Weierstraß-Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint

Optimal control of 3D state-constrained induction heating problems with nonlocal radiation effects

Pierre-Étienne Druet ${ }^{1}$, Olaf Klein ${ }^{1}$, Jürgen Sprekels ${ }^{1}$,

Fredi Tröltzsch ${ }^{2}$, Irwin Yousept ${ }^{2,}{ }^{3}$
submitted: 16th June 2009

1 Weierstrass Institut für Angewandte Analysis und Stochastik Mohrenstrasse 39, D-10117 Berlin, Germany
E-Mail: druet@wias-berlin.de, klein@wias-berlin.de, sprekels@wias-berlin.de

2 Institut für Mathematik, Technische Universität Berlin Str. des 17. Juni 136, D-10623 Berlin, Germany
E-Mail: troeltzsch@math.tu-berlin.de, yousept@math.tu-berlin.de
3 Institut für Mathematik, Universität Augsburg Universitätsstr. 14, D-86159 Augsburg, Germany E-Mail: yousept@math.uni-augsburg.de

No. 1422
Berlin 2009

[^0]Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: $\quad+49302044975$
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

The paper is concerned with a class of optimal heating problems in semiconductor single crystal growth processes. To model the heating process, time-harmonic Maxwell equations are considered in the system of the state. Due to the high temperatures characterizing crystal growth, it is necessary to include nonlocal radiation boundary conditions and a temperature-dependent heat conductivity in the description of the heat transfer process. The first goal of this paper is to prove the existence and uniqueness of the solution to the state equation. The regularity analysis associated with the time harmonic Maxwell equations is also studied. In the second part of the paper, the existence and uniqueness of the solution to the corresponding linearized equation is shown. With this result at hand, the differentiability of the control-to-state mapping operator associated with the state equation is derived. Finally, based on the theoretical results, first oder necessary optimality conditi! ons for an associated optimal control problem are established.

1 Introduction

In the present paper, a class of optimal control problems arising in the context of crystal growth of semiconductor single crystals is studied. Optimizing the temperature - the state of the system - within a desirable range is one of important goals in crystal growth, to improve techniques such as the sublimation growth of silicon carbide (SiC) or aluminum nitrite (AlN), or the growth from the melt of silicon (Si) or gallium-arsenide (GaAs). Heat transfer problems in crystal growth are mathematically challenging. Due to the high temperatures and the complex geometries involved, heat radiation has to be included in the model and leads to a class of nonlinear and nonlocal boundary conditions (cf. [Voi01, Tii97, KPS04]). Such problems have not yet been widely studied from the mathematical point of view. On the other hand, to adequately describe the heating system, inductive heating is used in crystal growth which involves a coupling to the 3D Maxwell equations.

In a fairly simplified setting, the study of optimal control problems involving nonlocal boundary conditions was initiated in [MPT06]. Further contributions on such problems with pointwise control- and state-constraints were made in [MY08a, MY08b]. The analysis of the aforementioned papers relied on the assumption that the heat sources can be controlled directly. In other words, Maxwell equations were not included in the system of the state. In addition, the temperature-dependence
of the material properties that becomes significant at high temperatures was not included in the model. The present paper is aimed at the analysis of a more realistic model: First, to describe the heating process, Maxwell equations are considered. Second, we assume that the heat conductivity in the state equation depends on temperature, so that temperature distribution is governed by a quasilinear elliptic equation.

Our focus is set on a quasi-static description of induction heating [KPS04]. The model is based on the assumption that all electromagnetic quantities are harmonic in time and given as the imaginary part of a complex extension, according to the usual ansatz

$$
H(x, t)=\operatorname{Im}\left(H_{\text {comp }}(x) \exp (i \omega t)\right), \quad E(x, t)=\operatorname{Im}\left(E_{\text {comp }}(x) \exp (i \omega t)\right),
$$

where H denotes the magnetic field intensity, and E the electric field strength. Similar representations are assumed for the remaining electromagnetic fields. In the above context, $H_{\text {comp }}$, $E_{\text {comp }}$ denote the complex-valued amplitude of the complex extension of the vector fields H, E, and $\omega>0$ is the angular frequency of an applied alternating current. The period $2 \pi / \omega$ of oscillation of the electromagnetic fields is assumed to be much smaller than the typical time for heat diffusion. In this way, the Joule heat source density can be approximated by its averaged value over a period according to

$$
f(x, t) \approx \frac{\omega}{2 \pi} \int_{0}^{\frac{2 \pi}{\omega}} f(\cdot, t) d t
$$

Thus, assuming a stationary temperature distribution in the furnace, we attain a time-independent description of the problem, which allows to work with the complex amplitudes instead of the electromagnetic fields themselves.

Problem formulation. We denote by $\Omega \subseteq \mathbb{R}^{3}$ with boundary Γ the bounded domain of interest for the temperature distribution - typically the crystal growth furnace. The global temperature distribution in Ω is governed by the stationary heat equation with radiation boundary conditions

$$
\left\{\begin{align*}
-\operatorname{div}(\kappa(x, y) \nabla y) & =\frac{1}{2 \mathfrak{s}}|\operatorname{curl} H|^{2} & & \text { in } \Omega, \tag{1}\\
{\left[-\kappa(x, y) \frac{\partial y}{\partial \vec{n}}\right] } & =G\left(\sigma|y|^{3} y\right) & & \text { on } \Sigma, \\
\kappa(x, y) \frac{\partial y}{\partial \vec{n}}+\varepsilon \sigma|y|^{3} y & =\varepsilon \sigma y_{0}^{4} & & \text { on } \Gamma,
\end{align*}\right.
$$

where y denotes the absolute temperature and y_{0} is the given external temperature. The vector field H represents the complex-valued magnetic intensity. Furthermore, σ denotes the Boltzmann radiation constant; ε is the emissivity; κ is the thermal conductivity; \mathfrak{s} is the electrical conductivity; [.] denotes the jump of a quantity across boundaries, and \vec{n} is the outward unit normal to the corresponding surface.

The surface Σ and the nonlocal radiation operator G are related to the modeling of the radiative heat transfer. Heat radiation is incoming and outgoing at the surface of each body located next to a transparent medium. To describe this phenomenon, we assume that a part of the region $\Omega_{\text {transparent }} \subset \Omega$ is occupied by transparent materials. We set $\Sigma:=\partial \Omega_{\text {transparent }}$. A schematic geometrical example is given in Figure 1. The operator G in (1) is a linear and continuous operator (see e.g. [LT01, KPS04] for in-depth discussions on G and its physical background). For the convenience of the reader, we recall the definition of G and its essential properties in Appendix B.

Figure 1: Two-dimensional schematic cut of the domain Ω. Left-hand: The furnace components and the outer boundary Γ (thick black line). Right-hand: Description of Ω from the point of view of heat radiation, with the transparent cavity $\Omega_{\text {transparent }}$ (white), its boundary Σ, (thick black line) and the opaque materials $\Omega_{\text {opaque }}$ (grey).

It is not to be expected that the electromagnetic fields generated to heat the region Ω will be confined to it. We therefore introduce a bounded 'hold all domain' $O \subset \mathbb{R}^{3}$, that contains Ω and is typically much larger, to represent the region in which the electromagnetic fields are acting. To adequately describe the electromagnetic phenomena taking place in the larger region O, we denote by $O_{c} \subseteq O$ the region occupied by electrically conducting materials. We set $O_{n c}:=O \backslash O_{c}$ for the nonconductors. The complex-valued magnetic field intensity H appearing in (1) is given by the solution to a time-harmonic Maxwell system posed in O

$$
\left\{\begin{array}{rlrl}
i \omega B+\operatorname{curl} E & =0 & & \text { in } O \tag{2}\\
\operatorname{curl} H & =J & & \text { in } O \\
J & =\mathfrak{s} E+\chi_{o_{c_{0}}} j_{g} & & \text { in } O_{c} \\
\operatorname{div} D & =0 & & \text { in } O_{n c} \\
B=\mu H \quad D & =\mathfrak{e} E \quad \operatorname{div} B=0 & & \text { in } O \\
B \cdot \vec{n}=0 & E \times \vec{n}=0 & & \text { on } \partial O \\
{[H \times \vec{n}]_{i, j}=0} & {[B \cdot \vec{n}]_{i, j}=0 \quad[E \times \vec{n}]_{i, j}=0} & & \text { on } \partial O_{i} \cap \partial O_{j} .
\end{array}\right.
$$

Here, E and B denote the electric field and the magnetic induction, respectively, whereas D is the electric displacement and J the current density, which we assume
to be complex-valued vector quantities, as explained at the beginning of the paper. The functions \mathfrak{e}, μ are the electric permittivity and the magnetic permeability; the electrical conductivity is denoted, as above, by \mathfrak{s}. The constant $\omega>0$ is the angular frequency of the applied alternating current. We have assumed a decomposition $\bar{O}:=\bigcup_{i=0}^{m} \overline{O_{i}}$, with disjoint domains O_{i} that represent the different material subdomains filling the region O^{1}. With the notation, $[\cdot]_{i, j}$, we denote the jump of a quantity across the interface $\partial O_{i} \cap \partial O_{j}, i, j=0, \ldots, m, i \neq j$.
The vector j_{g} is the given density of an applied current acting in a set $O_{c_{0}} \subseteq O_{c}$. Typically $O_{c_{0}}$ represents an induction coil.
Optimal control problem. It is not realistic to assume that we can control the density of current at each point of space. For the optimal control problem, we therefore make stronger assumptions:
(A1) We make the customary idealization that the coil $O_{c_{0}}$ can be represented as $O_{c_{0}}=\bigcup_{i=1}^{n} R_{i}(n \geq 1)$, where R_{1}, \ldots, R_{n}, are disjoint bounded domains in positive distance from each other, which we assume to be rings (see Figure 2) ${ }^{2}$.
(A2) The voltage $u_{j} \in \mathbb{R}^{+}$in each coil ring $R_{j} \subseteq O_{c_{0}}(j=1, \ldots, n)$ can be maintained constant.
(A3) The given current j_{g} in the ring $R_{j}(j=1, \ldots, n)$ results only from applying the voltage u_{j} to the loop R_{j}.

Due to the hypotheses (A2) and (A3), the current j_{g} is more precisely given by the ansatz $j_{g}=\sum_{j=1}^{n} u_{j} v_{j}$, where $u \in \mathbb{R}^{n}$, and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a given system of vector fields such that $v_{j}: R_{j} \rightarrow \mathbb{R}^{3}$. Notice that since the density j_{g} in the conductor $O_{c_{0}}$ represents a current, we have to make the consistency assumption

$$
\begin{equation*}
\operatorname{div} j_{g}=0 \text { in } O_{c_{0}}, \quad j_{g} \cdot \vec{n}=0 \text { on } \partial O_{c_{0}} . \tag{3}
\end{equation*}
$$

Thus, the vector fields $\left\{v_{j}\right\}_{j=1, \ldots, n}$ in turn must satisfy

$$
\operatorname{div} v_{j}=0 \text { in } R_{j}, \quad v_{j} \cdot \vec{n}=0 \text { on } \partial R_{j}, \quad \text { for } j=1, \ldots, n .
$$

[^1]

Figure 2: Two-dimension cut of the Maxwell 'hold all domain' O, with the electrical conductors O_{c} (gray), the nonconductors $O_{n c}$ (white), and the coil rings R_{1}, \ldots, R_{3} indicated by arrows.

Under the simplifying assumption (A1), and assuming a constant electrical conductivity in R_{j}, we can set

$$
v_{j}=\mathfrak{s}\left(\begin{array}{c}
-x_{2} / \sqrt{x_{1}^{2}+x_{2}^{2}} \tag{4}\\
x_{1} / \sqrt{x_{1}^{2}+x_{2}^{2}} \\
0
\end{array}\right) .
$$

For more general forms of the inductor $O_{c_{0}}$, we construct a particular system $\left\{v_{j}\right\}_{j=1, \ldots, n}$ in Remark 2.1 below.
Given fixed data $z \in L^{2}(\Omega)^{3}, H_{d} \in L^{2}(O ; \mathbb{C})^{3}, \rho \geq 0$ and $\beta>0$, we focus on the following optimal control problem:

$$
\begin{equation*}
\operatorname{minimize} J(u, H, y):=\frac{1}{2} \int_{\Omega}|\nabla y-z|^{2}+\frac{\rho}{2} \int_{O}\left|H-H_{d}\right|^{2}+\frac{\beta}{2}|u|^{2}, \tag{P}
\end{equation*}
$$

where (H, y, u) solves the equations (1)-(2). In addition, the optimization problem (P) is subject to the following state and control constraints:

$$
\begin{array}{lll}
y_{a}(x) \leq y(x) \leq y_{b}(x), & \text { for almost all } x \in \Omega \tag{5}\\
u_{a} & \leq u_{j} \leq u_{b}, & \text { for all } j \in\{1, \ldots, n\}
\end{array}
$$

Notice that including the state-constraints (5) into the model is necessary. They are assigned for instance to avoid melting of the apparatus and to keep the crystallization process within a desirable temperature range.

The analysis of the control problem (P) turns out to be delicate in some aspects. First, we are confronted here with a state equation of quasilinear type with source terms generated by the Maxwell equations. Second, the pointwise state constraints in the set of explicit constraints (5) considerably complicate the analysis. In addition, the nonlinearity in the state equation (1) is not monotone. Standard techniques are therefore not applicable to devise the analysis of the optimal control problem (P).

Objective. The first contribution of the present paper is the existence and uniqueness result for the state of the system (1)-(2). Also, the regularity analysis associated with the solution to (1)-(2) forms the main emphasize of the paper. The regularity result relies mainly on recent advances in regularity theory [ERS07, HDMR08] and may interest the reader in its own right. The second part of the paper is concerned with the linearized equation of (1)-(2). Our main goal is to prove the existence and uniqueness result of the corresponding linearized system which leads mainly to the differentiability of the control-to-state mapping associated with (1)-(2). These points represent the mainstream of the paper and, up to the best of our knowledge, no study on this topic has been carried out so far. The optimization theory for (P), on the othe! r hand, is devised based on the mentioned theoretical results and serves significantly for a basis for our forthcoming paper on the numerical computation of (P). Note that some contributions related to our context have been made by Griesse and Kunisch [GK08] concerning optimal control in the stationary magnetohydrodynamics problem. Also, let us draw particular attention to Hömberg [H04] concerning the modeling and analysis of induction hardening of steel.
As to the outline of the paper, we begin by introducing in Section 2 our main assumptions and notations. In the Section 3, we conduct a study concerning existence and uniqueness of the weak solution to (1)-(2). Higher regularity of the solution will also be discussed. Section 4 is devoted to the linearized equation of (1)-(2). Based on the theoretical results in Sections 3 and 4, we derive the first-order optimality conditions for (P) in Section 5.

2 General assumptions and notation

2.1 Notations

We at first introduce some spaces that will be needed for the analysis of the state equation. For $1<q<\infty$, we denote by $q^{\prime}:=q /(q-1)$ the conjugated exponent to q. We denote

$$
\begin{gathered}
L_{\mathrm{curl}}^{q}(O):=\left\{\psi \in\left[L^{q}(O)\right]^{3} \mid \operatorname{curl} \psi \in\left[L^{q}(O)\right]^{3}\right\}, \\
\quad L_{\mathrm{div}}^{q}(O):=\left\{\psi \in\left[L^{q}(O)\right]^{3} \mid \operatorname{div} \psi \in L^{q}(O)\right\},
\end{gathered}
$$

where the well-known differential operators curl and div are intended in the weak (distributional) sense. The spaces $L_{\text {curl }}^{q}(O)$ and $L_{\text {div }}^{q}(O)$ are Banach-spaces with respect to the graph norm. The linear operator $\gamma_{n}: L_{\text {div }}^{q}(O) \rightarrow W^{1, q^{\prime}}(O)^{*}$, given by

$$
\begin{equation*}
\left\langle\gamma_{n}(\psi), \phi\right\rangle:=\int_{O} \operatorname{div} \psi \phi+\int_{O} \psi \cdot \nabla \phi, \quad \forall \phi \in W^{1, q^{\prime}}(O) \tag{6}
\end{equation*}
$$

is a generalization of the trace $\psi \cdot \vec{n}(\vec{n}=$ outward unit normal to $\partial O)$, which is well-defined for $\psi \in L_{\text {div }}^{q}(O)$. Analogously, the linear operator $\gamma_{t}: L_{\text {curl }}^{q}(O) \rightarrow$ $L_{\text {curl }}^{q^{\prime}}(O)^{*}$, given by

$$
\begin{equation*}
\left\langle\gamma_{t}(\psi), \phi\right\rangle:=\int_{O} \psi \cdot \operatorname{curl} \phi-\int_{O} \phi \cdot \operatorname{curl} \psi, \quad \forall \phi \in L_{\text {curl }}^{q^{\prime}}(O), \tag{7}
\end{equation*}
$$

generalizes the trace $-\psi \times \vec{n}$ for $\psi \in L_{\text {curl }}^{q}(O)$.
In order to represent current vectors, we need the spaces

$$
\begin{equation*}
\mathcal{H}^{q}(O):=\left\{H \in L_{\text {curl }}^{q}(O) \mid \operatorname{curl} H=0 \text { in } O_{n c}\right\}, \tag{8}
\end{equation*}
$$

and set $\mathcal{H}(O):=\mathcal{H}^{2}(O)$.
The spaces of complex-valued vector fields associated with $L_{\text {curl }}^{q}(O)$ and $\mathcal{H}^{q}(O)$ are denoted by $L_{\text {curl }}^{q}\left(O ; \mathbb{C}^{3}\right)$ and $\mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right)$, respectively. The linear constraints characterizing these spaces are then intended to hold for both real and imaginary part of the vector field.
The inner product on the Hilbert space $L_{\text {curl }}^{2}\left(O ; \mathbb{C}^{3}\right)$ is given by

$$
\begin{equation*}
\left(H_{1}, H_{2}\right)_{L_{\operatorname{curl}}^{2}(O)}:=\int_{O}\left(\operatorname{curl} H_{1} \cdot \operatorname{curl} \overline{H_{2}}+H_{1} \cdot \overline{H_{2}}\right) \tag{9}
\end{equation*}
$$

where \bar{a} denotes the complex conjugate of $a \in \mathbb{C}$.

