77) 49.5 1.8 25.9 2.1 11.0 2.0

Table 2. Comparison of original feasibility pump and objective sensitive version (cont’d)
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