
Scheduling and Packing Malleable Tasks with
Precedence Constraints of Bounded Width

Elisabeth Günther1, Felix G. König1, and Nicole Megow2

1 Technische Universität Berlin, Institut für Mathematik, Germany,
{eguenth,fkoenig}@math.tu-berlin.de

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany,
nmegow@mpi-inf.mpg.de

Abstract. We study two related problems in non-preemptive scheduling and
packing of malleable tasks with precedence constraints to minimize the makespan.
We distinguish the scheduling variant, in which we allow the free choice of pro-
cessors, and the packing variant, in which a task must be assigned to a contiguous
subset of processors.
For precedence constraints of bounded width, we completely resolve the com-
plexity status for any particular problem setting concerning width bound and
number of processors, and give polynomial-time algorithms with best possible
performance. For both, scheduling and packing malleable tasks, we present an
FPTAS for the NP-hard problem variants and exact algorithms for all remain-
ing special cases. To obtain the positive results, we do not require the common
monotonous penalty assumption on processing times, whereas our hardness re-
sults hold even when assuming this restriction.
With the close relation between contiguous scheduling and strip packing, our FP-
TAS is the first (and best possible) constant factor approximation for (malleable)
strip packing under special precedence constraints.

1 Introduction

Parallelism plays a key role in high performance computing. The apparent need for
adequate models and algorithms for scheduling parallel task systems has attracted sig-
nificant attention in scheduling theory over the past decade [4, 13]. Several models have
been proposed, among which scheduling malleable tasks as proposed in [15] is an im-
portant and promising model [10].

In the problem of scheduling malleable tasks, we are given a set J = {1,2, . . . ,n}
of tasks and m identical parallel processors. The tasks are malleable, which means that
the processing time of a task j ∈ J is a function p j(α j) depending on the number of
processors α j allotted to it. The tasks must be processed non-preemptively respecting
precedence constraints given by a partial order (J,≺): For any i, j ∈ J, let i ≺ j de-
note that task i must be completed before task j starts processing. Two tasks are called
incomparable if neither i ≺ j nor j ≺ i, otherwise, they are called comparable. The
width ω of a partial order is the maximum number of pairwise incomparable tasks.

An allotment (α j) j∈J and an assignment of start times σ j ≥ 0 for each task j ∈ J
establish a feasible schedule if the precedence constraints are respected and at no point

in time the number of required processors exceeds the number of available processors m.
The goal is to find a feasible schedule of minimum total length, called makespan.

Quite some research has been dedicated to malleable task scheduling since its in-
troduction in [15]. For the problem with general precedence constraints among tasks,
Lepère et al. [12] provide an approximation algorithm with performance guarantee 3+√

5≈ 5.236. For special cases, such as series-parallel precedence constraints and prece-
dence constraints of bounded width, they prove a ratio of (3 +

√
5)/2 ≈ 2.618 in the

same paper, improving on an earlier factor 4+ε approximation for trees by [11]. Jansen
and Zhang [10] consider the case of general precedence constraints and provide an algo-
rithm with performance guarantee ≈ 4.730598, which they show to be asymptotically
tight.

All these results crucially require the monotonous penalty assumption, which en-
sures that for any malleable task j, its processing time function p j(α j) is non-increasing,
and its work function α j p j(α j) is non-decreasing. In this work, we abandon this restric-
tion, such that an arbitrary set of feasible allotments can be prescribed (simply set the
task duration for forbidden allotments to some large constant). Notice that scheduling
parallel tasks, for which the number of allotted processors is already given, is a special
case in our model.

A remarkable amount of literature deals with scheduling independent parallel tasks.
The only work concerning precedence constraints, that we are aware of in this set-
ting, investigates the special case of chains [2]. Therein, Błażewicz and Liu show that
scheduling unit size parallel tasks with precedence constraints that form chains is NP-
hard already for three processors. Assuming monotonously increasing (decreasing) pro-
cessing times along chains, they give polynomial-time algorithms.

