Constraint Integer Programming: a New
Approach to Integrate CP and MIP

Tobias Achterberg!, Timo Berthold?, Thorsten Koch?, and Kati Wolter?

1 ILOG Deutschland, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany
tachterberg@ilog.de
2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
berthold,koch,wolter@zib.de

Abstract. This article introduces constraint integer programming (CIP),
which is a novel way to combine constraint programming (CP) and mixed
integer programming (MIP) methodologies. CIP is a generalization of
MIP that supports the notion of general constraints as in CP. This ap-
proach is supported by the CIP framework SCIP, which also integrates
techniques from SAT solving. SCIP is available in source code and free
for non-commercial use.

We demonstrate the usefulness of CIP on two tasks. First, we apply
the constraint integer programming approach to pure mixed integer pro-
grams. Computational experiments show that SCIP is almost competi-
tive to current state-of-the-art commercial MIP solvers. Second, we em-
ploy the CIP framework to solve chip design verification problems, which
involve some highly non-linear constraint types that are very hard to
handle by pure MIP solvers. The CIP approach is very effective here:
it can apply the full sophisticated MIP machinery to the linear part of
the problem, while dealing with the non-linear constraints by employing
constraint programming techniques.

1 Introduction

In the recent years, several authors showed that an integrated approach of con-
straint programming (CP) and mized integer programming (MIP) can help to
solve optimization problems that were intractable with either of the two meth-
ods alone [15, 25, 40]. Different approaches to integrate CP and MIP into a single
framework have been proposed, [5,9, 14,22, 36, 37] amongst others.

Most of the existing work follows the concept of augmenting a CP frame-
work with basic MIP techniques, namely LP relaxations and sometimes cutting
planes. In contrast, this paper introduces a way to incorporate CP specific solving
methods and its strong modeling capability into the sophisticated MIP solving
machinery. This is achieved by a low-level integration of the two concepts. The
constraints of a CP usually interact through the domains of the variables. Simi-
lar to [9, 14, 36, 37], the idea of constraint integer programming (CIP) is to offer
a second communication interface, namely the LP relaxation. Furthermore, the
definition of CIP restricts the generality of CP modeling as little as needed to
still gain the full power of all primal and dual MIP solving techniques.

2 Tobias Achterberg et al.

Therefore, CIP is well suited for problems that contain a MIP core comple-
mented by some non-linear constraints. As an example for such a problem type,
the property checking problem is presented in Section 5.

The concept of constraint integer programming is realized in the branch-
and-cut framework SCIP. It combines solving techniques for CP, MIP, and
satisfiability problems (SAT) such that all involved algorithms operate on a single
search tree, which yields a very close interaction. A detailed description of the
concepts and the software can be found in [2].

The plugins that are provided with the standard distribution of SCIP suffice
to turn the CIP framework into a full-fledged MIP solver. In combination with
either SOPLEX [42] or CLP [17] as LP solver, it is the fastest non-commercial
MIP solver that is currently available, see [32] and our results in Section 4. Using
CPLEX [23] as LP solver, the performance of SCIP is even comparable to the
today’s best commercial codes.

As a library, SCIP can be used to develop branch-cut-and-price algorithms,
and it can be extended to support additional classes of non-linear constraints by
providing so-called constraint handler plugins. We present a solver for the chip
design verification problem as one example of this usage.

SCIP is freely available in source code for academic and non-commercial use
and can be downloaded from http://scip.zib.de. The current version 1.00—as of
this writing—has interfaces to five different LP solvers and consists of 223178
lines of C code. The code is actively maintained and extended, and we hope to
be able to make further improvements.

The article is organized as follows: in Section 2, we introduce constraint
integer programs. Section 3 presents the building blocks of the constraint integer
programming framework SCIP. In Sections 4 and 5, we demonstrate the usage
of SCIP on two applications. First, we employ SCIP as a stand-alone MIP
solver, and second, we use SCIP as a branch-and-cut framework to solve chip
verification problems. Computational results are given in the Sections 4 and 5.4.

2 Constraint Integer Programs

Most solvers for CP, SAT, and MIP are based on dividing the problem into
smaller subproblems and implicitly enumerating all potential solutions. Because
MIP is a very specific case of CP, MIP solvers can apply sophisticated techniques
that operate on the subproblem as a whole, for example solving the linear pro-
gramming (LP) relaxation or generating cutting planes.

In contrast, due to the very general definition of CPs, CP solvers have to
rely on constraint propagators, each of them exploiting the structure of a sin-
gle constraint class. Usually, the only communication between the individual
constraints takes place via the variables’ domains. An advantage of CP is, how-
ever, the possibility to model the problem more directly, using very expressive
constraints, which maintain the structure of the problem.

On the other hand, SAT is also a very specific case of CP with only one type
of constraints, namely Boolean clauses. Such a clause can easily be linearized,

Constraint Integer Programming: a New Approach to Integrate CP and MIP 3

but the LP relaxation is rather useless, as it cannot detect the infeasibility of
subproblems earlier than domain propagation. Therefore, SAT solvers mainly
exploit the special problem structure to speed up the domain propagation algo-
rithm.

