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Abstract

We describe a new software package for the numerical solution of general linear or nonlin-
ear switched differential-algebraic equations (DAEs). The package embeds the DAE solvers
GELDA and GENDA into a hybrid mode controller that determines the switch points, or-
ganizes the mode switching, and provides consistent initial values to restart the integration
method at the switch point. It can deal with systems of arbitrary index and with linear
systems that do not have unique solutions or inconsistencies in the initial values or the in-
homogeneity. Nonuniqueness and inconsistencies are treated in a least square sense. The
package includes the possibility of sliding mode simulation that allows an efficient treatment
of chattering behavior during the simulation of a hybrid system. We give explicit descriptions
how to use the package and include a numerical example.

1 Purpose

DGESDA is a general purpose code for the solution of initial value problems for GEneral Switched
Differential-Algebraic equations. It is designed to solve switched systems that are composed
of several different constrained dynamical systems described by differential-algebraic equations
(DAEs) that switch between different operation modes on the basis of transition conditions. The
modeling concept is based on the general theory of DAEs as described in [13] and considers
hybrid systems composed of a collection of continuous and discrete subsystems and the possible
interaction between these subsystems following an approach given in [1, 9]. We assume that the
discrete and continuous subsystems only interact via instantaneous discrete transitions at distinct
points in time called events. In the following, a hybrid system of differential-algebraic equations H
is defined as a collection of NF systems of differential-algebraic equations, given either in general
nonlinear form

F ℓ(t, xℓ, ẋℓ) = 0, ℓ ∈ M, (1)

with sufficiently smooth functions F ℓ : Dℓ × R
nℓ × R

nℓ → R
mℓ , or as linear DAEs in the form

Eℓ(t)ẋℓ = Aℓ(t)xℓ + f ℓ(t), ℓ ∈ M, (2)

with sufficiently smooth functions f ℓ : Dℓ → R
mℓ and Eℓ, Aℓ : Dℓ → R

mℓ,nℓ , where M =
{1, . . . , NF }, NF ∈ N is the finite set of modes. In this setting, (1) or (2) are the DAEs that
describe the dynamics of the hybrid system in mode ℓ ∈ M defined on the domain Dℓ that is given
as the union of certain intervals Ii. Hereby, the integration interval I = [t0, tf ] ⊂ R is decomposed

into subintervals Ii = [τi, τ
′

i) for i = 1, . . . , NI−1 and INI
= [τNI

, τ ′

NI
], NI ∈ N such that I =

⋃NI

i=1 Ii

and
⋃

ℓ∈M
Dℓ = I as well as Dℓ ∩ Dk = ∅ for ℓ 6= k, in such a way that in each of these intervals
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the dynamics of the system is governed by only one DAE. Here, we have τ1 = t0, τ ′

NI
= tf and

τ ′

i = τi+1 for i = 1, . . . , NI − 1 as well as τi < τ ′

i for i = 1, . . . , NI. The hybrid system changes
between different modes on the basis of transition conditions. Each mode ℓ ∈ M has an index set
of autonomous transitions Jℓ = {1, 2, . . . , nℓ

T }, where nℓ
T ∈ N is the number of possible transitions

of mode ℓ, and each transition j ∈ Jℓ has a transition condition

Lℓ
j(t, x

ℓ, ẋℓ), with Lℓ
j : Dℓ × R

nℓ × R
nℓ → {TRUE, FALSE}, (3)

which determines when the transition should be made. If Lℓ
j(t̂, x

ℓ(t̂), ẋℓ(t̂)) = FALSE for all

j ∈ Jℓ at a time t̂ ∈ Dℓ, then the system stays in the current mode. On the other hand, if there
exists an integer j ∈ Jℓ such that Lℓ

j(t̂, x
ℓ(t̂), ẋℓ(t̂)) = TRUE at time t̂, then the system switches

to another mode. When a transition condition is satisfied, i.e., a so-called state event has occurred,
the event time is localized as root of a switching function. The relations that make up a transition
condition Lℓ

j(t, x
ℓ, ẋℓ) are formulated as roots of so-called switching functions

gℓ
j,i : Dℓ × R

nℓ × R
nℓ → R, for i = 1, . . . , nℓ

j , j ∈ Jℓ,

with gℓ
j,i(t, x

ℓ, ẋℓ) > 0 in mode ℓ. Each time a switching function crosses zero, i.e., if gℓ
j,i(t, x

ℓ, ẋℓ) ≤

0 for a j ∈ Jℓ and some i, the associated transition condition may switch its logical value, such
that the roots of the switching functions are the switch points (or event times) τ ′

i = τi+1 of
the system. Note that the switch points are not known in advance but determined during the
integration depending on the state of the system. Here, a transition condition Lℓ

j is described

by nℓ
j separated switching functions gℓ

j,i whose logical combination determines if the transition
condition is satisfied. In this way, the switching functions can be chosen as simple as possible,
allowing an efficient and reliable computation of the switch points by a root finding procedure.
After the location of a state event the successor mode is determined by the so-called mode allocation
function

Sℓ : Jℓ → M, with Sℓ(j) = k (4)

that assigns the successor mode k corresponding to the jth transition comming from mode ℓ.
Finally, each transition j ∈ Jℓ has a transition function T k

ℓ : R
nℓ × R

nℓ → R
nk,2 of the form

T k
ℓ (xℓ(τ ′

i), ẋ
ℓ(τ ′

i)) = [xk(τi+1), ẋ
k(τi+1)] (5)

that maps the final values of the variables xℓ in the predecessor mode ℓ to the corresponding initial
values in the successor mode k at time τ ′

i = τi+1 ∈ Dk according to the jth transition.
Hybrid systems defined in this way have no limitations with respect to the types of DAEs in the
different modes, as long as these are solvable in the interval set Dℓ, but there are restrictions
concerning the transition processes. The number of mode changes must be finite, as otherwise
no reasonable numerical integration is possible. Furthermore, we assume that the integration
intervals have a nonzero measure, i.e., instantaneous multiple mode changes are not possible and
that only one transition condition is becoming true at a time.
The numerical simulation of hybrid differential-algebraic systems requires the efficient treatment
of certain aspects in the hybrid system behavior. Besides the robust numerical integration of
the DAEs in each operation mode, the points in time at which a transition condition changes its
logical value have to be detected as the roots of the switching functions. These switch points have
to be located accurately and in strict temporal sequence as they are the initial points for further
integration and influence the mode switching and the future behavior of the hybrid systems. Fur-
ther, the system state at the switch point has to be determined to restart the integration method
in the new mode. Since the switch points will in general not coincide with the points chosen by
the stepsize control, an interpolation method is needed that interpolates the computed solution
at the detected switch point. Finally, chattering behavior, i.e., repeated mode switching during
the integration has to be treated in an appropriate way. The solver DGESDA provides a tool
for the numerical integration of hybrid systems defined as described above. It combines the DAE
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solver for the integration of the system in each mode with an outer mode controller that triggers
root finding, mode switching and the restart of the integration procedure. Furthermore, the solver
provides the possibility of sliding mode simulation to suppress chattering during the integration.

