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Abstract. A new implicitly-restarted Krylov subspace method for real symmetric/skew-symme–
tric generalized eigenvalue problems is presented. The new method improves and generalizes the
SHIRA method of [36] to the case where the skew symmetric matrix is singular. It computes a few
eigenvalues and eigenvectors of the matrix pencil close to a given target point. Several applications
from control theory are presented and the properties of the new method are illustrated by benchmark
examples.

1. Introduction. In this paper we discuss the computation of a few eigenvalues
and eigenvectors of large sparse structured generalized eigenvalue problems of the
form

Mx = λNx, (1.1)

where M ∈ Rn×n is symmetric and N ∈ Rn×n is skew symmetric. The numerical
approximation of generalized eigenvalue problems of the form (1.1) is of great impor-
tance in a variety of applications, including the solution of linear quadratic optimal
control problems [7, 12, 34, 50], robust control problems [9, 31, 38, 52], passivity
analysis and passivation of linear systems [1, 17, 20, 21, 24, 42, 44], model reduction
[1, 23, 19, 35, 39, 46], crack following in anisotropic materials [2, 26, 36, 37] and others;
see also [32] and Section 6.

Eigenvalue problems associated with symmetric/skew-symmetric matrix pencils
M − λN , where N = −N> and M = M> (cf. [16]) occur in different represen-
tations under the names alternating eigenvalue problems [36], (generalized or ex-
tended) Hamiltonian eigenvalue problems [38], skew-Hamiltonian/Hamiltonian eigen-
value problems [7] or more recently even/odd eigenvalue problems [32].

For small dense problems the perturbation analysis, structured normal forms, as
well as the existence of structured Schur forms are well understood, see [16, 28, 29,
49]. Numerical solution methods for small dense problems have been developed and
implemented into standardized software [7, 12, 10, 14, 16, 27].

In the following we assume that the problem is too large to apply a dense method
that computes all the eigenvalues as well as a generalized structured Schur form,
and we restrict ourselves to the case in which the structure of M and N allows the
use of sparse direct LU-factorizations of M − σN for some shift σ. For this class
of problems, or more general for polynomial eigenvalue problems with this structure,
structure preserving methods based on implicitly restarted Arnoldi methods have been
suggested in [2, 26, 36, 37, 51] for the case that N is invertible. Here we allow N to
be singular, but the pencil M − λN still is a regular pencil, i. e. its determinant does
not vanish identically.

It is our goal to compute a few eigenvalues and associated eigenvectors near a given
shift σ. We restrict ourselves to the case that σ is either real or purely imaginary.
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An extension to general complex shifts is possible, but would require either complex
arithmetic or a modified approach, see Remark 2.1 below.

Throughout the paper we denote by Im, Om the identity and zero matrices of size
m, respectively; analogously, On,m is a n×m zero matrix. Moreover, X> denotes the
transpose of the possibly complex matrix X, and X∗ its conjugate transpose. If two
vectors x, y are linearly dependent we write x ∝ y.

Let λE −A be a matrix pencil with E,A ∈ Rn,n. Then λE − A is called regular
if det(λE − A) 6= 0 for some λ ∈ C. For regular pencils, generalized eigenvalues are
the pairs (α, β) ∈ C2 \ {(0, 0)} for which det(αE − βA) = 0. If β 6= 0, then the pair
represents the finite eigenvalue λ = α/β. If β = 0, then (α, β) represent the eigenvalue
infinity.

The basic properties of regular matrix pencils can be determined from the Weier-
straß canonical form.

Theorem 1.1 (Weierstraß canonical form). For a regular matrix pencil λE −A,
there exist matrices Wf , Vf ∈ Rn,nf , W∞, V∞ ∈ Rn,n∞ so that W =

[
Wf W∞

]
,

V =
[

Vf V∞
]

are square and invertible, with

W>EV =
[

W>
f

W>
∞

]
E

[
Vf V∞

]
=

[
Inf

Onf ,n∞
On∞,nf

N∞

]
,

W>AV =
[

W>
f

W>
∞

]
A

[
Vf V∞

]
=

[
Af 0
0 In∞

]
,

Af ∈ Rnf ,nf is in real Jordan canonical form and N∞ ∈ Rn∞,n∞ is a nilpotent matrix
in Jordan canonical form.

We call nf , n∞ the number of finite or infinite eigenvalues, and the index of
nilpotency of N∞ the index of the system. A subspace L ⊂ Rn is called deflating
subspace for the pencil λE − A if for a matrix XL ∈ Rn,k with full column rank and
imXL = L, there exist YL ∈ Rn,k, RL ∈ Rk,k, UL ∈ Rk,k such that

EXL = YLRL, AXL = YLUL.

2. Properties of the skew-symmetric/symmetric eigenvalue problem.
As already mentioned, the eigenvalue problem in (1.1) is characterized by a rich
structure, which becomes apparent by observing that the spectrum is symmetric with
respect to both the real and the imaginary axis. More precisely, if λ is a real eigenvalue
of (1.1) with right eigenvector x, then −λ is also an eigenvalue of (1.1) with left
eigenvector x. Analogously, if λ is a complex eigenvalue, then −λ, λ̄ and −λ̄ are also
eigenvalues. In particular, this implies that the origin is always the center of the
spectral region. This symmetry carries over to the canonical form under congruence
[49] and also to associated staircase forms under unitary transformations [16].

In most applications one is interested in the accurate approximation of eigenval-
ues (pairs or quadruples) close to the origin or to the whole imaginary axis. Since
Krylov subspace iterative methods tend to better approximate exterior eigenvalues, a
standard strategy consists of performing a shift-and-invert transformation that maps
the eigenvalues of (1.1) close to the target σ, to the largest eigenvalues of the trans-
formed problem (M − σN)−1Nx = ηx, with η = (λ− σ)−1 [3]. Although effective in
general, this approach hinders the preservation of the special symmetry of our prob-
lem: quadruple eigenvalues (λ,−λ, λ̄,−λ̄) are approximated by two pairs of unrelated
complex conjugate eigenvalues. As a consequence, it is difficult to distinguish between
true (matching) quadruples and close eigenvalues, unless full accuracy approximations
can be obtained.
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To preserve the particular structure, we therefore consider the following spectral
transformation introduced in [36, 51], and its generalization to the case that N is
allowed to be singular. With

K := (M + σN)−1N(M − σN)−1N, (2.1)

we study the eigenvalue problem Kx = θx. It may be readily verified that if the
eigenpair (λ, x) satisfies (1.1) then (θ, x) satisfies the equation Kx = θx with θ =
1/(λ2 − σ2). Note also that the matrix K is real, even in case of a purely imaginary
shift σ; see also Proposition 2.2.