We also consider the contiguous variant of the malleable scheduling problem in
which we require that each task is processed on a subset of processors with consecutive
indices. That such a schedule is desirable in certain applications is mentioned already
in [15]. Duin and van der Sluis [5] investigate contiguous scheduling of parallel tasks
in the context of assigning check-in counters at airports; they call it adjacent schedul-
ing. Another problem closely related to contiguous scheduling is strip packing, i.e.,
the problem of packing rectangles in a strip of width 1 such that the packing height is
minimized. More generally, we define the discrete malleable strip packing problem as
strip packing with malleable rectangles: For strip width m, each rectangle j may have a
width α j ∈ {1, . . . ,m}, and the height of j is a function depending on α j.

The classical strip packing problem with arbitrary precedence constraints has been
investigated by Augustine et al. [1]; they present a factor Θ(logn) approximation. As
lower bounds, they use the longest chain, i.e., the largest set of pairwise compara-
ble tasks, and the total volume to be packed. Since these bounds immediately apply
for scheduling parallel tasks as well, the approximation guarantee carries over. More-
over, with the techniques in [12] or [10], the result can be transferred to malleable task
scheduling with arbitrary precedence constraints if the monotonous penalty assumption
holds, see [8]. Augustine et al. [1] also provide a packing instance for which the gap
between the optimal value and both lower bounds is indeed logn, which indicates that
new ideas and bounds are necessary for improving on this performance guarantee.

2

Our results. We derive a fully polynomial-time approximation scheme (FPTAS) for
scheduling malleable tasks under precedence constraints of bounded width, ω . This sig-
nificantly improves on the previously best known approximation ratio of (3+

√
5)/2≈

2.618 in [12] under the restriction to monotonous penalty functions. To the best of
our knowledge, our FPTAS also constitutes the first constant factor approximation for
scheduling parallel tasks with precedence constraints.

For the special case ω = m = 2, we provide an efficient algorithm that solves the
problem to optimality. We complement our positive results by showing that the prob-
lem becomes NP-hard for ω ≥ 3 or m ≥ 3. Thus, our algorithms are best possible,
unless P=NP.

When scheduling parallel tasks, our positive results can be extended even further,
yielding an efficient exact algorithm for ω ≥ 2 and any m. All other cases are shown
to be NP-hard. Furthermore, we resolve the complexity question for precedence con-
straints which form caterpillars, a special case of trees, by showing that these problems
are also NP-hard for malleable tasks and even parallel tasks, for any m.

Regarding contiguous scheduling, or discrete malleable strip packing, all of our
hardness results carry over. Also, the FPTAS can be adapted naturally. For the special
case of ω = 2, our algorithm efficiently computes optimal solutions for classical (non-
malleable) strip packing. Similarly, we efficiently solve discrete malleable strip packing
for ω = m = 2 to optimality. Under the assumption that the width of the strip m is poly-
nomially bounded (see e.g. also [9]), our FPTAS is the first constant factor approxima-
tion for classical strip packing under special precedence constraints. The best previous
result is a general factor Θ(logn) approximation for arbitrary precedence constraints
in [1, 8].

Quite notably, unlike most previous algorithms for malleable scheduling, none of
our algorithms requires the monotonous penalty assumption on processing times. On
the other hand, our hardness results hold even when assuming this restriction.

2 A fully polynomial-time approximation scheme (FPTAS)

Given a scheduling instance with precedence constraints of width bounded by a con-
stant ω , the number of tasks processed concurrently in a feasible schedule can never
exceed ω . On the other hand, any maximal set A of incomparable tasks partitions the
set of all tasks into two subsets containing tasks that must be processed before, re-
spectively after, some task in A. We exploit this structure to obtain an exact dynamic
programming algorithm with pseudo-polynomial running time. Then, we show how to
turn this algorithm into an FPTAS.

2.1 Dynamic programming algorithm (DP)

The structure of our dynamic program is based on a correlation between feasible sub-
schedules and ideals of orders as described in [14]. An ideal I of (J,≺) is a subset of J
such that every task of I implies all its predecessors to be elements of I. In order to
respect precedence constraints, every initial part of a feasible schedule must consist of
a subset of tasks fulfilling the ideal property. We will define our dynamic program in

3

terms of finding paths in a directed graph based on ideals; reaching an ideal I′ from I⊂ I′

will correspond to feasibly extending a subschedule by the tasks in I′ \ I.
Utilizing Dilworth’s Decomposition Theorem [3] which states that for any partial

order (J,≺) of width ω , there exists a partition of (J,≺) into ω chains C1, . . . ,Cω ,
we can represent order ideals as follows. For a given chain decomposition C1, . . . ,Cω ,
every ideal I of (J,≺) can be described by an ω-tuple (Ii)i=1,...,ω , where component Ii
indicates that the first Ii tasks of chain Ci are contained in I. Thus, the number of distinct
ideals is bounded by nω . Such a chain decomposition can be found in polynomial time,
see e.g. Fulkerson [6]. To simplify notation, we identify Ii with the Ii-th task of chain Ci
and denote its processing time as pi(·).