The report is organized as follows. Section 2 summarizes the mathematical background concerning
the numerical treatment of switched DAE systems. In Section 2.1 we discuss index reduction for
switched systems that enables the reformulation as reduced strangeness-free system that will be
used for the discretization and in Section 2.2 we discuss the concept of sliding motion for switched
DAE systems. In Section 3 we present the hybrid system solver DGESDA, describe the procedures
used in the solver and discuss its features in detail. Section 4 gives a documentation of the solver
DGESDA. In the Appendix A we present a numerical example to demonstrate the usage of the
solver.

2 Mathematical Background

In this section we shortly summarize the theory for the numerical solution of switched DAE
systems, for details see also [9, 16, 23]. For switched differential-algebraic systems a reduction to a
strangeness-free system must be realized just as for standard DAEs to be able to apply numerical
methods suited for DAEs in the integration process, see [13]. Depending on the form of the DAE
in each mode a strangeness-free system can be determined as described in [12, 15] for nonlinear
DAEs or in [14] for linear DAEs. In the following, we describe the more general nonlinear case.
Furthermore, we introduce the concept of sliding motion that enables an appropriate treatment
of chattering behavior in hybrid system simulation.

2.1 Index Reduction for Switched DAE Systems

We consider a hybrid system described by nonlinear DAEs of the form (1) in each mode ℓ ∈
M. The index reduction procedure for nonlinear DAEs described e.g. in [12, 13] can be applied
independently for each mode as has been shown in [9]. We introduce the nonlinear derivative
array Fℓ

i of level i in mode ℓ of the form

Fℓ
i (t, xℓ, ẋℓ, . . . ,

di+1

dti+1
xℓ) = 0, (6)

which stacks the original equations of the DAE in mode ℓ and all its derivatives up to level i into
one large system

Fℓ
i (t, xℓ, ẋℓ, . . . , xℓ(i+1)) =











F ℓ(t, xℓ, ẋℓ)
d
dt

F ℓ(t, xℓ, ẋℓ)
...

di

dti F
ℓ(t, xℓ, ẋℓ)











.

In the following, partial derivatives of Fℓ
i with respect to selected variables p from (t, xℓ, . . . , xℓ(i+1))

are denoted by Fℓ
i;p, e.g.,

Fℓ
i;xℓ =

∂

∂xℓ
Fℓ

i , Fℓ
i;ẋℓ,...,xℓ(i+1) =

[

∂

∂ẋℓ
Fℓ

i . . .
∂(i+1)

∂xℓ(i+1)
Fℓ

i

]

.

To obtain a reduced system a hypothesis was introduced in [12]. Adapted to the case of hybrid
DAE systems the hypothesis can be stated as follows.

Hypothesis 1. Consider a nonlinear differential-algebraic equations (1) in mode ℓ ∈ M. There
exist integers µℓ, rℓ, aℓ, dℓ and vℓ such that the solution set of the derivative array Fℓ

µℓ

L
ℓ
µℓ = {(t, xℓ, ẋℓ, . . . , xℓ(µℓ+1)) ∈ Dℓ × R

(µℓ+2)nℓ | Fℓ
µℓ(t, x

ℓ, ẋℓ, . . . , xℓ(µℓ+1)) = 0}

is not empty, and the following properties hold:
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1. The set L
ℓ
µℓ ⊂ R

(µℓ+2)nℓ+1 forms a manifold of dimension (µℓ + 2)nℓ + 1 − rℓ.

2. We have rankFℓ

µℓ;xℓ,ẋℓ,...,xℓ(µℓ+1)
= rℓ on L

ℓ
µℓ .

3. We have corankFℓ

µℓ;xℓ,ẋℓ,...,xℓ(µℓ+1)
− corankFℓ

µℓ−1;xℓ,ẋℓ,...,xℓ(µℓ)
= vℓ on L

ℓ
µℓ . (The corank is

the codimension of the range and we use the convention that corankFℓ
−1;xℓ = 0.)

4. We have rankFℓ

µℓ;ẋℓ,...,xℓ(µℓ+1)
= rℓ − aℓ on L

ℓ
µℓ such that there are smooth full rank matrix

functions Zℓ,2 and Tℓ,2 defined on L
ℓ
µℓ of size ((µℓ + 1)mℓ, a

ℓ) and (nℓ, nℓ − aℓ) satisfying

ZT
ℓ,2F

ℓ

µℓ;ẋℓ,...,ẋℓ(µℓ+1) = 0, rank ZT
ℓ,2F

ℓ
µℓ;xℓ = aℓ, ZT

ℓ,2F
ℓ
µℓ;xℓTℓ,2 = 0

on L
ℓ
µℓ .

5. We have rank F ℓ
;ẋℓTℓ,2 = dℓ = mℓ − aℓ − vℓ on L

ℓ
µℓ such that there exists a smooth matrix

function Zℓ,1 defined on L
ℓ
µℓ of size (mℓ, d

ℓ) with ZT
ℓ,1F

ℓ
;ẋℓTℓ,2 having full rank.

The smallest possible µℓ in Hypothesis 1 is called the strangeness index of the DAE (1) in mode ℓ

and systems with vanishing strangeness-index are called strangeness-free. The maximal strangeness
index µmax of a hybrid system H is given by

µmax = max
ℓ∈M

{µℓ},

and a hybrid system H is called strangeness-free if µmax = 0. Further, a DAE (1) that satisfies
Hypothesis 1 with nℓ = mℓ = dℓ + aℓ is called regular. The corresponding numbers dℓ and aℓ are
the numbers of differential and algebraic equations of the DAE in mode ℓ. It has been shown in
[12] that Hypothesis 1 implies locally the existence of a reduced system of the form

F̂ ℓ(t, xℓ
1, x

ℓ
2, x

ℓ
3, ẋ

ℓ
1, ẋ

ℓ
2, ẋ

ℓ
3) = 0, (7a)

xℓ
3 −Rℓ(t, xℓ

1, x
ℓ
2) = 0, (7b)

independently in each mode ℓ ∈ M, with F̂ ℓ = ZT
ℓ,1F

ℓ. Note that an initial condition is consistent

with the DAE in mode ℓ if it satisfies the algebraic equation xℓ
3−Rℓ(t, xℓ

1, x
ℓ
2) = 0. Eliminating xℓ

3

and ẋℓ
3 in (7a) with the help of (7b) and its derivative leads to a system

F̂ ℓ(t, xℓ
1, x

ℓ
2,R

ℓ(t, xℓ
1, x

ℓ
2), ẋ

ℓ
1, ẋ

ℓ
2,R

ℓ
t(t, x

ℓ
1, x

ℓ
2) + Rℓ

xℓ
1
(t, xℓ

1, x
ℓ
2)ẋ

ℓ
1 + Rℓ

xℓ
2
(t, xℓ

1, x
ℓ
2)ẋ

ℓ
2) = 0.