Remark 2.1. If the shift σ is not purely imaginary or on the real axis, we can
still work with real arithmetic by replacing K in (2.1) with the real matrix

(M + σN)−1N(M − σN)−1N(M + σ̄N)−1N(M − σ̄N)−1N.

We refrain here from discussing this case in detail.
It is important to note that in exact arithmetic, if −λ is a paired eigenvalue of λ

in (1.1) with eigenvector y, then −λ is mapped onto the same eigenvalue θ. This fact
clearly anticipates that, while the eigenvalue approximation could be obtained directly
from the problem (2.1), the approximation of the eigenvectors requires additional
work. We also note in passing that the property just outlined implies that eigenvalues
of K are all multiple.

We next state a few obvious properties that will be used in what follows.
Proposition 2.2. Let M be real symmetric and N be real and skew-symmetric.

Let σ ∈ C be such that M − σN is nonsingular. Then
i) M + σN = (M − σN)>;
ii) the matrices (M + σN)−1N and (M − σN)−1N commute;
iii) the matrix K = (M + σN)−1N(M − σN)−1N satisfies

NK` = −(NK`)>, ` ∈ N, (2.2)

that is, NK` is skew-symmetric for any natural number `. In particular,
K>N = NK.

iv) If additionally σ ∈ ıR, then M + σN = (M + σN)∗.
These properties imply the following lemma.
Lemma 2.3. Let M be real symmetric and N be real skew-symmetric. Let λ 6= 0

be a simple eigenvalue of (M, N) and x+ an associated eigenvector. Let (−λ, x−) be
the matched eigenpair of (M, N) corresponding to (λ, x+). Then the following results
hold:

a) x>+Nx− 6= 0;
b) Let V be an N -neutral subspace of Cn, i.e., v>Nw = 0 for any v, w ∈ V. If

u ∈ span{x+, x−} satisfies u ∈ V, then no other linearly independent vector
of span{x+, x−} also belongs to V.

Proof. a) Without loss of generality let x− and x+ be of unit 2-norm. We have
Mx− = (−λ)Nx− and by transposing, x>−M = λx>−N , i.e., x− is a left eigenvector
for the eigenvalue λ. Hence x>−Nx+ is the inverse eigenvalue condition number of λ,
which is nonzero and finite for simple eigenvalues of λN −M [22, 25].

b) We scale x+, x− so that x>−Nx+ = 1. Let ui = αix+ + βix−, i = 1, 2 be two
vectors in span{x+, x−} ∩ V. Then by the N -neutrality of V we have

0 = u>1 Nu2 = α1α2 x>+Nx+︸ ︷︷ ︸
0

+α1β2 x>+Nx−︸ ︷︷ ︸
−1

+α2β1 x>−Nx+︸ ︷︷ ︸
1

+β1β2 x>−Nx−︸ ︷︷ ︸
0

,
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i.e., β1α2 − α1β2 = 0. This implies that u1 and u2 are linearly dependent.
We conclude this section with a property of polynomials in the matrix K.
Lemma 2.4. Under the assumptions of Proposition 2.2 let K be as in (2.1). Let

v1 ∈ Rn. Let w = pi(K)v1, z = pj(K)v1, with pi, pj real polynomials of degree i and
j, respectively. Then w>Nz = 0.

Proof. It is sufficient to prove the result for pk(λ) = λk, k = i, j. Repeatedly
using Proposition 2.2 iii), we have w>Nz = v>1 (K>)iNKjv1 = v>1 NKi+jv1 = 0.

3. The new iterative method. The properties of the pencil (M, N) that we
have discussed in the previous section suggest a way to simultaneously approximate
matched eigenvalue pairs of (M,N). Indeed, it is sufficient to build a search space
that is restricted to approximate only one vector from each two-dimensional deflating
subspace associated with (+λ, x+) and (−λ, x−). Moreover, the eigenvalues of (M, N)
may be obtained by mapping back approximate θ values to the matching pairs of the
original problem as ±λ = ±

√
1/θ + σ2. This combined process avoids the distinct

approximation of +λ and −λ by means of the approximation of both eigenvectors of
the multiple eigenvalue θ.

We next describe the whole procedure through its three main phases.
Phase I. Generating the approximation space. Given a normalized starting vector

v1, we iteratively generate the following Krylov subspace as search space:

Km(K, v1) = span{v1, Kv1, . . . , K
m−1v1},

until a maximum size m = mmax is reached. An orthonormal basis {v1, v2, . . . , vm}
is constructed by means of a standard Arnoldi procedure (see, e.g., [3]). Due to the
nested nature of the space, that is Km(K, v1) ⊂ Km+1(K, v1), such a basis may be
generated iteratively by adding one vector at the time.

We recall that K has only double eigenvalues, because +λ and −λ are mapped to
the same value θ = ((±λ)2−σ2)−1, and that we are interested in one instance of every
θ value only. In exact arithmetic and if a Krylov subspace is used as approximation
space, multiple eigenvalues will not be captured. However, computational round-off
will eventually generate them. (Usually, if all eigenvalues are wanted this is advanta-
geous, but here it does harm, because it generates spurious copies of the λ values.)
So, in finite precision, extra care has to be taken to ensure that only one copy of each
θ value is found. Thanks to Lemma 2.3, the restriction to a single vector for each
two-dimensional deflating subspace may be enforced by requiring that the generated
search space K is N -neutral.

