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1 Introduction

The analysis and the computation of various optimal mechanical structures has a
long history and many applications. We just quote the recent books by Bendsoe
[3], Cherkaev [6], Allaire [1], Zolesio and Delfour [19], where such topics are studied
from various points of view and where numerous references may be found.

In this paper, we shall consider structures like plates, curved rods and shells under
low regularity assumptions with respect to their geometry. In the first section we
analyze the application of the control variational method, introduced by the au-
thors in [11], [15], [16], to the general linear elasticity system and to linear elastic
plates. Variational inequalities are also considered. It turns out that the approach
is advantageous from the numerical point of view since the solution is reduced to
sequential applications of Laplace’s equation. In section 2, thickness minimization
problems for plates are discussed. The last section contains a presentation of very
recent results in shape optimization problems for curved rods and shells, obtained
by the authors.

2 The linear elasticity system

We consider in Ω ∈ IR3 the weak formulation of the isotropic linear elasticity system,
∫

Ω

[λepp(u)eqq(v) + 2µeij(u)eij(v)] dx =

∫

Ω

fivi dx , (2.1)

u = (u1, u2, u3) ∈ V (Ω) , ∀v = (v1, v2, v3) ∈ V (Ω) =
{
v ∈ H1(Ω)3 , v|Γ0 = 0

}
.

Above, it is assumed that the smooth boundary of Ω , ∂Ω = Γ0∪Γ1 , consists of two
nonoverlapping open parts and (2.1) corresponds to homogeneous mixed boundary
conditions, imposed for simplicity. The constants λ ≥ 0 , µ > 0 , are the Lamé

coefficients, eij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 3 , the summation convention is used,

and f = (f1, f2, f3) gives the body forces. The existence of a unique solution
u = (u1, u2, u3) ∈ V (Ω) for (2.1) is wellknown, Ciarlet [7], [8]. We prove here that
(2.1) admits an advantageous treatment via control theory. To this end, we consider
the following problem:

Min

{
1

2

∫

Ω

{
µ|w|2R9 + λ[div (u)]2 + µ

[(
∂u1

∂x1

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x3

)2
]

+ 2µ

(
∂u1

∂x2

∂u2

∂x1

+
∂u1

∂x3

∂u3

∂x1

+
∂u2

∂x3

∂u3

∂x2

)}
dx

}
,

(2.2)

subject to w ∈ L2(Ω)q and to
∫

Ω

∇u : ∇v dx =

∫

Ω

w : ∇v dx +
1

µ

∫

Ω

f · v dx , ∀v ∈ V (Ω) , (2.3)
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where ∇u is the Jacobian of u and

∇u : ∇v =
3∑

i,j=1

∂ui

∂xj

∂vi

∂xj

.

Relation (2.3) is just the weak formulation of the system of the three decoupled
Poisson equations

−∆u = −div w +
1

µ
f , in Ω , (2.4)

with homogeneous mixed boundary conditions. The divergence operator in (2.4) is
applied to the rows of the 3× 3 “matrix” w ∈ L2(Ω)9 .

We study briefly the problem (2.2)–(2.3) and we show that it provides exactly the
solution of (2.1). The two problems are in fact equivalent.

Proposition 2.1 Assume that [u∗, w∗] ∈ V (Ω)×L2(Ω)q is an optimal pair for the
problem (2.2), (2.3). Then it holds

∫

Ω

[
µw∗ : q + λdiv (u∗)div (z) + µ

(
∂u∗1
∂x1

∂z1

∂x1

+
∂u∗2
∂x2

∂z2

∂x2

+
∂u∗3
∂x3

∂z3

∂x3

(2.5)

+
∂u∗1
∂x2

∂z2

∂x1

+
∂z1

∂x2

∂u∗2
∂x1

+
∂u∗1
∂x3

∂z3

∂x1

+
∂u∗3
∂x1

∂z1

∂x3

+
∂u∗2
∂x3

∂z3

∂x2

+
∂u∗3
∂x2

∂z2

∂x3

)]
dx = 0 ,

for any z ∈ V (Ω) and for q ∈ L2(Ω)9 with q = ∇z .

Proof. This is the usual Euler equation associated to (2.2), (2.3). As the control
problem is unconstrained, we can take arbitrary variations of the form u∗ + sz ,
s ∈ IR , around u∗ , which correspond to variations w∗ + sq around the optimal
control w∗ , since z is the solution of the “equation in variations” corresponding to
q :

∫

Ω

∇z : ∇v dx =

∫

Ω

q : ∇v dx , ∀v ∈ V (Ω) .

