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Abstract

A continuum model for the growth of self-assembled quantum dots
that incorporates surface diffusion, an elastically deformable substrate,
wetting interactions and anisotropic surface energy is presented. Using
a small slope approximation a thin film equation for the surface pro-
file that describes facetted growth is derived. A linear stability analysis
shows that anisotropy acts to destabilize the surface. It lowers the critical
height of flat films and there exists an anisotropy strength above which
all thicknesses are unstable. A numerical algorithm based on spectral
differentiation is presented and simulation are carried out. These clearly
show faceting of the growing islands and a logarithmically slow coarsening
behavior.

Keywords: Anisotropic surface energy; self-assembly of quantum dots; linear
stability; small-slope approximation; stationary solutions; coarsening

1 Introduction

Epitaxial growth of quantum dots is a fascinating topic from many points of
view. The self-assembled patterning and the geometrical structure of the grow-
ing solid film inherits a natural beauty that alone may be worth studying (for
pictures of dots see references [1, 6, 18, 25]). However, apart from the interest it
may raise due to inherent structures and symmetries, the nano-crystals can be
very valuable for industrial applications, because their semiconducting proper-
ties make them useful for electronic and optoelectronic devices. The blue laser
is one of the main achievements which can be attributed to research on quantum
dots [21]. LEDs with a wide color spectrum and a small energy consumption are
under consideration and even quantum computing is of interest due to the two-
state property of a quantum dot [17]. Recently the photovoltaic industry tries
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to incorporate the zero-dimensional structures - or ”artificial atoms” because
of their discrete energy states - inside new thin layers in order to increase the
thermodynamic conversion efficiency [22, 15]. For widespread applications, com-
paratively cheap, but controllable self-assembly growth processes are needed.

We concentrate on the most common material combination, germanium crys-
tals grown on silicon (Ge/Si), for a review see Drucker [6] or the references
therein. Atoms of germanium are deposited on top of the silicon substrate
in a hot chamber (the effects we describe and simulate occur at about 500 de-
grees Celsius) and after a pseudomorphic growth phase the Asaro-Tiller-Grinfeld
(ATG) instability [5] leads to formation of initially round structures (prepyra-
mids) which in later stages morph to tiny pyramids, the quantum dots. Further
deposition leads to multi-faceted domes and eventually dislocations that dete-
riorate the quality of the quantum dots.

A main mechanism for the growth is the lattice mismatch. Both crystalline
materials have diamond cubic symmetry, but different lattice constants. The
film is in the Stranski-Krastanov growth mode. In the first stage it adjusts
its lattice to the prescribed width of the substrate’s crystal structure inducing
elastic energy that is competing with surface energy. In a layer by layer growth
phase the surface remains flat, but as the film thickness increases strain energy
can be released by the formation of quantum dots [28]. During the growth
both materials undergo an deformation and the observed dots are faceted after
primary forming more rounded prepyramids. Anisotropy is responsible for pyra-
midal shapes or multifaceted domes that are visible at later times. We consider
only the anisotropy of the surface energy, though in principle also anisotropic
elasticity coefficients may be significant (see recent work of Pang and Huang
[23]).

Different methods are used to model and simulate the growth described
above [7]. Stochastic methods that act on atomic scales are very accurate. How-
ever, only small domains with few dots can be simulated on short time-intervals.
Monte Carlo simulations have been implemented, but are very time-consuming
[16, 19]. To treat big domains for longer times, continuum models are used.
For the mesoscopic description of the elasticity problem finite element meth-
ods allow for the solution of the Navier-Cauchy equations in three dimensions
(e.g. Zhang et al. [37]). To avoid the high computational costs it is common
to simplify the governing equations. A small slope approximation similar to
lubrication theory in fluids is applied. For literature see Atherton and Davis [2].

Based on Mullins’ diffusion model [20] many formulas incorporating different
chemical potentials have been proposed. Spencer and co-workers derived partial
differential equations without wetting or anisotropy [31, 30, 32]. Later Golovin
et al. included wetting effects [13] and analyzed the linear stability of a more
complete model [14]. However, for simulations of reduced models the important
effects of stress and wetting were neglected. They used an anisotropy formula
which Savina et al. incorporated as the main mechanism for the evolution
together with normal growth from the vapor phase [27]. Inclusion of a cusped
model for the anisotropic surface energy has been accomplished by Eisenberg
and Kandel [8, 9, 10], who obtained promising 2D results. The anisotropy model
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is different to others in that it uses a nonsmooth cusp for the minimum of the
surface energy. This can be a drawback since methods based on derivatives will
have problems with the numerical simulations.