Since a vector w in Km(K, v1) may be written in terms of a polynomial in K,
namely w = pm−1(K)v1, Lemma 2.4 ensures that N -neutrality is obtained for free
in exact arithmetic. Without taking further measures, however, N -neutrality of the
basis is lost in finite precision arithmetic during the expansion. Therefore, we explic-
itly orthogonalize each new basis vector vm+1 not only against all previous vectors
v1, . . . , vm, but also against Nv1, . . . , Nvm. Let Vm = [v1, v2, . . . , vm]. Then the
Arnoldi recurrence can be compactly rewritten as

KVm = VmHm + vm+1hm+1,me>m, V >
m NVm = Om, (3.1)

where em is the m-th vector of the Euclidean basis, whose dimension is clear from the
context.

Phase II. Extraction of spectral information. To extract approximate eigenval-
ues, we compute the Ritz values µ of K (i.e., the eigenvalues of Hm) and we use
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±
√

1/θ + σ2 as eigenvalue approximations for (M,N). Note that these values form
matched pairs.

Up to this point our new method is a generalization of the SHIRA method in
[36]. For the determination of approximate eigenvectors we deviate from SHIRA,
which uses inverse iteration for this task.

The problem can be described as follows: if (+λ, x+) and (−λ, x−) are matched
eigenpairs of (M,N), then (θ, x+) and (θ, x−) are eigenpairs of K to the double
eigenvalue θ. So, every linear combination of x+ and x− is an eigenvector of K,
but not of (M, N). Therefore, the search space based on K may well contain good
approximations to eigenvectors of K, but not of (M, N). However, the following result
shows that a Krylov-Schur decomposition can be recovered with respect to the original
problem, so that the sought after approximations can be computed. To this end we
introduce the following matrix

Wm(α) = (M − αN)−1NVm. (3.2)

We explicitly keep track of the dependence on α in Wm because of later convenience.
For purely imaginary α, the matrix Wm(α) is complex.

Proposition 3.1. With the previous notation, and for α ∈ {σ,−σ} we have

M [Vm,Wm(α)]
[
Om Hm

Im Om

]
= N [Vm,Wm(α)]

[
Im −αHm

αIm Im

]

+ [Om, (M + αN)vm+1hm+1,me>m]. (3.3)

Proof. For α = σ the proof follows by explicitly rewriting and collecting the
two equations Wm(σ) = (M − σN)−1NVm and (M + σN)−1NWm(σ) = VmHm +
hm+1,mvm+1e

>
m. Using Proposition 2.2 ii), the same technique works for α = −σ.

In the remainder of this section we use α = σ, whereas the choice α = −σ will be
discussed in section 4.

The relation in (3.3) shows that if Vm generates an invariant subspace of K,
i. e. if hm+1,m = 0, then the matrix [Vm,Wm(σ)] generates a deflating subspace of
(M, N). In addition, we notice that due to the commutativity of the factors in K
(cf. Proposition 2.2), the matrix [Vm,Wm(−σ)] also generates a deflating subspace of
(M, N).

We use the eigenvalues and eigenvectors of the reduced problem
[

Im −σHm

σIm Im

]
z = λ

[
Om Hm

Im Om

]
z (3.4)

to obtain spectral approximations to the original problem. If hm+1,m = 0, then
(λ, [Vm,Wm(σ)]z(σ)) is an eigenpair of (M, N).

Further savings can be achieved by noticing that the eigenpairs of (3.4) need not
be explicitly computed, but can be recovered from those of Hm. More precisely, let
(µ, s) be an eigenpair of Hm, that is, (µ, Vms) is a Ritz pair of K. Then it may be
verified that λ̂± = ±

√
σ2 + 1/µ and z(σ) = [s/(λ̂±−σ); s] are the eigenvalues and the

corresponding eigenvectors of (3.4). Note that the transformation λ̂± = ±
√

σ2 + 1/µ
is the same as that mapping the spectrum of K back to eigenvalues of (M,N). Note
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also that the sign of the eigenvalue λ̂± only influences the factor of the first block
vector of z(σ). Finally, we have

ẑ±(σ) :=
[

Im −σHm

σIm Im

]
z(σ) =

[
1

λ̂±+σ
s

s

]
λ̂±

λ̂± − σ
. (3.5)

The pairs

(±λ̂,
x̂±(σ)
‖x̂±(σ)‖ ), with x̂±(σ) = [Vm,Wm(σ)]ẑ±(σ), (3.6)

are the desired approximate eigenpairs of (M,N). In Section 4 we will see that x̂−(σ)
may not be a good approximation, so that we will propose an alternative approximate
eigenvector for −λ̂.

The following result holds for the associated residual.
Proposition 3.2. With the discussed notation, given an approximate eigenpair

(λ̂±, x̂±(σ)/‖x̂±(σ)‖) as in (3.6), the residual

rm := M
x̂±(σ)
‖x̂±(σ)‖ −N

x̂±(σ)
‖x̂±(σ)‖ λ̂±

is proportional to the vector (M + σN)vm+1 and

‖rm‖ = ‖(M + σN)vm+1‖ |hm+1,m| |e>ms| |λ̂±|
‖x̂±(σ)‖ .

Moreover, rm is orthogonal to Wm(σ).
Proof. Using (3.3) and (3.4) in the definition of the residual, we readily obtain

rm = [Om, (M + σN)vm+1hm+1,me>m]z(σ)λ̂±/‖x̂m(σ)‖, (3.7)

from which the proportionality and the value of the norm follow. Moreover, using
Proposition 2.2 i) and the N -neutrality of the basis, we have that Wm(σ)>rm =
V >

m N>(M − σN)−>rm = V >
m N>(M + σN)−1rm = 0 , and the orthogonality follows.

Proposition 3.2 shows that all residuals of the approximate eigenpairs are collinear
to the vector (M + σN)vm+1, as is typical of Galerkin-type approximations. On the
other hand, the residual is not orthogonal to the whole approximation space generated
by [Vm,Wm(σ)], as it would be the case were it a true Galerkin approximation [3].

Phase III. Implicit restart. Once the search space reaches its maximal size, it
is truncated. Since we maintain a standard Arnoldi factorization of K, we can use
standard truncation procedures, e.g., Krylov-Schur-restarting [47, 48], without mod-
ification. This allows us to keep information on the converging eigenvectors in the
approximation space, while discarding all remaining basis vectors.