2.2 Main assumptions on the data

The data of the problem are, on the one hand, the geometry, and, on the other hand, the coefficients $\kappa, \varepsilon, \mu, \mathfrak{e}, \mathfrak{s}$, the vector fields v_{j}, and the external temperature y_{0}.
Geometrical assumptions. In order to describe complex electromagnetic and thermodynamical phenomena, we have to account for the multimaterial structure of the domains O and Ω : A decomposition $\bar{O}:=\bigcup_{i=0}^{m} \overline{O_{i}}$ is assumed, with disjoint open sets O_{i} that represent the different material subdomains (see the footnote (1)) that fill the 'hold all' region O. As to the smaller region Ω of interest for the temperature computations (the crystal growth furnace), we can define $\Omega_{i}:=$ $O_{i} \cap \Omega$, and we then have $\bar{\Omega}:=\bigcup_{i=0}^{m} \overline{\Omega_{i}}$, where Ω_{i} represent the different material subdomains that fill the region Ω. We refer the reader to the figures 1 and 2 to help representation.

For simplicity, we from now on assume that there is only one connected transparent cavity in Ω, and denote this set by Ω_{0}. Therefore, the boundary Σ of the transparent materials is simply given by $\Sigma:=\partial \Omega_{0}$. The enclosure property has to be satisfied, meaning that the cavity Ω_{0} is enclosed by the remaining (opaque) materials $\left(\overline{\Omega_{\text {opaque }}}:=\bigcup_{i=1}^{m} \overline{\Omega_{i}}\right)$, that is,

$$
\begin{equation*}
\text { Every } x \in \Sigma \text { is an interior point of } \Omega \text {. } \tag{10}
\end{equation*}
$$

We further assume that the domain O is simply connected and Lipschitzian. In order to obtain regular magnetic fields, the main geometrical restriction considered throughout the paper is the following:

$$
\begin{equation*}
\partial O_{i} \in \mathcal{C}^{1}, \text { for } i=0, \ldots, m, \quad \partial O \in \mathcal{C}^{0,1} \tag{11}
\end{equation*}
$$

From (11), it also follows that

$$
\begin{equation*}
\partial \Omega_{i} \in \mathcal{C}^{1}, \text { for } i=0, \ldots, m \tag{12}
\end{equation*}
$$

since $\Omega_{i}=O_{i} \cap \Omega$. This fact will be exploited in order to obtain a temperature field in $W^{1, q}(\Omega)$ for some $q>3$.
For formal simplicity, we make the assumption that each conductor is isolated

$$
\begin{equation*}
\operatorname{dist}\left(O_{i}, O_{j}\right)>0 \text { for all } O_{i}, O_{j} \subseteq O_{c}, \text { with } j \neq i \tag{13}
\end{equation*}
$$

Source fields and coefficients. As mentioned previously, the applied current j_{g} is given by the ansatz:

$$
\begin{equation*}
j_{g}=\sum_{j=1}^{n} u_{j} v_{j} \tag{14}
\end{equation*}
$$

and we assume that there exists some $\bar{q}>3$ such that

$$
\begin{equation*}
v_{j} \in\left[L^{\bar{q}}\left(R_{j}\right)\right]^{3}, \quad \operatorname{div} v_{j}=0 \text { in } R_{j}, \quad v_{j} \cdot \vec{n}=0 \text { on } \partial R_{j}, \quad \text { for } j=1, \ldots, n . \tag{15}
\end{equation*}
$$

If the subdomains R_{j} are the rings defined as in (A1), the assumption (15) is trivially satisfied in view of (4).

Remark 2.1. If R_{j} is an arbitrary once connected Lipschitz domain, and the electrical conductivity \mathfrak{s} is constant in R_{j}, the field v_{j} can also be computed in advance and satisfy (15). Denote by $P \subset R_{j}$ an hypersurface that cuts the ring R_{j} transversally, such that the domain $\tilde{R}_{j}:=R_{j} \backslash P$ is simply connected ${ }^{3}$.. Under the assumptions (A2), (A3), we have $v_{j}=\mathfrak{s} \nabla \tilde{p}_{j}$ in \tilde{R}_{j}, where \tilde{p}_{j} is the solution to the problem

$$
\left\{\begin{array}{rll}
\triangle \tilde{p}_{j}=0 & & \text { in } \tilde{R}_{j} \tag{16}\\
\frac{\partial \tilde{p}_{j}}{\partial \tilde{n}}=0 & & \text { on } \partial \tilde{R}_{j} \backslash P \\
{\left[\frac{\partial \tilde{p}_{j}}{\partial \tilde{n}}\right]=0} & & \text { on } P \\
{\left[\tilde{p}_{j}\right]=1} & & \text { on } P,
\end{array}\right.
$$

[^2]where [.] denotes the jump of a quantity across the surface P. It is well-known (cf. [FT78]) that (16) admits a unique solution $\tilde{p}_{j} \in W^{1,2}\left(\tilde{R}_{j}\right)$, and $v_{j}=\mathfrak{s} \nabla \tilde{p}_{j}$ satisfies
$$
\operatorname{div} v_{j}=0 \text { in } R_{j}, \quad v_{j} \cdot \vec{n}=0 \text { on } \partial R_{j} .
$$

Furthermore, $v_{j}=\mathfrak{s} \nabla \tilde{p}_{j}$ belongs to $\left[L^{\bar{q}}\left(\tilde{R}_{j}\right)\right]^{3}$ for some $\bar{q}>3$ (see [Mon03, Theorem 3.50]).

For the boundary data y_{0}, we assume that

$$
\begin{equation*}
y_{0} \in L^{\infty}(\Gamma), \quad \underset{\Gamma}{\operatorname{ess} \inf } y_{0}>0 \tag{17}
\end{equation*}
$$

Throughout the paper, we assume that there exist positive constants $\mathfrak{s}_{l}, \mathfrak{s}_{u}, \mu_{l}, \mu_{u}$ such that

$$
\begin{equation*}
0<\mathfrak{s}_{l} \leq \mathfrak{s} \leq \mathfrak{s}_{u}<+\infty \text { a. e. in } O_{c}, \quad 0<\mu_{l} \leq \mu \leq \mu_{u}<+\infty \text { a. e. in } O . \tag{18}
\end{equation*}
$$

In addition, we require the continuity of the coefficients in each material

$$
\begin{equation*}
\mathfrak{s}_{i}, \mu_{i} \in \mathcal{C}\left(\overline{O_{i}}\right), \tag{19}
\end{equation*}
$$

where $\mathfrak{s}_{i}, \mu_{i}$ are the restrictions of \mathfrak{s}, μ to the set O_{i}.
We now formulate assumptions for the heat conductivity: Let $\kappa: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ be measurable, and assume that

$$
\left\{\begin{array}{l}
\kappa=\kappa_{i} \text { in } \Omega_{i} \times \mathbb{R}, \text { with } \kappa_{i}: \bar{\Omega}_{i} \times \mathbb{R} \rightarrow \mathbb{R}, \text { continuous for all } i=0, \ldots, m \tag{20}\\
\exists \kappa_{l}, \kappa_{u} \in \mathbb{R} \text { with } 0<\kappa_{l}<\kappa_{u}: \kappa_{l} \leq \kappa(x, y) \leq \kappa_{u} \text { for a.a. }(x, y) \in \bar{\Omega} \times \mathbb{R} . \\
\forall M>0, \exists C_{M}>0 \text { such that }\left|\kappa_{i}\left(x, y_{1}\right)-\kappa_{i}\left(x, y_{2}\right)\right| \leq C_{M}\left|y_{1}-y_{2}\right| \\
\text { for all } y_{1}, y_{2} \in[-M, M], \text { for all } i \in\{0, \ldots, m\}, \text { and a.a. } x \in \Omega_{i}
\end{array}\right.
$$

We recall that the surface $\Sigma \cup \Gamma$ is an interface between transparent and opaque material: Σ is the boundary of a transparent cavity located in the furnace Ω, whereas Γ denotes the boundary of Ω, which is surrounded by air in the 'hold all' region O. Thus, heat radiation has to be modeled at the surface $\Sigma \cup \Gamma$, and we have to introduce the emissivity parameter on $\Sigma \cup \Gamma$, denoted by ε. The emissivity is a function of the position. We assume that $\varepsilon: \Sigma \cup \Gamma \longrightarrow \mathbb{R}$ is measurable. There exist continuous functions $\varepsilon_{i} \in \mathcal{C}\left(\partial \Omega_{i} \cap \Sigma\right)$ such that $\varepsilon=\varepsilon_{i}$ in $\partial \Omega_{i} \cap \Sigma$ for all $i=1, \ldots, m$. Moreover, we rely on the following boundedness assumption:

$$
\begin{equation*}
\exists \varepsilon_{l} \in \mathbb{R} \text { such that } 0<\varepsilon_{l} \leq \varepsilon_{i} \leq 1 \text { on } \partial \Omega_{i} \cap \Sigma \quad \text { for } i=1, \ldots, m \tag{21}
\end{equation*}
$$

The above condition ensures in particular that the operator G is well defined (see Appendix B).

In order to improve the readability, we introduce the auxiliary function of electric resistivity, which is extended by unity to the nonconductors,

$$
r:=\left\{\begin{array}{ll}
\frac{1}{\mathfrak{s}} & \text { on } O_{c} \tag{22}\\
1 & \text { on } O_{n c}
\end{array}, \quad r_{l}:=\mathfrak{s}_{u}^{-1} \quad r_{u}:=\mathfrak{s}_{l}^{-1}\right.
$$

with $\mathfrak{s}_{l}, \mathfrak{s}_{u}$ from (18).
Remark 2.2. The geometrical assumption (11) is too restrictive for dealing with the realistic geometries given in industrial crystal growth. As a matter of fact, jumps of the material properties are allowed only between at most two materials. In order to deal more general junctions, we rely on continuous approximations of the material parameters. It is therefore particularly important to admit a dependence of the functions $\mathfrak{s}, \kappa, \mu$ on the space variable (cf. the assumptions (19), (20)).
The simplifying assumption (13) is also to be understood in this context: we could allow for the junction of two conductors, provided that one of them is embedded in the second and has a \mathcal{C}^{1} boundary. This would however increase the technicality without being an essential progress.

3 State equation

Associated with the system (1)-(2), we introduce the notion of weak solutions.
Definition 3.1 (Weak solution to (1)-(2)). Let $3<q<\infty$ and let q^{\prime} be the conjugate index of q.
(i) We introduce an operator $A_{q}: \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right) \times W^{1, q}(\Omega) \rightarrow \mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right)^{*} \times W^{1, q^{\prime}}(\Omega)^{*}$, defined by

$$
\begin{aligned}
& \left\langle A_{q}(H, y),(\psi, \xi)\right\rangle:=i \int_{O} \omega \mu H \cdot \bar{\psi}+\int_{O} r \operatorname{curl} H \cdot \overline{\operatorname{curl} \psi} \\
& \quad+\int_{\Omega} \kappa(\cdot, y) \nabla y \cdot \nabla \xi+\int_{\Sigma} G\left(\sigma|y|^{3} y\right) \xi+\int_{\Gamma} \varepsilon \sigma|y|^{3} y \xi-\frac{1}{2} \int_{\Omega} r|\operatorname{curl} H|^{2} \xi
\end{aligned}
$$

for all $(\psi, \xi) \in \mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right) \times W^{1, q^{\prime}}(\Omega)$.
(ii) We further introduce an operator $E_{q}: \mathbb{R}^{n} \rightarrow \mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right)^{*} \times W^{1, q^{\prime}}(\Omega)^{*}$, defined by

$$
\left\langle E_{q} u,(\psi, \xi)\right\rangle:=\int_{O_{c_{0}}} \sum_{j=1}^{n} u_{j} v_{j} \cdot \overline{\operatorname{curl} \psi}+\int_{\Gamma} \varepsilon \sigma y_{0}^{4} \xi,
$$

forall $(\psi, \xi) \in \mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right) \times W^{1, q^{\prime}}(\Omega)$.
(iii) For given $u \in \mathbb{R}^{n}$, we call a pair $(H, y) \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right) \times W^{1, q}(\Omega)$ weak solution to (1)-(2) if

$$
\begin{equation*}
A_{q}(H, y)=E_{q} u \quad \text { in } \mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right)^{*} \times W^{1, q^{\prime}}(\Omega)^{*} \tag{23}
\end{equation*}
$$

Remark 3.2. (1) Let (H, y) be a weak solution in the sense of Definition 3.1. For every $\phi \in W^{1, q^{\prime}}\left(O ; \mathbb{C}^{3}\right)$, the vector field $\nabla \phi$ belongs to $\mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right)$. Taking in (23) the pair $(\nabla \phi, 0)$ as a testfunction, and observing that curl $\nabla \phi=0$, we have

$$
i \int_{O} \mu \omega H \cdot \overline{\nabla \phi}=0
$$

Therefore, every weak solution $H \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right)$ in the sense of Definition 3.1 satisfies the conditions $\operatorname{div}(\mu H)=0$ and $\gamma_{n}(\mu H)=0$ in the weak sense.
(2) Let (H, y) be a weak solution in the sense of Definition 3.1. The continuous embedding $W^{1, q^{\prime}}(\Omega) \hookrightarrow L^{s}(\Omega)$ is valid for all $1 \leq s \leq \frac{3 q^{\prime}}{3-q^{\prime}}$. Since $\frac{q}{q-2} \leq \frac{3 q^{\prime}}{3-q^{\prime}}$, we can apply Hölder's inequality and Sobolev's embedding theorem to verify that

$$
\begin{aligned}
\left.\left|\int_{\Omega} r\right| \operatorname{curl} H\right|^{2} \xi \mid & \leq r_{u}\|\operatorname{curl} H\|_{\left[L^{q}(\Omega ; \mathbb{C})\right]^{3}}^{2}\|\xi\|_{L^{q /(q-2)}(\Omega)} \\
& \leq r_{u} c_{0}\|\operatorname{curl} H\|_{\left[L^{q}(O ; \mathbb{C})\right]^{3}}^{2}\|\xi\|_{W^{1, q^{\prime}}(\Omega)}
\end{aligned}
$$

Analogously, since the embedding $W^{1, q}(\Omega) \hookrightarrow \mathcal{C}(\bar{\Omega})$ is continuous, we can verify that under the assumptions (18), (20), (21) and (22), the operator A_{q} is well defined. Due to the validity of (15) with $\bar{q}>3$ and Hölder's inequality, the operator E_{q} is well defined for $q \leq \bar{q}$.

For the proof of the existence and uniqueness of a weak solution in the sense of Definition 3.1, we rely on the following assumption:

Assumption 3.3. Let $O \subset \mathbb{R}^{3}$ satisfy the assumptions formulated in the section 2.2, in particular (11). Let the function κ fulfill the condition (20), and let y_{0} satisfy (17). Assume further that the functions $\mathfrak{s}_{i}, \mu_{i} \in \mathcal{C}\left(\overline{O_{i}}\right)$ and $\varepsilon_{i} \in \mathcal{C}\left(\partial \Omega_{i} \cap \Sigma\right)$ satisfy (18) and (21), respectively.