Solving the elastic subproblem is one of the main tasks for the simulation of
self-assembled growth. Instead of working with full Navier Cauchy equations on
a 3D domain, we use solution approximations based on small-slope reduction.
Pang and Huang [24] used the Cerruti solution for a semi-infinite solid that is
subjected to a point force. The resulting leading order equation is qualitatively
the same as the derived by Tekalign and Spencer [33, 34]. Here we present a
consistent model reduction including anisotropy which results in a self-contained
partial differential equation. We let the surface energy be dependent on orien-
tation such that it has local minima at the facets of the dots. This has been also
proposed by Chiu and Huang [4] who used a sum of exponentials depending on
the surface’s normals to describe preferred orientations. However, it is simple
and sufficient to use a fourth order polynomial in the slopes of the surface in
x and y directions. A model reduction via small-slope approximation leads to
a self-contained PDE. Simulations show how surfaces initially roughen, then
facet and coarsen on a logarithmically slow time-scale. The overall model we
consider contains surface diffusion, linear elasticity, anisotropic surface energy
and wetting interactions.

In the rest of our paper we present first in Section 2 the general equations
for the model, such as a diffusion formula and terms of the chemical potential.
We describe the elasticity problem and an anisotropy formula to obtain the
full equation for the problem. Thereafter in Section 3 we use characteristic
scales [33] to simplify the equations. In this way we derive our model in two
and three dimensions and analyze it in Sections 4 and 5, respectively. The
results of numerical simulations using a pseudospectral method are presented.
Stationary states are computed as solutions of an ODE with a second method.
These equal the shapes from long-run simulations of the PDE and show tent-
like or pyramidal shapes which validates the correctness of the derivation of the
evolution equation. A linear stability analysis extends the isotropic theory. It
shows that the critical thickness of a flat film decreases and that the unstable
regime grows with increasing anisotropy strength. Above a certain value an
infinite range of wave numbers is unstable. Using long-time simulations with
large numbers of pyramids we examine the logarithmic coarsening in two and
three dimensions. The results are reviewed in the last Section where we also
present an outlook for future plans.

2 Modeling the self-assembly of quantum dots

We consider the dislocation-free evolution of a thin solid film on a substrate as
sketched in Fig. 1. We denote the position of the film surface with z = h(x, y, t)
at time t and a point in the periodic spatial domain (x, y). We will refer to
this case as the three-dimensional one. Later the case when h = h(x, t) will be
referred to as two-dimensional. The interface between the materials is assumed
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to be at z = 0.
Based on surface diffusion [20], in the absence of deposition the film evolution

satisfies
ht =

√
1 + |∇h|2D∇2

sµ (1)

with the diffusion constant D = Ω2Dsσ/(kT ) . Here µ is the chemical potential,
Ω is the atomic volume, σ the surface density of atoms, Ds the diffusion coeffi-
cient, k the Boltzmann constant and T the absolute temperature. The surface
Laplacian is defined as

∇2
s =

1
N2

((1 + h2
y)∂xx + (1 + h2

x)∂yy − 2hxhy∂x∂y − κN(hx∂x + hy∂y)) ,

(2)

where N =
√

1 + ‖∇h‖2 and κ is the mean curvature [32]. It is chosen here to
have a positive sign in case of a standard parabola that is bounded below,

κ =
hxx(1 + h2

y) + hyy(1 + h2
x)− 2hxhyhxy

N3
. (3)

We consider a chemical potential µ that consists of two terms

µ = Esed + Esurf (4)

representing the competing contributions from elastic and surface energies, re-
spectively. The first term is the strain energy density evaluated at the surface

Esed =
1
2
σijεij |z=h (5)

with the stresses σij and strains εij related by Hooke’s law. As usual in elasticity
theory we use Einstein’s notation and sum over repeated indices i, j ∈ {1, 2, 3}.
The problem to be solved to compute the term (5) is described in Section 2.1
and follows Tekalign and Spencer [33].

The other term in (4) is decomposed into three components by taking the
functional derivative of the surface free energy. The right-hand side of the
following equation is defined via the calculation of this derivative.

Esurf :=
δ

δh

∫
γ(h, hx, hy)dS = Eκ + Ewet + Eanis . (6)

The standard surface and wetting terms are

Eκ = −γκ (7)

and
Ewet = (∂hγ)n3 , (8)

where n3 = 1/N is the third component of the outward unit normal. Since the
surface energy also depends on orientation, an additional term arises

Eanis = − 2(
hxhxx + hyhxy

N
∂hxγ +

hyhyy + hxhxy

N
∂hyγ)

− N∂x(∂hx
γ)−N∂y(∂hy

γ) . (9)
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Using a formula that depends only on the surface height, γ = γ(h), such as
Spencer’s boundary layer formula [29] (see later in Section 2.2, formula (19))
gives formally the terms Eκ and Ewet. Including the third term Eanis is vital to
correctly model effects of surface energy anisotropy which is our main goal.

Figure 1: Epitaxy setting: a film of thickness h grows on a substrate occupying
an infinite half-space.