The hope of integrating CP, SAT, and MIP techniques is to combine their
advantages and to compensate for their individual weaknesses. We propose the
following slight restriction of a CP, which allows the application of MIP solving
techniques, to specify our integrated approach:

Definition. A constraint integer program CIP = (€, I, c) consists of solving

(CIP) ¢ =min{c"z|Ci(z)=1foralli=1,...,m,
zeR", z;€Zforall jel}

with a finite set € = {Cy,...,Cp,} of constraints C; : R™ — {0,1}, i = 1,...,m,
asubset] C N = {1,...,n} of the variable index set, and an objective function
vector ¢ € R™. A CIP has to fulfill the following additional condition:

Vi e 7! ALY {xc € R¢ | €(&r,20)} = {zc € R¢ | Alwe <V} (1)
with C:= N\ I, A’ € R**¢ and b’ € R* for some k € Z>o.

Restriction (1) ensures that the remaining subproblem after fixing all integer
variables is always a linear program. This means that in the case of finite domain
integer variables, the problem can be—in principle—completely solved by enu-
merating all values of the integer variables and then solving the corresponding
LPs.

Note, that this does not forbid quadratic or even more involved expressions.
Only the remaining part after fixing (and thus eliminating) the integer variables
must be linear in the continuous variables. Furthermore, the linearity restriction
of the objective function can be compensated by introducing an auxiliary objec-
tive variable z that is linked to the actual non-linear objective function with a
constraint z = f(z). Analogously, general variable domains can be represented
as additional constraints.

Therefore, every CP that meets Condition (1) can be represented as a CIP.
Especially, the following proposition holds.

Proposition. The notion of constraint integer programming generalizes finite
domain constraint programming and mixed integer programming:
(a) Every CP with finite domains for all variables can be modeled as a CIP.
(b) Every MIP can be modeled as a CIP.

3 The SCIP Framework

SCIP is a framework for constraint integer programming. It is based on the
branch-and-bound procedure, which is a very general and widely used method
to solve optimization problems.

4 Tobias Achterberg et al.

The idea of branching is to successively divide the given problem instance
into smaller subproblems until the individual subproblems are easy to solve.
The best of all solutions found in the subproblems yields the global optimum.
During the course of the algorithm, a branching tree is created with each node
representing one of the subproblems.

The intention of bounding is to avoid a complete enumeration of all poten-
tial solutions of the initial problem, which are usually exponentially many. If a
subproblem’s lower (dual) bound is greater than or equal to the global upper
(primal) bound, the subproblem can be pruned. Lower bounds are calculated
with the help of a relaxation which should be easy to solve. Upper bounds are
found if the solution of the relaxation is also feasible for the corresponding sub-
problem.

Good lower and upper bounds must be available for the bounding to be effec-
tive. In order to improve a subproblem’s lower bound, one can tighten its relax-
ation, e.g., via domain propagation or by adding cutting planes (see Sections 3.2
and 3.4, respectively). Primal heuristics, which are described in Section 3.5, con-
tribute to the upper bound.

The selection of the next subproblem in the search tree and the branching
decision have a major impact on how early good primal solutions can be found
and how fast the lower bounds of the subproblems increase. More details on
branching and node selection are given in Section 3.6.

SCIP provides all necessary infrastructure to implement branch-and-bound
based algorithms for solving CIPs. It manages the branching tree along with all
subproblem data, automatically updates the LP relaxation, and handles all nec-
essary transformations due to presolving problem modifications, see Section 3.7.
Additionally, a cut pool, cut filtering, and a SAT-like conflict analysis mecha-
nism, see Section 3.3, are available. SCIP provides its own memory management
and plenty of statistical output.

Besides the infrastructure, all main algorithms of SCIP are implemented
as external plugins. In the remainder of this section, we will describe the most
important types of plugins and their role for solving CIPs.

3.1 Constraint Handlers

Since a CIP consists of constraints, the central objects of SCIP are the constraint
handlers. Each constraint handler represents the semantics of a single class of
constraints and provides algorithms to handle constraints of the corresponding
type. The primary task of a constraint handler is to check a given solution for
feasibility with respect to all constraints of its type existing in the problem
instance. This feasibility test suffices to turn SCIP into an algorithm which
correctly solves CIPs with constraints of the supported types. To improve the
performance of the solving process, constraint handlers may provide additional
algorithms and information about their constraints to the framework, namely

— presolving methods to simplify the problem’s representation,
— propagation methods to tighten the variables’ domains,

Constraint Integer Programming: a New Approach to Integrate CP and MIP 5

— a linear relaxation, which can be generated in advance or on the fly, that
strengthens the LP relaxation of the problem, and

— branching decisions to split the problem into smaller subproblems, using
structural knowledge of the constraints in order to generate a well-balanced
branching tree.

The distribution of SCIP includes the constraint handler for linear constraints
that is needed to solve MIPs. Additionally, some specializations of linear con-
straints like knapsack, set partitioning, or variable bound constraints are sup-
ported by constraint handlers, which can exploit the special structure of these
constraints in order to obtain more efficient data structures and algorithms.

3.2 Domain Propagation

Constraint propagation is an integral part of every CP solver [8]. The task is
to analyze the set of constraints of the current subproblem and the current
domains of the variables in order to infer additional valid constraints and domain
reductions, thereby restricting the search space. The special case where only the
domains of the variables are affected by the propagation process is called domain
propagation. If the propagation only tightens the lower and upper bounds of the
domains without introducing holes it is called bound propagation.