These three phases form a cycle, and this cycle is repeated until enough eigen-
values have converged, or the maximum number of cycles is reached. More details on
the actual implementation are given in the next section.

In exact arithmetic, the convergence of the approximate eigenvalues is the same
as that of an implicitly-restarted Krylov subspace method on the matrix K [5].
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4. Implementation considerations. The actual implementation requires the
description of a few more details. Firstly, there are two ways to perform the extra
orthogonalization against NVm: i) In addition to Vm store an orthonormal basis of
NVm. In this case the (modified) Gram-Schmidt procedure is used for orthogonaliza-
tion; ii) In addition to Vm store the matrix Zm = (NVm)>(NVm): the orthogonal-
ization against Vm is standard and the orthogonalization against NVm can be carried
out using the projector I − NVm((NVm)>NVm)−1(NVm)> whose application only
needs multiplications by Vm, Z−1

m and N . The second alternative essentially halves
the memory requirements of the method. On the other hand multiplications by N are
required, and the procedure may be unstable, if N is such that NVm is ill-conditioned.
In our experiments we implemented the first approach.

Secondly, new spectral approximations are computed only after the maximum
search space dimension has been reached. Moreover, to limit computational costs,
the eigenvalue/eigenvector extraction discussed above is carried out on the truncated
basis. More precisely, we first compute the Schur decomposition of the matrix Hm so
as to have the relevant eigenvalues lying in the upper left corner of the quasi-triangular
factor. We then truncate the Schur basis by only keeping the Schur vectors associated
with these eigenvalues, compute the eigenpairs of the truncated matrix Hm, and then
replace Hm with the reduced triangular factor.

One more implementation aspect that needs further discussion is the eigenvector
extraction. Using (3.5) and the definition in (3.6) we have that

x̂±(σ) = [Vm,Wm(σ)]ẑm(σ) ∝ Vms
1

λ̂± + σ
+ Wm(σ)s

= (M − σN)−1(M + λ̂±N)Vms
1

λ̂± + σ
.

If σ is extremely close to λ̂+, then (M − σN)−1(M + λ̂−N) ≈ I and x̂−(σ) ∝ Vms.
Therefore, in general, the eigenvector approximation x̂−(σ) cannot be accurate, since
the columns of Vm alone do not span a close to deflating subspace of the pencil (M,N).
As a result, if σ is very close to an approximate eigenvalue λ̂+, then the matched pair
(λ̂−, x̂−(σ)) does not yield a small residual, in spite of a possibly good approximate
eigenvalue. To derive an accurate approximate eigenvector for λ̂−, we exploit the fact
that the columns of [Vm,Wm(−σ)] also span an approximate invariant subspace of
(M, N) (cf. Proposition 3.1 and subsequent discussion). Since in such a case the role
of λ̂− and λ̂+ is reversed, the approximation of x̂−(−σ) = [Vm,Wm(−σ)]ẑm(−σ) will
now be more accurate. In summary, the following two matched pairs are computed

(
λ̂+,

x̂+(σ)
‖x̂+(σ)‖

)
,

(
λ̂−,

x̂−(−σ)
‖x̂−(−σ)‖

)
, (4.1)

(cf. also (3.5)-(3.6)) which will both tend to eigenpairs of (M, N) also for σ extremely
close to one of the eigenvalues.

The resulting Algorithm is summarized as follows.
Algorithm Even-IRA.
Require: M symmetric, N skew-symmetric, shift σ ∈ R or σ ∈ ıR, unit start vector

vector v1, maximum search space dimension mmax, restart size mres (mres greater
than or equal to the number of requested matched pairs)

1: V ← [v1]
2: m ← 0
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3: while cycle 1,2,3,. . . do
4: % Generation of the approximation space
5: while m < mmax do
6: m ← m + 1
7: v ← Kvm

8: Orthogonalize v against V giving H1:m,m

9: Orthogonalize v against NV
10: hm+1,m ← ‖v‖, vm+1 ← v/hm+1,m

11: V ← [V, vm+1]
12: end while
13: % Contraction of approximation space and matrix
14: H1:m,1:m → QTQ> (real Schur form)
15: Partition T =

[
T11 T12
0 T22

]
, Q = [Q1, Q2], with T11 ∈ Rmres×mres , Q1 ∈ Rn×mres

16: V ← [VmQ1, vm+1], H ←
[

T11

hm+1,me>mQ1

]
, m ← mres

17: % Eigenpair extraction
18: Compute eigenpairs (µ, s) of H1:m,1:m

19: Compute approximate eigenpairs (+λ̂, x̂+(σ)
‖x̂+(σ)‖ ) (−λ̂, x̂−(−σ)

‖x̂−(−σ)‖ ) (cf. (4.1))
20: Check for convergence
21: end while

The space generation phase in the algorithm differs from the standard restarted
Arnoldi method only in line 9, where N -neutrality of the basis is also enforced. A
double sweep of modified Gram-Schmidt is employed to ensure orthogonality in lines
8 and 9. Moreover, for σ ∈ R the matrix-vector product Kvm only requires a single
real LU factorization (M − σN) = LU , because (M + σN) = (M − σN)> = U>L>.
For σ ∈ ıR, the matrix (M − σN) is Hermitian, and an LDL∗ decomposition may be
performed, thus requiring the same amount of memory as a real LU decomposition.
The matrix (M + σN) can then be written as (M + σN) = (M − σN)> = LD>L>.

Remark 4.1. Refined projection methods ([3, Section 3.2]) could be used to com-
pute eigenvector approximations in place of the procedure leading to (3.6). However
serious problems may arise when seeking vectors associated with close eigenvalues,
since multiple copies or close vectors may be obtained.

Remark 4.2. As an alternative approximation strategy to our N -neutral space,
one could require that the Krylov subspace basis is N -orthogonal. Upon permutation,
the resulting representation matrix would have a convenient structure that would allow
one to use structure preserving dense eigenvalue solvers [15]. However, we found the
overall procedure to be unreliable, since such dense solvers require that the structure
is preserved to full machine accuracy, and this cannot be ensured by the Arnoldi
recurrence.