2.1 The strain energy density

The lattice mismatch is crucial for the self-assembly of quantum dots and re-
sults in stresses in film and substrate. These are represented in the strain energy
density (5) evaluated on the free surface. The displacements in all spatial di-
mensions are denoted by ui, i = 1, 2, 3. Using linear elasticity the strains are
the symmetric part of the displacement gradient tensor

(εij)i,j∈{1,2,3} =
1
2
(∇u +∇uT ) (10)

and are related to the stress tensor by Hooke’s law for isotropic materials

σij =
E

1 + ν
εij +

Eν

(1 + ν)(1− 2ν)
εkkδij i, j ∈ {1, 2, 3} . (11)

Here ν is Poisson’s ratio and E is the elastic modulus. Mechanical equilibrium
is assumed to be reached on a much faster time-scale than the thermodynamic
equilibrium. This condition requires

∇ · σ = 0 , (12)

and together with (10) and (11) results in the Navier-Cauchy equations of
isotropic linear elasticity theory

(1− 2ν)∆u +∇(∇ · u) = 0 . (13)

Once boundary conditions are defined and the displacements are computed, one
obtains the strains, the stresses and finally the strain energy density using (5).
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At the film free surface we assume the pressure to be negligible, so that there
the boundary condition is

σ · n = 0 at z = h . (14)

Deep inside the substrate the stresses vanish, so that

us
i → 0 for z → −∞ . (15)

Throughout the document we use superscript f to indicate a quantity belongs
to the film and s if it is related to the substrate. The origin of variables without
superscripts are supposed to be known from the context, so that most of the
time they may be omitted.

At the interface between the two crystalline materials it is assumed that the
displacements of the film are equal to those of the substrate with an additional
correction in x and y directions arising from lattice mismatch

uf
i = us

i + ε[x, y, 0]T at z = 0 , (16)

where the lattice mismatch parameter ε = (af −as)/af . Here as and af are the
lattice spacings in the substrate and in the film, respectively.

As last condition continuity of the stress tensor at the film-substrate interface
is necessary

σf
|z=0 = σs

|z=0 . (17)

The elasticity problem is governed by the equations (11)-(17).
For a flat film that has adjusted its lattice spacing to that of the undeformed
substrate, one can easily compute the strain energy density

Ebase
sed =

Ef

1− νf
ε2 . (18)

However Esed is more difficult to derive for non-flat surfaces. When the ra-
tio of thickness to characteristic spatial length is small, this parameter allows
for asymptotic expansions of the displacements. This model reduction will be
discussed in Section 3.

2.2 Anisotropic surface energy

Spencer [29] proposed a boundary layer model for the smooth transition of the
surface energy from the substrate’s value to the film’s

γ(h) =
1
2
(γf + γs) + (γf − γs)

1
π

arctan(h/b) , (19)

where b is the transition length scale and γp, p ∈ {f, s} are material constants.
We generalize (19) by letting γf be anisotropic, but leave the surface energy den-
sity of the substrate unchanged, hence isotropic. We let γf depend on the slopes
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of the surface such that we can assign different energies to different orientations
of the free surface

γ(h, hx, hy) =
1
2
(γf (hx, hy) + γs) + (γf (hx, hy)− γs)

1
π

arctan(h/b) .(20)

We use a simple formula for the anisotropic surface energy

γf (hx, hy) = γ0(1 +W(hx, hy)) . (21)

Here W could be chosen in various ways. Chiu and Huang [4] applied a sum
of exponentials that defines minima at prescribed orientations. We choose a
simpler, though less flexible model, a ’double double-well’

W(hx, hy) = G̃(h4
x + h4

y)− 2G(h2
x + h2

y), G̃, G > 0 , (22)

that could be extended to arbitrary polynomials in the lateral derivatives of the
free surface. However, this function will be sufficient to describe the pyrami-
dal structures with {1 0 5} facets of quantum dots observed in experiments [6].
These define a characteristic slope s. For a flat film it has the value γ0 and
we will choose the dimensionless, positive parameters G and G̃ such that (21)
has minima at (±s, s), (s,±s) and a local maximum at (0, 0). Other orienta-
tions that are not preferred are punished by the character of the polynomial, as
γf →∞ for hx, hy → ±∞.

The terms ∂hxγ and ∂hyγ appearing in the chemical potential (9) can be
obtained easily

∇∇h
γ :=

(
∂hx

∂hy

)
γ = γ0Ψ(b, h)∇∇h

W , (23)

with the transition function

Ψ(b, h) =
1
2

+
1
π

arctan(h/b) , (24)

and the derivative

∇∇h
W = 4

(
G̃h3

x −Ghx

G̃h3
y −Ghy

)
. (25)

At this point we have obtained all equations that define a full model for the
evolution of self-assembled quantum dots. However, since the displacements,
which define stress and strain and hence the strain energy density (5), are given
only as solution of a 3D elasticity problem, the whole system is hardly solvable
without reducing it to simpler equations. A popular method to do so is using
characteristic scales to identify small terms that can be neglected.