In mixed integer programming, the concept of bound propagation is well-
known under the term node preprocessing. Usually, MIP solvers apply a restricted
version of the preprocessing algorithm that is used before starting the branch-
and-bound process to simplify the problem instance (see, e.g., [38] or [20]).

Besides the integrality restrictions, there is only one type of constraints in a
MIP, namely the linear constraints. In contrast, CP models can include a large
variety of constraint classes with different semantics and structure. Thus, a CP
solver usually provides specialized constraint propagation algorithms for every
single constraint class.

Constraint based (primal) domain propagation is supported by the constraint
handler concept of SCIP. In addition, SCIP features two dual domain reduc-
tion methods that are driven by the objective function, namely the objective
propagation and the root reduced cost strengthening [33].

3.3 Conflict Analysis

Current state-of-the-art MIP solvers discard infeasible and bound-exceeding sub-
problems without paying further attention to them. Modern SAT solvers, in con-
trast, try to learn from infeasible subproblems, which is an idea due to Marques-
Silva and Sakallah [31]. The infeasibilities are analyzed in order to generate so-
called conflict clauses. These are implied clauses that help to prune the search
tree. They also enable the solver to apply so-called non-chronological backtrack-
ing. A similar idea in CP are no-goods, see e.g., [39].

SCIP generalizes conflict analysis to CIP and, as a special case, to MIP.
There are two main differences of CIP and SAT solving in the context of conflict

6 Tobias Achterberg et al.

analysis. First, the variables of a CIP do not need to be of binary type. Therefore,
we have to extend the concept of the conflict graph: it has to represent bound
changes instead of variable fixings, see [1] for details.

Furthermore, the infeasibility of a subproblem in the CIP search tree usually
has its reason in the LP relaxation of the subproblem. In this case, there is no
single conflict-detecting constraint as in SAT or CP solving. To cope with this
situation, we have to analyze the LP in order to identify a subset of the bound
changes that suffices to render the LP infeasible or bound-exceeding. Note that
it is an NP-hard problem to identify a subset of the local bounds of minimal
cardinality such that the LP stays infeasible if all other local bounds are removed.
Therefore, we use a greedy heuristic approach based on an unbounded ray of the
dual LP, see [1].

After having analyzed the LP, we proceed in the same fashion as SAT solvers:
we construct a conflict graph, choose a cut in this graph, and produce a conflict
constraint which consists of the bound changes along the frontier of this cut.

3.4 Cutting Plane Separators

Besides splitting the current subproblem @ into two or more easier subproblems
by branching, one can also try to tighten the subproblem’s relaxation in order
to rule out the current solution & and to obtain a different one. The LP relax-
ation can be tightened by introducing additional linear constraints a”z < b that
are violated by the current LP solution & but do not cut off feasible solutions
from @. Thus, the current solution & is separated from the convex hull of integer
solutions Q; by the cutting plane a™z < b,i.e., i ¢ {r € R|a"z <b} D Qy.

The theory of cutting planes is very well covered in the literature. For an
overview of computationally useful cutting plane techniques, see [20, 30]. A recent
survey of cutting plane literature can be found in [27].

SCIP features separators for knapsack cover cuts [10], complemented mixed
integer rounding cuts [29], Gomory mixed integer cuts [21], strong Chvétal-
Gomory cuts [28], flow cover cuts [35], implied bound cuts [38], and clique
cuts [26,38]. Detailed descriptions of the cutting planes algorithms integrated
into SCIP and an extensive analysis of their computational impact can be found
in [41].

Almost as important as finding cutting planes is the selection of the cuts
that actually should enter the LP relaxation. Balas, Ceria, and Cornuéjols [11]
and Andreello, Caprara, and Fischetti [6] proposed to base the cut selection on
efficacy and orthogonality. The efficacy is the Euclidean distance of the cut hy-
perplane to the current LP solution, and an orthogonality bound makes sure that
the cuts added to the LP form an almost pairwise orthogonal set of hyperplanes.
SCIP follows these suggestions.

3.5 Primal Heuristics

Primal heuristics have a significant relevance as supplementary procedures in-
side a MIP solver: they help to find good feasible solutions early in the search

Constraint Integer Programming: a New Approach to Integrate CP and MIP 7

process, which helps to prune the search tree by bounding and allows to apply
more reduced cost fixing and other dual reductions that can tighten the problem
formulation.

Overall, there are 23 heuristics integrated into SCIP. They can be roughly
subclassified into four categories:

— Rounding heuristics try to iteratively round the fractional values of an LP
solution in such a way that the feasibility for the constraints is maintained
or recovered by further roundings.

— Diving heuristics iteratively round a variable with fractional LP value and
resolve the LP, thereby simulating a depth first search (see Section 3.6) in
the branch-and-bound tree.

— Objective diving heuristics are similar to diving heuristics, but instead of
fixing the variables by changing their bounds, they perform “soft fixings” by
modifying their objective coefficients.

— Improvement heuristics consider one or more primal feasible solutions that
have been previously found and try to construct an improved solution with
better objective value.