One then writes that the cost corresponding to w∗ is lower than the one correspond-
ing to w∗ + sq , then subtracts, divides by s (for s > 0 or s < 0) and takes the
limit s → 0 to obtain the result. 2

Remark. Relation (2.5) is a characterization of optimality. The optimal pair, if it
exists, is unique (by the strict convexity of (2.2)).

Next, we define the adjoint system for p ∈ V (Ω):
∫

Ω

∇p : ∇z =

∫

Ω

[
λ div (u∗) div (z) + µ

(
∂u∗1
∂x1

∂z1

∂x1

+
∂u∗2
∂x2

∂z2

∂x2

+
∂u∗3
∂x3

∂z3

∂x3

+
∂u∗1
∂x2

∂z2

∂x1

+
∂u∗2
∂x1

∂z1

∂x2

+
∂u∗1
∂x3

∂z3

∂x1

+
∂u∗3
∂x1

∂z1

∂x3

(2.6)

+
∂u∗2
∂x3

∂z3

∂x2

+
∂u∗3
∂x2

∂z2

∂x3

)]
dx = 0 , ∀z ∈ V (Ω) .
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Relation (2.6) is the weak form of a system of decoupled Poisson equations with
homogeneous mixed boundary conditions. Existence and uniqueness of the solution
p ∈ V (Ω) are obvious.

Proposition 2.2 The optimality conditions for the problem (2.2), (2.3) are given
by (2.3), (2.6) and the Pontryagin maximum principle:

∫

Ω

(µw∗ +∇p) : ∇z dx = 0 , ∀z ∈ V (Ω) . (2.7)

Moreover, p = µh− µu∗ in Ω with h defined in (2.8) below.

Proof. By (2.6) and (2.5), we get

0 =

∫

Ω

[µw∗ : q +∇p : ∇z] dx =

∫

Ω

[µw∗ : q +∇p : q] dx ,

which is exactly the relation (2.7), as q = ∇z . Notice that, by virtue of (2.3) and
(2.7), we have

∫

Ω

∇u∗ : ∇z dx =

∫

Ω

w∗ : ∇z dx +
1

µ

∫

Ω

f · z dx

= − 1

µ

[∫

Ω

∇p : ∇z dx−
∫

Ω

f · z dx

]
.

That is, if we denote by h ∈ V (Ω) the (weak) solution to the problem:
∫

Ω

∇h : ∇z dx = +
1

µ

∫

Ω

f · z dx , ∀z ∈ V (Ω) , (2.8)

then we obtain∫

Ω

∇u∗ : ∇z dx = − 1

µ

∫

Ω

∇p : ∇z dx +

∫

Ω

∇h : ∇z dx , ∀z ∈ V (Ω) .

As u∗, p , h satisfy the same boundary conditions, the unique solvability of Laplace’s
problem concludes the proof. 2

Again by (2.3), and by the definition of q in Proposition 2.1, we can write
∫

Ω

µw∗ : q dx = µ

∫

Ω

w∗ : ∇z dx = µ

∫

Ω

∇u∗ : ∇z dx−
∫

Ω

f · z dx , ∀z ∈ V (Ω) .

By replacing this in (2.5), we have
∫

Ω

[
µ∇u∗ : ∇z dx + λ div (u∗) div (z) + µ

(
∂u∗1
∂x1

∂z1

∂x1

+
∂u∗2
∂x2

∂z2

∂x2

+
∂u∗3
∂x3

∂z3

∂x3

+
∂u∗1
∂x2

∂z2

∂x1

+
∂u∗2
∂x1

∂z1

∂x2

+
∂u∗1
∂x3

∂z3

∂x1

+
∂u∗3
∂x1

∂z1

∂x3

(2.9)

+
∂u∗2
∂x3

∂z3

∂x2

+
∂u∗3
∂x2

∂z2

∂x3

)]
dx =

∫

Ω

f · z dx , ∀z ∈ V (Ω) .

Regrouping the terms in (2.9) conveniently, we have thus proved:
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Corollary 2.1 u∗ ∈ V (Ω) is the unique solution to (2.1).

Remark. Relations (2.3), (2.6) and (2.7) provide a nonstandard decomposition of
(2.1).