3 Thin-film scaling

Drucker [6] reports that pyramidal Ge/Si quantum dots have {1 0 5} facets be-
fore before they start to become dome-like and create dislocations. Hence the
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horizontal length scale (the base length of a facet) is large in comparison to the
vertical scale (its height). The crystals have small slopes which can be used to
neglect small terms - such as powers of gradients - in the evolution equation.
If H0 is a small characteristic thickness scale and L is a bigger scale for the
substrate directions x and y, then the parameter α = H0/L � 1 can be used
for asymptotic expansions [30, 33]. A generic scaling of the variables is

h = H0H = αLH, z = αLZ, (x, y) = (LX,LY )
t = τT, ui(x, y, z) = LUi(X, Y, Z) .

Furthermore we scale the transition thickness

b = Lα3b̄ , (26)

so that the leading order of the wetting term Ewet will be of the same order as
the surface energy term Eκ. To guarantee that the overall reduced leading order
PDE that we will derive is well posed in terms of the anisotropy, the double-
well character of the anisotropy must remain in the leading order term of Eanis.
Therefore we assume

G = O(1) and G̃ = G/α2 ,

such that W = α2W with

W (HX ,HY ) := G[(H4
X + H4

Y )− 2(H2
X + H2

Y )] . (27)

These assumptions correspond to the theory from Chiu and Huang [3] who chose
the minimum of the facets to be only 1.2% smaller than γ0.

We choose the characteristic length and time scales

L =
γ0

Ebase
sed

and τ =
L4

Dγ0
, (28)

respectively. These result from the nondimensionalization of the chemical po-
tential

µ =
γ0

L
µ̄, µ̄ = Ēsed + Ēκ + Ēwet + Ēanis (29)

which arises from the natural scalings

σij = Ebase
sed σ̄ij , κ = Lκ̄, γ = γ0γ, ∇2

s = L2∇̄2
s . (30)

The evolution equation (1) in nondimensional form becomes

HT =
√

1 + α2(H2
X + H2

Y )∇̄2
s(Ēsed + Ēκ + Ēwet + Ēanis) , (31)
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The constituent terms are

Ēsed =
1
2
σ̄ijεij

Ēκ = −γ̄κ̄

Ēwet =
(γf − γs)αb̄

γ0π(α4b̄2 + H2)
√

1 + α2‖∇H‖2
(32)

Ēanis = −2α
(HXHXX + HXHXY )∂HX

W + (HY HY Y + HY HXY )∂HY
W

(1 + α2(H2
X + H2

Y ))1/2
(33)

− 1
α

(1 + α2(H2
X + H2

Y ))1/2 (∂X [Ψ∂HX
W] + ∂Y [Ψ∂HY

W]) ,

where in the last expression we used the transition function with rescaled argu-
ments Ψ = Ψ(Lα3b̄, H0H).

Now we expand the nondimensionalized chemical potential

µ̄ = µ̄(0) + αµ̄(1) +O(α2)

and determine the leading order terms. Derivative operators such as the nabla
operator ∇ = (∂X , ∂Y )T or the Laplacian ∆ = ∇2 are from now on defined in
the new variables. The surface Laplacian ∇̄2

s can be expanded

∇̄2
s = ∆ +O(α2) (34)

so that to order α the evolution equation can be written as

HT = ∆(µ̄(0) + αµ̄(1)). (35)

The aim of the following paragraphs will be to derive the leading order terms
of the chemical potential that can be inserted into the above equation (35).

The strain energy density terms Ē(0)
sed, Ē

(1)
sed:

With expansions for the strains and stresses

σ̄ij = σ̄
(0)
ij + ασ̄

(1)
ij + α2σ̄

(2)
ij +O(α3), εij = ε

(0)
ij + αε

(1)
ij + α2ε

(2)
ij +O(α3) (36)

one can find an expansion for the strain energy density

Ēsed = Ē(0)
sed + αĒ(1)

sed +O(α2) . (37)

By using (36) and the Navier-Cauchy equations in the film and substrate one
obtains

Ē(0)
sed = 1 and Ē(1)

sed = F−1(−eku) (38)

with k =
√

k2
1 + k2

2 the length of the wave vector (k1, k2) which is composed of
the wave numbers k1 and k2 for two dimensions, and where

e =
2µf (1 + νf )(1− νs)

µs(1− νf )
. (39)
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Here µp = Ep/(2(1+νp)), p ∈ {f, s} is the shear modulus of film and substrate,
respectively, and u denotes the 2D Fourier transform F(H). Its inverse is

H(X, Y, T ) = F−1(u) =
∫

[−∞,∞]2

u(k1, k2, T )e−ik1X−ik2Y dk1 dk2 .

A detailed derivation of these terms is given by Tekalign and Spencer [33].