A state in our dynamic program is a triple [I,α,C] which specifies an ideal I, rep-
resented by its front tasks I1, . . . , Iω , as well as an allotment vector α = (αi)i=1,...,ω and
a vector of completion times C = (Ci)i=1,...,ω for the front tasks of I. This information
also defines start times σi := Ci − pi(αi) for all front tasks (Ii)i=1,...,ω . We call a state
valid, if the number of processors used by its front tasks does not exceed the number
of available processors m at any completion time Ci. If Ii = 0, no task of chain Ci is
contained in I, and we set αi and Ci to 0. We call the particular state � := [/0,0,0] start
state and every state [I,α,C] with I = J end state.

Every feasible subschedule has a representation as a state defined by the allotment
values and the completion times of its front tasks. We establish a state graph G by link-
ing two valid states F = [I,α,C], F ′ = [I′,α ′,C′] by an arc (F,F ′), if F ′ is an extension
of F by one task j with feasible α j and C j. More formally, the conditions for inserting
the arc are:

1. The ideals differ only in one component i, and I′i = Ii + 1. All other components
of I′,α ′ and C′ remain equal.

2. The start time σ ′
i of I′i in F ′ respects precedence constraints, i.e., σ ′

i ≥ C j for all
front tasks (I j) j=1,...,ω with I j ≺ I′i

3. The new task starts no earlier than the other front tasks, i.e., σ ′
i ≥ σ ′

j for all j =
1, . . . ,ω .

Note, that the validity of a state as well as conditions 1–3 can be checked in con-
stant, i.e., O(ω2), time.

Condition 1 clearly ensures, that across a path P in G from � to an end state, every
task in J is assigned exactly one α j and σ j. By conditions 2 and 3, and the ideal property
of the states, these start times respect all precedence constraints. Finally, the number of
available processors is never exceeded due to condition 3: When a new task j is added
to F with start time σ j and allotment α j, all tasks in I active at or after σ j are front tasks,
thus they are all taken into account when determining α j. Furthermore, the makespan
of such schedule is given by the largest Ci in its end state.

We have hence established, that any path P in G corresponds to a feasible schedule
with makespan determined by the end state of P. We will now prove that the converse
holds as well.

Lemma 1. Any feasible schedule S with makespan Cmax corresponds to a path in G
from � to an end state with latest completion time Cmax.

4

Proof. Our argument is inductive, and we start with an arbitrary feasible schedule S
containing all tasks in J. The graph G obviously contains an end state F ′ = [I′,α ′,C′],
in which α ′ and C′ respectively correspond to the allotment and completion times of the
last tasks in the chains C1, . . . ,Cω of an appropriate chain decomposition of J. These
tasks form the front tasks of F ′, defining ideal I′ containing all tasks in J. Let j denote a
front task of I′ with the latest start time. Now I := I′ \{ j} is again an ideal. Thus, there
is a valid state F = [I,α,C] in G with α and C corresponding to the allotment values
and completion times of the front tasks of I in S. By construction and the feasibility
of S the states F and F ′ fulfill conditions 1–3. Hence, G contains the edge (F,F ′). By
induction, this yields the desired result. ut

With Lemma 1 we find an optimal schedule as follows: We search for an end state
with minimum makespan reachable from the start state, and create the schedule by
backtracking.

The number of distinct ideals I was already mentioned to be bounded by nω , whereas
the number of feasible allotments for each ideal does not exceed mω . The optimal
makespan is at most by ZUB = npmax with pmax := max{p j(m) | j ∈ J}. Thus, assuming
w.l.o.g. that processing times are integral (standard scaling argument), the task com-
pletion time can attain up to ZUB different values. Hence, the number of valid states is
bounded by nω mω Zω

UB which gives a bound on the overall running time of the dynamic
programming algorithm, O(n2ω m2ω Z2ω

UB).