Remark. Corollary 2.1 provides a simple convenient method to solve (2.1) via (2.2),
(2.3). In the setting of this control problem, we have to solve the state system (2.3)
and the adjoint system (2.6) (both associated to the Laplace operator). Then, the
gradient of the cost functional may be computed by Proposition 2.2 and gradient
methods may be used. Notice also that the existence in (2.2), (2.3) follows from the
result for (2.1), by Proposition 2.1 and Corollary 2.1.

Let us now consider the example of a linear elastic plate (Ω ⊂ IR2!) submitted to
unilateral restrictions:

a(y, v) =

∫

Ω

e3[y,11v,11 + τy,11v,22

+ τy,22v,11 + y,22v,22 + 2(1− τ)y,12v,12] dx ,

∀y ∈ H2
0 (Ω) , ∀v ∈ H2

0 (Ω) .

(2.10)

a(y, y − v) ≤
∫

Ω

f(y − v) dx , y ∈ K , ∀v ∈ K , (2.11)

where, for y ∈ H2(Ω) , y,ij = ∂2y
∂xi∂xj

, i, j = 1, 2 .

Here K ⊂ H2
0 (Ω) is a nonempty closed and convex set. The scalar functions y ∈

H2
0 (Ω) , e ∈ L∞(Ω)+ , f ∈ L2(Ω) , represent respectively the deflection, the positive

thickness and the load of the plate, while 0 < τ < 1
2

is the Poisson coefficient,
Duvaut and Lions [9, Ch. 4].

We replace (2.10), (2.11) by the following optimal control problem:

Min

{
1

2

∫

Ω

e3
[
w2 + 2(1− τ)y2

,12 + 2(τ − 1)y,11y,22

]
dx

}
(2.12)

subject to the state equation

∆y = w + e−3g in Ω , (2.13)

y = 0 on ∂Ω , (2.14)

and to the state constraints

y ∈ K . (2.15)

Above, g ∈ H2(Ω) ∩ H1
0 (Ω) is the solution to the Poisson problem with ∆g = f

in Ω . We shall prove that the solution of (2.11) may be obtained via the control
variational method given by (2.12)–(2.15). Notice the differences between (2.13)
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and (2.3) that show the flexibility of our approach. It is also clear that a numerical
solution of (2.12)–(2.15) may be obtained by using first order finite elements which
provides a simple way for the solution of (2.11).

Any pair [y, w] , y ∈ K ⊂ H2
0 (Ω) , w = ∆y − e−3g is admissible for the problem

(2.12)–(2.15).

In this special situation, one can prove directly the existence of optimal pairs:

Proposition 2.3 The problem (2.12)–(2.15) has a unique optimal pair [y∗, w∗] .

Proof. Let [yn, wn] be a minimizing sequence for (2.12). Then yn
,11 + yn

,22 =
wn + e−3g and the cost functional is bounded from above:

c ≥
∫

Ω

e3
{
w2

n + 2(1− τ)(yn
,12)

2

+2(τ − 1)
[
yn

,11wn + e−3gyn
,11 − (yn

,11)
2
]}

dx .

(2.16)

As 0 < τ < 1
2
, relation (2.16) shows that {wn} , {yn

,12} , {yn
,11} are bounded in

L2(Ω) , and (2.13) yields that also {yn
,22} is bounded in L2(Ω) . That is, {yn}

is bounded in H2
0 (Ω) . One can take weakly convergent subsequences yn → y∗ ,

wn → w∗ in H2
0 (Ω) , L2(Ω) respectively, pass to the limit in (2.13)–(2.15) as K

is weakly closed and end the proof by the weak lower semicontinuity of the cost
functional (2.12). Uniqueness is a clear consequence of the strict convexity of (2.12).
2

Remark. Notice that, in this proof, Ω ⊂ IR2 plays an essential role.

The characterization of [y∗, w∗] via the Euler (in)equation has to take the state
constraints into account. We perform admissible variations of the form y∗+s(z−y∗) ,
w∗ + s(l − w∗) , s ∈ [0, 1] , ∀z ∈ K , l = ∆z − e−3g ∈ L2(Ω) to obtain that

0 ≤
∫

Ω

e3
{
w∗(l − w∗) + 2(1− τ)y∗,12(z,12 − y∗,12)

+2(τ − 1)
[
y∗,11(z,22 − y∗,22) + y∗,22(z,11 − y∗,11)

]}
dx ,

(2.17)

for any z ∈ K .