The surface energy terms Ē(0)
κ , Ē(1)

κ :
The curvature can be expanded in terms of α to

κ̄ = ακ̄(1) +O(α3) (40)

with the leading order coefficient

κ̄(1) = ∆H . (41)

This gives

Ēκ = −
{

1
2

γ0 + γs

γ0
− γ̃

b̄
arctan

(
H

α2b̄

)}
κ̄(1)α +O(α3) (42)

= −ακ̄(1) +O(α2) , (43)

with γ̃ = b̄(γ0 − γs)/(γ0π), where typically γ̃ > 0, so that a film covering the
substrate is favorable. We derived

Ē(0)
κ = 0 and Ē(1)

κ = −∆H (44)

and remark that the anisotropy does not have any influence on the surface term
Ēκ to leading order.

The wetting energy terms Ē(0)
wet, Ē

(1)
wet:

For the expansion of the wetting term

Ēwet = Ē(0)
wet + αĒ(1)

wet +O(α2) (45)

the coefficients are determined by expanding (32) to

Ēwet = α
γ̃

H2
(1− α2‖∇H‖2

2
) +O(α4) .

We read off the wetting coefficients

E(0)
wet = 0 and E(1)

wet = − ∆γ

LH2
. (46)

The anisotropy terms Ē(0)
anis, Ē

(1)
anis:

Finally we also expand the anisotropy term

Ēanis = Ē(0)
anis + αĒ(1)

anis +O(α2) (47)
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and determine the leading order expressions. Therefore we expand the fractions
and the transition function in (33)

Ēanis = − 2α(1−α2 H2
X + H2

Y

2
)(1−α2 b̄

H
) {(HXHXX + HXHXY )∂HX

W

+ (HY HY Y + HY HXY )∂HY
W}+O(α3)

− 1
α

(1+α2 H2
X + H2

Y

2
)
(
∂X

[
(1−α2 b̄

H
)∂HX

W
]

+ ∂Y

[
(1−α2 b̄

H
)∂HY

W
])

.

Due to our choice of W (27), the lowest order of this expression is

αĒ(1)
anis = − 1

α
∇ · ∇∇HW(HX ,HY ) = −α∇ · ∇∇HW (HX ,HY ) . (48)

The reduced evolution equation:
Using ∆µ(0) = 0 the evolution equation (35) becomes

HT = ∆(Ē(1)
sed + Ē(1)

κ + Ē(1)
wet + Ē(1)

anis) . (49)

Insertion of the derived terms (38), (44), (46) and (48) into (49) gives the final
evolution equation

HT = ∆[F−1(−eku)−∆H − γ̃

H2
−∇ · ∇∇HW (HX ,HY )] (50)

The character of the above PDE is changed from semilinear in the isotropic case
G = 0 to quasilinear when G > 0 and it is well-posed as long as G is below a
certain threshold that is determined in the linear stability analysis part. It will
be presented in the next Section together with the numerical method for the
two-dimensional case and results on stationary solutions and coarsening.

4 Evolution in one lateral and one time dimen-
sion (2D)

Now we consider only one lateral dimension X, so that the film is described
by H = H(X, T ). Here island profiles represent long parallel ridges in 3D.
Evolution equation (50) then simplifies to

HT =∂XX [F−1(−e|k|u) + (4G− 12GH2
X − 1)HXX − γ̃

H2
] . (51)

The elasticity term is reduced from (38), where k =
√

k2
1 + k2

2 ≥ 0. Note
that now k = k1 is a wave number in one dimension and we have to take its
absolute value inside the inverse Fourier transform. We see, qualitatively the
isotropic model [33] is extended by adding one nonlinear term ∂XX [H2

XHXX ].
Simulations may be carried out with the following semi-implicit method.
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4.1 The numerical method

We simulate equation (51) using a pseudospectral method. In Fourier space,
with u = F(H), the evolution equation becomes

uT = −k2(−e|k|u + k2u− γ̃F [
1

H2
]− ikF [w′(HX)]) (52)

= L(u) + k2N (k, H, HX) (53)

with the linearity

L(u) = Lu = (ek2|k|+ (4G− 1)k4)u (54)

and the nonlinearity

N (k, H, HX) = 4GikF(H3
X) + γ̃F [

1
H2

] .

For a backward Euler scheme with implicitly treated linear term, explicit non-
linearity and the discrete vectors U ∈ Rn ≈ u(k)k∈K, K is a set of wave numbers,
the fast Fourier transform (FFT) is used to compute N and its inverse to plot
the surfaces. The update scheme is

U+(k) =
U(k)−∆tk2N

1−∆tL
, k ∈ K , (55)

where superscript + indicates the new time-step. We were able to analyze
stationary shapes of single quantum dots and the coarsening behavior of large
arrays of two-dimensional dots - or ridges/wires - with a Matlab code.