Detailed descriptions of the primal heuristics implemented in SCIP and an in-
depth analysis of their computational impact can be found in [12], an overview
is given in [13].

3.6 Node Selection and Branching Rules

Two of the most important decisions in a branch-and-bound algorithm are the
selection of the next subproblem to process (node selection) and how to split the
current problem @ into smaller subproblems (branching rule).

The most popular branching strategy in MIP solving is to split the domain
of an integer variable x;, j € I, with fractional LP value Z; ¢ Z into two parts,
thus creating two subproblems (1 = QN{z; < |&;]} and Q2 = QN{z; > [E,]}.
Methods to select such a fractional variable for branching are discussed in [2, 3].

SCIP implements most of the discussed branching rules, especially reliability
branching which is currently the most effective general branching rule for MIP.
Using SCIP, it is possible to implement arbitrary branching schemes such as
branchings that create more than two subproblems or branching on constraints.

SCIP offers several node selection strategies as default plugins. Depth first
search always chooses a child of the current node as the next subproblem to be
processed or backtracks to the most recent ancestor with an unprocessed child,
if the current node has been pruned. Depth first search is the preferred strat-
egy for pure feasibility problems like SAT. Additionally, it has the benefit that
successively solved subproblems are very similar, which reduces the subproblem
management overhead.

Best first search aims at improving the global dual bound as fast as possible
by always selecting a subproblem with the smallest dual bound of all remaining

8 Tobias Achterberg et al.

leaves in the tree. Best first search leads to a minimal number of nodes that need
to be processed, given that the branching rule is fixed [1].

Best Estimate search was suggested by Forrest et al. [19]. It estimates the
minimum value of a rounded solution in each subproblem and chooses a node
with minimal estimate. The aim is to quickly find good feasible solutions. How-
ever, this node selection strategy may perform very poor in improving the global
dual bound.

The default node selection strategy of SCIP is a combination of these three
strategies: it performs depth first search for a few consecutive subproblems after
which a node with best estimate is chosen. At a certain frequency, a node with
smallest dual bound is selected instead of a node with best estimate.

3.7 Presolving

Presolving is a way to transform the given problem instance into an equivalent
instance that is (hopefully) easier to solve. The most fundamental presolving
concepts for MIP are described in [38]. For additional information, see [20].

The task of presolving is threefold: first, it reduces the size of the model by
removing irrelevant information such as redundant constraints or fixed variables.
Second, it strengthens the LP relaxation of the model by exploiting integrality
information, e.g., to tighten the bounds of the variables or to improve coefficients
in the constraints. Third, it extracts information such as implications or cliques
from the model which can later be used, for example for branching or cutting
plane separation. SCIP implements a full set of primal and dual presolving
reductions for MIP problems, see [1].

Restarts differ from the classical presolving methods in that they are not
applied before the branch-and-bound search commences, but abort a running
search process in order to reapply other presolving mechanisms and start the
search from scratch. They are a well-known ingredient of modern SAT solvers,
but have not been used so far for solving MIPs.

It is often the case that cutting planes, strong branching [7], and reduced cost
strengthening in the root node identify fixings of variables that have not been
detected during presolving. These fixings can trigger additional presolve reduc-
tions after a restart, thereby simplifying the problem instance and improving
its LP relaxation. The downside is that we have to solve the root LP relaxation
again, which can sometimes be very expensive.

Nevertheless, the above observation leads to the idea of applying a restart
directly after the root node processing if a certain fraction of the integer variables
has been fixed during the processing of the root node. In our implementation, a
restart is performed if at least 5% of the integer variables have been fixed.

4 SCIP as a MIP Solver

With the default plugins that are included in the distribution, SCIP can be
used as a stand-alone MIP solver. Some of the plugins have been described in
Section 3. In this section we evaluate the performance of SCIP for solving MIPs.