Using the fact that w∗ = ∆y∗− e−3g , l = ∆z− e−3g , a convenient grouping of the
terms in (2.17) and the partial integration

∫

Ω

e3(∆z −∆y∗)e−3g dx =

∫

Ω

f(z − y∗) dx

yield:

Corollary 2.2 y∗ ∈ H2
0 (Ω) is the unique solution to (2.10), (2.11).
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Remark. It is possible to compute directional derivatives and to write necessary
conditions as in the previous case. Other boundary conditions may be studied as
well, for instance partially clamped plates. Then, another artificial control has to
be introduced in (2.14) which becomes y = v ∈ H3/2(∂Ω) , v = 0 on the “clamped”
part of ∂Ω . A weak penalization ε|v|2

H3/2(∂Ω)
, ε > 0 , has to be added to (2.12).

The analysis involves a limiting process for ε → 0 and it is more technical. Finally,
let us underline that cost functionals (2.2) or (2.12) represent the usual energy (up
to a constant), after the substitution of the control by the state.

3 Thickness optimization of plates with unilateral

conditions

We study the optimal design problem

Min {J(e, y) , e ∈ Ead} , (3.1)

subject to (2.10), (2.11), and with J : L∞(Ω)×H2
0 (Ω) → IR a lower semicontinuous

functional;

Ead =
{
e ∈ L∞(Ω) ; 0 < α ≤ e ≤ β a.d. Ω ; |e|W 1,t(Ω) ≤ γ

}
. (3.2)

Here, α , β γ , t > 2 are some given positive real numbers. One can also in-
clude other constraints in the definition of Ead . For instance, the constant volume
constraint

∫

Ω

e dx = const.

may be considered. Concerning the possible state constraints, as Ω ⊂ IR2 , the
solution y of (2.11) belongs to C(Ω̄) and one example of interest is given by the
pointwise state constraint

y(x0) ≥ −δ , (3.3)

with x0 ∈ Ω and δ > 0 conveniently fixed.

An important case covered by (3.1)–(3.3) is the minimization of the volume (thick-
ness) of the plate such that the deflection y remains above a given tolerance −δ
(in one or in any point in Ω), for a prescribed load f ∈ L2(Ω) . This is a natural
safety requirement.

In the sequel, we shall denote by a(e, y, v) the functional (2.10), and we assume
0 ∈ K , just in order to simplify the writing.

Proposition 3.1 Let en → e in L∞(Ω) strongly, and let yn , y denote the corre-
sponding solutions to (2.11). Then, yn → y strongly in H2

0 (Ω) .
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Proof. By Corollary 2.2 and (2.12), (2.13), we get
∫

Ω

e3
n(e−6

n g2) dx ≥
∫

Ω

e3
n

{
w2

n + 2(1− τ)(yn
,12)

2 + 2(τ − 1)yn
,11y

n
,22

}
dx , (3.4)

obtained by the admissible choice ỹn = 0 , w̃n = −e−3
n g . Then (3.2) and (3.4) show

that, for any n :
∫

Ω

{
w2

n + 2(1− τ)(yn
12)

2 + 2(τ − 1)yn
11y

n
22

}
dx ≤ c .

Arguing again as in (2.16), we see that {wn} , {yn} are bounded in L2(Ω) , H2
0 (Ω) ,

respectively. Denoting by ỹ ∈ K the weak limit of yn in H2
0 (Ω) , on a subsequence,

we can use the form (2.10), (2.11) of the variational inequality to see that ỹ = y , by
the weak lower semicontinuity of quadratic forms. By summing a(en, y

n, yn − ym)
and a(em, ym, ym − yn) according to (2.11) and to the uniform (in e) coercivity of
a(e, y, v) on H2

0 (Ω) , we obtain, for some c > 0 :

c|yn − ym|2H2
0 (Ω) ≤ a(em, ym, ym − yn)− a(en, y

m, ym − yn) .

Using (2.10), and the uniform convergence of {en} , a short computation gives the
strong convergence in H2

0 (Ω) for {yn} , and the proof is finished. 2

Corollary 3.1 The optimization problem (3.1)–(3.3) has at least one optimal solu-
tion e∗ ∈ Ead if it has admissible elements.

This is a consequence of the compact embedding of W 1,t(Ω) in C(Ω̄) , t > 2 , by
the Sobolev theorem and of Proposition 3.1.

Remark. Corollary 3.1 is a partial extension of results obtained by Hlavacek, Bock
and Lovǐsek [10], Bendsoe [3], Sprekels and Tiba [14]. If (2.11) is the obstacle prob-
lem, Sokolowski and Rao [13] have studied its sensitivity with respect to variations
around e∗ .