For our simulations we take material constants corresponding to a germa-
nium film on a silicon substrate. For Ge we use µf = 0.41×105 J/cm3, νf = 0.27,
γ0 = 0.19 × 10−5 J/cm2 [33] and for the Si substrate µs = 0.80 × 105 J/cm 3,
νs = 0.28, [36]. The characteristic length in this system is L ≈ 8 nm. The
resulting elasticity parameter e = 2µf (1 + νf )(1− νs)/(µs(1− νf )) ≈ 1.28, and
the wetting parameter γ̃ = 0.05.

4.2 Linear stability analysis and stationary solutions

A linear stability analysis of equation (51) with the normal mode ansatz

H = H̄ + δeσt+ikX

for δ � H̄ gives the characteristic equation

σ = (4G− 1)k4 + ek2|k| − 2γ̃

H̄3
k2 (56)

for the growth of small disturbances to a uniform film of thickness H̄. This dis-
persion relation is plotted in Fig. 2. We remark that it is valid for more arbitrary
polynomials than (22), so that this result holds also for a more general case. Two
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Figure 2: Dispersion relation for the isotropic (G = 0) and the anisotropic cases
G = 0.05 and G = 0.15 with H̄ = 0.8. On the left we see a magnifications of
the wave number regime where the minimum is adopted.

stable regimes surround an unstable interval of wave lengths as in the isotropic
case. However, we see that the parameter G dictates the sign of the highest
power of the polynomial (56). For growing values of G ∈ (0, 1/4) the maximal
value is attained at larger wave lengths and higher modulus. Anisotropy desta-
bilizes any flat film if G is strong enough as indicated in Fig. 3. Bigger values
of the anisotropy decrease the critical height

Hc = Hc(G) = 2
(

γ̃(1− 4G)
e2

)1/3

below which all films are stable (Fig. 3 on the right). Further for each anisotropy
strength there is a critical wave number kc above which the film is stable

kc = kc(G) =
e

1− 4G
.

Since kc → ∞ for G → 1/4 (Fig. 3, left), films are unstable above this critical
anisotropy strength for an infinite range of wave numbers.

A uniform film of thickness H̄ is unstable for a range of wave numbers
less than kc. This relation is described in Fig. 3 (left) and we observe that
the stability region grows with decreasing G. For the above parameter, in
the isotropic case Hc(0) = 0.63 and for the anisotropic values it decreases to
Hc(0.05) = 0.58 and Hc(0.15) = 0.46, respectively. During a slow epitaxial
deposition process we anticipate growth of pyramids shortly after the deposited
film exceeds this critical thickness.

Fig. 4 shows results of a typical simulation, starting from an initial profile
H(X, 0) = 0.7, plus a small random perturbation with amplitude 0.0001 on
a domain of length 4π. By t = 15 the perturbations have grown somewhat,
forming three oscillations. They merge to form two islands, separated by a
wetting layer, by t = 50. These show distinct facets, surfaces with relatively
constant slope HX ≈ ±1. At longer times, they collapse to form a single faceted
island. By t = 200 the numerical method produces film profiles which are
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Figure 3: Stability regime plots, left: varying anisotropy strength versus wave
numbers depicting kc(G) as dashed line. By increasing G the unstable region
grows and becomes infinite for G = 0.25; right: stability diagram for G = 0, G =
0.05 and G = 0.15 and varying k and H̄. The vertical lines are the corresponding
values of the critical wave number kc(G).

Figure 4: Evolution of a solid film governed by (51) from a nearly-uniform
initial profile and anisotropy strength G = 0.1. At long times, triangular shaped
islands form, collapse, and the shifted profile approaches that given by the steady
state solution described in Section 4.2 (dashed curve).

stationary in the sense that successive iterates Hk and Hk+1 differ by less than
a small threshold δ times the time step

‖Hk+1 −Hk‖
‖Hk‖

< δ∆t .

The long-time profiles may be compared to the steady solutions obtained by
setting HT = 0 in (51). In this case the chemical potential is a constant, µ0, so
that

−HXX − eF−1(|k|F(H))− γ̃

H2
−F−1(ikF(w′(HX))) = µ0 (57)

with w′(HX) = 4G(H3
X − HX) being the derivative of the one-dimensional

double-well. We solve (57) using a pseudospectral approach in which a Newton-
type method is used to satisfy (57) at each mesh point. We treat the value
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(a) (b)

Figure 5: Steady profiles for periodic solutions. (a) Increasing surface energy
anisotropy strength G, with fixed film volume V . (b) Increasing V from V =
2.6π to V = 4.8π; for G = 0.1, leads to a family of facetted islands (solid lines).
With constant surface energy, width remains approximately constant (dashed
lines).

of µ0 as an unknown, assume periodic boundary conditions, and impose the
additional requirements that the volume of the film is fixed, that is,∫ L

0

H dX = V = H̄L (58)

where H̄ is a constant. Furthermore the solution is supposed to be symmetric
around X = 0.