Theorem 3.4. Let Assumption 3.3 be satisfied. Assume further that (15) is valid with some $\bar{q}>3$. Then there exists $3<q \leq \bar{q}$ such that, for all $u \in \mathbb{R}^{n}$, the problem (1)-(2) possesses a unique weak solution $(H, y) \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right) \times W^{1, q}(\Omega)$ satisfying $y \geq \underset{\Gamma}{\operatorname{ess}} \inf y_{0}>0$.

We split the proof of Theorem 3.4 into the two following lemmata.
Lemma 3.5. Let $O \subset \mathbb{R}^{3}$ satisfy the assumptions formulated in the section 2.2, in particular (11). Assume further that the functions $\mathfrak{s}_{i}, \mu_{i} \in \mathcal{C}\left(\overline{O_{i}}\right)$ satisfy (18). Let $j_{g} \in\left[L^{\bar{q}}\left(O_{c_{0}} ; \mathbb{C}\right)\right]^{3}$ with $\bar{q}>3$. Then, there exist a $3<q \leq \bar{q}$ and a unique $H \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right)$ such that $\operatorname{div}(\mu H)=0, \gamma_{n}(\mu H)=0$ in the weak sense, and

$$
\begin{equation*}
i \omega \int_{O} \mu H \cdot \bar{\psi}+\int_{O} r \operatorname{curl} H \cdot \operatorname{curl} \bar{\psi}=\int_{O} r j_{g} \cdot \operatorname{curl} \bar{\psi}, \tag{24}
\end{equation*}
$$

for all $\psi \in \mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right)$.

Proof. Introducing the abbreviations $H^{(1)}:=\operatorname{Re} H$ and $H^{(2)}:=\operatorname{Im} H$, we first observe that (24) is equivalent to the validity of the system

$$
\begin{align*}
-\omega \int_{O} \mu H^{(2)} \cdot \psi+\int_{O} r \operatorname{curl} H^{(1)} \cdot \operatorname{curl} \psi & =\int_{O_{c_{0}}} r \operatorname{Re} j_{g} \cdot \operatorname{curl} \psi, \tag{25}\\
\omega \int_{O} \mu H^{(1)} \cdot \psi+\int_{O} r \operatorname{curl} H^{(2)} \cdot \operatorname{curl} \psi & =\int_{O_{c_{0}}} r \operatorname{Im} j_{g} \cdot \operatorname{curl} \psi, \tag{26}
\end{align*}
$$

for all real-valued $\psi \in \mathcal{H}(O)$. To obtain (25) and (26), we simply have inserted the field $\psi+0 i, \psi \in \mathcal{H}(O)$, in the relation (24), and we have then equated real and imaginary part respectively.
We consider the linear subspace of $\mathcal{H}(O)$

$$
\mathcal{H}_{\mu}(O):=\left\{\psi \in \mathcal{H}(O) \mid \operatorname{div}(\mu \psi)=0, \gamma_{n}(\mu \psi)=0\right\}
$$

where the constraints on div and γ_{n} are intended in the weak sense of these operators, explained in Section 2. The space $\mathcal{H}_{\mu}(O)$ is a Hilbert space if endowed with the inner product (9). Moreover, there exists a constant $C>0$ such that for all $\psi \in \mathcal{H}_{\mu}(O)$ it holds

$$
\|\psi\|_{\left[L^{2}(O)\right]^{3}} \leq C\|\operatorname{curl} \psi\|_{\left[L^{2}(O)\right]^{3}},
$$

so that the space $\mathcal{H}_{\mu}(O)$ is equivalently normed by the expression $\|$ curl $\cdot \|_{\left[L^{2}(O)\right]^{3}}$. This fact is widely known, and a proof is given for example in [Dru07].
With the standard isomorphism $\mathbb{C} \cong \mathbb{R}^{2}$, we can identify $H \in \mathcal{H}_{\mu}\left(O ; \mathbb{C}^{3}\right)$ with the pair $\left(H^{(1)}, H^{(2)}\right) \in \mathcal{H}_{\mu}(O) \times \mathcal{H}_{\mu}(O)$. On the Hilbert-space $\mathcal{H}_{\mu}(O) \times \mathcal{H}_{\mu}(O)$, we introduce the bilinear form

$$
\begin{align*}
a(H, \phi):=- & \omega \int_{O} \mu H^{(2)} \cdot \phi^{(1)}+\int_{O} r \operatorname{curl} H^{(1)} \cdot \operatorname{curl} \phi^{(1)} \\
& +\omega \int_{O} \mu H^{(1)} \cdot \phi^{(2)}+\int_{O} r \operatorname{curl} H^{(2)} \cdot \operatorname{curl} \phi^{(2)} \tag{27}
\end{align*}
$$

which is continuous and bounded in view of (18). On the other hand, the bilinear form a satisfies

$$
a(H, H)=\int_{O} r\left(\left|\operatorname{curl} H^{(1)}\right|^{2}+\left|\operatorname{curl} H^{(2)}\right|^{2}\right) \geq r_{l}\|H\|_{\mathcal{H}_{\mu}(O) \times \mathcal{H}_{\mu}(O)}^{2} .
$$

The functional

$$
F(\phi):=\int_{O} r \operatorname{Re} j_{g} \cdot \operatorname{curl} \phi^{(1)}+\int_{O} r \operatorname{Im} j_{g} \cdot \operatorname{curl} \phi^{(2)}
$$

is clearly a well-defined element of $\left[\mathcal{H}_{\mu}(O) \times \mathcal{H}_{\mu}(O)\right]^{*}$, since $j_{g} \in\left[L^{2}\left(O_{c_{0}}\right)\right]^{3}$. The Lax-Milgram lemma gives the existence of a unique $H \in \mathcal{H}_{\mu}(O) \times \mathcal{H}_{\mu}(O)$ such that $a(H, \phi)=F(\phi)$ for all $\phi \in \mathcal{H}_{\mu}(O) \times \mathcal{H}_{\mu}(O)$.

Taking in the equation (27) $\phi^{(1)}=\psi$, with $\psi \in \mathcal{H}_{\mu}(O)$ arbitrary, and $\phi^{(2)}=0$, we obtain (25). Taking $\phi^{(1)}=0, \phi^{(2)}=\psi$, we obtain (26). We thus easily verify that (25) and (26) are valid for all $\psi \in \mathcal{H}_{\mu}(O)$, and so we have also proved that (24) is valid for all $\psi \in \mathcal{H}_{\mu}\left(O ; \mathbb{C}^{3}\right)$.
At last, we verify that (24) is even valid for all $\psi \in \mathcal{H}\left(O ; \mathbb{C}^{3}\right)$. As a matter of fact, if $\psi \in \mathcal{H}\left(O ; \mathbb{C}^{3}\right)$, then $\psi_{1}:=\psi-\nabla \zeta \in \mathcal{H}_{\mu}\left(O ; \mathbb{C}^{3}\right)$ if we take $\zeta \in W^{1,2}(O ; \mathbb{C})$ as the weak solution to

$$
\int_{O} \mu \nabla \zeta \cdot \nabla \phi=\int_{O} \mu \psi \cdot \nabla \phi
$$

for all $\phi \in W^{1,2}(O ; \mathbb{C})$. It follows that

$$
\begin{aligned}
& i \omega \int_{O} \mu H \cdot \bar{\psi}+\int_{O} r \operatorname{curl} H \cdot \operatorname{curl} \bar{\psi}=i \omega \int_{O} \mu H \cdot \overline{(\psi-\nabla \zeta)} \\
& \quad+\int_{O} r \operatorname{curl} H \cdot \operatorname{curl} \overline{(\psi-\nabla \zeta)} \underset{(24)}{=} \int_{O} r j_{g} \cdot \operatorname{curl} \overline{(\psi-\nabla \zeta)}=\int_{O} r j_{g} \cdot \operatorname{curl} \bar{\psi}
\end{aligned}
$$

Here, in the first line, we used $\operatorname{div}(\mu H)=0$ and $\gamma_{n}(\mu H)=0$, which implies that $\int_{O} \mu H \cdot \overline{\nabla \zeta}=0$. In the second line, we used the validity of (24) for $\psi-\nabla \zeta \in$ $\mathcal{H}_{\mu}\left(O ; \mathbb{C}^{3}\right)$.
We now prove the existence of some $q>3$ such that $H \in L_{\text {curl }}^{q}\left(O ; \mathbb{C}^{3}\right)$. Applying at first the embedding result of Lemma A.2, it follows that $H \in\left[L^{s}(O ; \mathbb{C})\right]^{3}$ for some $s>3$, and that

$$
\begin{equation*}
\|H\|_{\left[L^{s}(O ; \mathbb{C})\right]^{3}} \leq \tilde{c}\|\operatorname{curl} H\|_{\left[L^{2}(O ; \mathbb{C})\right]^{3}} \leq c\left\|j_{g}\right\|_{\left[L^{2}\left(O_{c_{0}} ; \mathbb{C}\right)\right]^{3}} \tag{28}
\end{equation*}
$$

Next, we prove that curl $H^{(1)}$ and curl $H^{(2)}$ belong to $\left[L^{q}(O)\right]^{3}$ for $q:=\min \{\bar{q}, s\}$. We consider an arbitrary $f \in\left[L^{2}(O)\right]^{3}$ with $f=0$ almost everywhere in $O_{n c}$. According to Lemma A.4, we can decompose

$$
f=\operatorname{curl} A+\sum_{i \in I_{c}} \nabla p_{i} \chi_{O_{i}},
$$

where $A \in \mathcal{H}(O), i \in I_{c}$ if O_{i} is a conductor, and $p_{i} \in W^{1,2}\left(O_{i}\right)$. Thanks to the equivalent formulation (25), we can write

$$
\begin{align*}
\int_{O} r \operatorname{curl} H^{(1)} \cdot f & =\int_{O} r \operatorname{curl} H^{(1)} \cdot \operatorname{curl} A+\sum_{i \in I_{c}} \int_{O_{i}} \operatorname{curl} H^{(1)} \cdot \nabla p_{i} \\
& =\int_{(25)} r \operatorname{Re} j_{g} \cdot \operatorname{curl} A+\omega \int_{O_{c_{0}}} \mu H^{(2)} \cdot A . \tag{29}
\end{align*}
$$

Here, we used the fact that $A \in \mathcal{H}(O)$ can be inserted in (25). For the vanishing of the terms involving the p_{i}, we have used Lemma A. 3 which implies that

$$
\int_{O_{i}} \operatorname{curl} H^{(1)} \cdot \nabla p_{i}=\left\langle\gamma_{n}\left(\operatorname{curl} H^{(1)}\right), p_{i}\right\rangle_{\partial O_{i}}=0
$$

Due to (29) and the continuity estimate (86) associated with the decomposition of Lemma A.4, we then have

$$
\begin{aligned}
\left|\int_{O} \operatorname{curl} H^{(1)} \cdot f\right| & \leq c\left(\left\|\operatorname{Re} j_{g}\right\|_{\left[L^{q}(O)\right]^{3}}+\left\|H^{(2)}\right\|_{\left[L^{s}(O)\right]^{3}}\right)\|A\|_{L_{\text {curl }}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right)} \\
& \leq c\left(\left\|\operatorname{Re} j_{g}\right\|_{\left[L^{q}(O)\right]^{3}}+\left\|H^{(2)}\right\|_{\left[L^{s}(O)\right]^{3}}\right)\|f\|_{\left[L^{q^{\prime}}(O)\right]^{3}}
\end{aligned}
$$

Consider now the functional

$$
\tilde{F}(f):=\int_{O} r \operatorname{curl} H^{(1)} \cdot f, \quad f \in\left[L^{2}(O)\right]^{3}, f=0 \text { almost everywhere in } O_{n c} .
$$

With the Hahn-Banach theorem, we can extend the functional \tilde{F} to the whole space $\left[L^{q^{\prime}}(O)\right]^{3}$, by preserving its norm. Still denoting the extension \tilde{F}, we apply the Riesz representation theorem for $L^{q^{\prime}}(O)^{*}, q^{\prime}>1$, to find some $\Phi \in\left[L^{q}(O)\right]^{3}$ such that $\tilde{F}(f)=\int_{O} \Phi \cdot f$, for all $f \in\left[L^{q^{\prime}}(O)\right]^{3}$. But then,

$$
\int_{O}\left(r \operatorname{curl} H^{(1)}-\Phi\right) \cdot f=0 \text { for all } f \in\left[L^{2}(O)\right]^{3}, f=0 \text { almost everywhere in } O_{n c} .
$$

We conclude that r curl $H^{(1)}-\Phi=0$ almost everywhere in O_{c}. Thus, we see that curl $H^{(1)} \in\left[L^{q}(O)\right]^{3}$, and due to (28), we have

$$
\left\|\operatorname{curl} H^{(1)}\right\|_{\left[L^{q}(O)\right]^{3}} \leq c\left(\left\|j_{g}\right\|_{\left[L^{\bar{q}}(O ; C)\right]^{3}}+\left\|j_{g}\right\|_{\left[L^{2}(O ; C)\right]^{3}}\right) .
$$

We obtain the result for curl $H^{(2)}$ in exactly the same way. The lemma is proved.

We now prove the second lemma. For the heat equation with radiation terms, we introduce the space

$$
V^{2,5}(\Omega):=\left\{u \in W^{1,2}(\Omega) \mid \tau_{\Gamma} u \in L^{5}(\Gamma), \tau_{\Sigma} u \in L^{5}(\Sigma)\right\}
$$

where the operators τ_{Γ} and τ_{Σ} denote the trace operators on Γ and Σ, respectively.
Lemma 3.6. Let $H \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right)$ satisfy (24), with q given by Lemma 3.5. Then for some $\gamma>0$, there exists a unique $y \in V^{2,5}(\Omega) \cap C^{\gamma}(\Omega)$ such that $y \geq \underset{\Gamma}{\operatorname{ess} \inf } y_{0}$ almost everywhere in Ω and such that

$$
\begin{equation*}
\int_{\Omega} \kappa(\cdot, y) \nabla y \cdot \nabla \xi+\int_{\Gamma} \varepsilon \sigma\left(y^{4}-y_{0}^{4}\right) \xi+\int_{\Sigma} G\left(\sigma y^{4}\right) \xi=\int_{\Omega} r / 2|\operatorname{curl} H|^{2} \xi, \tag{30}
\end{equation*}
$$

for all $\xi \in V^{2,5}(\Omega)$. Assuming that the domain Ω satisfies (12), we even obtain that $y \in W^{1, q}(\Omega)$, with the q of Lemma 3.5.

Proof. The existence of y in the class $V^{2,5}(\Omega) \cap L^{\infty}(\Omega)$ was proved in [LT01] for cavities with the smoothness $\Sigma \in \mathcal{C}^{1, \alpha}, \alpha>0$. Notice that the boundedness has also been shown in [MPT06] by invoking the truncation method of Kinderlehrer and Stampacchia (see [KS80]). The existence result has been extended in [Dru09] to the case of a temperature-dependent heat conductivity and piecewise smooth surfaces. From the aforementioned references, we derive the estimate

$$
\begin{equation*}
\|y\|_{L^{\infty}(\Omega)} \leq\left\|y_{0}\right\|_{L^{\infty}(\Gamma)}+C\|\operatorname{curl} H\|_{\left[L^{q}(\Omega ; \mathbb{C})\right]^{3}}^{2}, \tag{31}
\end{equation*}
$$

where q is given by Lemma 3.5. The uniqueness has been proved in [LT01], using an interesting comparison principle for the case that κ_{i} is a positive constant in Ω_{i}, for all $i \in\{0, \ldots, m\}$. Here we have to extend the result to the case of a temperaturedependent heat conductivity. This can be done with similar comparison techniques exposed in the second part of the paper (see the proof of Theorem 4.4).
We now want to show that $y \in C(\bar{\Omega})$. Observe that under the assumption (20), the coefficient $\kappa=\kappa(x, y)$ belongs to $L^{\infty}(\Omega)$. The function y solves the problem

$$
\begin{equation*}
-\operatorname{div}(\kappa(\cdot, y) \nabla y)=F \quad \text { in } \Omega \tag{32}
\end{equation*}
$$

where F is the functional

$$
F(\xi):=-\int_{\Gamma} \varepsilon \sigma\left(y^{4}-y_{0}^{4}\right) \xi-\int_{\Sigma} G\left(\sigma y^{4}\right) \xi+\int_{\Omega} r / 2|\operatorname{curl} H|^{2} \xi .
$$

Let $q>3$ be the exponent obtained in Lemma 3.5. Invoking Hölder's inequality, observe that

$$
\begin{equation*}
\left.\left|\int_{\Omega} r / 2\right| \operatorname{curl} H\right|^{2} \xi \mid \leq\left(r_{u} / 2\right)\|\operatorname{curl} H\|_{L^{q}\left(\Omega ; \mathbb{C}^{3}\right)}^{2}\|\xi\|_{\left[L^{q /(q-2)}(\Omega)\right]^{3}} \tag{33}
\end{equation*}
$$

We now look for the minimal $1<p^{\prime}<3$ such that the continuous embedding $W^{1, p^{\prime}}(\Omega) \hookrightarrow L^{q /(q-2)}(\Omega)$ is valid. Short computations give $p^{\prime}:=3 q /(4 q-6)$. Using in particular (33) combined with Sobolev's embedding theorems, we now obtain the estimate

$$
|F(\xi)| \leq c\left(\left\|y^{4}-y_{0}^{4}\right\|_{L^{\infty}(\Gamma)}+\sigma\|y\|_{L^{\infty}(\Sigma)}^{4}+r_{u}\|\operatorname{curl} H\|_{L^{q}\left(\Omega ; \mathbb{C}^{3}\right)}^{2}\right)\|\xi\|_{W^{1, p^{\prime}}(\Omega)},
$$

which proves that $F \in W^{1, p^{\prime}}(\Omega)^{*}$.
The conjugate exponent to p^{\prime} is $p:=\frac{3 q}{6-q}$, and we observe that $p>3$, since $q>3$. In view of Theorem 3.3 in [HDMR08], we thus obtain the Hölder continuity of y in Ω.