Theorem 1. For a given scheduling instance with precedence constraints of width ω ,
algorithm DP finds a feasible solution with minimum makespan in time O(n2ω m2ω Z2ω

UB).

2.2 FPTAS

In a fully polynomial time algorithm, we cannot afford to consider all values in [0,ZUB]
for possible completion times of front tasks. Using a standard rounding technique, this
number can be reduced to be polynomially bounded in the input size and 1/ε at the cost
of increasing the makespan by at most a factor (1+ ε) in the following way.

For a given parameter ε > 0, we partition the interval [0,ZUB] into subintervals
of size εZLB/n and restrict the possible completion times to the set E of endpoints
of the subintervals. This reduces the number of values for possible completion times
to nZUB/(εZLB)≤ n2/ε , for some lower bound on the optimal value ZLB ≥ pmax. Now
we run algorithm DP’ which is a slightly modified variant of algorithm DP in which we
round the completion times in a state to the nearest value in E. This restriction increases
an optimal solution value of DP by at most εZLB/n per task. Thus, DP’ finds a schedule
with a makespan that exceeds the optimal makespan found by DP by at most εZLB
time units. We skip further details and refer to [17] for an overview of techniques for
obtaining FPTASs.

Theorem 2. There exists an FPTAS for scheduling malleable tasks with precedence
constraints of bounded width with running time.

5

3 Optimally solvable special cases

The problem of scheduling malleable tasks is clearly optimally solvable in polynomial
time if either the number of processors is m = 1 or the width of the partial order is ω = 1.
Thus, we assume m,ω ≥ 2 from now on. We provide an efficient algorithm solving the
special case m = ω = 2 to optimality. It is based on the the idea of the dynamic program
in Sec. 2.1 and the following observations regarding optimal (sub)solutions for special
allotments. We prove NP-hardness of all remaining cases of m and ω in Sec. 4.

Observation 1 Given a subset of tasks J′ ⊆ J with an allotment α j = 2 for all j ∈ J′,
an optimal schedule for J′ can be found in polynomial time if m = ω = 2.

Observation 2 Given a subset of tasks J′ ⊆ J with an allotment α j = 1 for all j ∈ J′,
an optimal schedule for J′ can be found in polynomial time if m = ω = 2.

While the former is obvious, the latter can be realized by list scheduling tasks j in
topological order, and setting σ j = maxi≺ j{σi + pi(1)}, or σ j = 0 if no such i exists.
The makespan obtained clearly coincides with a longest chain in (J,≺) w.r.t. processing
times under (α j) j∈J , a lower bound on the optimum. The resulting schedule is also
feasible since ω = 2.

Theorem 3. The problem of scheduling malleable tasks with precedence constraints of
width bounded by ω = 2 on m = 2 processors can be solved optimally in polynomial
time.

Proof. For m = 2, any optimal solution can be split into maximal subsequent subsched-
ules SJ′ for subsets J′ ⊆ J, such that in any SJ′ , either α j = 1 for all j ∈ J′, or α j = 2
for all j ∈ J′. We say these subschedules are of type one or type two, respectively. Their
makespans simply add up to the makespan of the whole schedule.

We now define a graph G whose nodes correspond to the (polynomially many) ide-
als of (J,≺) as in Sec. 2.1, such that any solution of the above structure is represented
as a path in G—a shortest path in G will correspond to an optimal schedule. There is
an edge from I to I′ in G, if and only if I ⊂ I′. Such an edge corresponds to a sub-
schedule SJ′ for the tasks in J′ := (I′ \ I)⊆ J as follows. If J′ forms a chain in (J,≺), in
particular, if |J′|= 1, we set α j = argmin{p j(α) |α ∈ {1,2}} for all j ∈ J′ and define
the corresponding schedule by concatenating optimal schedules of type one and two for
the cases α j = 1 and α j = 2, respectively. Otherwise, we define SJ′ to be an optimal
subschedule of type two. Note that by Obs. 1 and 2, all of these SJ′ can be computed
in polynomial time. The lengths of edges are set to the makespans of these optimal
subschedules.

Clearly, paths in G from /0 to J correspond to feasible schedules of the same length.
Furthermore, any optimal schedule is represented as a path in G, since for each of its
subsolutions SJ′ of type one, there are ideals I, I′ with J′ = I′ \ I connected by an edge,
and for each SJ′ of type two, there is a path from I to I′ across ideals only differing by
one task and J′ = I′ \ I. ut

Using the same idea as in the proof above, we can state an even stronger positive
result for the special case of parallel tasks.