In Fig. 4 a solution to (57) is shown for the same parameters as in the
time-dependent solution obtained by the scheme (55). The agreement is very
good, with the time dependent solution being a translation of the stationary
shape. These results were computed with N = 128 mesh points; results for
N = 64 and N = 256 are almost indistinguishable, indicating the convergence
of the method under mesh refinement.

We explored the effect of the anisotropy strength by computing stationary
profiles for G between 0 and 0.1, shown in Fig. 5(a). The islands develop a
more faceted appearance for larger values of G. As G increases, the sides of
the islands take on slopes closer to ±1, corresponding to the minima of the
one-dimensional version of W in (27).

We then fixed G = 0.1 and increased the film volume. The resulting family
of steady profiles are shown in Fig. 5(b) for V from 2.6π to 4.8π. For constant
film surface energy (G = 0), islands have approximately constant width as V
increases [26, 33]; For the largest volume profile shown there the free surface
slopes are up to 2.7. For G > 0 the family of shapes are significantly different;
instead as V increases, the island base widens, while the wetting layer region
shrinks. Slopes remain moderate, reaching 1.33 for V = 1.2L. This family of
“tent-like” solutions is more representative of real quantum dot behavior as dots
grow while preserving their facets.
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4.3 Coarsening behavior

We studied coarsening of large two-dimensional quantum dot arrays using (55).
Simulations began with small random perturbations of a flat state above the
critical thickness of the film. On a grid with 2048 points and time-steps ∆t =
0.0001 for the Ge/Si system parameters we observed a behavior that is already
indicated by the computed stationary solutions from the previous Section. The
disturbance grows into many small rounded humps that are connected by a
thin layer. They morph into faceted islands that are similar to those presented
in Section 4.2. Bigger islands survive and retain a faceted form, while smaller
ones are ”eaten”. One such run is visualized in Fig. 6, where again brighter
shades are bigger film thicknesses. We can see the Ostwald ripening process
(survival of the fattest) and collapses of dots. Although in early stages some of
the structures tend to approach each other, no real collisions between islands
are observed. Before they collide they collapse - they are absorbed by the thin
film. The evolution plotted in Fig. 6 reminds us of coarsening in liquid films
[12].

Figure 6: Simulation of coarsening of the 2D Ge/Si system. White shades
correspond to thicker regions. Below the shape H(X, 500) at T = 500 is shown.
It corresponds to a line one would draw in the above black and white plot
through the same time point.

With the presented pseudospectral method we analyzed coarsening rates.
Therefore we use the value <N >=<N > (t) which is the island density at time
t - here this is the number of dots divided by the domain length parameter M
for a domain of length 2πM . We average the number of dots over four different
runs for the isotropic case G = 0 and the two anisotropy strengths G = 0.05
and G = 0.15. The results are shown in Fig. 7 where the time on a logarithmic
scale is plotted against the characteristic density number <N >. There appear
to be two phases in the evolution, one where the island-structures form - being
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larger for smaller values of G - and a second where actually coarsening takes
place. Surface energies that depend on orientation lead to more islands in the
first stage of evolution. This is confirmed by the linear stability analysis from
the last Section which has shown that for bigger values of G the most unstable
wave number increases. For G = 0.15 the fast coarsening regime sets in nearly
instantly, while in the isotropic case this coarsening phase happens at much
later times. Once dots start to collapse, isotropic coarsening is faster than for
non-zero values of G. At long times the number of dots decreases like − log(t).
This differs from power-law behavior < N >∼ t−β , β ∈ Q+ seen in somewhat
similar liquid systems [12]. However, Cahn-Hilliard type systems describing
binary systems of solid materials may display logarithmic coarsening at late
time [35].

Figure 7: Coarsening diagram for the 2D Ge/Si system comparing dot densities
for the isotropic (G = 0) and two anisotropic trials (G = 0.05 and G = 0.15).
One trial is the average of four runs and the t-axis is logarithmic.

5 Surface evolution in 3D

In this Section we first explain the changes one has to apply to the pseudospec-
tral method presented before to approximately solve the 3D evolution equation
(50). The free surface depends again on two lateral variables X and Y , so
that H = H(X, Y, T ). We then discuss the results obtained with this method -
typical Ostwald ripening behavior and coarsening of faceted nano-islands. Nu-
merical simulations can be carried out in the same manner as in Section 4.1,
extended to two lateral dimensions. Equation (50) in Fourier space becomes

uT = L(u) + k2N (k1, k2,H, HX ,HY ) (59)

with the formally unchanged linearity (54) and nonlinearity

N (k1, k2,H, HX ,HY ) = ik1F [4GH3
X ] + ik2F [4GH3

Y ] + γ̃F [
1

H2
] .