It remains to prove that $y \in W^{1, q}(\Omega)$ under the assumption (12). Thanks to the hypothesis (20), and to the fact that $y \in C(\bar{\Omega})$, we now see that $\kappa(\cdot, y) \in C\left(\overline{\Omega_{i}}\right)$ for all subdomains $\Omega_{i}, i=0, \ldots, m$. Observe on the other hand that $\partial \Omega_{i} \in \mathcal{C}^{1}$, $i=0, \ldots, m$, in view of (12). Thus, the coefficient κ is uniformly continuous on both sides of the surfaces $\partial \Omega_{i}$ for $i=0, \ldots, m$.

Using again the fact that y is a solution to (32), we can apply the Remark 3.18 of the paper [ERS07] to find the existence of $q_{1}>3$ such that $y \in W^{1, \tilde{q}}(\Omega)$ for all $3<\tilde{q} \leq \min \left\{p, q_{1}\right\}$. Assuming without loss of generality that the exponent q given in Lemma 3.5 satisfies $q \leq q_{1}$, and observing that $\min \left\{p, q_{1}\right\} \leq \min \left\{q, q_{1}\right\}$, we find that the choice $\tilde{q}=q$ is possible.

Theorem 3.4 is an immediate consequence of Lemmas 3.5 and 3.6.
Corollary 3.7 (Control-to-state mapping). Let the assumption (15) be satisfied, with $\bar{q}>3$. Assume that (3.3) holds, and define q as in Theorem 3.4. Then the solution operator

$$
\mathcal{S}: \mathbb{R}^{n} \rightarrow \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right) \times W^{1, q}(\Omega)
$$

which assigns to every control $u \in \mathbb{R}^{n}$ the weak solution $(H, y) \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right) \times$ $W^{1, q}(\Omega)$ of (1)-(2) is well defined and continuous.

4 Linearized equation

Our goal in this section is to establish the differentiability of the control-to-state mapping $\mathcal{S}: \mathbb{R}^{n} \rightarrow \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right) \times W^{1, q}(\Omega)$. For the remainder of the presentation, let $q \in \mathbb{R}$ with $3<q \leq \bar{q}$ be the exponent obtained in Theorem 3.4. We decompose the control-to-state mapping into $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, where

$$
\begin{array}{lr}
\mathcal{S}_{1}: \mathbb{R}^{n} \rightarrow \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right), & \mathcal{S}_{1}: u \mapsto H, \\
\mathcal{S}_{2}: \mathbb{R}^{n} \rightarrow W^{1, q}(\Omega), & \mathcal{S}_{2}: u \mapsto y . \tag{34}
\end{array}
$$

Let us recall that $\mathcal{S}_{1}(u)=H \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right)$ is given by the unique solution to

$$
\begin{equation*}
i \omega \int_{O} \mu H \cdot \bar{\psi}+\int_{O} r \operatorname{curl} H \cdot \operatorname{curl} \bar{\psi}=\int_{O_{c_{0}}} \sum_{j=1}^{n} u_{j} v_{j} \cdot \overline{\operatorname{curl} \psi} \quad \forall \psi \in \mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right) \tag{35}
\end{equation*}
$$

Further, $\mathcal{S}_{2}(u)=y \in W^{1, q}(\Omega)$ is given by the unique solution to

$$
\int_{\Omega} \kappa(\cdot, y) \nabla y \cdot \nabla \xi+\int_{\Sigma} G\left(\sigma|y|^{3} y\right) \xi+\int_{\Gamma} \varepsilon \sigma|y|^{3} y \xi=\frac{1}{2} \int_{\Omega} r\left|\operatorname{curl} \mathcal{S}_{1}(u)\right|^{2} \xi,
$$

for all $\xi \in W^{1, q^{\prime}}(\Omega)$. Note that, thanks to the linearity of \mathcal{S}_{1}, we can simplify \mathcal{S}_{1} by making use of the following vector fields:

Definition 4.1. For every $j=1, \ldots, n$, let $H_{j} \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right)$ be defined as the unique solution to

$$
\begin{equation*}
i \omega \int_{O} \mu H_{j} \cdot \bar{\psi}+\int_{O} r \operatorname{curl} H_{j} \cdot \overline{\operatorname{curl} \psi}=\int_{O_{c_{0}}} v_{j} \cdot \overline{\operatorname{curl} \psi} \quad \forall \psi \in \mathcal{H}^{q^{\prime}}\left(O ; \mathbb{C}^{3}\right) \tag{36}
\end{equation*}
$$

According to Lemma 3.5, (36) for every $j \in\{1, \ldots, n\}$ admits a unique solution $H_{j} \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right)$. Therefore, by a superposition principle,

$$
\mathcal{S}_{1}(u)=\sum_{j=1}^{n} u_{j} H_{j} .
$$

Consequently, for every $u \in \mathbb{R}^{n}, \mathcal{S}_{2}(u)=y$ is given by the unique solution to

$$
\begin{array}{r}
\left\langle X_{q}(y), \xi\right\rangle_{W^{1, q^{\prime}}(\Omega)^{*}, W^{1, q^{\prime}}(\Omega)}:=\int_{\Omega} \kappa(\cdot, y) \nabla y \cdot \nabla \xi+\int_{\Sigma} G\left(\sigma|y|^{3} y\right) \xi+\int_{\Gamma} \varepsilon \sigma|y|^{3} y \xi \\
=\frac{1}{2} \int_{\Omega} r\left|\sum_{j=1}^{n} u_{j} \operatorname{curl} H_{j}\right|^{2} \xi \quad \forall \xi \in W^{1, q^{\prime}}(\Omega) . \tag{37}
\end{array}
$$

Note that \mathcal{S}_{1} is a bounded linear operator and hence it is continuously differentiable. Its derivative at an arbitrary point $u^{*} \in \mathbb{R}^{n}$ in an arbitrary direction $u \in \mathbb{R}^{n}$ is given by

$$
\begin{equation*}
\mathcal{S}_{1}^{\prime}\left(u^{*}\right) u=\sum_{j=1}^{n} u_{j} H_{j} . \tag{38}
\end{equation*}
$$

To show the continuous differentiability of $\mathcal{S}_{2}: \mathbb{R}^{n} \rightarrow W^{1, q}(\Omega)$, we need to establish the differentiability of $X_{q}: W^{1, q}(\Omega) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}$. For this purpose, we impose further assumptions on the heat conductivity:
Assumption 4.2. The function $\kappa: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is of class \mathcal{C}^{1} with respect to the second variable. Further, for every positive real number K, there exists a constant C_{K} such that

$$
\frac{\partial \kappa}{\partial y}(x, y) \leq C_{K}
$$

for almost all $x \in \bar{\Omega}$ and all $y \in[-K, K]$.
Notice that the mapping $y \mapsto \sigma|y|^{3} y$ is continuously differentiable from $L^{\infty}(\Gamma)$ to $L^{\infty}(\Gamma)$ (cf. [AZ90]). Since $G: L^{\infty}(\Sigma) \rightarrow L^{\infty}(\Sigma)$ is linear and continuous (Lemma B.2), a similar result applies also to the term containing the nonlocal radiation. Therefore, Assumption 4.2 implies that the operator $X_{q}: W^{1, q}(\Omega) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}$ is continuously differentiable. Its derivative at an arbitrary point $y^{*} \in W^{1, q}(\Omega)$ in an arbitrary direction $y \in W^{1, q}(\Omega)$ is given by

$$
\begin{align*}
\left\langle X_{q}^{\prime}\left(y^{*}\right) y, \xi\right\rangle & =\int_{\Omega} \kappa\left(\cdot, y^{*}\right) \nabla y \cdot \nabla \xi+\int_{\Omega} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) y \nabla y^{*} \cdot \nabla \xi \tag{39}\\
& +4 \int_{\Sigma} G\left(\sigma\left|y^{*}\right|^{3} y\right) \xi+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} y \xi \quad \forall \xi \in W^{1, q^{\prime}}(\Omega)
\end{align*}
$$

In the following, we prove that $X_{q}^{\prime}\left(y^{*}\right): W^{1, q}(\Omega) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}$ is an isomorphism. In other words, we should demonstrate that, for every given $\mathcal{F} \in W^{1, q^{\prime}}(\Omega)^{*}$, the operator equation

$$
\begin{equation*}
X_{q}^{\prime}\left(y^{*}\right) y=\mathcal{F} \quad \text { in } W^{1, q^{\prime}}(\Omega)^{*} \tag{40}
\end{equation*}
$$

admits a unique solution $y \in W^{1, q}(\Omega)$.
Remark 4.3. Notice that (40) corresponds to the following (strong) PDE-formulation:

$$
\left\{\begin{align*}
-\operatorname{div}\left(\kappa\left(x, y^{*}\right) \nabla y+\frac{\partial \kappa}{\partial y}\left(x, y^{*}\right) y \cdot \nabla y^{*}\right) & =\mathcal{F}_{\mid \Omega} \quad \text { in } \Omega, \tag{41}\\
{\left[\kappa\left(x, y^{*}\right) \frac{\partial y}{\partial \vec{n}}+\frac{\partial \kappa}{\partial y}\left(x, y^{*}\right) y \frac{\partial y^{*}}{\partial \vec{n}}\right]+4 G\left(\sigma\left|y^{*}\right|^{3} y\right) } & =\mathcal{F}_{\mid \Sigma} \quad \text { on } \Sigma, \\
\kappa\left(x, y^{*}\right) \frac{\partial y}{\partial \vec{n}}+\frac{\partial \kappa}{\partial y}\left(x, y^{*}\right) y \frac{\partial y^{*}}{\partial \vec{n}}+4 \varepsilon \sigma\left|y^{*}\right|^{3} y & =\mathcal{F}_{\mid \Gamma} \quad \text { on } \Gamma,
\end{align*}\right.
$$

where $\mathcal{F}_{\mid \Omega}, \mathcal{F}_{\mid \Sigma}, \mathcal{F}_{\mid \Gamma}$ are the corresponding restriction of \mathcal{F} on Ω, Σ and Γ, respectively.

Theorem 4.4. Let Assumption 3.3 and Assumption 4.2 be satisfied. Suppose further that $u^{*} \in \mathbb{R}^{n}$, and let $\left(H^{*}, y^{*}\right)=\mathcal{S}\left(u^{*}\right)$. Then, for every $\mathcal{F} \in W^{1, q^{\prime}}(\Omega)^{*}$, the variational problem

$$
\begin{equation*}
\left\langle X_{q}^{\prime}\left(y^{*}\right) y, \xi\right\rangle=\langle\mathcal{F}, \xi\rangle \quad \forall \xi \in W^{1, q^{\prime}}(\Omega) \tag{42}
\end{equation*}
$$

admits a unique solution $y \in W^{1, q}(\Omega)$. Moreover, there is a constant $c>0$ independent of \mathcal{F} such that

$$
\begin{equation*}
\|y\|_{W^{1, q}(\Omega)} \leq c\|\mathcal{F}\|_{W^{1, q^{\prime}}(\Omega)^{*}} . \tag{43}
\end{equation*}
$$

Proof. First of all, let us introduce the following operators:

$$
\begin{aligned}
B_{q}\left(y^{*}\right): & W^{1, q}(\Omega) \\
\left\langle B_{q}\left(y^{*}\right) z, \xi\right\rangle & =W_{\Omega}^{1, q^{\prime}}(\Omega)^{*}, \\
& \kappa\left(x, y^{*}\right) \nabla z \cdot \nabla \xi+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} z \xi,
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{q}\left(y^{*}\right): \quad L^{\infty}(\Omega) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}, \quad\left\langle Q_{q}\left(y^{*}\right) z, \xi\right\rangle=\int_{\Omega} \frac{\partial \kappa}{\partial y}\left(x, y^{*}\right) z \nabla y^{*} \cdot \nabla \xi, \\
& F_{q}\left(y^{*}\right): \quad L^{\infty}(\Sigma) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}, \quad\left\langle F_{q}\left(y^{*}\right) z, \xi\right\rangle=4 \int_{\Sigma} G\left(\sigma\left|y^{*}\right|^{3} z\right) \xi,
\end{aligned}
$$

for all $\xi \in W^{1, q^{\prime}}(\Omega)$. Recall that, by virtue of Theorem 3.4 and (17), we have

$$
\begin{equation*}
y^{*} \geq \underset{\Gamma}{\operatorname{ess} \inf } y_{0}:=\theta_{0}>0 . \tag{44}
\end{equation*}
$$

Therefore, as shown in [MY08a, Lemma 2.1], which is based on the result of [ERS07], there exists some $q_{0}>3$ such that, for all $\tilde{q} \in\left(3, q_{0}\right]$, the operator $B_{\tilde{q}}\left(y^{*}\right): W^{1, \tilde{q}}(\Omega) \rightarrow W^{1, \tilde{q}^{\prime}}(\Omega)^{*}$ is continuously invertible. Without loss of generality, we may assume that the exponent $q>3$ of Theorem 3.4 satisfies $q \leq q_{0}$.
Now, the operator $X_{q}^{\prime}\left(y^{*}\right): W^{1, q}(\Omega) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}$ as given in (39) can be decomposed into

$$
\begin{equation*}
X_{q}^{\prime}\left(y^{*}\right)=B_{q}\left(y^{*}\right)+Q_{q}\left(y^{*}\right) E_{q, \infty}+F_{q}\left(y^{*}\right) \tau_{\Sigma} \tag{45}
\end{equation*}
$$

where the operator $E_{q, \infty}$ denotes the continuous injection $W^{1, q}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ and, as previously mentioned, the operator $\tau_{\Sigma}: W^{1, q}(\Omega) \rightarrow L^{\infty}(\Sigma)$ is the trace operator. Consequently, (42) can equivalently be written as the following operator equation:

$$
B_{q}\left(y^{*}\right) y+Q_{q}\left(y^{*}\right) E_{q, \infty} y+F_{q}\left(y^{*}\right) \tau_{\Sigma} y=\mathcal{F} \quad \text { in } W^{1, q^{\prime}}(\Omega)^{*} .
$$

Thus, we arrive at

$$
\left(I+B\left(y^{*}\right)^{-1}\left(Q\left(y^{*}\right) E_{q, \infty}+F_{q}\left(y^{*}\right) \tau_{\Sigma}\right)\right) y=B\left(y^{*}\right)^{-1} \mathcal{F} \quad \text { in } W^{1, q}(\Omega)
$$