In the present more general setting, we prove a weaker differentiability-type property.
We fix some b ∈ L∞(Ω) , and we denote by yλ the solution of (2.11) associated to
e + λb , λ ∈ IR . By Proposition 3.1, yλ → y strongly in H2

0 (Ω) as λ → 0 . Denote

by vλ = yλ−y
λ

∈ H2
0 (Ω) .

Proposition 3.2 {vλ} is bounded in H2
0 (Ω) . If v̂ is a limit point of {vλ} , then

it satisfies:

a(e, y, v̂) =

∫

Ω

fv̂ dx , (3.5)

0 ≥ a(e, v̂, v̂ − l) +

∫

Ω

3e2b
[
y,11(v̂,11 − l,11) + τy,11(v̂,22 − l,22) (3.6)

+ τy,22(v̂,11 − l,11) + y,22(v̂,22 − l,22) + 2(1− τ)y,12(v̂,12 − l,12)
]
dx , ∀l ∈ Ẑ ,

with Ẑ ⊂ H2
0 (Ω) a closed convex nonvoid set defined in the proof.
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Proof. By adding a(e, y, y − yλ) and a(e + λb , yλ, yλ − y) and by (2.11), we get

0 ≥ a(e, yλ − y, yλ − y) + λ

∫

Ω

(3e2b + 3λeb2 + λ2b3)
[
yλ

,11(y
λ
,11 − y,11)

+ τyλ
,11(y

λ
,22 − y,22) + τyλ

,22(y
λ
,11 − y,11) + yλ

,22(y
λ
,22 − y,22)

+ 2(1− τ)yλ
,12(y

λ
,12 − y,12)

]
dx .

(3.7)

Dividing by λ2 in (3.7), and using the coercivity of a(e, ·, ·) and the convergence
of yλ , we find that {vλ} is bounded in H2

0 (Ω) . Let v̂ be a limit point of {vλ} , on
some subsequence. Passing to the limit λ ↘ 0+ in

a(e, y,−vλ) ≤ −
∫

Ω

fvλdx ,

a(e + λb, yλ, vλ) ≤
∫

Ω

fvλdx ,

we get (3.5).

Consider now test functions lλ ∈ Zλ =
[

1
λ
(K − y) ∩ 1

λ
(yλ −K)

] ⊂ H2
0 (Ω) , λ > 0 .

Notice that Zλ is a nonvoid closed convex set and 0 ∈ Zλ , vλ ∈ Zλ . If lλ ∈ Zλ ,
then y + λlλ ∈ K , yλ − λlλ ∈ K , λ > 0 . We use these test functions in (2.11) to
obtain:

a(e, y, y − yλ + λlλ) ≤ −
∫

Ω

f(y − yλ + λlλ) dx ,

a(e + λb, yλ, yλ − y − λlλ) ≤
∫

Ω

f(yλ − y − λlλ) dx .

Adding these inequalities, and dividing by λ2 , we have

0 ≥ a(e, vλ, vλ − lλ) +

∫

Ω

(3e2b + 3λeb2 + λ2b)
[
yλ

,11(v
λ
,11 − lλ,11) + τyλ

,11(v
λ
,22 − lλ,22)

+ τyλ
,22(v

λ
,11 − lλ,11) + yλ

,22(v
λ
,22 − lλ,22)

+ 2(1− τ)yλ
,12(v

λ
,12 − lλ,12)

]
dx , ∀lλ ∈ Zλ .

(3.8)

If λn ↘ 0 is chosen such that vλn → v̂ weakly in H2
0 (Ω) , we denote by Ẑ =

lim inf
λ→0

Zλn =
{
p ∈ H2

0 (Ω) ; ∃pλn ∈ Zλn , pλn → p in H2
0 (Ω)

}
. This is a nonvoid

closed convex subset of H2
0 (Ω) . Passing to the limit in (3.8) gives (3.6) which ends

the proof. 2

Remark. The dependence of Ẑ and of v̂ on the way we choose a convergent
subsequence of {vλ} shows that they may be not uniquely determined.
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4 Curved rods and shells