For a FFT-based spectral implementation with a backward Euler scheme with
implicitly treated linear term, explicit nonlinearity and the discrete vectors U ≈
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u, we use update formula (55), where instead of k the pair (k1, k2) serves as
argument. As before we use parameters for the Ge/Si system and two different
anisotropy strengths G.

5.1 3D results

In Fig. 8 we show the collapse of a dot. Two initially Gaussian humps close-by
each other with different sizes first evolve to small pyramids. Higher regions are
denoted by whiter shades and flat regions are colored black. Contour lines help
to visualize how they change from round to nearly squared as an effect of the
anisotropy. The smaller pyramid is ”eaten” by T = 15, its material is absorbed
by the thin layer, and only one bigger faceted quantum dot remains. Again this
is reminiscent of Ostwald ripening which is well studied for different problems.
In Fig. 9 a surface is monitored from above during evolution with the same

Figure 8: Collapse of a Ge/Si dot. Bright colors show bigger values of the surface
height. The initial condition for these two islands were two round, exponential
humps that initially evolve to faceted structures. The bigger quantum dot ”eats”
the smaller one and survives. The simulation has been carried out with G = 0.2.
Time and space are given here and in the other figures in dimensionless units.

color to surface height relation as before. An initially flat film was perturbed
by small random noise with mean zero. Initially ridge-like structures form that
are more pronounced for larger G. These evolve to arrays of round dots that
are connected through a thin layer. After some time the faceting sets in. Bigger
dots have a faceted shape resembling the pyramids seen in experiments for the
Ge/Si system [6], or also for the GeSi films on Si [11].

As in the 2D case stronger anisotropy parameters lead to more oscillatory
surfaces in the first stages and the facets are more pronounced. A linear sta-
bility analysis as in Section 4.2 for the 3D equation leads to qualitatively the
same result of a growing interval of unstable wave numbers for larger values of
G. The initial perturbations evolve to surfaces with higher spatial frequencies
and result in more small dots. Fig. 10 visualizes the effect of anisotropy. At
the same point in time simulations results for G = 0, G = 0.1 and G = 0.25 are
plotted. A few dots are enlarged for G = 0 and G = 0.25 to accent the effect of
anisotropy. For the bigger value of G the facets are sharper and also the small
islands have more rectangular bases.
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To analyze coarsening rates, we computed solutions on a n × n grid with
n = 256 and used the measure

<N >=<N > (t) =
N(t)
M2

for monitoring the dot density. Here N(t) is the number of dots at time t and M
is the domain length in one dimension divided by 2π. In Fig. 11 we see, that the

Figure 9: Simulation of the Ge/Si system. An initially randomly perturbed
surface first evolves into round dots that coarsen in time and during their growth
change their shape to small pyramids.

onset of coarsening is fast and behaves proportional to − log(t) for a nonzero
value of G. The curve for the isotropic case G = 0 shows that after formation of
a bumpy surface nothing happens in early stages of evolution. Once coarsening
sets in, it is faster than with anisotropy. It seems that the lower energy state
for faceted islands slightly stabilizes the islands.

6 Summary and outlook

We presented a partial differential equation that properly describes the evolu-
tion of self-assembled quantum dots above a critical thickness. It was obtained
by incorporation of a surface diffusion formula and a chemical potential that in-
cludes terms from linear elasticity, anisotropic surface energy and intermolecular
forces at the film-substrate interface. A consistent small slope reduction results
in self-contained evolution equations in two and three dimensions. It extends
the model from Tekalign and Spencer [33] by anisotropic surface energy, which
enters as an additional nonlinear term. Our numerical studies show that this
nonlinearity can sufficiently model the anisotropy. The structure of the term - a
double well slope-potential in two dimensions - allows for an efficient numerical
implementation based on spectral differentiation.

We investigated stationary solutions in two dimensions confirming the faceted
shapes resulting from long runs of the PDE simulations. It is also observed dur-
ing the logarithmically slow coarsening, be it in two or three dimensions. As a
result of the linear stability analysis, stronger anisotropy leads in early times to
creation of more dots. These coarsen slower than in the isotropic model once
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Figure 10: Anisotropy effect on the 3D Ge/Si system. All three pictures show
the same time-point after evolution from the same initial condition (random
perturbation of a flat state). The upper left shows a simulation with isotropic
surface tension (G = 0) and the dots have round tips. In the other two pictures
(G = 0.1 and G = 0.25) we observe faceting which is stronger for the bigger
anisotropy coefficient G.

Figure 11: Coarsening diagram for the 3D case. No (G = 0), weak (G = 0.1)
and strong (G = 0.25) anisotropy. The solid line is the negative logarithm of
the time with a vertical shift. The t-axis is in log scale.

there the coarsening regime is reached. More systematic studies on stationary
solutions and coarsening rates are ongoing. Another challenge that has not
been addressed here is the addition of an atomic flux to the evolution equa-
tions. For realistic simulations of epitaxial growth this must not be neglected
for comparison with experiments.
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