Constraint Integer Programming: a New Approach to Integrate CP and MIP 9

SCIP /CPLEX CPLEX SCIP /SOPLEX CBC/CLP

Name Nodes Time Nodes Time Nodes Time Nodes Time
10teams 671 20.3 1 0.4 564 T 190 24.9
aflow30a 2353 13.5 3054 7.9 4293 35.6 30577 79.0
air04 334 98.9 263 8.2 159 189.7 565 172.1
air05 384 49.4 467 7.3 314 134.6 548 95.4
cap6000 3455 4.1 4227 0.7 2647 6.4 3390 7.1
disctom 1 85.4 1 6.0 1 64.4 1 4.2
fiber 24 1.1 60 0.2 12 1.3 40 2.2
fixnet6 26 1.6 71 0.6 10 2.8 114 3.4
gesa2-o 108 6.5 482 0.8 155 11.1 5695 32.6
gesa2 132 5.7 147 0.2 251 7.4 275 6.7
manna8l 2 5.5 1 0.1 1 5.7 1 0.7
mas74 3275993 783.9 2673089 281.8 3036576 1582.8 4887385 2390.2
mas76 349635 73.4 398167 37.4 313718 118.0 687061 180.3
misc07 19719 15.2 25645 20.2 19831 27.7 29130 64.1
mod011 1751 76.8 54 20.7 2034 636.2 6318 132.4
modglob 21 0.9 183 0.1 3573 50.1 12664 26.3
nw04 457 92.7 283 29.2 49 369.5 22 12.5
p2756 45 2.6 11 0.2 109 3.3 37 1.4
pkl 219292 71.9 186390 81.7 226525 165.5 204094 81.8
pp08a 139 1.3 567 0.4 199 2.5 5087 31.3
pp08aCUTS 7 1.1 1102 1.1 109 2.6 5928 26.5
qiu 12653 76.9 7233 29.3 12973 337.5 31866 295.2
rout 11967 15.3 5260 8.8 10991 36.2 1011908 2219.9
vpm?2 297 0.9 1619 0.4 1077 2.2 459 4.3
aflow40b 347845 2067.6 491380 2342.5 427125 2.2% 1321287 4.0%
danoint 1158489 4856.1 778939 4975.1 330296 3.5% 683171 2.0%
fast0507 1350 395.2 2941 555.0 1380 2407.0 7770 1.6%
glass4 7335667 79.6% 8939059 6595.8 322356 125.0% 1729411 95.8%
harp2 22481616 <0.1% 316170 144.8 5732001 0.1% 2589310 3448.6
mzzvll 3376 547.6 498 90.8 1545 0.6% 2899 4.8%
mzzv42z 761 302.9 298 33.5 1369 5243.8 5500 3.9%
netl2 5501 2139.0 2603 28.3% 1411 — 12191 22.3%
noswot 1510640 6110.8 8158083 4.7% 495596 238.4 5713896 2.8%
opt1217 3833790 16.3% 1 0.1 3558191 16.6 % 20584953 17.7%
setlch 27 1.4 330 0.2 8825 18.9 1317890 0.5%
tr12-30 909033 2600.7 212451 294.2 1259733 4433.7 506441 1.3%
Geom. Mean 4101 58.0 2455 11.3 4224 136.5 12609 183.8
Solved Instances 33 34 29 25

> 10 % faster - 27 2 5

> 10 % slower - 6 30 29

Table 1. Results of four MIP solvers on the MIpPLIB 2003. If a solver hit one of the
limits, we report the primal-dual gap in percent instead of the solving time in seconds.

We tested SCIP 1.00 running on a 3.00 GHz Intel Xenon with 8 GB RAM
and 4 MB cache, using CPLEX 11.0 [23] as underlying LP solver. We set a time
limit of 2 hours and a memory limit of 4 GB. As a comparison we applied the
same test with CPLEX 11.0 as stand-alone MIP solver, with SCIP 1.00 using
SOPLEX 1.3.2 [42] to solve the LPs, and CBC 2.0 with CLP 1.6 [17] as LP solver.
We used the provided default settings for all solvers. As test set we chose the 60
instances of the M1pPLIB 2003 [4]. We left out the instances arkiO01, protfold,
and timtabl for which at least one of the solvers returned a wrong answer or
reported an error.

Tables 1 and 2 compare the results of the four solvers. The first part of
Table 1 lists the instances which were solved to optimality by all solvers, the
second part those which were solved by at least one solver, Table 2 those for

10 Tobias Achterberg et al.

SCIP/CPLEX CPLEX SCIP/SoPLEX CBC/CLP

Name Nodes Gap Nodes Gap Nodes Gap Nodes Gap
alclsl 426057 15.8% 491631 5.7% 115512 20.7% 143591 41.0%
atlanta-ip 11342 5.5% 4011 8.1% 10 — 350 —
dano3mip 9911 22.8% 5565 18.8% 123 24.1% 12898 30.5%
ds 4512 486.6 % 5760 314.2% 310 511.3% 456 1482.5%
liu 3146152 135.4% 319976 102.1% 347383 159.3% 157480 206.4 %
mkc 2396228 1.3% 140170 0.2% 1022181 0.9% 961565 2.5%
momentum1 6221 20.5 % 23623 18.7% 1276 — 5158 20.2%
momentum?2 6004 28.7 % 6144 28.7 % 1260 — 5529 152.4 %
momentum3 11 — 140 466.5 % 1 — 1 —
msc98-ip 10301 0.7% 1996 12.1% 67 — 324 —
nsrand-ipx 592996 6.5% 234970 1.1% 381553 8.8% 661104 2.0%
rd-rplusc-21 84288 >10000% 35562 >10000 % 71 — 11795 —
roll3000 1180987 0.6% 1253352 0.4% 201728 1.2% 133378 3.8%
seymour 103485 2.2% 146297 1.9% 2829 11.5% 33374 5.9%
sp97ar 86939 3.4% 210446 0.8% 36063 4.6 % 180426 2.5%
stp3d 8 20 3 1

swath 429024 19.1% 262088 19.3% 257953 26.8% 2352638 40.7%
t1717 2665 50.2 % 64721 60.4 % 898 37.0% 13016 76.9 %
timtab2 3095502 78.4% 1736172 52.5% 2420114 63.1% 639547 102.8%
marksharel 46 M 5 31 M 4 52 M 6 42 M 6
markshare2 42 M 9 25M 12 40 M 9 48 M 10

Table 2. Results of four MIP solvers on the MIPLIB 2003 (continued). For the
markshare instances we report the upper bound instead of the primal-dual gap; the
lower bound is zero in all cases.

which all solvers reached a limit. For each instance listed in the “Name” column,
the tables show the number of nodes and the time in seconds needed to solve
it with each of the four solvers. For instances which could not be solved within
the time and memory limit, we report the primal-dual gap in percent instead of
the solving time. The primal-dual gap is defined as v = (¢ — ¢)/inf[¢, ¢] with é
being the upper (primal) and ¢ being the lower (dual) bound. The symbol “—”
indicates instances for which no feasible solution was obtained within the limits.