For the three-dimensional curved rods, we relax the usual regularity hypotheses on
the parametrization, of type W 3,∞(0, L) , by avoiding the use of the classical Frenet
or Darboux frames, Cartan [5]. A new local system of axes valid for C1(0, L) or
W 2,∞(0, L) curves was introduced in Ignat, Sprekels and Tiba [12]. As, here, we are
mainly interested in optimization questions, we perform a direct parametrization of
the tangent vector,

t̄(·) = (sin τ(·) cos ψ(·) , sin τ(·) sin ψ(·) , cos τ(·)) . (4.1)

The curve is then parametrized by

θ̄(x3) =

∫ x3

0

t̄(s)ds , x3 ∈ [0, L] . (4.2)

Notice that in this way a unit speed curve θ̄ in IR3 with fixed length L > 0 is
automatically generated. Moreover, the local frame can be obtained by algebraic
means,

n̄ = (cos τ cos ψ , cos τ sin ψ , − sin τ) , (4.3)

b̄ = (− sin ψ , cos ψ , 0) . (4.4)

The mappings τ, ψ ∈ C1(0, 1) give the real parametrization. If ω(x3) ⊂ IR2 is a
bounded domain, not necessarily simply connected, we define the open set

Ω =
⋃

x3∈]0,L[

(ω(x3) × {x3}) ⊂ IR3 . (4.5)

The curved rod Ω̃ associated to θ̄ is then obtained by the transformation

x̄ = (x1, x2, x3) ⊂ Ω 7→ Fx̄ = x̃ = (x̃1, x̃2, x̃3)

= θ̄(x3) + x1n̄(x3) + x2b̄ ∈ Ω̃ , ∀x̄ ∈ Ω .
(4.6)

The Jacobian J of the transformation F satisfies det J(x̄) ≥ c > 0 , ∀x̄ ∈ Ω , if
the sets ω(x3) are all contained in a sufficiently small disk in IR2 . In Ciarlet [8] it
is proved that F is one-to-one and that Ω̃ is well defined.

We make the geometrical assumption that the displacement has the following form
for x̃ ∈ Ω̃ :

ȳ(x̃) = ρ̄(x3) + x1N̄(x3) + x2B̄(x3) , x̄ = F−1(x̃) . (4.7)

The unknowns are ρ̄ , N̄ , B̄ ∈ H1
0 (0, L)3 , and (4.7) enters the category of polyno-

mial models. Comparing with the shell model considered later in this section, we
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may say that (4.7) gives a generalized Naghdi model for curved rods. By introduc-
ing (4.7) into the elasticity system, we get the following variational equation (here
(hij) = J−1 and λ̃ , µ̃ are the Lamé coefficients) for ρ̄ , N̄ , B̄ :

λ̃

∫

Ω

3∑
i,j=1

[
Ni(x3)h1i(x̄) + Bi(x3)h2i(x̄) +

(
ρ′i(x3) + x1N

′
i(x3)

+ x2B
′
i(x3)

)
h3i(x̄)

][
Mj(x3)h1j(x̄) + Dj(x3)h2j(x̄) +

(
µ′j(x3) + x1M

′
j(x3)

+ x2D
′
j(x3)

)
h3j(x̄)

]
| det J(x̄)| dx̄ + µ̃

∫

Ω

∑
i<j

[
Ni(x3)h1j(x̄) + Bi(x3)h2j(x̄)

+
(
ρ′i(x3) + x1N

′
i(x3) + x2B

′
i(x3)

)
h3j(x̄) + Nj(x3)h1i(x̄) + Bj(x3)h2i(x̄)

+
(
ρ′j(x3) + x1N

′
j(x3) + x2B

′
j(x3)

)
h3i(x̄)

][
Mi(x3)h1j(x̄) + Di(x3)h2j(x̄) (4.8)

+
(
µ′i(x3) + x1M

′
i(x3) + x2D

′
i(x3)

)
h3j(x̄) + Mj(x3)h1i(x̄) + Dj(x3)h2i(x̄)

+
(
µ′j(x3) + x1M

′
j(x3) + x2D

′
j(x3)

)
h3j(x̄)

]
| det J(x̄| dx̄

+ 2µ̃

∫

Ω

3∑
i=1

[
Ni(x3)h1i(x̄) + Bi(x3)h2i(x̄) +

(
ρ′i(x3) + x1N

′
i(x3) + x2B

′
i(x3)

)
h3i(x̄)

]

[
Mi(x3)h1i(x̄)+ Di(x3)h2i(x̄)+

(
µ′i(x3)+ x1M

′
i(x3)+ x2D

′
i(x3)h3i(x̄)

]
| det J(x̄)| dx̄

=
3∑

l=1

∫

Ω

fl(x̄)(µl(x3) + x1Ml(x3) + x2Dl(x3)
)| det J(x̄)| dx̄

+
3∑

i,j=1

3∑

l=1

∫

∂Ω

gl(x̄)(µl(x3) + x1Ml(x3) + x2Dl(x3)
)| det J(x̄)|

√
νigijνj dτ .