By part 5 of Hypothesis 1 we may assume w.l.o.g. that this system can (locally via the implicit
function theorem) be solved for ẋℓ

1, leading to a system of the form

ẋℓ
1 = Lℓ(t, xℓ

1, x
ℓ
2, ẋ

ℓ
2),

xℓ
3 = Rℓ(t, xℓ

1, x
ℓ
2),

(8)

which has a vanishing strangeness index. Obviously, in this system xℓ
2 ∈ C1(Dℓ, R

uℓ

), with
uℓ = nℓ − dℓ − aℓ, can be chosen arbitrarily (at least when staying in the domain of definition of
Rℓ and Lℓ), i.e., it plays the role of a control. When xℓ

2 has been chosen, then the resulting system
has (locally) a unique solution for xℓ

1 and xℓ
3, provided that a consistent initial condition is given.

Theorem 1. [12] Let F ℓ in (1) be sufficiently smooth and satisfy Hypothesis 1 with µℓ, rℓ, aℓ,
dℓ, vℓ and uℓ = nℓ − dℓ − aℓ. Then, every solution of (1) also solves the reduced problems (7) and
(8) consisting of dℓ differential and aℓ algebraic equations.

Remark 2. In the reduced systems (7) and (8) we have not used the quantity vℓ. This quantity
measures the number of equations in the original system that give rise to trivial equations 0 = 0,
i.e., it counts the number of redundancies in the system. Together with aℓ and dℓ it gives a
complete classification of the mℓ equations into dℓ differential equations, aℓ algebraic equations
and vℓ trivial equations.

4



In order to be able to derive a reduced hybrid system that is strangeness-free we need to assume
that Hypothesis 1 holds for each separate mode.

Hypothesis 2. In each mode ℓ ∈ M and each domain Dℓ the strangeness index µℓ is well-defined,
i.e., the DAE in mode ℓ satisfies Hypothesis 1 with constant characteristic values µℓ, rℓ, aℓ, dℓ, vℓ.

If Hypothesis 2 is violated at a finite number of points, then we can introduce new modes and
further switching points to satisfy Hypothesis 2. Then, a reduced system as in (7) or (8) with the
same solution as the original DAE (1) in mode ℓ can be extracted independently in each mode
and, therefore, also for the complete hybrid system. Connecting all the reduced systems together
we locally obtain an equivalent reduced hybrid system denoted by Ĥ, which is strangeness-free.
By solving the corresponding transformed systems, the solution of the complete hybrid system
can be computed for every time t. For hybrid systems satisfying Hypothesis 2 it has been shown
in [9, 23] that every sufficiently smooth solution of the original hybrid system is also a solution of
this equivalent strangeness-free hybrid system.

2.2 Sliding Motion

A special phenomena that can occur during the simulation of hybrid systems is a fast changing
between different modes of continuous operation, called chattering. The numerical solution of a
hybrid system exhibiting chattering behavior requires high computational costs and, in the worst
case, the numerical integration breaks down as it does not proceed in time, but chatters between
modes. To prevent chattering and to reduce the computational costs, the system dynamics along
the switching surface can be regularized in the regions where chattering occurs by adding an
additional mode, the so-called sliding mode, that represents the dynamics during sliding. Sliding
motion is well understood for ordinary differential equations, see e.g. [6, 21]. These ideas have
been extended to the case of DAEs in [16, 23].
We consider a hybrid DAE system H that switches from mode ℓ to mode k, assuming that each
transition condition Lℓ

j is described by exactly one switching function gℓ
j , i.e., nℓ

j = 1. Further,
we restrict to switching functions independent of the state derivative, such that mode switching
occurs at points on the switching surfaces

Γℓ
j =

{

(t, xℓ) ∈ Dℓ × R
nℓ | gℓ

j(t, x
ℓ) = 0

}

, j ∈ Jℓ, ℓ ∈ M. (9)

Further, we assume that gℓ
j;xℓ(t, x

ℓ) 6= 0 in a neighborhood of the switching surface Γℓ
j and that

the two modes are separated by the j-th switching surface Γℓ
j . Assuming regularity and well-

definedness of the strangeness index in each mode, the DAEs in the modes ℓ and k can be trans-
formed to the corresponding reduced systems of the form (8) given by

ẋℓ
1 = Lℓ(t, xℓ

1), ẋk
1 =Lk(t, xk

1),

xℓ
2 = Rℓ(t, xℓ

1), xk
2 =Rk(t, xk

1).
(10)

The hybrid system exhibits chattering behavior if all solutions near the switching surface Γℓ
j

approach it from both sides, i.e., if the projections of the velocity vectors describing the dynamical
parts of the corresponding reduced systems onto the surface gradient are of opposite signs and
directed towards the surface from both sides in a neighborhood of the switching surface. The
sliding condition can be formulated as

Lℓ
N = gℓ

j;xℓ
1
(t, xℓ

1, x
ℓ
2)L

ℓ(t, xℓ
1) < 0 and Lk

N = gk
j̃;xk

1
(t, xk

1 , xk
2)Lk(t, xk

1) > 0, (11)

for (t, x) ∈ Γℓ
j = Γk

j̃
. These directional derivatives can be approximated numerically by

Lℓ
N ≈

1

δ
gℓ

j(t, x
ℓ
1 + δLℓ(t, xℓ

1), x
ℓ
2), Lk

N ≈
1

δ
gk

j̃
(t, xk

1 + δLk(t, xk
1), xk

2), (12)
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for small enough δ. During the numerical simulation an immediate switch back to mode ℓ after
one or a few integration steps in mode k would result if the sliding condition is satisfied. To
avoid this, we add an additional mode defining the dynamics of the DAE during sliding and
switch to the sliding mode instead. To define the behavior during sliding the system dynamics
are approximated in such a way that the state trajectory moves along the switching surface. We
generalize an approach called Filippov regularization, see e.g. [6, 21], where the velocity vector
of sliding motion is approximated as a convex combination of the velocity vectors on both side
of the switching surface in such a way that it lies on a plane tangential to the switching surface.
The system evolves in the sliding mode as long as the sliding condition is satisfied, and resumes
in mode ℓ or k afterwards, depending on the sign of the directional derivatives.
Let dℓ, dk and aℓ, ak denote the number of differential and algebraic equations in mode ℓ and mode
k, i.e., the dimension of xℓ