There were 36 instances, given in Table 1, for which at least one solver was
able to prove optimality within the time and memory limit. For these instances,
the results are summarized at the bottom of the table. The rows “> 10 % faster”
and “> 10% slower” give the number of instances for which the solver was
at least 10 % faster and at least 10 % slower, respectively, than SCIP-CPLEX.
Although SCIP supports the much more general concept of constraint integer
programming, it is still competitive to state-of-the-art MIP solvers. On this test
set, SCIP-CPLEX can solve only one instance less than CPLEX within the limits.

5 Using SCIP for Property Checking

One of the key technologies in the design of integrated circuits is the verification
of the correctness of the design [24]. One important aspect of this process is the
so-called property checking problem, which means to verify that certain expected
inherent properties of the chip design hold.

Today’s techniques validate these properties on the so-called gate level by
transforming the properties into Boolean clauses and hence the property check-

Constraint Integer Programming: a New Approach to Integrate CP and MIP 11

ing problem into a SAT instance. However, complex arithmetic operations like
multiplication lead to SAT instances with quite involved interrelationships be-
tween the variables, which are hard to solve for current SAT solvers.

Our approach is to tackle the problem on a higher level, the register transfer
(RT) level. The property checking problem at RT level can be formulated as
CIP on bit vector variables o € {0,...,2%e~!} of width w,. The constraints
rt = C;(z*,y%, 2*) model the circuit operations.

For each bit vector variable p, we introduce single bit variables o3, b =
0,...,w, — 1, with g5 € {0,1}, for which linking constraints

we—1

o= > 20 2)
b=0

define their correlation. In addition, we consider the following circuit opera-
tions: ADD, AND, CONCAT, EQ, ITE, LT, MINUS, MULT, NOT, OR, READ, SHL,
SHR, SIGNEXT, SLICE, SUB, UAND, UOR, UXOR, WRITE, XOR, ZEROEXT with the
semantics as defined in [16].

5.1 CP Techniques

For the bit linking constraints (2) and for each type of circuit operation we im-
plemented a specialized constraint handler which includes a domain propagation
algorithm that exploits the special structure of the constraint class. In addition
to considering the current domains of the bit vectors ¢ and the bit variables gy,
we exploit knowledge about the global equality or inequality of bit vectors or
bits, which is obtained in the preprocessing stage of the algorithm.

Some of the domain propagation algorithms are very complex. For example,
the domain propagation of the MULT constraint uses term algebra techniques to
recognize certain deductions inside its internal representation of a partial product
and overflow addition network. Others, like the algorithms for SHL, SLICE, READ,
and WRITE, involve reasoning that mixes bit- and word-level information.

5.2 IP Techniques

Because property checking is a pure feasibility problem, there is no natural
objective function. However, the LP relaxation usually detects the infeasibility
of the local subproblem much earlier than domain propagation.

Table 3 shows the linearizations of the circuit operation constraints that are
used in addition to the bit linking constraints (2) to construct the LP relaxation
of the problem instance. Very large coefficients like 2 in the ADD linearization
can lead to numerical difficulties in the LP relaxation. Therefore, we split the
bit vector variables into words of W = 16 bits and apply the linearization to
the individual words. The linkage between the words is established in a proper
fashion. For example, the overflow bit of a word in an addition is added to the
right hand side of the next word’s linearization. The relaxation of the MULT

12 Tobias Achterberg et al.

Operation Linearization

r = AND (X,y) To < To, To S Yy T > Tp+ Yo — 1

r = OR (X,y) T 2 T, To 2 Yb, T < Tt + Yo

r = XOR (x,y) o —Yp— 16 <0, —xp +yp — 15 < 0,
—xp— Yo+ 76 <0, wp +yp + 75 < 2

r = UAND (x) r <@y, > S wy — we + 1

r = UOR (x) P>y, < S @

r = UXOR (x) r+ ZZJ:'IO_I Ty =28, 8 € Lo

r = EQ(x,y) r—y=s—t,p+q+r=1,p<s, s <plus —1y),
g <t t<quy—Ils), s,t € Z>o, p,q € {0,1}

r = LT (x,y) r—y=s—1t,p<s s<plug—1ly), r<t,
t<r(uy—Ils),p+r<1,st€Zso peq{0,1}

r = ITE (X,y,2) r—y<(u:—ly)(1—2a),r—y> (1. —uy)(l—x)
r—z<(uy—lL)z,r—z2>(y—u)z

r = ADD (x,y) r+2"o=x+y, o€ {0,1}

r = MULT (X,y) Vbn < Uy, Tb, Von < Yn, Ubn > Yn — Uy, (1 — Tp), Vbn € Z>o

L7151 L
On + Zi+j:n Do 2in41,j = 270n41 + T, 0n € Lxo

Table 3. LP relaxation of circuit operations. [, and u, are the lower and upper bounds
of a bit vector variable p.

constraint involves additional variables y, and 7, which are “nibbles” of y and
r with L = % bits.