Above, µ̄ , M̄ , D̄ ∈ H1
0 (0, L)3 are test functions, (νi) is the normal vector to ∂Ω ,

(gij) = J−1(JT )−1 , and f̄ ∈ L2(Ω)3 , ḡ ∈ L2(∂Ω)3 are the acting forces.

The coercivity of the bilinear form is established under the assumption that ω(x3) ⊃
ω , ∀x3 ∈ [0, L] , and

0 =

∫

ω

x1 dx1dx2 =

∫

ω

x2 dx1dx2 =

∫

ω

x1x2 dx1dx2 .

The argument in Ignat, Sprekels and Tiba [12] is a direct one. It is based on the
algebraic identity

1

2

[
(z1h32 + z2h31)

2 + (z2h33 + z3h32)
2 + (z1h33 + z3h31)

2
]

+
3

2
(z2

1h
2
31 + z2

2h
2
32 + z2

3h
2
33) =

1

2
(z2

1 + z2
2 + z2

3)(h
2
31 + h2

32 + h2
33)

+
1

2
(z1h31 + z2h32)

2 +
1

2
(z1h31 + z3h33)

2 +
1

2
(z2h32 + z3h33)

2 .
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A general formulation of optimization problems associated to curved rods is (see
(4.7)):

Min
τ,ψ

{Π(τ, ψ) = j(θ̄, ȳ)} , (4.9)

subject to (4.8) and to constraints θ̄ ∈ K ⊂ C2(0, L)3 , bounded closed subset. A
typical example for (4.9) is the quadratic case, for instance j(θ̄, ȳ) =

∑3
i=1 |ρi|2H1

0 (0,L)

(minimization of the displacement of the line of centroids). Notice that our construc-
tion eliminates degenerate cases like rods of length zero. By imposing the constraint
0 ≤ τ(x3) ≤ π

2
− ε , x3 ∈ [0, L] , self-intersecting curves are also eliminated. The

partial periodicity constraint

∫ L

0

t1 dx3 =

∫ L

0

t2 dx3 = 0

can be used for the optimization of spirals, etc.

Theorem 4.1 If the set of admissible {τ, ψ} is compact in C1(0, L)2 , and if j :
C2(0, L)3 × H1

0 (0, L)9 → IR is lower semicontinuous, then the problem (4.9), (4.8)
admits at least one optimal curved rod θ̄∗ .

In Arnăutu, Sprekels and Tiba [2] it is also proved that the mapping {τ, θ} 7→ y is
Gâuteaux differentiable from C1(0, L)2 to H1

0 (0, L)9 and the directional derivative
for the cost (4.9) are computed together with the first order optimality conditions.
Many numerical examples may be found in Ignat, Sprekels and Tiba [12] and in
Arnăutu, Sprekels and Tiba [2]. Some of them have a clear physical meaning, which
may be interpreted as a validation of the model.

In the case of shells, we consider an open bounded set ω ⊂ IR2 , not necessarily
simply connected and ε > 0 , “small”. We denote by Ω = ω×] − ε, ε[ and by
p : ω → IR a C2(ω̄) mapping whose graph represents the middle surface of the
shell. The shell Ω̂ is obtained via the transformation F̂ : Ω → Ω̂ , F̂ (x1, x2, x3) =
(x1, x2, p(x1, x2)) + x3n̄(x1, x2, x3) where n̄ is the normal vector:

n̄ = (n1, n2, n3) =
1√

1 + p2
1 + p2

2

(−p1,−p2, 1)

and where p1, p2 are the partial derivatives of p . The shell is assumed to be partially
clamped along Γ̂0 = F̂ (Γ0) , with Γ0 = γ0×]− ε, ε[ and γ0 ⊂ ∂ω being some open
part. The displacement û ∈ V (Ω̂) = {v̂ ∈ H1(Ω̂)3 ; v̂|Γ̂0

= 0} is supposed to be of
the form

û(x̂) = ū(x1, x2) + x3r̄(x1, x2) , (x1, x2, x3) = F̂−1(x̂) .