1, x
k
1 and xℓ

2, x
k
2 in the corresponding reduced systems (10). Further, let

dℓ + aℓ = dk + ak = n and without loss of generality assume that dℓ ≥ dk and aℓ ≤ ak. Then, xℓ
1

and xk
2 can be further partitioned into

xℓ
1 =

[

xℓ
1,1

xℓ
1,2

]

, xk
2 =

[

xk
2,1

xk
2,2

]

,

with xℓ
1,1 ∈ R

dk

, xℓ
1,2 ∈ R

dℓ
−dk

and xk
2,1 ∈ R

aℓ

, xk
2,2 ∈ R

ak
−aℓ

. Then, the corresponding reduced
systems can be partitioned accordingly into

[

ẋℓ
1,1

ẋℓ
1,2

]

=

[

Lℓ
1(t, x

ℓ
1,1, x

ℓ
1,2)

Lℓ
2(t, x

ℓ
1,1, x

ℓ
1,2)

]

,

xℓ
2 = Rℓ(t, xℓ

1,1, x
ℓ
1,2),

and
ẋk

1 = Lk(t, xk
1),

[

xk
2,1

xk
2,2

]

=

[

Rk
1(t, xk

1)
Rk

2(t, xk
1)

]

.
(13)

Using the ideas of the Filippov regularization we define the differential-algebraic system in sliding
motion by

ẋ1 = α

[

Lℓ
1(t, x1)

Lℓ
2(t, x1)

]

+ (1 − α)

[

Lk(t, x1)
0

]

, (14a)

x2 = α

[

Rℓ(t, x1)
0

]

+ (1 − α)

[

Rk
1(t, x1)

Rk
2(t, x1)

]

, (14b)

0 = gℓ
j(t, x1, x2). (14c)

It has been shown in [16, 23] that the DAE in sliding motion (14) is regular and of strangeness
index µ = 1 if

gℓ
j;x2

(t, x1, x2)
(

Rk(t, x1) −Rℓ(t, x1)
)

is nonsingular for all (t, x1, x2) ∈ Dℓ ×R
n. Here, the algebraic variable α ensures that the solution

stays on the manifold Γℓ
j described by the algebraic constraint (14c). The differential equation

(14a) describes the equivalent dynamics of the system during sliding motion and the algebraic
equations (14b) is defined as a transformation of the constraint manifolds in the two modes such
that Rℓ(t, x1) is turned into Rk(t, x1) or vice versa depending on the direction of the discontinuity
crossing.

3 The Hybrid System Solver

The solver DGESDA is designed for the numerical solution of initial value problems for hybrid
differential-algebraic systems that consist of a number of either nonlinear DAEs of the form (1)
or linear DAEs of the form (2) in each mode ℓ ∈ M. For the numerical integration of the DAEs
in each mode existing integration methods for continuous differential-algebraic systems have been
embedded in the mode controller. The mode controller that determines the switch points, organizes
the mode switching, and provides consistent initial values to restart the integration method at the
switch point is designed independently of the integration method, the index reduction procedure,
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or the switch point location method. Ideally, the index reduction technique and the integration
method should be chosen according to the type of the DAE in the current mode. Currently,
the DAE solvers DGELDA [14] and DGENDA [15], see Section 3.1, have been embedded for the
solution of linear and nonlinear DAEs, respectively. Note, that the DAE in each mode has to
be mathematically well-behaved in a small interval following an event to ensure that the solution
is a smooth function over the whole integration step and, in particular, that a solution of the
DAE in each mode exists until the end of an integration step. Using this assumption we can lock
the function evaluation for the DAE solver during an integration step such that the equations
evaluated cannot be changed while a small time step is taken even if the transition condition is
satisfied.
The user has to provide the descriptions of the DAEs in each mode together with a sufficient
number of derivatives of the system depending on the index of the DAE in each mode. For
linear DAEs of the form (2) the matrices Eℓ, Aℓ and the right-hand sides f ℓ together with the
corresponding derivatives up to a certain order have to be provided in the subroutine MATSUB.
For nonlinear DAE systems of the form (1) the functions F ℓ together with the corresponding
derivatives have to be provided in the subroutine FUN, and the corresponding Jacobians in the
subroutine DFUN. Further, the user has to specify the transition conditions for each mode in
the subroutine UINTER and the corresponding switching functions in the subroutine GFUN.
The roots of the switching functions defined in GFUN have to correspond to the points in time
where a transition condition defined in UINTER changes its logical value. The successor modes are
determined by the mode allocation functions implemented in a user-provided subroutine MCHNG.
Finally, the transition functions have to be provided in the subroutine TRANS that transfer the
state of the system at a switch point to the initial state in the successor mode. For a detailed
description of the user-supplied subroutines see Section 4.2.1.
Starting from given or computed consistent initial conditions in the initial mode, the state of
the system evolves according to the current DAE that is numerically integrated according to its
structure with an appropriate DAE solver until an event occurs. After each successful time step of
the numerical integration the DAE solver checks whether a transition condition is satisfied by calls
to the user-provided subroutine UINTER. Further, the DAE solver checks for changes in the index
or in the characteristic values of the current DAE. If a transition condition is satisfied or changes in
the characteristic values occur, then the integration is stopped. Changes in the characteristic values
can only be handled by introducing further mode changes and additional modes, such that each
DAE is well-defined in a small interval following a switch point. Otherwise, if a transition condition
is satisfied, the switch point is localized as the root of a switching function. The root finding
procedure implemented in the subroutine DRTFND uses a modified secant method described
in Section 3.2. The successor mode is then determined by the mode allocation function (4)
implemented in the user-provided subroutine MCHNG. The solver determines the state at the
switch point of the current solution by interpolation. The subroutines DCONTS and DBDTRP
provide interpolation routines for Runge-Kutta and BDF methods, respectively, as described in
Section 3.3. Next, with the help of the transition function (5) implemented in the user-provided
subroutine TRANS, the interpolated state is transferred to the initial state of the successor mode.
If the initial state is consistent with the DAE in the new mode, the integrator is restarted, otherwise
new consistent initial values are determined in a least square sense as described in Section 3.4.
Note that we may have different characteristic values in the new mode.
One-step methods like Runge-Kutta methods can be restarted at any time point, since no past
values are used. This is different for multi-step method like BDF methods that use past values
to approximate the solution. In this case, changing to a lower order method is necessary if
discontinuities in the solution occur due to an event. For safety reasons we always restart the
integration with the first order BDF method and the initial stepsize is set to the stepsize used in
the last successful step. It may happen that after a mode switching event an immediate mode
change is detected in the new mode. If only one transition is possible from the new mode, then
this transition is carried out and the integration is resumed. If several transitions are possible,
then it is not clear which transition should be carried out, such that the code exits with an
error message. If immediate mode changes occur repeatedly, i.e., if more than a maximal number
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Subroutines within DGESDA
DGELDA general linear differential-algebraic equation solver (see Section 3.1)
DGENDA general nonlinear differential-algebraic equation solver (see Section 3.1)
DRTFND root finding procedure (see Section 3.2)
DBDTRP backward differentiation interpolation routine (see Section 3.3)
DCONTS computes a solution at a fixed time by interpolation (see Section 3.3)
DCKCON checks consistency and if necessary computes consistent initial values