5. A related approach: The rational Krylov method. Eigenvector approx-
imations are sought in the space generated by the reduced basis [Vmres ,Wmres(σ)].
The question naturally arises whether one could directly build the search space gen-
erated by [Vm, (M−σN)−1NVm], bypassing the computation of the N -neutral search
space. The construction of this subspace is particularly convenient, since the next vec-
tor vm+1 in the “V ” basis may be obtained from the vector wm = (M−σN)−1Nvm by
means of a single system solve, namely, vm+1 = (M + σN)−1Nwm. The search space
is thus generated by alternate multiplications by (M−σN)−1N or by (M +σN)−1N ,
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yielding the basis

{v1, (M − σN)−1Nv1, (M + σN)−1N(M − σN)−1Nv1, . . . ,

(M − σN)−1N
(
(M + σN)−1N(M − σN)−1N

)m−1
v1, . . .}

(5.1)

A closer look reveals that this is nothing but a particular form of the rational Krylov
method [41], where the shifts σ and −σ are used alternatingly, so that the rational
function has only the two poles σ,−σ with high multiplicity.

The following result specializes the general Arnoldi-type relation in [3, Section 8.5]
to our multiple pole case. Its simple proof is omitted.

Proposition 5.1. Given a normalized vector v1, let [v1, w1, v2, w2, . . . , vm, wm]
be the matrix obtained by the Gram-Schmidt process applied to the first 2m columns of
the matrix in (5.1). Then the matrices Vm = [v1, . . . , vm], Wm = [w1, . . . , wm] satisfy
the relations

(M + σN)−1NWm = Vm+1H + WmR, and (M − σN)−1NVm = WmT + VmS,

where the upper triangular matrices R, S, T ∈ Rm×m and the Hessenberg matrix H ∈
R(m+1)×m contain the orthogonalization coefficients from the Gram-Schmidt process.
Moreover,

M [Vm, Wm]
[
S H
T R

]
= N [Vm, Wm]

(
I − σ

[−S H
−T R

])
(5.2)

+[Om,−(M + σN)vm+1hm+1,me>m]. (5.3)

Relation (5.2) suggests using the eigensolutions of the problem
[
S H
T R

]
z = µ

(
I − σ

[−S H
−T R

])
z. (5.4)

to generate approximate eigenpairs of (M, N). Proposition 5.1 emphasizes the sim-
ilarities between the rational Krylov procedure and our new algorithm. However, a
few major differences make our new method particularly appealing for the consid-
ered eigenvalue problem: 1) The reduced eigenvalue problem in (3.4) generates paired
eigenvalue approximations λ̂+, λ̂−, which approximate paired eigenvalues of (M,N),
whereas the eigenvalues of (5.4) are in general not paired; 2) In the new method, one
can chose between two ways to compute approximate eigenvectors (cf. (4.1)). In the
rational Krylov method there is only one way to compute eigenvectors; 3) For σ ∈ ıR
the search space Vm in (3.1) is real, whereas the search space of the rational Krylov
method is complex in general. The relevance of these properties will become apparent
in the numerical experiments.

6. Applications. There are several major classes of applications in control the-
ory that lead to eigenvalue problems of the form (1.1).

6.1. Linear quadratic optimal control. The classical linear quadratic opti-
mal control problem for descriptor systems consists of minimizing the cost functional

∫ t1

t0

x>Qx + 2u>Sx + u>Ru dt
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(with Q = Q> and R = R>) subject to the descriptor system

Eẋ = Ax + Bu, x(0) = x0

y = Cx, (6.1)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and where x(t) ∈ Rn is the state vector,
u(t) ∈ Rm is the control input vector, and y(t) ∈ Rp contains measured outputs. The
solution to this problem is important in the design of a feedback controller so that
the closed loop system is (asymptotically) stable.

Under some further stabilizability and detectability conditions [34], a necessary
condition for the existence of a stabilizing feedback controller is that there exists a
costate function µ(t) with values in Cn, such that x(t), µ(t), u(t) satisfy the boundary
value problem:

L(x, µ, u) =




0 E 0
−E> 0 0

0 0 0







µ̇(t)
ẋ(t)
u̇(t)


−




0 A B
A> C>QC C>S
B> S>C R







µ(t)
x(t)
u(t)


 = 0,

with boundary conditions x(t0) = x0, E>µ(t1) = 0.
This boundary value problem can be turned into two initial value problems by

decoupling the forward and backward integration. In turn this may be performed by
the computation of the deflating subspace associated with the eigenvalues in the left
half plane of the matrix pencil

L(λ) = λN −M = λ




0 E 0
−E> 0 0

0 0 0


−




0 A B
A> C>QC C>S
B> S>C R


 . (6.2)

If the pencil L(λ) = λN −M is regular and of index at most 1, and if there exists an
r = rank(E)-dimensional N -neutral deflating subspace associated with the open left
half plane eigenvalues, then the optimal control can be directly obtained from this
deflating subspace [34].

To check that the index of L(λ) is at most 1 we need to compute a matrix T
whose columns span the right null-space of N and then to check whether T>MT
is nonsingular. This can be done via (Cholesky-like or spectral) factorizations, see
[6, 16].

To check the existence of the stabilizing controller, it is sufficient to determine
the eigenvalues close to the imaginary axis. To compute the optimal controller, one
would need to compute the full deflating subspace associated with the eigenvalues in
the left half plane. However, in many applications it is sufficient to only approximate
the subspace associated with the eigenvalues closest to the imaginary axis and after
projection into this subspace to solve the smaller boundary value problem to compute
a feedback control [46].