6

Corollary 1. The problem of scheduling parallel tasks with precedence constraints of
width ω = 2 can be solved optimally in polynomial time for any number of processors m.

The result ensues when redefining the notions of subschedules of type one and type two
in the proof of Thm. 3. We adapt the correspondence between edges in the ideal graph
and subschedules accordingly: Define maximal subschedules containing no concurrent
tasks to be of type one, and those in which the processing interval of any tasks overlaps
with that of another to be of type two. Now note that an analog of Obs. 2 remains valid.

4 Hardness results

In this section we show that the results in the previous section are the best that we can
hope for, unless P=NP. We fully settle the complexity status of scheduling malleable
tasks under precedence constraints of bounded width ω by showing that the problem is
NP-hard even under the monotonous penalty assumption when ω ≥ 3,m ≥ 2 (Thm. 4)
or ω = 2,m ≥ 3 (Thm. 5), where the former result holds for parallel tasks as well.
We complement these results with proving NP-hardness for precedence constraints that
form a caterpillar, i.e., a special tree.

Theorem 4. The problem of scheduling malleable tasks with precedence constraints
of width bounded by a constant ω ≥ 3 on any fixed number of processors m ≥ 2 is
NP-hard, even under the monotonous penalty assumption.

Proof. We give a reduction from the NP-complete PARTITION problem, see [7], to
the scheduling problem with precedence constraints that form 3 independent chains. It
is easy to see that this specific problem variant can be reduced to any other problem
with ω ≥ 3 and m≥ 2 by adapting the number of processors needed by tasks to achieve
the processing times used in the reduction.

Consider an instance P of PARTITION: Does there exist a partition A1,A2 of {1, . . . ,n}
for a given set of values {vi}i=1,...,n with V := ∑

n
i=1 vi, that fulfills the condition ∑i∈A1

vi =
∑i∈A2

vi = V/2?
We construct an instance S of our scheduling problem by borrowing ideas from a

reduction for scheduling with communication delays in [16]. Instance S consists of 3n
tasks to be scheduled on m = 2 processors. The precedence relations form 3 chains
{ai}i=1,...,n, {bi}i=1,...,n, and {ci}i=1,...,n of n tasks each. Suppose that the tasks of each
chain are ordered with respect to their indices, i.e., ai ≺ a j for all i < j. Each node in
chains {ai}i=1,...,n and {bi}i=1,...,n has processing time V for any processor allotment.
Each task i in chain {ci}i=1,...,n corresponds to element i of instance P and has pro-
cessing time vi independently of the processor allotment. Note that all processing times
obey the monotonous penalty assumption.

We prove, that there is a feasible schedule for instance S with makespan at most nV +
V/2 if and only if P is a yes-instance.

Let A1,A2 be a partition satisfying ∑i∈A1
vi = ∑i∈A2

vi = V/2, and let π(i) denote
the index of the subset containing i. Consider the schedule, in which all tasks ai are
processed on the first processor, all tasks bi on the second processor, and every task ci on
processor π(i) placed between task ai−1 and ai respectively bi−1 and bi. More formally,

7

we define start times for all tasks σai := ∑k∈A1,k≤i vk +(i−1)V, σbi := ∑k∈A2,k≤i vk +(i−
1)V, and σci := ∑k∈Aπ(i),k<i vk +(i−1)V . Simple calculations show that no precedence
relation is violated and that the number of used processors never exceeds 2. Thus, there
exists a feasible schedule with makespan nV +V/2.

Consider now a schedule for instance S with makespan at most nV +V/2. Clearly,
on each processor there are exactly n tasks with processing time V ; these are the tasks
of chains {ai}i=1,...,n and {bi}i=1,...,n. Thus, on every processor there are V/2 time units
left for processing the remaining tasks of chain {ci}i=1,...,n. And therefore, there must
exist a partition for instance P. ut

The reduction in the proof of Thm. 4 adapts naturally to the problem of scheduling
parallel tasks.

Corollary 2. The problem of scheduling parallel tasks, each using exactly one proces-
sor, under precedence constraints of width bounded by a constant ω ≥ 3 on any fixed
number of processors m ≥ 2 is NP-hard.