Since $q>3$, the embedding operator $E_{q, \infty}: W^{1, q}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ and the trace operator $\tau_{\Sigma}: W^{1, q}(\Omega) \rightarrow L^{\infty}(\Sigma)$ are compact. Therefore, by Fredholm's theorem, the assertion will be proven once we are able to show that the equation

$$
\begin{equation*}
\left(I+B\left(y^{*}\right)^{-1}\left(Q\left(y^{*}\right) E_{q, \infty}+F_{q}\left(y^{*}\right) \tau_{\Sigma}\right)\right) y=0 \tag{46}
\end{equation*}
$$

admits only the trivial solution $y=0$. Let $y \in W^{1, q}(\Omega)$ be a solution to (46). Applying the operator $B\left(y^{*}\right)$ to (46) and taking (45) into consideration, we infer that y satisfies

$$
X_{q}^{\prime}\left(y^{*}\right) y=0 .
$$

According to (39), the above equality is equivalent to

$$
\begin{equation*}
\int_{\Omega} \kappa\left(\cdot, y^{*}\right) \nabla y \cdot \nabla \xi+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} y \xi=-4 \int_{\Sigma} G\left(\sigma\left|y^{*}\right|^{3} y\right) \xi-\int_{\Omega} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) y \nabla y^{*} \cdot \nabla \xi \tag{47}
\end{equation*}
$$

for all $\xi \in W^{1, q^{\prime}}(\Omega)$.
We are now about to show that $y=0$. To this aim, we follow the comparison principle of Casas and Tröltzsch [CT08] which is an extension result of Křížek and Liu [KL96]. In combination with this technique, we utilize some well-known properties of the nonlocal radiation operator G. For every $\delta \geq 0$, let us introduce the following sets:

$$
\begin{array}{lll}
\Omega_{\delta}:=\{x \in \Omega \mid y(x)>\delta\}, & \Omega_{0}:=\{x \in \Omega \mid y(x)>0\} \\
\Sigma_{\delta}:=\left\{x \in \Sigma \mid\left(\tau_{\Sigma} y\right)(x)>\delta\right\}, & & \Sigma_{0}:=\left\{x \in \Sigma \mid\left(\tau_{\Sigma} y\right)(x)>0\right\} . \tag{48}
\end{array}
$$

Notice that, in order to improve the readability, we will neglect the trace operator in the arguments of boundary integrals, i.e., we always write $\tau_{\Sigma} y=y$ on Σ. Further, we define the function

$$
\begin{equation*}
y_{\delta}:=\min \left\{\delta, y^{+}\right\}, \tag{49}
\end{equation*}
$$

where $y^{+}=\max (0, y)$. For all $\delta \geq 0, y_{\delta}$ belongs to $W^{1, q}(\Omega)$. Further, notice that $\nabla y_{\delta}=0$ a.e. in Ω_{δ}. Setting $\xi=y_{\delta}$ in (47) and then using the fact that G is selfadjoint (see Lemma B. 2 in the appendix) lead to

$$
\begin{align*}
& \int_{\Omega} \kappa\left(\cdot, y^{*}\right) \nabla y \cdot \nabla y_{\delta}+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} y y_{\delta} \\
&=-\int_{\Omega_{0} \backslash \Omega_{\delta}} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) y \nabla y^{*} \cdot \nabla y_{\delta}-4 \int_{\Sigma} G\left(\sigma\left|y^{*}\right|^{3} y\right) y_{\delta} \tag{50}\\
&=-\int_{\Omega_{0} \backslash \Omega_{\delta}} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) y \nabla y^{*} \cdot \nabla y_{\delta}-4 \int_{\Sigma} \sigma\left|y^{*}\right|^{3} y G\left(y_{\delta}\right) .
\end{align*}
$$

Let us investigate the second term in the right-hand side, which involves the nonlocal radiation operator G. To this aim, consider now the decomposition

$$
\Sigma=\left(\Sigma_{0} \backslash \Sigma_{\delta}\right) \cup\left(\Sigma \backslash \Sigma_{0}\right) \cup \Sigma_{\delta} .
$$

The surface integral associated with the operator G is investigated in the following steps:
Step (i): Let us consider the set $\Sigma_{0} \backslash \Sigma_{\delta}$. Since $0<y \leq \delta$ almost everywhere (a.e.) on $\Sigma_{0} \backslash \Sigma_{\delta}$, Hölder's inequality implies that

$$
\begin{align*}
-4 \int_{\Sigma_{0} \backslash \Sigma_{\delta}} \sigma\left|y^{*}\right|^{3} y G\left(y_{\delta}\right) & \leq 4 \delta \sigma\left\|y^{*}\right\|_{L^{\infty}(\Sigma)}^{3} \int_{\Sigma_{0} \backslash \Sigma_{\delta}}\left|G\left(y_{\delta}\right)\right| \\
& \leq 4 \delta \sigma\left\|y^{*}\right\|_{L^{\infty}(\Sigma)}^{3} \operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\left\|G\left(y_{\delta}\right)\right\|_{L^{2}(\Sigma)} \tag{51}\\
& \leq c \delta \operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\left\|y_{\delta}\right\|_{H^{1}(\Omega)},
\end{align*}
$$

with a constant $c>0$ independent of δ. Note that, in the latter inequality, we also made use of the continuity of $G: L^{2}(\Sigma) \rightarrow L^{2}(\Sigma)$ and the continuity of the trace operator from $H^{1}(\Omega)$ to $L^{2}(\Sigma)$.
Step (ii): Let us consider the set $\Sigma \backslash \Sigma_{0}$. According to Lemma B.2, (4), we can $\overline{\text { write } G}=I-\mathbb{H}$ with a positive operator $\mathbb{H}: L^{2}(\Sigma) \rightarrow L^{2}(\Sigma)$ in the sense that if $v \geq 0$ a.e. on Σ then $\mathbb{H}(v) \geq 0$ a.e. on Σ. Moreover, the operator \mathbb{H} is selfadjoint. According to (48)-(49), it holds that $y_{\delta} \geq 0$ a.e. on $\Sigma, y_{\delta}=0$ a.e. on $\Sigma \backslash \Sigma_{0}$ and $y \leq 0$ a.e. on $\Sigma \backslash \Sigma_{0}$. These facts along with the positivity of \mathbb{H} lead to

$$
\begin{equation*}
-4 \int_{\Sigma \backslash \Sigma_{0}} \sigma\left|y^{*}\right|^{3} y G\left(y_{\delta}\right)=-4 \int_{\Sigma \backslash \Sigma_{0}} \underbrace{\left.\sigma\left|y^{*}\right|\right|^{3} y y_{\delta}}_{=0}+4 \int_{\Sigma \backslash \Sigma_{0}} \underbrace{\sigma\left|y^{*}\right|{ }^{3} y}_{\leq 0} \underbrace{\mathbb{H}\left(y_{\delta}\right)}_{\geq 0} \leq 0 . \tag{52}
\end{equation*}
$$

Step (iii): Finally, let us consider the set Σ_{δ}. By Lemma B. 2 in the appendix, the operator \mathbb{H} also belongs to $\mathcal{L}\left(L^{\infty}(\Sigma), L^{\infty}(\Sigma)\right)$ and satisfies $\|\mathbb{H}\|_{\mathcal{L}\left(L^{\infty}(\Sigma), L^{\infty}(\Sigma)\right)} \leq 1$. Consequently

$$
G\left(y_{\delta}\right)=y_{\delta}-\mathbb{H}\left(y_{\delta}\right) \geq y_{\delta}-\|\mathbb{H}\|_{\mathcal{L}\left(L^{\infty}(\Sigma), L^{\infty}(\Sigma)\right)}\left\|y_{\delta}\right\|_{L^{\infty}(\Sigma)} \geq y_{\delta}-\delta=0 \text { on } \Sigma_{\delta},
$$

The above inequality, together with the fact that $y>\delta \geq 0$ a.e. on Σ_{δ}, implies immediately that

$$
\begin{equation*}
-4 \int_{\Sigma_{\delta}} \sigma\left|y^{*}\right|^{3} y G\left(y_{\delta}\right) \leq 0 \tag{53}
\end{equation*}
$$

Now applying the inequalities (51)-(53) to (50) yields

$$
\begin{aligned}
& \int_{\Omega} \kappa\left(\cdot, y^{*}\right) \nabla y \cdot \nabla y_{\delta}+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} y y_{\delta} \\
& \quad \leq-\int_{\Omega_{0} \backslash \Omega_{\delta}} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) y \nabla y^{*} \cdot \nabla y_{\delta}+c \delta \operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\left\|y_{\delta}\right\|_{H^{1}(\Omega)}
\end{aligned}
$$

Since $y y_{\delta} \geq y_{\delta}^{2}, y \nabla y_{\delta}=y_{\delta} \nabla y_{\delta}$, and $\nabla y \cdot \nabla y_{\delta}=\left|\nabla y_{\delta}\right|^{2}$, it follows that

$$
\begin{align*}
& \int_{\Omega} \kappa\left(\cdot, y^{*}\right)\left|\nabla y_{\delta}\right|^{2}+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} y_{\delta}^{2} \\
& \quad \leq-\int_{\Omega_{0} \backslash \Omega_{\delta}} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) \nabla y^{*} y_{\delta} \nabla y_{\delta}+c \delta \operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\left\|y_{\delta}\right\|_{H^{1}(\Omega)} \tag{54}\\
& \quad \leq c \delta\left(\left\|\nabla y^{*}\right\|_{L^{2}\left(\Omega_{0} \backslash \Omega_{\delta}\right)}\left\|\nabla y_{\delta}\right\|_{L^{2}\left(\Omega_{0} \backslash \Omega_{\delta}\right)}+\operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\left\|y_{\delta}\right\|_{H^{1}(\Omega)}\right)
\end{align*}
$$

with a constant c independent of δ. Notice that, in the latter inequality, we have also used Assumption 4.2 together with the facts that $y^{*} \in \mathcal{C}(\bar{\Omega})$ and $y_{\delta} \leq \delta$ (see (49)). Hence, along with (20)-(21) and (44), Friedrich's inequality applied to (54) yields that

$$
\left\|y_{\delta}\right\|_{H^{1}(\Omega)}^{2} \leq c \delta\left(\left\|\nabla y^{*}\right\|_{L^{2}\left(\Omega_{0} \backslash \Omega_{\delta}\right)}\left\|\nabla y_{\delta}\right\|_{L^{2}\left(\Omega_{0} \backslash \Omega_{\delta}\right)}+\operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\left\|y_{\delta}\right\|_{H^{1}(\Omega)}\right),
$$

with a constant $c>0$ independent of δ. This implies that

$$
\left\|y_{\delta}\right\|_{L^{2}(\Omega)} \leq c \delta\left(\left\|\nabla y^{*}\right\|_{L^{2}\left(\Omega_{0} \backslash \Omega_{\delta}\right)}+\operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\right)
$$

holds with a constant $c>0$ independent of δ. Based on the latter estimate, we arrive at

$$
\begin{equation*}
\operatorname{meas}\left(\Omega_{\delta}\right)=\frac{1}{\delta^{2}} \int_{\Omega_{\delta}} \delta^{2} \leq \frac{1}{\delta^{2}} \int_{\Omega} y_{\delta}^{2} \leq c\left(\left\|\nabla y^{*}\right\|_{L^{2}\left(\Omega_{0} \backslash \Omega_{\delta}\right)}+\operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\right)^{2} \tag{55}
\end{equation*}
$$

On the other hand, in view of (48),

$$
\begin{equation*}
\operatorname{meas}\left(\Omega_{0} \backslash \Omega_{\delta}\right) \rightarrow 0 \text { and } \operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right) \rightarrow 0, \quad \text { as } \delta \rightarrow 0 \tag{56}
\end{equation*}
$$

Thus, by (55)-(56), we conclude that

$$
\operatorname{meas}\left(\Omega_{0}\right)=\lim _{\delta \backslash 0} \operatorname{meas}\left(\Omega_{\delta}\right) \leq \lim _{\delta \backslash 0} c\left(\left\|\nabla y^{*}\right\|_{L^{2}\left(\Omega_{0} \backslash \Omega_{\delta}\right)}+\operatorname{meas}\left(\Sigma_{0} \backslash \Sigma_{\delta}\right)^{1 / 2}\right)^{2}=0
$$

The latter equality implies that $y \leq 0$ holds almost everywhere in Ω. Applying the same procedure to the solution $-y$ of (46), we obtain $y \geq 0$. In conclusion $y=0$. This completes the proof.

Theorem 4.5. Let Assumption 3.3 and Assumption 4.2 be satisfied. Then, the operator $\mathcal{S}: \mathbb{R}^{n} \rightarrow \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right) \times W^{1, q}(\Omega)$ is continuously differentiable. Its derivative at $u^{*} \in \mathbb{R}^{n}$ in an arbitrary direction $u \in \mathbb{R}^{n}$ is given by $\mathcal{S}^{\prime}\left(u^{*}\right) u=\left(\sum_{j=1}^{n} u_{j} H_{j}, \mathcal{S}_{2}^{\prime}\left(u^{*}\right) u\right)$ where H_{j} is as defined in Definition 4.1 and $\mathcal{S}_{2}^{\prime}\left(u^{*}\right) u=y \in W^{1, q}(\Omega)$ is given by the unique solution to

$$
\begin{align*}
& \int_{\Omega} \kappa\left(\cdot, y^{*}\right) \nabla y \cdot \nabla \xi+\int_{\Omega} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) y \nabla y^{*} \cdot \nabla \xi+4 \int_{\Sigma} G\left(\sigma|y|^{3} y\right) \xi+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} y \xi \\
& =\sum_{j=1}^{n} u_{j} \int_{\Omega} r\left(\operatorname{Re} \operatorname{curl} H^{*} \cdot \operatorname{Re} \operatorname{curl} H_{j}+\operatorname{Im} \operatorname{curl} H^{*} \cdot \operatorname{Im} \operatorname{curl} H_{j}\right) \xi \tag{57}
\end{align*}
$$

forall $\xi \in W^{1, q^{\prime}}(\Omega)$. Here, $\left(H^{*}, y^{*}\right):=\mathcal{S}\left(u^{*}\right)$.

Remark 4.6. Notice that (57) corresponds to the following PDE-formulation:

$$
\left\{\begin{align*}
-\operatorname{div}\left(\kappa\left(x, y^{*}\right) \nabla y+\frac{\partial \kappa}{\partial y}\left(x, y^{*}\right) y \nabla y^{*}\right) & =\sum_{j=1}^{n} u_{j} r\left(\text { Re curl } H^{*} \cdot \operatorname{Re} \text { curl } H_{j}\right. \tag{58}\\
& \left.+\operatorname{Im} \text { curl } H^{*} \cdot \operatorname{Im} \text { curl } H_{j}\right) \text { in } \Omega \\
{\left[\kappa\left(x, y^{*}\right) \frac{\partial y}{\partial \vec{n}}+\frac{\partial \kappa}{\partial y}\left(x, y^{*}\right) y \frac{\partial y^{*}}{\partial \vec{n}}\right]+4 G\left(\sigma\left|y^{*}\right|^{3} y\right)=} & 0 \text { on } \Sigma, \\
\kappa\left(x, y^{*}\right) \frac{\partial y}{\partial \vec{n}}+\frac{\partial \kappa}{\partial y}\left(x, y^{*}\right) y \frac{\partial y^{*}}{\partial \vec{n}}+4 \varepsilon \sigma\left|y^{*}\right|^{3} y & =0 \text { on } \Gamma .
\end{align*}\right.
$$

The system (58) is referred to as the linearized system of (1).
Proof. It suffices to prove that $\mathcal{S}_{2}: \mathbb{R}^{n} \rightarrow W^{1, q}(\Omega)$ is continuously differentiable. Let us introduce the operator $T: W^{1, q}(\Omega) \times \mathbb{R}^{n} \rightarrow W^{1, q^{\prime}}(\Omega)^{*}$ by

$$
\begin{aligned}
&\langle T(y, u), \xi\rangle_{W^{1, q^{\prime}}(\Omega) * W^{1, q^{\prime}}(\Omega)}:=\left\langle X_{q}(y), \xi\right\rangle_{W^{1, q^{\prime}}(\Omega)^{*} W^{1, q^{\prime}}(\Omega)} \\
&-\frac{1}{2} \int_{\Omega} r\left|\sum_{j=1}^{n} u_{j} \operatorname{curl} H_{j}\right|^{2} \xi \quad \forall \xi \in W^{1, q^{\prime}}(\Omega),
\end{aligned}
$$

where X_{q} is as defined in (37). Note that T is well-defined since \mid curl $\left.H_{j}\right|^{2} \in$ $L^{\frac{q}{2}}(\Omega) \hookrightarrow W^{1, q^{\prime}}(\Omega)^{*}$ (see Remark 3.2). For an arbitrarily fixed $u^{*} \in \mathbb{R}^{n}$, we set $y^{*}=\mathcal{S}_{2}\left(u^{*}\right)$, and hence $T\left(y^{*}, u^{*}\right)=0$ (cf. (37)). Furthermore, T is continuously differentiable with $\partial_{y} T\left(y^{*}, u^{*}\right)=X_{q}^{\prime}\left(y^{*}\right)$. Consequently, Theorem 4.4 implies that $\partial_{y} T\left(y^{*}, u^{*}\right): W^{1, q}(\Omega) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}$ is an isomorphism. Thus, by the implicit function theorem, \mathcal{S}_{2} is continuously differentiable at u^{*}, and its derivative is given by

$$
\begin{equation*}
\mathcal{S}_{2}^{\prime}\left(u^{*}\right) u=-\partial_{y} T\left(y^{*}, u^{*}\right)^{-1} \partial_{u} T\left(y^{*}, u^{*}\right) u=-X_{q}^{\prime}\left(y^{*}\right)^{-1} \partial_{u} T\left(y^{*}, u^{*}\right) u . \tag{59}
\end{equation*}
$$

The derivative $\partial_{u} T\left(y^{*}, u^{*}\right) u \in W^{1, q^{\prime}}(\Omega)^{*}$ on the other hand is given by

$$
\begin{array}{r}
\left\langle\partial_{u} T\left(y^{*}, u^{*}\right) u, \xi\right\rangle_{W^{1, q^{\prime}}(\Omega)^{*} W^{1, q^{\prime}}(\Omega)}=-\sum_{j=1}^{n} u_{j} \int_{\Omega} r\left(\operatorname{Re} \operatorname{curl}\left(\sum_{j=1}^{n} u_{j}^{*} H_{j}\right) \cdot \operatorname{Re} \operatorname{curl} H_{j}\right. \\
\left.+\operatorname{Im} \operatorname{curl}\left(\sum_{j=1}^{n} u_{j}^{*} H_{j}\right) \cdot \operatorname{Im} \operatorname{curl} H_{j}\right) \xi \quad \forall \xi \in W^{1, q^{\prime}}(\Omega) \tag{60}
\end{array}
$$

Using the expression $H^{*}=\mathcal{S}_{1}\left(u^{*}\right)=\sum_{j=1}^{n} u_{j}^{*} H_{j}$, (59)-(60) immediately imply that $\mathcal{S}_{2}^{\prime}\left(u^{*}\right) u=y$ is given by the unique solution to (57). Hence, the assertion is valid.