(see Section 3.4)

User-supplied subroutines (see Section 4.2.1)
USCAL user-supplied scaling routine
UINTER user-supplied subroutine defining transition conditions
TRANS user-supplied subroutine defining transition functions
MCHNG user-supplied subroutine defining mode allocation functions
GFUN user-supplied subroutine defining switching functions
MATSUB user-supplied subroutine for linear problems
FUN/DFUN user-supplied subroutines for nonlinear problems

Table 1: The subroutines of DGESDA and their purposes

MAXCGN of successive mode changes occur, the integration is stuck and the code exits with an
error message. In this case, the transition conditions should be reformulated, e.g., if applicable,
hysteresis can be used. The default value for the maximal number of immediate mode changes is
set to MAXCGN=100, it can be adapted by the user, see Section 4.3. In addition, the maximal
stepsize is restricted to HMAX in order to avoid stepping over regions. By default HMAX is set
to HMAX=1.0. Also the maximal stepsize can be adapted by the user, see Section 4.3. If no
smooth transition at a mode change is possible, due to inconsistency of initial values or due to
the user-defined transition functions, the code displays a warning. In Table 1 the subroutines of
DGESDA and their purposes as well as the user-supplied subroutines are summarized. The hybrid
mode controller is depicted in Figure 1. In the following sections, we will discuss each part of the
hybrid system solver in more detail.

Remark 3. We assume that it is possible to extend the solution of the differential-algebraic
equation in the current mode in a small interval beyond the event time. This is sometimes not
possible or not in a unique way, e.g., at impasse points [19], or when characteristic values change.
Sometimes events are employed to switch the DAE system at these critical points. However, if
the solution cannot be extended past the event, the proposed event location algorithm does not
apply. In principle, the event can be moved slightly to the left of the critical point, but even this
can effect the error and stepsize control if the integrator attempts to locate a point beyond the
event. Further, we assume that only one transition condition can be satisfied at the same point in
time and the successor mode is uniquely determined by the mode allocation function. In practical
applications this might be difficult to realize since the successor mode can depend on the system
state and multiple transitions at a switch point occur. It also may happen that an immediate
transition occurs if a transition condition is satisfied directly after the transfer of the state or
the computation of consistent initial values. Eventually, the transition condition that causes the
mode switching may not be fulfilled anymore after the consistent reinitialization. This problem of
so-called discontinuity sticking as well as consistent event location has been treated e.g. in [2].

3.1 Integration of the current DAE - The DAE solvers

The DAE in the current mode is solved according to its structure with an appropriate DAE
solver. In general, any integration method for strangeness-free differential-algebraic systems that
provides a continuous representation of the solution, as e.g. BDF methods [4] or Runge-Kutta
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Figure 1: The hybrid mode controller
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methods [8], can be used for the numerical integration of the DAEs in each mode. Currently, the
differential-algebraic system solvers DGELDA [14] and DGENDA [15] are embedded in the hybrid
system solver DGESDA. Note, that no restrictions on the index of the DAEs (1) or (2) are needed,
since both solvers are constructed for the solution of DAE systems of arbitrary high index. There
are several further routines for the numerical solution of differential-algebraic systems including
solvers adapted to special structures arising e.g. in the equations of motion of multibody systems
[20] that are planned to be appended to the hybrid system solver such that ideally an appropriate
DAE solver can be chosen depending on the structure of the DAE in each mode.

DGELDA For linear DAEs of the form (2) with initial values that are not necessarily consistent,
we use the solver DGELDA. While most of the standard integration methods are suitable only for
regular strangeness-free DAEs, DGELDA is suitable for the numerical integration of linear DAEs
of arbitrary index and also allows the solution of over- and underdetermined systems. The imple-
mentation of DGELDA is based on the combination of an index reduction procedure introduced
in [11], which first determines all the local invariants and then transforms the linear DAE (2)
into an equivalent strangeness-free DAE with the same solution set, followed by a discretization
of the strangeness-free DAE either using a Runge-Kutta scheme adapted from the code RADAU5
[8] or a BDF method adapted from DASSL [4]. The user has to provide the necessary number
of derivatives of all system matrices. The code DGELDA allows the numerical determination of
the strangeness index and the computation of the structural invariants by recursive formulas. The
index is computed at each time step to detect changes in the index or in the characteristic values.
Consistent initial conditions are computed via correction of the given initial values by solving a
minimization problem. For a detailed description of the code see [14].