Theorem 5. The problem of scheduling malleable tasks with precedence constraints
of width ω = 2, is NP-hard on any fixed number of processors m ≥ 3, even under the
monotonous penalty assumption.

Proof. We give a reduction from an arbitrary instance of the NP-complete KNAPSACK
decision problem, see [7], to the problem of scheduling 2 independent chains of tasks
on m = 3 processors. It is easy to see that this case can be reduced to any problem
setting with m > 3 by adapting the number of processors needed by tasks to achieve the
processing times used in the reduction.

Let K denote an instance of KNAPSACK in slightly modified formulation: Given
a set of values {vi}i=1,...,n, a set of weights {wi}i=1,...,n and numbers V and W , does
there exist a set A ⊆ {1, . . . ,n} with total weight at most W , i.e., ∑i∈A wi ≤W and a
complement valued at most V , i.e., ∑i/∈A vi ≤ V ? By a standard scaling argument we
may assume w.l.o.g. that V = W .

We construct a corresponding instance S of our scheduling problem as follows: For
each item i = 1, . . . ,n, we introduce tasks ji and j̄i. All ji, and all j̄i respectively, form
a chain in the order of their indices. In each chain, between any two tasks, there is an
additional task hi, respectively h̄i, which has processing time ph := nmaxi{vi,wi} for
any allotment of processors. All tasks ji, j̄i have the same processing time pb := 2ph
on 2 and 3 processors; when processed by a single processor, the processing time of
task ji increases by vi, and the processing time of task j̄i increases by wi, respectively.
These processing times clearly obey the monotonous penalty assumption.

We prove that the KNAPSACK instance K has a solution (yes-instance) if and only
if there is a schedule with makespan at most (n−1)ph +npb +V .

Given a feasible solution set A for K we can construct a feasible scheduling solution
for the corresponding instance S as follows: For every item i ∈ A we allot 2 processors
to task ji and 1 processor to task j̄i; for every item i /∈ A vice versa. The remaining
tasks get 1 processor. We schedule every task directly after the completion of its prede-
cessor, i.e., σ ji := (i−1)ph +∑k<i p jk(α jk), σhi := (i−1)ph +∑k≤i p jk(α jk); the start

8

times σ j̄i and σh̄i
are defined the same way. In this schedule, the processing of task ji−1

is completed before the processing of task j̄i starts, i.e.,

σ ji−1 + p ji−1(α ji−1) = (i−2)ph + ∑
k≤i−1

p jk(α jk) = (i−2)ph + ∑
k≤i−1

pb + ∑
k≤i−1,k/∈A

vk

≤ (i−1)ph + ∑
k<i

pb ≤ σ j̄i .

This holds analogously for j̄i−1 and ji. Thus, there are never more than 3 processors in
use and the schedule is feasible. Its makespan is (n−1)ph +npb +max{∑i/∈A vi,∑i∈A wi}
which is at most (n−1)ph +npb +V .

For a given schedule with makespan at most (n−1)ph +npb +V we can construct a
feasible set A for the KNAPSACK instance K. Suppose there are two tasks ji and j̄i with
disjoint processing intervals; w.l.o.g. let j̄i be processed before ji. Then all predecessors
of j̄i must be processed before j̄i and all successors of ji must be processed after task ji.
Thus, the makespan of the schedule is at least npb +(n−1)ph + pb > (n−1)ph +npb +
V . Thus, for any two tasks ji or j̄i at least one of them must be processed on a single
processor.

Let A contain all items i that correspond to tasks j̄i using a single processor. It
is easy to verify that this set is a feasible solution to K. Given the makespan of the
schedule, we have that (n− 1)ph + npb + ∑i∈A wi ≤ (n− 1)ph + npb +V which im-
plies ∑i∈A wi ≤V . On the other hand, (n−1)ph +npb +∑i/∈A vi ≤ (n−1)ph +npb +V
which satisfies ∑i/∈A vi ≤V . ut

Note that the use of malleable tasks in the reduction above is imperative—thus, the
proof does not carry over to the case of parallel tasks. However, in Cor. 1 we have
already shown this case to be tractable for ω = 2 and any m.