Remark 4.7. Note that, since $X_{q}^{\prime}\left(y^{*}\right)$ is an isomorphism (Theorem 4.4), we also conclude from (39) and (57) that

$$
\begin{equation*}
\mathcal{S}_{2}^{\prime}\left(u^{*}\right) u=\sum_{j=1}^{n} u_{j} X_{q}^{\prime}\left(y^{*}\right)^{-1} K_{j}\left(H^{*}\right) \tag{61}
\end{equation*}
$$

where $K_{j}\left(H^{*}\right) \in W^{1, q^{\prime}}(\Omega)^{*}, j=1 \ldots n$, is defined by

$$
\begin{align*}
& \left\langle K_{j}\left(H^{*}\right), \xi\right\rangle_{W^{1, q^{\prime}}(\Omega)^{*}, W^{1, q^{\prime}}(\Omega)}:= \\
& \quad \int_{\Omega} r\left(\operatorname{Re} \operatorname{curl} H^{*} \cdot \operatorname{Re} \operatorname{curl} H_{j}+\operatorname{Im} \operatorname{curl} H^{*} \cdot \operatorname{Im} \operatorname{curl} H_{j}\right) \xi \quad \forall \xi \in W^{1, q^{\prime}}(\Omega) . \tag{62}
\end{align*}
$$

5 Optimal control problem

We now focus on the control of the solution to (1)-(2), which shall be established based on the theoretical results presented in the previous sections. Given fixed data $z \in L^{2}(\Omega)^{3}, H_{d} \in L^{2}(O ; \mathbb{C})^{3}, \rho \geq 0$ and $\beta>0$, we look for solutions of the following control problem:

$$
\begin{equation*}
\operatorname{minimize} J(u, H, y):=\frac{1}{2} \int_{\Omega}|\nabla y-z|^{2}+\frac{\rho}{2} \int_{O}\left|H-H_{d}\right|^{2}+\frac{\beta}{2}|u|^{2}, \tag{P}
\end{equation*}
$$

subject to

$$
\begin{equation*}
A_{q}(H, y)=E_{q} u \tag{63}
\end{equation*}
$$

and

$$
\begin{array}{lll}
y_{a}(x) \leq y(x) \leq y_{b}(x) & \text { for a.a. } x \in \Omega \tag{64}\\
u_{a} & \leq u_{j} & \leq u_{b}
\end{array} \text { for all } j \in\{1, \ldots, n\} .
$$

Invoking the control-to-state mapping \mathcal{S}, the control problem (P) can be reduced to

$$
\begin{cases}\min _{u \in \mathcal{U}_{a d}} & f(u):=J\left(u, \mathcal{S}_{1}(u), \mathcal{S}_{2}(u)\right) \tag{P}\\ \text { subject to } & y_{a}(x) \leq\left(\mathcal{S}_{2}(u)\right)(x) \leq y_{b}(x) \text { for a.a. } x \in \Omega\end{cases}
$$

where the admissible set is defined by

$$
\mathcal{U}_{a d}=\left\{u \in \mathbb{R}^{n} \mid u_{a} \leq u_{j} \leq u_{b} \text { for all } j \in\{1, \ldots, n\}\right\} .
$$

In what follows, a control $u \in \mathbb{R}^{n}$ is said to be feasible (for (P)) if and only if $u \in \mathcal{U}_{a d}$ and $y_{a}(x) \leq\left(\mathcal{S}_{2}(u)\right)(x) \leq y_{b}(x)$ holds for a.a. $x \in \Omega$.

Theorem 5.1. Let Assumption 3.3 be satisfied and assume that there exists a feasible control of (P). Then, the optimal control problem (P) admits a solution.

Proof. The assertion follows from the Weierstrass theorem since the set of all feasible controls is compact and the reduced objective functional f is continuous.

Notice that the solution to (P) is not necessarily unique due to the nonlinearities involved in the state equation. We therefore concentrate in our analysis on local
solutions in the following sense: A feasible control $u^{*} \in \mathbb{R}^{n}$ is called a local solution to (P) with respect to the \mathbb{R}^{n}-topology if there exists some $r>0$ such that

$$
f\left(u^{*}\right) \leq f(u)
$$

holds for all feasible controls u satisfying $\left|u-u^{*}\right| \leq r$. Next, by $\mathcal{M}(\bar{\Omega})$, we denote the space of all regular Borel measures on the compact set $\bar{\Omega}$. According to the Riesz-Radon theorem, the space $\mathcal{M}(\bar{\Omega})$ can be isometrically identified with the dual space $\mathcal{C}(\bar{\Omega})^{*}$ with respect to the duality pairing

$$
\langle\mu, \varphi\rangle_{\mathcal{C}(\bar{\Omega})^{*}, \mathcal{C}(\bar{\Omega})}:=\int_{\bar{\Omega}} \varphi d \mu, \quad \varphi \in \mathcal{C}(\bar{\Omega}), \mu \in \mathcal{M}(\bar{\Omega}) .
$$

Let us now introduce the notion of the Lagrange functional associated with (P).
Definition 5.2 (Lagrange functional associated with $(\mathrm{P}))$. The Lagrange functional associated with (P) is defined by $\mathscr{L}: \mathbb{R}^{n} \times \mathcal{M}(\bar{\Omega}) \times \mathcal{M}(\bar{\Omega}) \rightarrow \mathbb{R}$,

$$
\mathscr{L}\left(u, \mu_{a}, \mu_{b}\right)=f(u)+\int_{\bar{\Omega}}\left(y_{a}-\mathcal{S}_{2}(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(\mathcal{S}_{2}(u)-y_{b}\right) d \mu_{b} .
$$

In what follows, let u^{*} stand for a local solution to (P) and $y^{*}=\mathcal{S}_{2}\left(u^{*}\right)$. Thanks to the continuous differentiability of the solution operator \mathcal{S}, the reduced objective functional $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, given by

$$
f(u)=\frac{1}{2} \int_{\Omega}\left|\nabla \mathcal{S}_{2}(u)-z\right|^{2}+\frac{\rho}{2} \int_{O}\left|\mathcal{S}_{1}(u)-H_{d}\right|^{2}+\frac{\beta}{2}|u|^{2},
$$

is continuously Fréchet differentiable. Its first derivative at u^{*} in the direction $u \in \mathbb{R}^{n}$ is given by

$$
\begin{aligned}
f^{\prime}\left(u^{*}\right) u= & \int_{\Omega}\left(\nabla y^{*}-z\right) \cdot \nabla\left(\mathcal{S}_{2}^{\prime}\left(u^{*}\right) u\right)+\rho \int_{O} \operatorname{Re}\left(H^{*}-H_{d}\right) \cdot \operatorname{Re}\left(\mathcal{S}_{1}^{\prime}\left(u^{*}\right) u\right) \\
& +\rho \int_{O} \operatorname{Im}\left(H^{*}-H_{d}\right) \cdot \operatorname{Im}\left(\mathcal{S}_{1}^{\prime}\left(u^{*}\right) u\right)+\beta u^{*} \cdot u
\end{aligned}
$$

where $H^{*}=\mathcal{S}_{1}\left(u^{*}\right)$ and $y^{*}=\mathcal{S}_{2}\left(u^{*}\right)$. We now recall from (38) that $\mathcal{S}_{1}^{\prime}\left(u^{*}\right) u=$ $\sum_{j=1}^{n} u_{j} H_{j}$, where the vector fields $H_{j} \in \mathcal{H}^{q}\left(O ; \mathbb{C}^{3}\right)$ are as defined in Definition 4.1. Consequently

$$
\begin{aligned}
& f^{\prime}\left(u^{*}\right) u= \int_{\Omega}\left(\nabla y^{*}-z\right) \cdot \nabla\left(\mathcal{S}_{2}^{\prime}\left(u^{*}\right) u\right)+\rho \sum_{j=1}^{n} u_{j}\left(\int_{O} \operatorname{Re}\left(H^{*}-H_{d}\right) \cdot \operatorname{Re} H_{j}\right. \\
&\left.+\int_{O} \operatorname{Im}\left(H^{*}-H_{d}\right) \cdot \operatorname{Im} H_{j}\right)+\beta u^{*} \cdot u \\
&=\int_{\Omega}\left(\nabla y^{*}-z\right) \cdot \nabla\left(\mathcal{S}_{2}^{\prime}\left(u^{*}\right) u\right)+\left(\rho h^{*}+\beta u^{*}\right) \cdot u,
\end{aligned}
$$

with

$$
h_{j}^{*}:=\int_{O} \operatorname{Re}\left(H^{*}-H_{d}\right) \cdot \operatorname{Re} H_{j}+\operatorname{Im}\left(H^{*}-H_{d}\right) \cdot \operatorname{Im} H_{j} \quad j=1, \ldots, n
$$

Further, let us introduce the linear and continuous operator $L: W^{1, q}(\Omega) \rightarrow$ $W^{1, q}(\Omega)^{*}$ defined by

$$
\begin{equation*}
\langle L y, v\rangle_{W^{1, q}(\Omega)^{*}, W^{1, q}(\Omega)}:=\int_{\Omega}(\nabla y-z) \cdot \nabla v \quad \forall v \in W^{1, q}(\Omega) \tag{65}
\end{equation*}
$$

Using this operator, we arrive at

$$
\begin{equation*}
f^{\prime}\left(u^{*}\right) u=\left\langle L y^{*}, \mathcal{S}_{2}^{\prime}\left(u^{*}\right) u\right\rangle_{W^{1, q}(\Omega)^{*}, W^{1, q}(\Omega)}+\left(\rho h^{*}+\beta u^{*}\right) \cdot u . \tag{66}
\end{equation*}
$$

Notice that, since f and \mathcal{S}_{2} are continuously Fréchet differentiable, \mathscr{L} is continuously Fréchet differentiable, so that the following definition makes sense:

Definition 5.3 (Lagrange multiplier associated with (P)). Let $u^{*} \in \mathbb{R}^{n}$ be a local solution to (P). Then, $\left(\mu_{a}, \mu_{b}\right) \in \mathcal{M}(\bar{\Omega}) \times \mathcal{M}(\bar{\Omega})$ is said to be a pair of Lagrange multipliers associated with the state constraints of (P) if and only if

$$
\begin{align*}
& \partial_{u} \mathscr{L}\left(u^{*}, \mu_{a}, \mu_{b}\right)\left(u-u^{*}\right) \geq 0 \quad \forall u \in \mathcal{U}_{a d} \tag{67}\\
& \mu_{a} \geq 0, \quad \mu_{b} \geq 0, \tag{68}\\
& \int_{\bar{\Omega}}\left(y_{a}-\mathcal{S}_{2}\left(u^{*}\right)\right) d \mu_{a}=\int_{\bar{\Omega}}\left(\mathcal{S}_{2}\left(u^{*}\right)-y_{b}\right) d \mu_{b}=0 . \tag{69}
\end{align*}
$$

Note that (67) is the so-called variational inequality and (68)-(69) are the complementarity slackness conditions.

To establish the existence of Lagrange multipliers, we apply the Karush-KuhnTucker (KKT) theorem (cf. Zowe and Kurcyusz [ZK79]). More precisely, we rely on a Slater-type constraint qualification with respect to the state constraints in (P). This assumption is referred to as the linearized Slater condition.

Definition 5.4 (Linearized Slater condition for (P)). A control $u^{*} \in \mathcal{U}_{\text {ad }}$ satisfies the linearized Slater condition for (P) if there exist some $u_{0} \in \mathcal{U}_{a d}$ and some constant $c>0$ such that

$$
y_{a}(x)+c \leq\left(\mathcal{S}_{2}\left(u^{*}\right)\right)(x)+\left(\mathcal{S}_{2}^{\prime}\left(u^{*}\right)\left(u_{0}-u^{*}\right)\right)(x) \leq y_{b}(x)-c \quad \forall x \in \bar{\Omega} .
$$

The formula for the derivative $\mathcal{S}_{2}^{\prime}\left(u^{*}\right)\left(u_{0}-u^{*}\right)$ reads as in (57). See also the strong PDE-formulation in Remark 4.6.

Theorem 5.5 (First-order necessary optimality conditions for (P)). Let Assumption 3.3 and Assumption 4.2 be satisfied. Moreover, let u^{*} be a local solution to (P) satisfying the linearized Slater condition and set $\left(H^{*}, y^{*}\right)=\mathcal{S}\left(u^{*}\right)$. Then, there
exist Lagrange multipliers $\mu_{a}, \mu_{b} \in \mathcal{M}(\bar{\Omega})$ and an adjoint state $p^{*} \in W^{1, q^{\prime}}(\Omega)$ with $1 \leq q^{\prime}<\frac{3}{2}$ such that

$$
\begin{gather*}
\left\{\begin{array}{cc}
-\operatorname{div}\left(\kappa\left(x, y^{*}\right) \nabla p^{*}\right)+\frac{\partial \kappa}{\partial y}\left(x, y^{*}\right) \nabla y^{*} \cdot \nabla p^{*}=-\Delta y^{*}+\operatorname{div} z+\left(\mu_{b}-\mu_{a}\right)_{\mid \Omega} & \text { in } \Omega, \\
{\left[\kappa\left(x, y^{*}\right) \frac{\partial p^{*}}{\partial \vec{n}}\right]+4 \sigma\left|y^{*}\right|^{3} G\left(p^{*}\right)=-\frac{\partial y^{*}}{\partial \vec{n}}+z \cdot \vec{n}+\left(\mu_{b}-\mu_{a}\right)_{\mid \Sigma}} & \text { on } \Sigma, \\
\kappa\left(x, y^{*}\right) \frac{\partial p^{*}}{\partial \vec{n}}+4 \varepsilon \sigma\left|y^{*}\right|^{3} p^{*}=\left(\mu_{b}-\mu_{a}\right)_{\mid \Gamma} & \text { on } \Gamma, \\
\mu_{a} \geq 0, \quad \mu_{b} \geq 0,
\end{array}\right. \\
\int_{\bar{\Omega}}\left(y_{a}-\mathcal{S}_{2}\left(u^{*}\right)\right) d \mu_{a}=\int_{\bar{\Omega}}\left(\mathcal{S}_{2}\left(u^{*}\right)-y_{b}\right) d \mu_{b}=0, \tag{70}\\
u^{*}=\mathbb{P}_{\left[u_{a}, u_{b}\right]}\left(-\frac{1}{\beta}\left(v^{*}+\rho h^{*}\right)\right),
\end{gathered} \underbrace{}_{v_{j}^{*}=\int_{\Omega} p^{*} r\left(\operatorname{Re} \operatorname{curl} H^{*} \cdot \operatorname{Re} \operatorname{curl} H_{j}+\operatorname{Im} \operatorname{curl} H^{*} \cdot \operatorname{Im} \operatorname{curl} H_{j}\right) \quad \forall j \in\{1, \ldots, n\},} \begin{gathered}
(72) \tag{71}
\end{gather*}
$$

where H_{j} is defined as in Definition 4.1 and $\mathbb{P}_{\left[u_{a}, u_{b}\right]}$ denotes the standard projection from \mathbb{R}^{n} onto $\left[u_{a}, u_{b}\right]^{n}$.