DGENDA For nonlinear square problems of the form (1) with arbitrary index and initial values
not necessarily consistent we use the solver DGENDA which uses a BDF method with order and
stepsize control adapted from DASSL. The code DGENDA combines the index reduction technique
described in Section 2.1 with the discretization of an equivalent strangeness-free formulation of the
DAE. The user has to provide the necessary number of derivatives of the whole DAE, in particular,
the whole derivative array Fℓ

k of level k given in (6), as well as the corresponding Jacobians. In
addition, the characteristic quantities have to be provided by the user. Before discretizing the DAE
at a time step proceeding from ti to ti + h we have to compute a locally equivalent strangeness-
free system similar to (8) by generating projectors Zℓ,1, Zℓ,2. Then, in every integration step a
nonlinear system of equations of the form

Fℓ
µℓ(ti + h, xℓ, ẋℓ, ..., xℓ(µℓ+1)) = 0, (15a)

Z̃T
ℓ,1F

ℓ(ti + h, xℓ, Dhxℓ) = 0, (15b)

is solved, where Z̃ℓ,1 denotes some approximation to Zℓ,1 at the desired solution and Dh denotes
the discretization scheme. Equation (15a) ensures that the algebraic constraints are satisfied
and (15b) is a discretization of the differential part of the reduced system. The solution of the
underdetermined system of nonlinear equations (15a) is computed in a least squares sense using the
subroutine NLSCON [17] which is an implementation of the Gauss-Newton method. Note, that the

Jacobian of (15) is generally nonsquare but has full row rank at every solution (xℓ, ẋℓ, ..., xℓ(µℓ+1)) of
the DAE (1) if Z̃ℓ,1 is a sufficiently good approximation to Zℓ,1 and the stepsize is sufficiently small.
This property extends to a neighborhood of the solution set, thus we get quadratic convergence
to a solution and a simplified Gauss-Newton method [18] can be applied by fixing the Jacobian
at any time step. Rank decisions may suffer of badly conditioned problems, e.g., if the time
scale is extremely small. Thus, before any rank decisions are made during the computation, the
Jacobi matrix of (15) is equilibrated to lower its condition number by computing appropriate row
and column scaling vectors. Optionally, the user can supply a scaling subroutine USCAL if an
appropriate scaling method is known, see Section 4.2.1 for details. On the other hand, it is also
possible to completely deactivate scaling. Further, the user can require the code to verify the
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given characteristic values after consistent initial values have been computed or after the BDF
solver successfully completed an iteration. In this case, DGENDA returns an error message if any
changes in the characteristic values are detected. For details of the integration routine see [15].

3.2 The Root Finding Procedure

In order to localize an event, i.e., the earliest time in an integration interval [ti, ti+1] at which
a transition condition is satisfied, the roots of the corresponding switching functions have to be
found with sufficiently high accuracy. In particular, the root finding procedure must ensure that
all events are located precisely and if multiple roots exist in an interval the earliest event time
must be located. As the switching functions are evaluated over the whole integration interval,
the system state has to be interpolated between meshpoints. Thus, the root finding procedure
depends on interpolation formulas which are provided by the BDF formulas or by the Runge-Kutta
method, see Section 3.3. In the following, we describe the procedure used to find the roots of a
set of switching functions

gℓ
j(t, x

ℓ, ẋℓ), with j = 1, . . . , nℓ
T , ℓ ∈ M

in an interval [ti, ti+1]. The chosen method is an adapted version of the root finding procedure
of the SUNDIALS code IDA [10] that checks for sign changes of any gℓ

j(t, x
ℓ, ẋℓ) in [ti, ti+1] and

then computes the roots with a modified secant method. At first, the algorithm checks if gℓ
j has

an exact root at ti. If an exact root of any gℓ
j is found at time ti, then gℓ

j(ti +δ, xℓ, ẋℓ) is computed

for a small increment δ > 0. If gℓ
j(ti + δ, xℓ, ẋℓ) = 0 also has an exact root, then the procedure

stops with an error message. In this way, it is guaranteed that the values of all gℓ
j are nonzero at

some past value of ti, beyond which a search for roots is done. In the next step, if no roots at ti
were found, the algorithm checks gℓ

j at ti+1 for exact zeros and detect sign changes in (ti, ti+1).

If no sign changes are found, then either a root is reported if some gℓ
j(ti+1, x

ℓ, ẋℓ) = 0, or no root
is found in (ti, ti+1). If one or more sign changes were found, then a loop is entered to locate the
roots within a tolerance TTOL given by

TTOL = 100 U(|ti+1| + |h|), (16)

where U is the rounding unit of the machine. This is the default value for the tolerance TTOL

used in the root finding procedure, it can be adapted to a specific problem by the user, see Section
4.3. When sign changes are found in two or more switching functions gℓ

j , j = 1, . . . , nℓ
T , then the

one with the largest value of

|gℓ
j(ti+1, x

ℓ, ẋℓ)|

|gℓ
j(ti+1, xℓ, ẋℓ) − gℓ

j(ti, x
ℓ, ẋℓ)|

,

corresponding to the secant method value closest to ti, is the one where most likely the sign change
occurs first. At each pass through the loop, a new value tmid within the search interval is set and
the values of gℓ

j(tmid, x
ℓ, ẋℓ) are checked. The point tmid is computed via

tmid = ti+1 − gℓ
j(ti+1, x

ℓ, ẋℓ)
ti+1 − ti

gℓ
j(ti+1, xℓ, ẋℓ) − ωgℓ

j(ti, x
ℓ, ẋℓ)

, (17)

where ω is a weight parameter. On the first two passes through the loop, ω is set to 1, such
that tmid is the classical secant method value. Afterwards, ω is reset according to the side of the
subinterval in which the sign change was found in the previous two steps. The value of tmid is
closer to ti when ω < 1 and closer to ti+1 when ω > 1. If the value of tmid in (17) is within
TTOL

2 of ti or ti+1, it is adjusted inward, such that its distance from the endpoint relatively to the
interval size is between 0.1 and 0.5, with 0.5 being the midpoint, and the actual distance from the
endpoint is at least TTOL

2 . Then, either ti or ti+1 is reset to tmid according to which subinterval

11



is found to have the sign change. If there is no sign change in (ti, tmid), then that root is reported.
The loop continues until |ti+1 − ti| < TTOL, and then the reported root location is ti+1.
In general, the root finding procedure is only able to find roots of odd multiplicity that correspond
to a sign change in one of the switching functions gℓ

j(t, x
ℓ, ẋℓ), or exact zeros at ti or ti+1. If more

than one switching function gℓ
j has a root in the given interval or if multiple roots are found for

one switching function, then the one closest to ti is returned. If a switching function has a root
of even multiplicity, it may be missed. If such a root is desired, the switching function should
be reformulated such that it changes sign at the desired root. In general, the switching functions
should be chosen as simple as possible, e.g. linear, and if possible, different switching functions
should be used for different mode transitions.