6.2. Optimal H∞ control. In the optimal H∞ control problem for descriptor
systems one considers

Eẋ(t) = Ax(t) + B1w(t) + B2u(t), x(t0) = x0, (6.3)
z(t) = C1x(t) + D11w(t) + D12u(t),
y(t) = C2x(t) + D21w(t) + D22u(t),
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with E, A ∈ Rn×n, Bi ∈ Rn×mi , Ci ∈ Rpi×n, and Dij ∈ Rpi,mj for i, j = 1, 2, where,
x(t) ∈ Rn is the state vector, u(t) ∈ Rm2 is the control input vector, w(t) ∈ Rm1 is an
exogenous input, y(t) ∈ Rp2 contains measured outputs, and z(t) ∈ Rp1 is a regulated
output or an estimation error. In such a system one tries to stabilize the system by
a controller (dynamic compensator)

Ê ˙̂x(t) = Âx̂(t) + B̂y(t),

u(t) = Ĉx̂(t) + D̂y(t)

with transfer function K(s) = Ĉ(sÊ − Â)−1B̂ + D̂ such that the closed-loop system
that is given by

Eẋ(t) = (A + B2D̂Z1C2)x(t) + (B2Z2Ĉ)x̂(t) + (B1 + B2D̂Z1D21)w(t),

Ê ˙̂x(t) = B̂Z1C2x(t) + (Â + B̂Z1D22Ĉ)x̂(t) + B̂Z1D21w(t),

z(t) = (C1 + D12Z2D̂C2)x(t) + D12Z2Ĉx̂(t) + (D11 + D12D̂Z1D21)w(t),

with Z1 = (Ip2 − D22D̂)−1 and Z2 = (Im2 − D̂D22)−1, is internally stable, and
the closed-loop transfer function Tzw(s) from w to z satisfies Tzw ∈ Hp1,m1∞ and is
minimized in theH∞-norm. Here, the spaceHp,m

∞ consists of all Cp,m-valued functions
that are analytic and bounded in the open complex right half plane. For F ∈ Hp,m

∞
the H∞-norm is given by

‖F‖∞ = sup
s∈C+

σmax(F (s)),

where σmax(F (s)) denotes the maximal singular value of the matrix F (s).
This is a difficult non-convex optimization problem, hence one alternatively solves

the modified optimal H∞ control problem of determining γmo = inf Γ, where Γ is the
set of positive real numbers γ for which there exists an internally stabilizing dynamic
controller of the form (6.2) so that the transfer function Tzw(s) of the closed loop
system satisfies Tzw ∈ Hp1,m1∞ with ‖Tzw‖∞ < γ. Note that it is possible that there
is no internally stabilizing dynamic controller, i. e. that Γ = ∅ and γmo = ∞. It is
shown in [31] that for the solution of the modified optimal H∞ control problem one
has to form the two skew-symmetric/symmetric pencils

λNH + MH(γ) =




0 −λE>−A> 0 0 −C>1
λE −A 0 −B1 −B2 0

0 −B>
1 −γ2Im1 0 −D>

11

0 −B>
2 0 0 −D>

12

−C1 0 −D11 −D12 −Ip1




and

λNJ + MJ(γ) =




0 −λE −A 0 0 −B1

λE> −A> 0 −C>1 −C>2 0
0 −C1 −γ2Ip1 0 −D11

0 −C2 0 0 −D21

−B>
1 0 −D>

11 −D>
21 −Im1
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and to check the existence of deflating subspaces

XH(γ) =




XH,1(γ)
XH,2(γ)
XH,3(γ)
XH,4(γ)
XH,5(γ)




, XJ (γ) =




XJ,1(γ)
XJ,2(γ)
XJ,3(γ)
XJ,4(γ)
XJ,5(γ)




,

with

XH,1(γ), XH,2(γ), XJ,1(γ), XJ,2(γ) ∈ Rn×r, XH,4(γ) ∈ Rm2×r,

XJ,4(γ) ∈ Rp2×r, XH,3(γ), XJ,5(γ) ∈ Rm1×r, XH,5(γ), XJ,3(γ) ∈ Rp1×r,

where r = rank(E) associated with the eigenvalues in the left half plane. If no such
deflating subspace exists then the corresponding γ-value is smaller than the optimal
value. This is the case if the index of one of the pencils λNH +MH(γ) or λNJ +MJ(γ)
is larger than 1 or if there are purely imaginary eigenvalues. Again checking the index
can be performed as in the previous section, while the existence of purely imaginary
eigenvalues can be obtained via our new algorithm.

It should be noted that for the computation of the optimal γ further conditions
need to be checked (see, e.g., [31]), and then explicit formulas for the optimal con-
trollers can be determined [8].

6.3. Passivity checking and passivation. A third application of our new
method arises in passivity checking and passivation. Consider a control system
Eẋ = Ax + Bu, x(0) = 0, y = Cx + Du, and suppose that the homogeneous
system is asymptotically stable and that D is square and nonsingular. Defining a real
scalar valued supply function s(u, y), the system is called dissipative if there exists a
nonnegative scalar valued function Θ such that the dissipation inequality

Θ(x(t1))−Θ(x(t0)) ≤
∫ t1

t0

s(u(t), y(t))dt

holds for all t1 ≥ t0, i. e. the system absorbs supply energy.
A dissipative system with the supply function s(u, y) = ‖u‖2 − ‖y‖2 is called

contractive and with the supply function s(u, y) = u>y + y>u it is called passive. It
is well-known for systems with E = In to be passive it is necessary that the skew-
symmetric/symmetric pencil

λN −M := λ




0 E 0
−E> 0 0

0 0 0


 +




0 A B
A> 0 C
B> C> D + D>




is regular, of index at most 1 and has no purely imaginary eigenvalues, see [1]. The
proof of the corresponding results for general E is currently under investigation. The
same problem arises as before and after the index check it is sufficient to determine
the eigenvalues close to or on the imaginary axis.

If the system is not passive, then typically the system is made passive by deter-
mining a small perturbation (∆E, ∆A, ∆B, ∆C, ∆D) that makes the system passive,
see [17, 20, 24, 42, 44]. Again the main task is to determine the deflating subspace
associated with the eigenvalues on or close to the imaginary axis and to carry out a
sequence of perturbations so that all eigenvalues are moved off the imaginary axis and
the index is at most one.
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7. Numerical experiments. In this section we report on some of our numerical
experience with the new method. We consider various examples with medium size
matrices, most of which stem from benchmark application problems. We compare the
new algorithm with its closest relatives, namely the Rational Krylov method outlined
in section 5, and the matlab function eigs [33], which implements the general purpose
ARPACK method for the approximation of eigenpairs of a given matrix or pencil [30].
Neither of these two algorithms is structure preserving, therefore matching pairs are
approximated separately. We mention that eigs was called with the shift-and-invert
matrix (M−σN)−1N , so that the largest eigenvalues in modulo of this matrix were in
fact approximated. Therefore, whenever eigs was used, the approximate eigenvalues
of the original problem were derived a posteriori, and then the corresponding residual
checked.