Proof. Since u^{*} satisfies the linearized Slater assumption, there exist Lagrange multipliers $\mu_{a}, \mu_{b} \in \mathcal{M}(\bar{\Omega})$ satisfying (67)-(69) (cf. [ZK79]). Let us demonstrate now that (67) is equivalent to the existence of $p^{*} \in W^{1, q^{\prime}}(\Omega)$ with $1 \leq q^{\prime}<\frac{3}{2}$ and $h^{*}, v^{*} \in \mathbb{R}^{n}$ satisfying (70) and (73)-(75). In view of Remark 4.7, the derivative of \mathcal{S}_{2} at u^{*} in the direction $u \in \mathbb{R}^{n}$ is given by

$$
\begin{equation*}
\mathcal{S}_{2}^{\prime}\left(u^{*}\right) u=y=\sum_{j=1}^{n} u_{j} X_{q}^{\prime}\left(y^{*}\right)^{-1} K_{j}\left(H^{*}\right) \tag{76}
\end{equation*}
$$

Taking (66) and (76) into account, we find that

$$
\begin{aligned}
& \partial_{u} \mathscr{L}\left(u^{*}, \mu_{a}, \mu_{b}\right)\left(u-u^{*}\right) \\
& =f^{\prime}\left(u^{*}\right)\left(u-u^{*}\right)-\int_{\bar{\Omega}} \mathcal{S}_{2}^{\prime}\left(u^{*}\right)\left(u-u^{*}\right) d \mu_{a}+\int_{\bar{\Omega}} \mathcal{S}_{2}^{\prime}\left(u^{*}\right)\left(u-u^{*}\right) d \mu_{b} \\
& =\sum_{j=1}^{n}\left(u_{j}-u_{j}^{*}\right)\left\langle L y^{*}-\widetilde{\mu}_{a}+\widetilde{\mu}_{b}, X_{q}^{\prime}\left(y^{*}\right)^{-1} K_{j}\left(H^{*}\right)\right\rangle_{W^{1, q}(\Omega)^{*}, W^{1, q}(\Omega)} \\
& \quad \quad+\left(\rho h^{*}+\beta u^{*}\right) \cdot\left(u-u^{*}\right),
\end{aligned}
$$

where $\tilde{\mu}_{a}$, and $\tilde{\mu}_{b}$ denote the elements of $W^{1, q}(\Omega)^{*}$ associated with $\mu_{a}, \mu_{b} \in \mathcal{C}(\Omega)^{*} \hookrightarrow$ $W^{1, q}(\Omega)^{*}$ (for $q>3$) in the following sense:

$$
\begin{equation*}
\left\langle\widetilde{\mu}_{a}, v\right\rangle_{W^{1, q}(\Omega)^{*}, W^{1, q}(\Omega)}=\int_{\bar{\Omega}} v d \mu_{a}, \quad\left\langle\widetilde{\mu}_{b}, v\right\rangle_{W^{1, q}(\Omega)^{*}, W^{1, q}(\Omega)}=\int_{\bar{\Omega}} v d \mu_{b} \quad \forall v \in W^{1, q}(\Omega) . \tag{77}
\end{equation*}
$$

Thus, by (62), we infer that

$$
\begin{align*}
& \partial_{u} \mathscr{L}\left(u^{*}, \mu_{a}, \mu_{b}\right)\left(u-u^{*}\right) \\
& =\sum_{j=1}^{n}\left(u_{j}-u_{j}^{*}\right)\left\langle\left(X_{q}^{\prime}\left(y^{*}\right)^{-1}\right)^{*}\left(L y^{*}-\widetilde{\mu}_{a}+\widetilde{\mu}_{b}\right), K_{j}\left(H^{*}\right)\right\rangle_{W^{1, q^{\prime}}(\Omega), W^{1, q^{\prime}}(\Omega)^{*}} \\
& \quad \quad+\left(\rho h^{*}+\beta u^{*}\right) \cdot\left(u-u^{*}\right) \tag{78}\\
& =\sum_{j=1}^{n}\left(u_{j}-u_{j}^{*}\right) \int_{\Omega}\left(X_{q}^{\prime}\left(y^{*}\right)^{-1}\right)^{*}\left(L y^{*}-\widetilde{\mu}_{a}+\widetilde{\mu}_{b}\right) r\left(\operatorname{Re} \operatorname{curl} H^{*} \cdot \operatorname{Re} \text { curl } H_{j}\right. \\
& \left.\quad \quad \quad \operatorname{Im} \operatorname{curl} H^{*} \cdot \operatorname{Im} \operatorname{curl} H_{j}\right)+\left(\rho h^{*}+\beta u^{*}\right) \cdot\left(u-u^{*}\right) .
\end{align*}
$$

On the other hand, the weak formulation of (70) is given by

$$
\begin{array}{r}
\int_{\Omega} \kappa\left(\cdot, y^{*}\right) \nabla p^{*} \cdot \nabla v+\int_{\Omega} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) \nabla y^{*} \cdot \nabla p^{*} v+4 \int_{\Sigma} \sigma\left|y^{*}\right|^{3} G\left(p^{*}\right) v \tag{79}\\
+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} p^{*} v=\int_{\Omega}\left(\nabla y^{*}-z\right) \cdot \nabla v-\int_{\bar{\Omega}} v d \mu_{a}+\int_{\bar{\Omega}} v d \mu_{b} \quad \forall v \in W^{1, q}(\Omega) .
\end{array}
$$

Recall that $X_{q}^{\prime}\left(y^{*}\right): W^{1, q}(\Omega) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}$ is given by

$$
\begin{aligned}
& \left\langle X_{q}^{\prime}\left(y^{*}\right) v, \xi\right\rangle_{W^{1, q^{\prime}}(\Omega)^{*}, W^{1, q^{\prime}}(\Omega)}=\int_{\Omega} \kappa\left(\cdot, y^{*}\right) \nabla v \cdot \nabla \xi+\int_{\Omega} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) v \nabla y^{*} \cdot \nabla \xi \\
& \quad+4 \int_{\Sigma} G\left(\sigma\left|y^{*}\right|^{3} v\right) \xi+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} v \xi \quad \forall \xi \in W^{1, q^{\prime}}(\Omega), \forall v \in W^{1, q}(\Omega)
\end{aligned}
$$

Since the operator G is selfadjoint, the adjoint operator $X_{q}^{\prime}\left(y^{*}\right)^{*}: W^{1, q^{\prime}}(\Omega) \rightarrow$ $W^{1, q}(\Omega)^{*}$ associated with $X_{q}^{\prime}\left(y^{*}\right)$ is given by

$$
\begin{aligned}
& \left\langle X_{q}^{\prime}\left(y^{*}\right)^{*} \xi, v\right\rangle_{W^{1, q}(\Omega)^{*}, W^{1, q}(\Omega)}=\int_{\Omega} \kappa\left(\cdot, y^{*}\right) \nabla \xi \cdot \nabla v+\int_{\Omega} \frac{\partial \kappa}{\partial y}\left(\cdot, y^{*}\right) \nabla y^{*} \cdot \nabla \xi v \\
& \quad+4 \int_{\Sigma} \sigma\left|y^{*}\right|{ }^{3} G(\xi) v+4 \int_{\Gamma} \varepsilon \sigma\left|y^{*}\right|^{3} \xi v \quad \forall \xi \in W^{1, q^{\prime}}(\Omega), \forall v \in W^{1, q}(\Omega)
\end{aligned}
$$

Altogether, we can write the weak formulation (79) as the following operator equation:

$$
\begin{equation*}
X_{q}^{\prime}\left(y^{*}\right)^{*} p^{*}=L y^{*}-\tilde{\mu}_{a}+\tilde{\mu}_{b}, \quad \text { in } \quad W^{1, q}(\Omega)^{*} \tag{80}
\end{equation*}
$$

In view of Theorem 4.4, the operator $X_{q}^{\prime}\left(y^{*}\right): W^{1, q}(\Omega) \rightarrow W^{1, q^{\prime}}(\Omega)^{*}$ is an isomorphism such that the adjoint operator $X_{q}^{\prime}\left(y^{*}\right)^{*}: W^{1, q^{\prime}}(\Omega) \rightarrow W^{1, q}(\Omega)^{*}$ is in turn an isomorphism. Thus, (80) admits a unique solution $p^{*} \in W^{1, q^{\prime}}(\Omega)$ with $1 \leq q^{\prime}<\frac{3}{2}$ given by

$$
p^{*}=\left(X_{q}^{\prime}\left(y^{*}\right)^{*}\right)^{-1}\left(L y^{*}-\tilde{\mu}_{a}+\tilde{\mu}_{b}\right)=\left(X_{q}^{\prime}\left(y^{*}\right)^{-1}\right)^{*}\left(L y^{*}-\tilde{\mu}_{a}+\tilde{\mu}_{b}\right) .
$$

Applying p^{*} to (78), we have

$$
\begin{aligned}
\partial_{u} \mathscr{L}\left(u^{*}, \mu_{s}, \mu_{a}, \mu_{b}\right)\left(u-u^{*}\right)= & \sum_{j=1}^{n}\left(u_{j}-u_{j}^{*}\right) \int_{\Omega} p^{*} r\left(\operatorname{Re} \operatorname{curl} H^{*} \cdot \operatorname{Re} \operatorname{curl} H_{j}\right. \\
& \left.+\operatorname{Im} \operatorname{curl} H^{*} \cdot \operatorname{Im} \operatorname{curl} H_{j}\right)+\left(\rho h^{*}+\beta u^{*}\right) \cdot\left(u-u^{*}\right) \\
= & \left(v^{*}+\rho h^{*}+\beta u^{*}\right) \cdot\left(u-u^{*}\right),
\end{aligned}
$$

where $v^{*} \in \mathbb{R}^{n}$ is specified by

$$
v_{j}^{*}=\int_{\Omega} p^{*} r\left(\operatorname{Re} \operatorname{curl} H^{*} \cdot \operatorname{Re} \text { curl } H_{j}+\operatorname{Im} \operatorname{curl} H^{*} \cdot \operatorname{Im} \operatorname{curl} H_{j}\right) \quad \forall j=1, \ldots, n
$$

Consequently, the variational inequality (67) implies that

$$
0 \leq \partial_{u} \mathscr{L}\left(u^{*}, \mu_{s}, \mu_{a}, \mu_{b}\right)\left(u-u^{*}\right)=\left(v^{*}+\rho h^{*}+\beta u^{*}\right) \cdot\left(u-u^{*}\right) \quad \forall u \in \mathcal{U}_{a d} .
$$

By classical arguments, a pointwise evaluation of the above variational inequality yields the desired projection formula

$$
u^{*}=\mathbb{P}_{\left[u_{a}, u_{b}\right]}\left(-\frac{1}{\beta}\left(v^{*}+\rho h^{*}\right)\right) .
$$

This completes the proof.

A Tools for the Maxwell equations

Throughout this section, we consider a simply connected, bounded Lipschitz domain $O \subset \mathbb{R}^{3}$ such that

$$
\begin{equation*}
\bar{O}:=\bigcup_{i=0}^{m} \overline{O_{i}},(m \geq 1), \quad O_{0}, \ldots, O_{m} \in \mathcal{C}^{0,1}, \quad O_{i} \cap O_{j}=\emptyset, i \neq j \tag{81}
\end{equation*}
$$

Let $I_{c} \subset\{0, \ldots, m\}$ be the index set of the conducting materials, and denote $O_{c}:=\bigcup_{i \in I_{c}} O_{i}, O_{n c}:=O \backslash O_{c}$.
We assume that

$$
\begin{equation*}
\operatorname{dist}\left(O_{i}, O_{j}\right)>0 \text { for } i, j \in I_{c}, i \neq j \tag{82}
\end{equation*}
$$

A. 1 Embedding results

In order to deal with the weak formulation of the Maxwell equations, embedding results for vector fields that satisfy a curl a div, and a γ_{n} or γ_{t} constraint are very important.
For $1 \leq p, \alpha \leq \infty$, we introduce

$$
\begin{align*}
& \mathcal{W}_{n}^{p, \alpha}(O):=\left\{\psi \in L_{\text {curl }}^{p}(O) \cap L_{\text {div }}^{p}(O): \gamma_{n}(\psi) \in L^{\alpha}(\partial O)\right\}, \\
& \mathcal{W}_{t}^{p, \alpha}(O):=\left\{\psi \in L_{\text {curl }}^{p}(O) \cap L_{\text {div }}^{p}(O): \gamma_{t}(\psi) \in L^{\alpha}(\partial O)\right\} . \tag{83}
\end{align*}
$$

In simply connected domains O, these are Banach spaces with repsect to the graph norms

$$
\begin{aligned}
&\|\psi\|_{\mathcal{W}_{n}^{p, \alpha}(O)}:=\|\operatorname{curl} \psi\|_{\left[L^{p}(O)\right]^{3}}+\|\operatorname{div} \psi\|_{L^{p}(O)}+\left\|\gamma_{n}(\psi)\right\|_{L^{\alpha}(\partial O)}, \\
&\|\psi\|_{\mathcal{W}_{n}^{p, \alpha}(O)}:=\|\operatorname{curl} \psi\|_{\left[L^{p}(O)\right]^{3}}+\|\operatorname{div} \psi\|_{L^{p}(O)}+\left\|\gamma_{t}(\psi)\right\|_{L^{\alpha}(\partial O)} .
\end{aligned}
$$

The following result has been proved in [Dru07].
Lemma A.1. Let $O \subset \mathbb{R}^{3}$ be a simply connected bounded Lipschitz domain. Then there exists some $q_{1}>3$ such that for all $p \in\left[q_{1}^{\prime}, q_{1}\right]$, we have $\mathcal{W}_{n}^{p, \alpha}(O) \hookrightarrow\left[L^{s}(O)\right]^{3}$ with continuous embedding, $s:=\min \left\{q_{1}, p^{*}, 3 \alpha / 2\right\}\left(p^{*}=\right.$ Sobolev embedding exponent). If $\partial O \in \mathcal{C}^{1}$, then one can choose $q_{1}=+\infty$. The same is valid for the space $\mathcal{W}_{t}^{p, \alpha}(O)$.

We also need embedding results for the case that one of the constraints is perturbed by a measurable coefficient. For a function μ satisfying (18), we introduce

$$
\begin{equation*}
V_{\mu}(O):=\left\{\psi \in\left[L^{2}(O)\right]^{3} \mid \operatorname{curl} \psi \in\left[L^{2}(O)\right]^{3}, \operatorname{div}(\mu \psi) \in L^{2}(O), \gamma_{n}(\mu \psi)=0 \text { on } \partial O\right\} . \tag{84}
\end{equation*}
$$

We endow $V_{\mu}(O)$ with the graph norm

$$
\|\psi\|_{V_{\mu}(O)}:=\|\psi\|_{\left[L^{2}(O)\right]^{3}}+\|\operatorname{curl} \psi\|_{\left[L^{2}(O)\right]^{3}}+\|\operatorname{div}(\mu \psi)\|_{L^{2}(O)} .
$$

Obviously, $V_{\mu}(O)$ is a Hilbert space in this topology.
Lemma A.2. Let O be a simply connected Lipschitz domain. Assume that μ satisfies (18), and that the domain O satisfies (11).
Then there exists a number $s>3$ such that $V_{\mu}(O) \hookrightarrow\left[L^{s}(O)\right]^{3}$ with continuous embedding. If $\partial O \in \mathcal{C}^{1}$, then one can choose $s=6$.
The embedding $V_{\mu}(O) \hookrightarrow\left[L^{p}(O)\right]^{3}$ is compact for all $1 \leq p<s$.
The following property of the spaces $\mathcal{H}^{q}(O)$ (cf. (8)) is easy to derive (see for example [Dru07] for a proof):
Lemma A.3. Let $O \subset \mathbb{R}^{3}$ have the structure (81) considered throughout the paper and satisfy (82). Then, if $H \in \mathcal{H}^{q}(O)$, we have $\gamma_{n}(\operatorname{curl} H)=0$ on $\partial O_{i}, i \in I_{c}$.