3.3 Interpolation

During the numerical solution of a hybrid system the state of the system at a switch point is
required. In addition, in order to evaluate the switching functions in the root-finding process, the
numerical solution is required between gridpoints. Therefore, we need a continuous representa-
tion of the solution that enables an efficient interpolation of the approximate solution between
gridpoints. For discretization methods based on a polynomial representation of the solution or
its derivatives, like BDF methods or Runge-Kutta methods based on collocation, the construction
of a continuous solution representation is straightforward as it is given by construction of the
method, see [8]. Since the interpolated values are used for continuing the integration the order
q of the interpolation should be the same as the order p of the discretization method. Further,
the interpolation error is propagated as it influences the determination of the switch points and
the computation of the initial values used to restart the integration method such that an error
controlled continuous representation of the solution is required. Unfortunately, for many collo-
cation methods the order of the continuous representation is lower that the convergence order
of the method, e.g., the continuous representation of the 5th order Radau IIa method has order
q = 3, see [7]. Alternatively, other interpolation schemes, as e.g. Hermite interpolation, can be
applied if collocation Runge-Kutta methods are used as integration methods. For BDF methods
the interpolant is of the same order as the method that was used to advance the solution from
ti to ti+1. Note, that for integration methods based on a polynomial representation as BDF or
Runge-Kutta methods the interpolation error is automatically error controlled by the error control
of the numerical solution. The interpolant is continuous, but it has a discontinuous derivative at
the meshpoints. It is also possible to define a continuously differentiable interpolant, see [3, 22],
which leads to a more robust code for root finding. Note, that BDF and Runge-Kutta methods
guarantee consistency of differential and algebraic variables at meshpoints, but not necessarily
at interpolated points such that the interpolated values at the switch points are in general not
consistent with the algebraic equations and consistent values have to be computed to restart the
integration.

3.4 Consistent Reinitialization After Mode Switching

One of the difficulties in the numerical integration of hybrid differential-algebraic equations is
the computation of consistent initial values at the switch points to restart the numerical inte-
gration. The code checks the initial values specified by the user-defined transition functions (5)
for consistency, and if necessary computes new consistent initial value on the basis of the given
but inconsistent final state of the predecessor mode. To determine a consistent initial value the
underdetermined nonlinear system

Fℓ
µℓ(τi, x

ℓ, ẋℓ, ..., xℓ(µℓ+1)) = 0 (18)

has to be solved for (xℓ, ẋℓ, ..., xℓ(µℓ+1)) considered as algebraic variables. The solution of this
nonlinear system is computed in a least squares sense with the subroutine NLSCON [17] which
is an implementation of the Gauss-Newton method [18]. In the beginning of the integration the
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user must supply a guess of the initial values as a starting value for the Gauss-Newton iteration.
Since the Jacobian of (18) has full row rank at a solution by Hypothesis 1, we have local quadratic
convergence of the Gauss-Newton method, provided that the initial guess is sufficiently close to
the solution.
In the computation of consistent initial values the solver enables the user to choose the differential
variables to be kept fixed during the Gauss-Newton iterations and only algebraic components are
chosen consistently with the DAE in the current mode. Setting the columns of the Jacobian of (18)
that corresponds to differential components to zero, then these components of the initial guess are
kept fixed during the Gauss-Newton iteration and only consistent values for the algebraic variables
are computed. We must only guarantee that the remaining columns of the Jacobian still has full
row rank which corresponds to the classification of a component of xℓ to be a differential variable.
Let T̃ℓ,2 be a fixed approximation to Tℓ,2 at the desired solution, then we solve

Fℓ
µℓ(τi, T̃ℓ,2T̃

T
ℓ,2x̂

ℓ + (I − T̃ℓ,2T̃
T
ℓ,2)x

ℓ, ẋℓ, . . . , xℓ(µℓ+1)) = 0

for (xℓ, ẋℓ, . . . xℓ(µ+1)), where T̃ℓ,2T̃
T
ℓ,2 is an orthogonal projection of rank dℓ and x̂ℓ is the initial

guess. In this way, differential variables can be progressed continuously after a mode switch. The
user can choose variables to be kept fixed during the Gauss-Newton iterations by setting up the
IFIX-array, see Section 4.2.1. In this case, the corresponding columns of the Jacobian are set to
zero. Note that this will lead to a rank drop in the Jacobian if any of the algebraic variables are
are chosen to be kept fixed. In this case the code returns an error message.

3.5 Sliding Mode Simulation

The code DGESDA enables sliding mode simulation. During the simulation the code detects
chattering, i.e., repeated switching between modes, either by checking the sliding condition (11)
using the approximation (12), or by checking if a maximal allowed number of successive mode
switchings in a short time period is exceeded. If the distance between the last three detected switch
points τi+1, τi, τi−1 is lower than a chattering tolerance TOLC, i.e., if τi+1 − τi < TOLC and
τi − τi−1 < TOLC with τi+1 the last detected switch point, then the code assumes that chattering
occurs. The default value for the chattering tolerance TOLC is given by TOLC = 10−3 and the
default value for the parameter δ that is used in the approximation of the directional derivatives
(12) is given by δ = 10−5. These default values can be adapted to the problem by the user, see
Section 4.3. Sliding mode simulation is initiated by the user using reverse communication. If
chattering occurs, then the code stops with a warning message. The user can decide to switch
to sliding mode, otherwise, the integration is resumed until a user-defined maximal number of
switchings has occurred and the code stops with an error message. In the case of sliding mode
simulation, the user has to provide the DAE describing the system during sliding motion that can
be defined as in (14). Further, the user can completely disable the detection of chattering and the
checking of the sliding condition, see Section 4.3.
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4 Documentation

4.1 Specification

SUBROUTINE DGESDA(INFO, MATSUB, FUN, DFUN, USCAL, UINTER, TRANSF,

$ MDCHNG, GFUN, MXTRAN, TRAN, SOLVER, METHOD, M, N,

$ NMAX, T, TOUT, TS, LTS, NSP, X, XPRIME, CVAL, IPAR,

$ LIPAR, RPAR, IFIX, IDIFCO, SCALC, SCALR, RTOL, ATOL,

$ MDHIST, IWORK, LIW, RWORK, LRW, STATS, DWORK, ISMTH,

$ IWARN, IERR)

EXTERNAL MATSUB, FUN, DFUN, USCAL, UINTER, TRANSF, MDCHNG, GFUN

INTEGER LIW, LRW, IWARN, IERR, MXTRAN, M(*), N(*), NMAX,

CVAL(5,*), IPAR(*), LIPAR, METHOD(*), IWORK(*),

$ INFO(27), IFIX(*), SOLVER(*), LTS, NSP, ISMTH,

$ MDHIST(*), STATS(5), IDIFCO(*), TRAN(*)

DOUBLE PRECISION T, TOUT, TS(*), X(*), XPRIME(*), RPAR(*), SCALC(*),

$ SCALR(*), RTOL(*), ATOL(*), RWORK(*), DWORK(*)

4.2 Argument List

4.2.1 User–supplied Subroutines

MATSUB – User–supplied function.