The unknowns ū, r̄ ∈ V (ω) = {v̄ ∈ H1(ω)3 ; v̄|γ0 = 0} represent the displacement
of the middle surface of the shell, respectively the modification of the normal vector.

12



This is allowed to change the length as well (that is the elastic material can dilate
or contract), which is a generalization of the classical Naghdi model, studied for
instance by Blouza [4] under similar regularity conditions. For ε “small”, we get
det J(x̄) ≥ c > 0 , J = ∇F̂ , which justifies the above construction. If we denote by
(hij(x̄)) = J(x̄)−1 , the same approach as for the curved rods, based on the linear
elasticity system, generates the following BVP:

λ̃

∫

Ω

{
3∑

i=1

[(
∂ui

∂x1

+ x3
∂ri

∂x1

)
h1i +

(
∂ui

∂x2

+ x3
∂ri

∂x2

)
h2i (4.10)

+rih3i

]}{
3∑

j=1

[(
∂µj

∂x1

+ x3
∂%j

∂x1

)
h1j +

(
∂µj

∂x2

+ x3
∂%j

∂x2

)
h2j + %jh3j

]}

| det J(x̄)| dx̄ + 2µ̃

∫

Ω

3∑
i=1

[(
∂ui

∂x1

+ x3
∂ri

∂x1

)
h1i +

(
∂ui

∂x2

+ x3
∂ri

∂x2

)
h2i

+rih3i

][(
∂µi

∂x1

+ x3
∂%i

∂x1

)
h1i +

(
∂µi

∂x2

+ x3
∂%i

∂x2

)
h2i + %ih3i

]
| det J(x̄)| dx̄

+µ̃

∫

Ω

∑
i<j

{[(
∂ui

∂x1

+ x3
∂ri

∂x1

)
h1j +

(
∂ui

∂x2

+ x3
∂ri

∂x2

)
h2j + rih3j +

(
∂uj

∂x1

+x3
∂rj

∂x1

)
h1i +

(
∂ui

∂x2

+ x3
∂rj

∂x2

)
h2i + rjh3i

][(
∂µi

∂x1

+ x3
∂%i

∂x1

)
h1j

+

(
∂µi

∂x2

+ x3
∂%i

∂x2

)
h2j + %ih3j +

(
∂µj

∂x1

+ x3
∂%j

∂x1

)
h1i +

(
∂µj

∂x2

+ x3
∂%j

∂x2

)
h2i

+%jh3i

]}
| det J(x̄)| dx̄ =

∫

Ω

3∑

l=1

fl(µl + x3%l)| det J(x̄)| dx̄

+

∫

∂Ω−Γ0

3∑

l=1

3∑
i,j=1

gl(µl + x3%l)| det J(x̄)|
√

νi(x̄)gij(x̄)νj(x̄) dτ .

Here, the notations are similar to (4.8). To prove the existence and the uniqueness
of the solution (ū, r̄) ∈ V (ω)2 in (4.10), we have established the coercivity of the
bilinear form by applying Korn’s inequality, Sprekels and Tiba [17]. Moreover, in
Arnăutu, Sprekels and Tiba [2], by using an extension technique to H1(IR3) , it is
shown that this coercivity constant is independent of the geometry (of p ) in some
given classes. We associate to (4.10) the shape optimization problem

Min
p∈K

{Π(p) = j(ȳ, p̄)} (4.11)

with ȳ = (ū, r̄) ∈ H1(ω)6 and K ⊂ C2(ω̄) closed. The mapping j : H1(ω)6 ×
C2(ω̄) → IR is of general type. Some well-known examples of cost functionals and
of constraints K are:

j(ȳ, p) = |u1|2H1(ω) + |u2|2H1(ω) + |u3|2H1(ω)
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(minimization of the displacement of the middle surface of the shell), respectively
∫

ω

√
1 + p2

1 + p2
2 dx1dx2 ≤ const

(area limitation for the shell).

Theorem 4.2 If K ⊂ C2(ω̄) is compact and j : H1(ω)6 × C2(ω̄) → IR is lower
semicontinuous, then the shape optimization problem (4.10), (4.11) has at least one
optimal solution.

Remark. It is possible to compute directional derivatives of the mapping p 7→
ȳ and to write optimality conditions, Arnăutu, Sprekels and Tiba [2]. However,
numerical experiments seem very difficult to perform as the coercivity constant is
of the order ε3 which shows the lack of stability properties in the computations.
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