We conclude our complexity investigations by showing that the scheduling problem
is also NP-hard under precedence constraints that form a caterpillar, i.e., a special tree
composed of a path and leaves only. This result still holds for parallel tasks or when
assuming monotonous penalties. Recall that trees are a special case of series-parallel
orders. This complexity status was left open in previous work presenting approximation
algorithms for trees and generally series-parallel precedence constraints for malleable
tasks in [11, 12].

Theorem 6. The problem of scheduling malleable tasks with precedence constraints
that form a caterpillar is NP-hard for every fixed m ≥ 2, even under the monotonous
penalty assumption.

Proof. It suffices to consider the case m = 2, since again for any greater number of
processors, we can adapt the number of processors needed by tasks to achieve the pro-
cessing times used below. We give a reduction from an arbitrary instance P of the NP-
complete 3-PARTITION decision problem, see [7]. Such instance consists of natural
numbers z, B and ai with ∑

3z
i=1 ai = zB and B/4 < ai < B/3 for all i = 1, . . . ,3z, and the

question is whether there exists a partition of {1, . . . ,3z} into z disjoint sets A1, . . . ,Az
such that ∑i∈A j ai = B for all j = 1, . . . ,z.

We construct the following instance S of malleable scheduling on two processors:
The set of tasks J contains two tasks ji, ki for all i = 1, . . . ,3z and two tasks gi, hi for

9

all i = 1, . . . ,z with the following processing times with monotonous penalties:

p ji(1) = ai, p ji(2) = ai; pki(1) = 2B, pki(2) = B;
pgi(1) = B, pgi(2) = B; phi(1) = 2B, phi(2) = B.

We introduce the following precedence constraints, which obviously form a tree:

k1 ≺ ·· · ≺ k3z ≺ g1 ≺ h1 ≺ ·· · ≺ gz ≺ hz (1)
k1 ≺ j1, . . . ,k3z ≺ j3z (2)

We now argue that P is a yes-instance if and only if S has a solution with makespan
at most 5zB. Suppose there exists a partition of the ai as required. To obtain a solution
to S, we can first process all tasks ki on two processors each. Then, we alternately
schedule one task hi on two processors, and one task gi on one processor. In parallel to
each gi we schedule three tasks ai belonging to the same subset Ax in the partition. This
results in a schedule with makespan

3z · pki(2)+ z · phi(2)+ ∑
i=1,...,z

max{B, ∑
k∈Ai

ak}= 3zB+ zB+ zB = 5zB.

If there exists a solution to S with makespan at most 5zb, we know that all tasks ki
and hi must run on two processors, already accounting for time 4zB during which
all processors are busy. The remaining tasks ji and gi must thus be scheduled within
time zB, and this can only be achieved when all of these tasks are allotted only one
processor and there are no gaps in their schedule.

Due to precedence constraints (1), tasks gi need to be scheduled alternately with
tasks hi. Since the latter run on two processors each, the only way to avoid gaps is to
divide tasks ai into B triplets of length z each, and to process each triplet in parallel to
one task gi. ut

This reduction can be adapted to suit the case of parallel tasks.

Corollary 3. The problem of scheduling parallel tasks with precedence constraints that
form a tree is NP-hard for every fixed m ≥ 2.

5 Scheduling on contiguous processors and strip packing

When we require each task to run on contiguous processors, an allotment (α j) j∈J can be
interpreted as associating a rectangle of width α j and height p j(α j) with each task j∈ J.
Optimally scheduling the tasks in J under this allotment amounts to packing these rect-
angles into a strip of width m of minimum length (height). Hence, malleable scheduling
on contiguous processors corresponds to strip packing under discrete malleability. In
the case of parallel tasks, contiguous scheduling is equivalent to strip packing with strip
width m and rectangle widths in {1, . . . ,m}. Clearly, any strip packing instance with
rational data can be stated this way.

Note that even the problem of deciding whether a given feasible schedule is con-
tiguous, i.e., whether it possesses a feasible contiguous mapping of tasks to processors,

10

is NP-hard. This was shown in [5] in the context of assigning check-in counters at air-
ports, and independently in [8]. We will argue, however, that all of our algorithms and
reductions can be adapted to yield contiguous processors by construction. Thus, our
results also hold for the corresponding strip packing problems. We omit the detailed
proofs due to space constraints.

First, the dynamic program from Sec. 2.1 can easily be adapted to yield contiguous
schedules: We merely need to keep track of the distinct processors used by every task
in each state. Hence, the deduced FPTAS remains valid with a running time increased
by a factor m2ω .