To make our experiments fair, we also compared with our own implementation
of the IRA method in [30], which computes the true residual. Unfortunately, results
were not always consistent.

As an unstructured method, eigs either approximates both matching eigen-
values λ,−λ, if the mapped eigenvalues are both among the largest eigenvalues of
(M − σN)−1N , or by means of two different runs of eigs, whenever the shift σ is
significantly closer to either of λ and −λ. Such a behavior is a clear disadvantage of
eigs in our context. A particularly poor performance is observed in the case of purely
imaginary nonzero shifts, where both copies of matching eigenvalues are unnecessarily
captured in all runs. A natural way out would be to set σ = 0, however in such a
case clusters may not be easily identified, and in addition eigenvalues close to the
imaginary axis, but not close to the origin will typically not be obtained. Therefore,
our strategy for eigs is to chose the shift close to the expected target eigenvalues.

To make comparisons fair in terms of memory requirements, in case of real shifts
we always use an approximation space of dimension m and m/2 for eigs and Even-
IRA, respectively. (This is only fair if one stores NVm in Even-IRA, otherwise Even-
IRA should have the same search space dimension as eigs when a real shift is used.)
For this reason, the two methods have the same number of solves per cycle, so that
their main computational costs are comparable.

For a given problem, before starting the approximation, balancing of the matrices
was carried out. For both the Rational Krylov method and Even IRA, a preprocessing
of one step of inverse iteration with the matrix (M+σN)−1N is carried out, to mitigate
the possible influence of the null space of N ; see also [4].

Our stopping criterion is based on the true absolute residual of the original prob-
lem. A more robust criterion would require the use of a relative residual, in which the
denominator contains the absolute value of the eigenvalue condition number, |y∗x|,
where x, y are right and left eigenvector of the given eigenvalue. Because of the special
structure of the problem, the left eigenvector coincides with the right eigenvector of
the matching eigenvalue, and thus it is available in our case. This shows that the new
algorithm provides additional spectral information for free, as opposed to standard
procedures. Since the other algorithms do not produce approximations to the match-
ing eigenvalue, we have decided to use only the absolute residual as stopping criterion
for our performance comparison.

We also recall that the stopping test is performed only on the remaining eigenpairs
after truncation of the Schur decomposition of Hm. In particular, this implies that
a first decision on which eigenpairs should be retained is performed on Hm, i.e. on
the transformed problem K. As already mentioned, good eigenpairs of K might
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not correspond to accurate eigenpairs of (M, N), therefore the computation of the
original residuals is recommended. Using (3.1) and (3.7), the following explicit relation
between the original and transformed residuals holds for each pair (λ̂, x̂+(σ)/‖x̂+(σ)‖):

rm,+ =
1

‖x̂+(σ)‖ (M + σN)rm,

where rm = KVms − Vmsλ+. A similar relation holds for (−λ̂, x̂−(−σ)/‖x̂−(−σ)‖):
rm,− = 1

‖x̂−(−σ)‖ (M − σN)rm with rm = KVms − Vmsλ− (cf. Proposition 3.1 with
α = −σ).

Example 7.1. We consider the matrix A ∈ R6400×6400 stemming from the finite
difference discretization of the operator L(u) = −∆u+10(ux +uy) on the unit square
[0, 1]2 with Dirichlet homogeneous boundary conditions. We define M = (A + A>)/2
and N = (A − A>)/2, the symmetric and skew-symmetric parts of A, respectively.
We are thus interested in analyzing whether the symmetric part “dominates” the
skew-symmetric part of the matrix, by checking whether all eigenvalues of the pencil
(M, N) are greater than one in modulo. This is of interest in the analysis of linear
system solvers and of certain structured preconditioners; see, e.g., [45, 13]. We thus
consider σ = 1 (a completely analogous scenario results from taking σ = 10−3) and
approximate the first matching 50 eigenpairs, that is, 25 eigenvalues in the right half
complex plane, with a tolerance of tol=10−10 and m = 80 (we recall here that Even-
IRA then uses a maximum subspace dimension equal to m/2 = 40). All sought after
eigenvalues have zero real part and most of them are double. The left plot of Figure
7.1 shows that the new method (’×’ symbols) is able to capture all wanted matched
eigenpairs; the algorithm required 6 restarts. On the other hand, although requiring
only 3 restarts, eigs fails to compute all 25 eigenvalues because the method captures
some of the “matching” imaginary eigenvalues. The right plot shows the approximate
eigenvalues for σ = ı. In this case, eigs captures most, but not all, eigenvalues with
positive imaginary part.
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Fig. 7.1. Example 7.1. Eigenvalues of (M, N) closest to σ = 1 (left) and to σ = ı (right)
approximated with eigs and with Even-IRA

.

Example 7.2. We consider the benchmark problem rail 1357 from the Ober-
wolfach Model Reduction Benchmark Collection [18], describing a semi-discretized
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Table 7.1
Example 7.2. Sought after eigenvalues and Even-IRA residual norms, for purely imaginary and

real shift.

eigenvalue residual norm residual norm
σ = i10−5 σ = 10−5

2.7062e-05 1.1674e-17 3.0662e-17
-2.7062e-05 7.7496e-18 6.7802e-18
8.8841e-05 6.0929e-17 6.2008e-17

-8.8841e-05 6.9922e-17 4.6029e-17
2.2710e-04 5.9494e-16 1.4799e-14

-2.2710e-04 3.2735e-15 6.9790e-14

heat transfer problem for the optimal cooling of steel profiles. The descriptor system
is as in (6.1), and R = 0 = Q, S = I. The matrices A and Q have both size 1357
while R has size 7, yielding matrices M and N of size 2721 each. We look for the four
matching eigenvalues closest to the shift σ = i10−5. The eigenvalues of the pencil
(M, N) closest to σ are ± 2.7062e-05 , ± 8.8841e-05 , ± 2.2710e-04 , ±(-1.3161e-04 +
2.1279e-04i), ±(1.3161e-04 + 2.1279e-04i). The estimated condition number (Matlab
condest) of M − σN is 5.5 1012.