No linearization is generated for the SHL, SLICE, READ, and WRITE con-
straints. Their linearizations are very complex and would dramatically increase
the size of the LP relaxation, thereby reducing the solvability of the LPs. For
example, a straight-forward linearization of the SHL constraint on a 64-bit input
vector = that uses internal ITE-blocks for the potential values of the shifting
operand y already requires 30944 inequalities and 20 929 auxiliary variables.

5.3 SAT Techniques

Conflict Analysis is particular useful on feasibility problems like property check-
ing. By applying reverse propagation, one or more conflict constraints can be
extracted from the conflict graph of an infeasible subproblem. In our implemen-
tation, we use the 1-FUIP [43] rule for generating conflict constraints. In ad-
dition to the 1-FUIP conflict constraints we extract clauses from reconvergence
cuts [43] in the conflict graph to support non-chronological backtracking [31].

5.4 Computational Results

We examined the computational effectiveness of the described CIP techniques
on industrial benchmarks obtained from verification projects conducted together
with INFINEON and ONESPIN SOLUTIONS. The specific chip verification algo-
rithms were incorporated into SCIP 0.90i using CPLEX 10.0.1 [23] as LP solver.
All calculations were performed on a 3.8 GHz Pentium-4 workstation with 2 GB

Constraint Integer Programming: a New Approach to Integrate CP and MIP 13

variant
Property Meth A B C

g-checkgpre SAT 222 576 29.1
CIP 142 123 153

register width g2_checkg?2 SAT —_ —_ —
Prop Meth 5 415 15 20 25 30 35 40 CIP 2139 2048 257.6
muls SAT 0.5 _ = = — — — — g25_checkg25 SAT 0.0 2.4 25
CIP 0.0 00 00 01 01 0.1 0.2 0.3 CIP 297 224 242
neg_flag SAT 0.1 1000 — — — —_ — — g3-negres SAT 0.0 0.0 0.0
CIP 0.8 3.6 11.6 36.3 81.8 136.6 218.4 383.5 CIP 0.7 0.0 0.0
zero_flag SAT 0.0 0.0 01 01 0.2 04 05 0.6 gBIG_checkregl SAT 287.2 157.3 159.6
CIP 23 06 16 40 6.2 10.7 156 379.7 CIP 170.0 7.0 8.6
Table 4. ALU properties. (time in seconds) Table 5. Biquad properties.

register width

Layout Meth 6 7 8 9 10 11 12 13 14
booth SAT 0.4 33 21.0 1354 035.1 — — — —
signed CIP 213 701 3187 3842 0041 17562 2883.7 49959 3377.9
booth SAT 05 25 179 1029 879.0 4360.4 — — —
unsgnd CIP 157 517 269.1 0113 1047.6 2117.7 22951 44034 7116.8
nonbth SAT 0.4 3.4 218 1341 13441 — — — —
signed CIP 128 312 100.6 265.9 560.8 690.8 1873.0 1976.3 4308.9
nonbth SAT 0.3 1.8 16.5 83.1 009.6 56215 — — —
unsgnd CIP 36 224 1112 2140 335.4 10401 1507.5 2347.7 4500.2

Table 6. Multiplier properties. (time in seconds)

RAM. In all runs, we used a time limit of 2 hours. For reasons of comparison,
we also solved the instances with SAT techniques on the gate level. We used
MINISAT 2.0 [18] to solve the SAT instances obtained after a preprocessing step.

The experiments were conducted on the valid properties included in the fol-
lowing sets of property checking instances: ALU (an arithmetical logical unit
which performs ADD, SUB, SHL, SHR, and signed and unsigned MULT operations),
Biquad (a DSP/IIR filter core obtained from [34] in different representations),
and Multiplier (gate level net lists for Booth and non-Booth encoded architec-
tures of signed and unsigned multipliers).

Tables 4-6 compare the results of MINISAT and our CIP approach on the
valid properties. For each property or layout and each input register width or
variant, the tables show the time in seconds of the two algorithms needed to
solve the instance. Results marked with ‘“— could not be solved within the time
limit. The experiments show that our approach outperforms SAT techniques for
proving the validity of properties on circuits containing arithmetics. For invalid
properties, which are not shown in the tables, our algorithm is usually inferior
to SAT for finding counter-examples. This is due to the much more involved
procedures employed in the CIP approach.

14 Tobias Achterberg et al.
References
1. T. Achterberg. Conflict analysis in mixed integer programming. Discrete Opti-

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

mization, 4(1):4-20, 2007. Special issue: Mixed Integer Programming.

T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Univer-
sitat Berlin, 2007. http://opus.kobv.de/tuberlin/volltexte/2007/1611/.

T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations
Research Letters, 33:42—54, 2005.

T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34(4):1-12, 2006. http://miplib.zib.de.

E. Althaus, A. Bockmayr, M. Elf, M. Jiinger, T. Kasper, and K. Mehlhorn. SCIL
— symbolic constraints in integer linear programming. In Algorithms — ESA 2002,
pages 75-87, 2002.