A. 2 A decomposition lemma

Lemma A.4. Let $O \subset \mathbb{R}^{3}$ be a simply connected, bounded Lipschitz domain with the property (82). Let r satisfy, in addition to (22), the condition $r \in \mathcal{C}\left(\overline{O_{i}}\right)$, for $i \in I_{c}$.
Then there exists a $q_{1}>3$ such that for all $q \in\left[q_{1}^{\prime}, q_{1}\right]$, and for all $f \in\left[L^{q}(O)\right]^{3}$ such that $f=0$ almost everywhere in $O_{n c}$, there exist unique $A \in\left\{\mathcal{H}^{q}(O)\right.$: $\operatorname{div} A=$ $\left.0, \gamma_{t}(A)=0\right\}$ and $p_{i} \in W_{M}^{1, q}\left(O_{i}\right)$ (Subscript $M=$ mean-value zero), $i \in I_{c}$ such that

$$
\begin{equation*}
f=\operatorname{curl} A+\frac{1}{r} \sum_{i \in I_{c}} \nabla p_{i} \chi_{O_{i}} . \tag{85}
\end{equation*}
$$

In addition, we can find a positive constant $c=c(O, q, r)$ such that

$$
\begin{equation*}
\|A\|_{L_{\text {curl }}^{q}(O)}+\sum_{i \in I_{c}}\left\|p_{i}\right\|_{W^{1, q}\left(O_{i}\right)} \leq c\|f\|_{\left[L^{q}(O)\right]^{3}} . \tag{86}
\end{equation*}
$$

Proof. For each $i \in I_{c}$, we have $O_{i} \in \mathcal{C}^{0,1}$, and $1 / r \in C\left(\overline{O_{i}}\right)$ is bounded away from zero and from above.

According to the main result of the paper [ERS07] (cf. also the remark 3.18 of [ERS07]) there exists $q_{1}>3$ such that for $i \in I_{c}$ and for all $q \in\left[q_{1}^{\prime}, q_{1}\right]$, there is a unique $p_{i} \in W_{M}^{1, q}\left(O_{i}\right)$ satisfying

$$
\begin{equation*}
\int_{O_{i}} \frac{1}{r} \nabla p_{i} \cdot \nabla \xi=\int_{O_{i}} f \cdot \nabla \xi \tag{87}
\end{equation*}
$$

for all $\xi \in W_{M}^{1, q^{\prime}}\left(O_{i}\right)$, and the estimate

$$
\|p\|_{W^{1, q}\left(O_{i}\right)} \leq c\left(q, O_{i}, r\right)\|f\|_{\left[L^{q}\left(O_{i}\right)\right]^{3}} .
$$

Define

$$
\begin{cases}w=f-1 / r \nabla p_{i} & \text { in } O_{i}, i \in I_{c} \tag{88}\\ 0 & \text { elsewhere }\end{cases}
$$

Then $w \in\left[L^{q_{1}}(O)\right]^{3}$, and in view of (87), $\operatorname{div} w=0$ in O, and $\gamma_{n}(w)=0$ on ∂O, in the weak sense.

We now prove that we can find $A \in\left\{L_{\text {curl }}^{q}(O): \operatorname{div} A=0, \gamma_{t}(A)=0\right\}$ such that $\operatorname{curl} A=w$.

We at first prove that

$$
\begin{equation*}
\left\{\psi \in\left[L^{2}(O)\right]^{3}: \operatorname{div} \psi=0, \gamma_{n}(\psi)=0\right\}=\left\{\operatorname{curl} A: A \in L_{\text {curl }}^{2}(O), \gamma_{t}(A)=0\right\} \tag{89}
\end{equation*}
$$

To verify the last identity, consider first $\psi:=\operatorname{curl} A$, where $A \in L_{\text {curl }}^{2}(O)$, satisfies $\gamma_{t}(A)=0$. It is readily verified that $\operatorname{div} \psi=0, \gamma_{n}(\psi)=0$ in the weak sense. Thus

$$
\begin{equation*}
\left\{\psi \in\left[L^{2}(O)\right]^{3}: \operatorname{div} \psi=0, \gamma_{n}(\psi)=0\right\} \supseteq\left\{\operatorname{curl} A: A \in L_{\text {curl }}^{2}(O), \gamma_{t}(A)=0\right\} . \tag{90}
\end{equation*}
$$

Consider now $\psi \in\left[L^{2}(O)\right]^{3}$ with $\operatorname{div} \psi=0, \gamma_{n}(\psi)=0$, and assume that

$$
\int_{O} \psi \cdot \operatorname{curl} A=0, \quad \forall A \in L_{\text {curl }}^{2}(O), \gamma_{t}(A)=0
$$

Then, by definition, curl $\psi=0$ in the weak sense. Since also $\operatorname{div} \psi=0, \gamma_{n}(\psi)=0$, and since O is simply connected, it follows $\psi=0$. We deduce that
$\left\{\psi \in\left[L^{2}(O)\right]^{3}: \operatorname{div} \psi=0, \gamma_{n}(\psi)=0\right\} \cap\left\{\operatorname{curl} A: A \in L_{\text {curl }}^{2}(O), \gamma_{t}(A)=0\right\}^{\perp}=\emptyset$.
This, combined with (90), achieves to prove (89).
We can further show that

$$
\begin{align*}
& \left\{\operatorname{curl} A: A \in L_{\text {curl }}^{2}(O), \gamma_{t}(A)=0\right\} \\
& \quad=\left\{\operatorname{curl} A: A \in L_{\text {curl }}^{2}(O), \operatorname{div}(A)=0, \gamma_{t}(A)=0\right\} . \tag{91}
\end{align*}
$$

As a matter of fact, given $A \in L_{\text {curl }}^{2}(O), \gamma_{t}(A)=0$, one finds a unique $a \in W_{0}^{1,2}(O)$ such that

$$
\int_{O} \nabla a \cdot \nabla \xi=\int_{O} A \cdot \nabla \xi
$$

for all $\xi \in W_{0}^{1,2}(O)$. Define the vector field $\bar{A}:=A-\nabla a$. Then $\operatorname{curl} A=\operatorname{curl} \bar{A}$, showing that

$$
\begin{aligned}
& \left\{\operatorname{curl} A: A \in L_{\text {curl }}^{2}(O), \gamma_{t}(A)=0\right\} \\
& \quad \subseteq\left\{\operatorname{curl} A: A \in L_{\text {curl }}^{2}(O), \operatorname{div}(A)=0, \gamma_{t}(A)=0\right\} .
\end{aligned}
$$

In view of (89) and (91), there exists $A \in L_{\text {curl }}^{2}(O)$ such that $\operatorname{div} A=0, \gamma_{t}(A)=0$, and $w=\operatorname{curl} A$.
From the definition (88) of w, we deduce that curl A belongs to $\left[L^{q}(O)\right]^{3}$.
Using the notation (83), we can write that $A \in \mathcal{W}_{t}^{q, \infty}(O)$. Thus, by the embedding result of Lemma A.1, $A \in\left[L^{q}(O)\right]^{3}$, and

$$
\|A\|_{L_{\text {curl }}^{q}(O)} \leq c(q, O, r)\|f\|_{\left[L^{q}(O)\right]^{3}},
$$

proving the estimate.
Finally, we easily verify from (88) that curl $A=0$ in $O \backslash O_{c}$, which leads to $A \in \mathcal{H}^{q}(O)$.

B Essential properties of the radiation operators

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded Lipschitz domain, $\bar{\Omega}=\bigcup_{i=0}^{m} \overline{\Omega_{i}}, m \geq 1$, where $\left\{\Omega_{i}\right\}_{i=0, \ldots, m}$ is a family of bounded Lipschitz domains such that $\Omega_{i} \cap \Omega_{j}=\emptyset$ for $i \neq j$. Assume that Ω_{0} is enclosed in Ω in the sense that every $x \in \partial \Omega_{0}$ is an interior point of Ω. Set $\Sigma:=\partial \Omega_{0}$ and $\Gamma=\partial \Omega$.
We introduce the linear integral operator K defined by

$$
\begin{equation*}
(K(R))(z):=\int_{\Sigma} w(z, y) R(y) d S_{y} \quad \text { for } z \in \Sigma \tag{92}
\end{equation*}
$$

where the kernel $w: \Sigma \times \Sigma \rightarrow \mathbb{R}$, called the view factor in the context of radiation theory, is given by

$$
w(z, y):= \begin{cases}\frac{\vec{n}(z) \cdot(y-z) \vec{n}(y) \cdot(z-y)}{\pi|y-z|^{4}} \Theta(z, y) & \text { if } z \neq y \tag{93}\\ 0 & \text { if } z=y\end{cases}
$$

where Θ is the visibility function that penalizes the presence of opaque obstacles

$$
\Theta(z, y)=\left\{\begin{array}{cc}
1 & \text { if }] z, y\left[\subset \Omega_{0}\right. \\
0 & \text { else }
\end{array}\right.
$$

With the symbol $] z, y[$, we denote the set $\operatorname{conv}\{z, y\} \backslash\{z, y\}$, and \vec{n} is a unit normal to Σ.

Under mild assumptions on the geometry and on the emissivity ε (cf. Lemma B.2, (3)), the solution operator of the radiosity equation $(I-(1-\varepsilon) K)^{-1}$ is well defined. We then can define another linear operator

$$
\begin{equation*}
G:=(I-K)(I-(1-\varepsilon) K)^{-1} \varepsilon, \tag{94}
\end{equation*}
$$

We recall some basics about the nonlocal radiation operators K, G. For Banach spaces X, Y, we denote by $\mathcal{L}(X, Y)$ the set of all linear bounded operators from X into Y. The following Lemma has been proved in [Han02] for polyhedral surfaces, in [Tii97] for piecewise \mathcal{C}^{1}-boundaries.

Lemma B.1. Let $\Sigma \in \mathcal{C}^{1}$ piecewise. Let $w: \Sigma \times \Sigma \rightarrow \mathbb{R}$ denote the view factor (93). Then, for almost all $z \in \Sigma$,

$$
\int_{\Sigma} w(z, y) d S_{y} \leq 1
$$

In addition, equality almost everywhere is valid if and only if the enclosure condition (10) is satisfied.

The following lemma states easily derived, but essential consequences of Lemma B.1.

Lemma B.2. Let the hypotheses of Lemma B. 1 be valid.
(1) For each $1 \leq p \leq \infty$ the operator K extends to a bounded linear operator from $L^{p}(\Sigma)$ into itself, and the norm estimate $\|K\|_{\mathcal{L}\left(L^{p}(\Sigma), L^{p}(\Sigma)\right)} \leq 1$ is valid.
(2) The operator K is positive, in the sense that $K(f) \geq 0$ almost everywhere on Σ, whenever $f \geq 0$ almost everywhere on Σ. Moreover, K is positive semi definite and selfadjoint in $L^{2}(\Sigma)$.
(3) If $\varepsilon: \Sigma \rightarrow \mathbb{R}$ is such that

$$
0<\varepsilon_{l} \leq \varepsilon(z) \leq 1 \quad \text { on } \Sigma,
$$

then the operator $[I-(1-\varepsilon) K]$ has an inverse in $\mathcal{L}\left(L^{p}(\Sigma), L^{p}(\Sigma)\right)$.
(4) The operator G is positive semi definite and selfadjoint in $L^{2}(\Sigma)$. The operator $\mathbb{H}:=I-G$ is positive, selfadjoint in $L^{2}(\Sigma)$, and satisfies for all $1 \leq p \leq \infty$ the norm estimate $\|\mathbb{H}\|_{\mathcal{L}\left(L^{p}(\Sigma), L^{p}(\Sigma)\right)} \leq 1$.
(5) Assume that (10) is valid. Then the kernel of the operator G consists of the functions constant almost everywhere on Σ. The range of G consists of functions with mean value zero over Σ.

References

[AZ90] J. Appell and P.P. Zabrejko. Nonlinear Superposition Operators, Cambridge University Press, 1990.
[CT08] E. Casas and F. Tröltzsch First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations To appear in SIAM J. on Optimization.
[Dru07] P.-E. Druet. Higher integrability of the Lorentz force for weak solutions to Maxwell's equations in complex geometries. Preprint 1270 of the Weierstrass Institute for Applied mathematics and Stochastics, Berlin, 2007. Available in pdf-format at http://www.wias-berlin.de/publications/preprints/1270.
[Dru09] P.-E. Druet. Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in $L^{p}(p \geq 1)$. Math. Meth. Appl. Sci., 32:135-166, 2009.
[ERS07] J. Elschner, J. Rehberg and G. Schmidt. Optimal regularity for elliptic transmission problems including \mathcal{C}^{1} interfaces. Interfaces Free Bound., 9:233-252, 2007.
[FT78] C. Foias and R. Temam. Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 1:29-63, 1978. (French).
[GK08] Griesse, R. and Kunisch, K. Optimal Control for a Stationary MHD System in Velocity-Current Formulation, SIAM Journal on Control and Optimization, 45:1822-1845, 2006.
[Han02] O. Hansen. The radiosity equation on polyhedral domains. Logos Verlag, Berlin, 2002.
[HDMR08] R. Haller-Dintelmann, C. Meyer, and J. Rehberg. Hölder continuity for second order elliptic problems with nonsmooth data. Preprint 1316 of the Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2008. Available in PDF format at http://www.wias-berlin.de/publications/preprints/1316.
[H04] Hömberg, D. A mathematical model for induction hardening including mechanical effects, Nonlinear Anal. Real World Appl., 5:55-90, 2004.
[KS80] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.
[KPS04] O. Klein, P. Philip and J. Sprekels. Modelling and simulation of sublimation growth in SiC bulk single crystals. Interfaces and Free Boundaries, 6(1):295-314, 2004.
[KL96] M. Křižek and L. Liu. On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type. Applicationes Mathematicae, 24:97-107, 1996.
[LT01] M. Laitinen and T. Tiihonen. Conductive-radiative heat transfer in grey materials. Quart. Appl. Math., 59(4):737-768, 2001.
[MPT06] C. Meyer, P. Philip and F Tröltzsch. Optimal control of a semilinear PDE with nonlocal radiation interface conditions. SIAM J. Control and Optimization, 45:699-721, 2006.
[MY08a] C. Meyer and I. Yousept. State-constrained optimal control of semilinear elliptic equations with nonlocal radiation interface conditions. SIAM J. Control and Optimization, 48:734-755, 2009.
[MY08b] C. Meyer and I. Yousept. Regularization of state-constrained elliptic optimal control problems with nonlocal radiation interface conditions. To appear in Comput. Optim. Appl., 2008. DOI: 10.1007/s10589-007-9151-8.
[Mon03] P. Monk. Finite element methods for Maxwell's equations. Clarendon Press, Oxford, 2003.
[Tii97] T. Tiihonen. Stefan-Boltzmann radiation on non-convex surfaces. Math. Meth. in Appl. Sci., 20(1):47-57, 1997.
[ZK79] J. Zowe and S. Kurcyusz. Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optimization, 5:4962, 1979.
[Voi01] A. Voigt. Numerical Simulation of Industrial Crystal Growth. PhD thesis, Technische-Universität München, Germany, 2001.

[^0]: 2000 Mathematics Subject Classification. 49K20, 35D10, 35J60, 78M50, 80M50.
 Key words and phrases. State-constrained optimization, Maxwell equations, nonlocal radiation boundary conditions, induction heating, crystal growth.

 This research is supported by DFG Research Center 'Mathematics for Key Technologies' Matheon (FZT 86) in Berlin.

[^1]: ${ }^{1}$ This means that for each $i=0, \ldots, m$, the set O_{i} is a domain (a connected open set), in which the material properties are uniformely continuous. Observe that in this way, several domains O_{i} can consist of the same material, provided that they are in positive distance from each other.
 ${ }^{2}$ For each $j \in\{1, \ldots, n\}$, there exist numbers $r_{j, 1}>r_{j, 2}>0$ and a fixed vector $z_{j} \in \mathbb{R}^{3}$, such that the set R_{j} is the torus

[^2]: ${ }^{3}$ To help the representation, let us note that if R_{j} is the torus characterized by the radii $r_{j, 1}>r_{j_{2}}$, then the surface P is any of the disks
 where $\left.\left.\phi_{0} \in\right] 0,2 \pi\right]$ is arbitrary, but fixed, and $z_{j} \in \mathbb{R}^{3}$.