Corollary 4. There exists an FPTAS for finding an optimal contiguous schedule of mal-
leable tasks under precedence constraints of bounded width.

Note that our algorithm yields a polynomial running time for classical strip packing
instances with integral rectangle widths, only when the strip width m is polynomial in
the input size. This assumption is quite common, see [9].

Next, observe that for m≤ 2, any schedule is contiguous. Consequently, Thm. 3 can
be formulated for the contiguous case. Also, Cor. 1 remains valid, since for ω = 2, at
most two parallel tasks can be processed concurrently.

Corollary 5. Optimal contiguous schedules on m processors under precedence con-
straints of width bounded by a constant, ω , can be found in polynomial time for mal-
leable tasks with ω = m = 2, and for parallel tasks with ω = 2 and arbitrary m.

Furthermore, the scheduling instances constructed in the reductions for Thms. 4
and 6 only use m = 2 processors. Also, the scheduling instances arising from the reduc-
tion for Thm. 5 clearly permit a contiguous schedule with the required makespan if and
only if they permit any such schedule. Consequently, all of our hardness results carry
over to the contiguous case.

Corollary 6. Even when assuming monotonous penalties, contiguous scheduling of
malleable and parallel tasks is NP-hard under precedence constraint which form a
caterpillar on m ≥ 2 processors, and under precedence constraints of width bounded
by a constant, ω , with ω ≥ 3. For malleable tasks, it remains NP-hard for ω = 2
when m ≥ 3.

Acknowledgments. We thank Rolf H. Möhring and Martin Skutella for fruitful discus-
sions.

References

1. J. Augustine, S. Banerjee, and S. Irani. Strip packing with precedence constraints and strip
packing with release times. In Proceedings of SPAA, pages 180–189, 2006.

2. J. Błażewicz and Z. Liu. Scheduling multiprocessor tasks with chain constraints. European
Journal of Operational Research, 94(2):231–241, 1996.

3. R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51(1):161–166, 1950.

11

4. M. Drozdowski. Scheduling multiprocessor tasks: an overview. European Journal of Oper-
ational Research, 94(2):215–230, 1996.

5. C. W. Duin and E. V. Sluis. On the complexity of adjacent resource scheduling. Journal of
Scheduling, 9(1):49–62, 2006.

6. D. R. Fulkerson. Note on Dilworth’s decomposition theorem for partially ordered sets. Pro-
ceedings of the American Mathematical Society, 7(4):701–702, 1956.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

8. E. Günther. Bin Scheduling: Partitionieren verformbarer Jobs mit Nebenbedingungen (in
German). Master’s thesis, Technische Universität Berlin, 2008.

9. K. Jansen and R. Thöle. Approximation algorithms for scheduling parallel jobs: Breaking
the approximation ratio of 2. In Proceedings of ICALP, pages 234–245, 2008.

10. K. Jansen and H. Zhang. An approximation algorithm for scheduling malleable tasks under
general precedence constraints. ACM Transactions on Algorithms, 2(3):416–434, 2006.

11. R. Lepère, G. Mounié, and D. Trystram. An approximation algorithm for scheduling trees
of malleable tasks. European Journal of Operational Research, 142(2):242–249, 2002.

12. R. Lepère, D. Trystram, and G. J. Woeginger. Approximation algorithms for scheduling mal-
leable tasks under precedence constraints. International Journal of Foundations of Computer
Science, 13(4):613–627, 2002.

13. J.-T. Leung, editor. Handbook of Scheduling: Algorithms, Models, and Performance Analy-
sis. Chapman and Hall/CRC, 2004.

14. R. H. Möhring. Computationally tractable classes of ordered sets. In I. Rival, editor, Algo-
rithms and Order, pages 105–194. Kluwer Academic Publishers, 1989.

15. J. Turek, J. Wolf, and P. Yu. Approximate algorithms for scheduling parallelizable tasks. In
Proceedings of SPAA, pages 323–332, 1992.

16. J. Verriet. The complexity of scheduling graphs of bounded width subject to non-zero com-
munication delays. Technical Report UU-CS-1997-01, Utrecht University, 1997.

17. G. J. Woeginger. When does a dynamic programming formulation guarantee the existence of
a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing,
12(1):57–74, 2000.

12