For m = 20, after 3 restarts, Even-IRA with purely imaginary shift finds the
requested (real) eigenvalues as shown in the second column of Table 7.1. With imag-
inary shift, both the Rational Krylov method and eigs are unable to find the third
closest matched pair within 100 cycles, and a stopping tolerance of 10−12. After 100
cycles, our implementation of IRA gives a residual norm for λ = ±2.2710e − 04 of
the order of 10−8 and 10−5, thus highly above the requested tolerance. Similar fig-
ures are found with the Rational Krylov method. We stress that for purely imaginary
shifts, all methods generate subspaces of maximum size 10 because all methods except
Even-IRA need to use complex arithmetic.

For real shift σ = 10−5, all methods stop before the maximum number of cycles
is reached. Even-IRA takes 3 restarts to obtain accurate eigenpairs (cf. Table 7.1),
whereas the Rational Krylov method takes 2 cycles (a subspace of dimension 20 is
generated). On the other hand, although eigs stops after 1 cycle, corresponding to a
subspace of size 20, the obtained eigenvalues are 2.7062e-05 (residual norm 8.9218e-
13), -2.7063e-05 (residual norm 2.2999e-12) and 8.8842e-05 (residual norm 1.6850e-
11). These digits shows that eigs detects the paired eigenvalue ± 2.7062e-05 instead
of only the one with positive sign. On the other hand, it does not deliver the third
positive eigenvalue closest to the shift. Note also that the residual norms are in two
cases larger than the requested tolerance. Our implementation of IRA computes all
requested eigenvalues at high accuracy, using 3 cycles.

Example 7.3. our next example stems from the model reduction analysis of a
descriptor system associated with Navier-Stokes equations [40, 43] (cf. section 6.3).
Here A has size 1159 and D is the zero matrix of dimension 5.

We consider detecting the eigenvalues closest to σ = 10i, namely the real matching
eigenvalues ±10.544. We use a convergence tolerance equal to 10−12 and m = 20, so
that all methods generate a subspace of maximum size 10. Even-IRA converges to the
wanted eigenvalue in 2 cycles, with residuals 3.6595e-13, 3.6885e-14 for the positive
and negative eigenvalues. After 5 cycles, the call to eigs yields the following two
eigenvalues and associated residual norms: λ̂1= 1.0544e+01 + 2.2318e-10i (1.0013e-
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13), λ̂2 = -1.0544e+01 + 2.5349e-12i (5.7810e-14). Although the imaginary parts of
both eigenvalues are small, these are above the residual norm, therefore one would
be lead to think that these are two distinct eigenvalues, and that the method did not
capture the eigenvalues on both sides of the complex plane. Completely analogous
results are obtained with our implementation of IRA, and with the Rational Krylov
method.

Example 7.4. Finally, we perform a pure passivity test. We consider the problem
described in [44, section 5], called coax1. The problem structure resembles that in
section 6.3, and the pencil is given by

M − λN =




0 A B 0
A> 0 0 C>

B> 0 −I D>

0 C D −I


− λ




0 I 0 0
−I 0 0 0
0 0 0 0
0 0 0 0


 .

In this context, we are merely interested in detecting whether there are purely imagi-
nary eigenvalues, therefore we will be content with very inaccurate eigenvalues. Even-
IRA is particularly appropriate for this task, as it can readily detect imaginary eigen-
values. We seek imaginary eigenvalues around σ = 6i. After a rather cheap cycle with
m = 12, Even-IRA finds the eigenvalues ±6.0377i, ±6.0681i with a residual norm be-
low 10−5 (both eigenvalue signs are delivered). After a single cycle with m = 20, both
imaginary pairs are captured, with residual norms below 10−8. On the other hand,
our implementation of IRA determines the following spectral information

m (tol) eigenvalue residual norm n. cycles
12 (10−5) 9.5567e-09 + 6.0377 i 2.3684e-08 2

-1.5054e-06 + 6.0681 i 3.9961e-07 2
20 (10−8) 3.2863e-13 + 6.0377 i 3.8536e-16 2

-4.8055e-12 + 6.0681 i 3.9425e-13 2

Similar results were obtained with eigs, although residuals were even less reliable,
due to their a-posteriori computation. Note that the real part of the second eigenvalue
is larger than the residual norm, therefore one is unable to identify such as eigenvalue
as purely imaginary. Even larger real parts were delivered by eigs. The situation does
not improve by allowing the approximation of more eigenvalues. Similar disappointing
figures were obtained with the Rational Krylov method.

Example 7.5. We conclude with an example of an artificially constructed
system, where our new method does not perform so well. We consider the Benchmark
problem Carex-16 [11, Example 16], of total size 2400. The problem is extended with
two ill-conditioned extra matching eigenvalues ±20 i.

We then set σ = 22 i and look for one of these extra eigenvalues. All other relevant
eigenvalues are real. In addition to the sought after eigenvalues, soon after the first
few iterations Even-IRA spots a rough approximation to a matched pair at about
19.9998i. After that stagnation occurs, showing no recovery from the approximation
of an apparently ghost matched pair at ±19.9998 i. This ghost eigenvalue does not
emerge during the approximation process of the other methods. Such an unwelcome
event may be related to the sensitivity of the problem, which is exacerbated by the
squaring K2 performed in our method. This behavior deserves further analysis, since
a sensitivity analysis of similar methods using K2 cannot be found in the relevant
literature.
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8. Conclusions. We proposed a new iterative method for the approximation
of matched eigenvalues and corresponding eigenvectors of symmetric skew-symmetric
pencils (M, N), where N can be highly singular. The method is an improvement and
generalization of a method proposed in [36], and can efficiently handle large problems
whose size allows for sparse system solves. Typical examples from benchmark prob-
lems are proposed to show the usefulness of the new approach for certain crucial tasks
in control applications.
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