G. Andreello, A. Caprara, and M. Fischetti. Embedding {0, 4 }-cuts in a branch-
and-cut framework: A computational study. INFORMS Journal on Computing,
19(2):229-238, 2007.

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman
Problem. Princeton University Press, Princeton, 2006.

K. R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

I. D. Aron, J. N. Hooker, and T. H. Yunes. SIMPL: A system for integrating
optimization techniques. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, CPAIOR 2004, volume
3011 of Lecture Notes in Computer Science, pages 21-36, 2004.

E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146—164,
1975.

E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project
in a branch-and-cut framework. Management Science, 42:1229-1246, 1996.

T. Berthold. Primal heuristics for mixed integer programs. Master’s thesis, Tech-
nische Universitat Berlin, 2006.

T. Berthold. Heuristics of the branch-cut-and-price-framework SCIP. ZIB-Report
07-30, Zuse Institute Berlin, 2007. To appear in Operations Research 2007.

A. Bockmayr and T. Kasper. Branch-and-infer: A unifying framework for integer
and finite domain constraint programming. INFORMS Journal on Computing,
10(3):287-300, 1998.

A. Bockmayr and N. Pisaruk. Solving assembly line balancing problems by com-
bining IP and CP. Sixth Annual Workshop of the ERCIM Working Group on
Constraints, June 2001.

R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear
programming. In Proceedings of the IEEE VLSI Design Conference, pages 741-746,
2002.

Computational infrastructure for operations research. http://www.coin-or.org.

N. Eén and N. Sorensson. An extensible SAT-solver. In E. Giunchiglia and A. Tac-
chella, editors, Proceedings of SAT 2003, pages 502-518. Springer, 2003.

J. J. Forrest, J. P. H. Hirst, and J. A. Tomlin. Practical solution of large scale mixed
integer programming problems with UMPIRE. Management Science, 20(5):736—
773, 1974.

A. Fligenschuh and A. Martin. Computational integer programming and cutting
planes. In K. Aardal, G. L. Nemhauser, and R. Weismantel, editors, Discrete
Optimization, volume 12 of Handbooks in Operations Research and Management
Science, chapter 2, pages 69-122. Elsevier, 2005.

Constraint Integer Programming: a New Approach to Integrate CP and MIP 15

21.

22.
23.
24.
25.
26.
27.
28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

R. E. Gomory. Solving linear programming problems in integers. In R. Bellman
and J. M. Hall, editors, Combinatorial Analysis, Symposia in Applied Mathematics
X, pages 211-215, Providence, RI, 1960. American Mathematical Society.

J. N. Hooker and M. A. Osorio. Mixed logical/linear programming. Discrete
Applied Mathematics, 96-97(1):395-442, 1999.

ILOG CPLEX. Reference Manual. http://www.ilog.com/products/cplex.
International technology roadmap for semiconductors, 2005. http://public.itrs.net.
V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP models for a class
of optimization problems. INFORMS Journal on Computing, 13(4):258-276, 2001.
E. L. Johnson and M. W. Padberg. Degree-two inequalities, clique facets, and
biperfect graphs. Annals of Discrete Mathematics, 16:169-187, 1982.

A. Klar. Cutting planes in mixed integer programming. Master’s thesis, Technische
Universitat Berlin, 2006.

A. N. Letchford and A. Lodi. Strengthening Chvétal-Gomory cuts and Gomory
fractional cuts. Operations Research Letters, 30(2):74-82, 2002.

H. Marchand. A polyhedral study of the mized knapsack set and its use to solve
mized integer programs. PhD thesis, Faculté des Sciences Appliquées, Université
catholique de Louvain, 1998.

H. Marchand, A. Martin, R. Weismantel, and L. A. Wolsey. Cutting planes in inte-
ger and mixed integer programming. Discrete Applied Mathematics, 123/124:391—
440, 2002.

J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions of Computers, 48:506-521, 1999.

H. Mittelmann. Decision tree for optimization software: Benchmarks for optimiza-
tion software. http://plato.asu.edu/bench.html.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

Opencores. http://www.opencores.org.

M. W. Padberg, T. J. van Roy, and L. A. Wolsey. Valid inequalities for fixed charge
problems. Operations Research, 33(4):842-861, 1985.

P. Refalo. Tight cooperation and its application in piecewise linear optimization.
In Principles and Practice of Constraint Programming, CP 1999, volume 1713 of
Lecture Notes in Computer Science, pages 375-389, 1999.

R. Rodosek, M. G. Wallace, and M. T. Hajian. A new approach to integrating
mixed integer programming and constraint logic programming. Annals of Opera-
tions Research, 86(1):63-87, 1999.

M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer
programming problems. ORSA Journal on Computing, 6:445-454, 1994.

R. M. Stallman and G. J. Sussman. Forward reasoning and dependency directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9:135-196, 1977.

C. Timpe. Solving planning and scheduling problems with combined integer and
constraint programming. OR Spectrum, 24(4):431-448, November 2002.

K. Wolter. Implementation of cutting plane separators for mixed integer programs.
Master’s thesis, Technische Universitat Berlin, 2006.

R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis,
Technische Universitat Berlin, 1996.

L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In ICCAD, pages 279-285, 2001.