This is a subroutine which the user provides to define the matrices Eℓ(t), Aℓ(t) and the
vector f ℓ(t) and their derivatives for all modes ℓ ∈ M for linear problems of the form (2). It
is of the form

SUBROUTINE MATSUB(IMAT, M, N, T, IDIF, W, LDW, IPAR, RPAR, IERR).

The subroutine takes as input the number of equations M in the current mode, the number
of unknowns N in the current mode, the time T and the integer parameters IMAT and
IDIF. Further, the integer and double precision arrays IPAR and RPAR that can be used
for communication between the calling program and the MATSUB subroutine. MATSUB
must not alter these input parameters or the leading dimension LDW of the array W. As
output, the subroutine produces the IDIF-th derivative of Eℓ(t) if IMAT= 1, of Aℓ(t) if
IMAT= 2 and of f ℓ(t) if IMAT= 3, each at time T in the leading M by N part of the array
W. The integer flag IERR is always zero on input and MATSUB should alter IERR only
if IDIF is larger than the highest derivative the subroutine provides (set IERR = −2) or
if another problem occurs (set IERR = −1). IPAR(1) contains the number of the current
mode ℓ ∈ M and IPAR(2) contains the total number of modes NF . MATSUB should alter
IERR if IPAR(1) is larger than the number of modes the subroutine provides (set IERR=-3).
If there are no linear DAEs in the system, MATSUB must be a dummy-subroutine.

Note: In the calling program MATSUB must be declared as external.

FUN – User–supplied function.

This is a subroutine which the user provides to define the left hand side of the inflated DAE

Fℓ
µℓ(x

ℓ, ẋℓ, ..., xℓ(µℓ+1)) as in (6) for nonlinear DAEs in modes ℓ ∈ M. It has the form

SUBROUTINE FUN (T, IDIF, X, F, IPAR, RPAR, IERR).

The subroutine takes as input the time T, the vector X containing an approximation to
the solution x̄ℓ = (xℓ, ẋℓ, ..., xℓ(MXINDX+1)), where MXINDX≥ µℓ and the integer parameter
IDIF. Further, the integer and double precision arrays IPAR and RPAR that can be used for
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communication between the calling program and the FUN subroutine. IPAR(1) contains the
number of the current mode ℓ ∈ M and IPAR(2) contains the total number of modes NF . As
output, the subroutine produces the IDIF-th derivative of the DAE in the current mode at
time T and state X in the first M elements of the 1-dimensional array F. FUN should alter
IERR if IPAR(1) is larger than the number of modes the subroutine provides (set IERR=-3).
If there are no nonlinear DAEs in the system FUN must be a dummy-subroutine.

Note: In the calling program, FUN must be declared as external.

DFUN – User–supplied function.

This is a subroutine which the user provides to define the Jacobian of the inflated DAE

Fℓ
µℓ(t, x

ℓ, ẋℓ, ..., xℓ(µℓ+1)) for all modes ℓ ∈ M. It is of the form

SUBROUTINE DFUN (T, IDIF, X, JAC, LDJAC, IPAR, RPAR, IERR).

The subroutine takes as input the time T, the vector X containing an approximation to
the solution x̄ℓ = (xℓ, ẋℓ, ..., xℓ(MXINDX+1)) where MXINDX≥ µℓ and the integer parameter
IDIF. IPAR(1) contains the number of the current mode ℓ ∈ M and IPAR(2) contains the
total number of modes NF . As output, the subroutine produces all partial derivatives of the
IDIF-th derivative of F ℓ(t, xℓ, ẋℓ) of the DAE in the current mode with respect to all entries
of X in the first M rows and (IDIF+2)∗N columns of the 2-dimensional array JAC. If there
are no nonlinear DAEs in the system DFUN must be a dummy-subroutine.

Note: In the calling program, DFUN must be declared as external.

USCAL – User–supplied function.

This is a subroutine which the user can provide for scaling purposes if INFO(13)=1 and
IWORK(16)=2 using the solver DGENDA. It is of the form

SUBROUTINE USCAL( MQ, NQ, A, LDA, SCALC, SCALR, IERR)

and takes as input the number of rows MQ and the number of columns NQ of the extended
derivative array, and the array A of dimension (LDA, MQ). The leading NQ-by-MQ part of A
must contain the matrix to be scaled. Furthermore, USCAL takes as input the arrays SCALC
and SCALR of dimensions NQ and MQ respectively. As output, the subroutine produces
column scale factors SCALC and row scale factors SCALR and overwrites the array A with
the matrix B such that B=SCALR∗A∗SCALC. The integer error flag IERR should be set to
a negative value if there was any illegal input. If INFO(13)=0 or IWORK(16)≤1, USCAL
must be a dummy-subroutine.

Note: In the calling program, USCAL must be declared as external.

UINTER – User–supplied function.

This is a subroutine which the user provides to check transition conditions and to interrupt
the integration. It is of the form

SUBROUTINE UINTER (T, X, XPRIME, RPAR, IPAR, ATOL, IRTRN)

The subroutine takes as input the time T, the vector X containing an approximation to the
solution and the vector XPRIME containing the computed first derivative of the solution
approximated at T and the absolute error tolerance ATOL. IPAR and RPAR are integer
and real arrays which can be used for the communication between the user’s calling program
and the subroutine UINTER. IPAR(1) contains the number of the current mode ℓ ∈ M

and IPAR(2) contains the total number of modes NF . If INFO(23)=0, then the subroutine
UINTER is called after each intermediate step in the integration by the solver DGELDA or

16



DGENDA to check if a transition conditions is satisfied. As output, the subroutine produces
the integer IRTRN, which indicates if the integration is to be interrupted.

If IRTRN = 0 the integration is continued,
If IRTRN =-1 the integration is interrupted.

If INFO(23)=1, i.e., no switching is desired, UINTER must be a dummy-subroutine.

Note: In the calling program, UINTER must be declared as external.

TRANSF – User–supplied function.

This is a subroutine which the user provides to define the transition function of the switched
DAE. It is of the form

SUBROUTINE TRANSF (XNEW, XOLD, N, MODNEW, MODOLD, IERR)

The subroutine takes as input the vector XOLD containing an approximation to the solution
in the predecessor mode, the integer N containing the size of X, and the integers MODNEW
and MODOLD defining the successor and predecessor modes. As output, the subroutine
provides the vector XNEW containing the solution after transfer to the successor mode. If
an error occurs IERR should be < 0. The integer flag IERR is always zero on input and
TRANSF should alter IERR if a problem occurs (set IERR = −1). If INFO(23)=1, i.e., no
switching is desired TRANSF must be a dummy-subroutine.

Note: In the calling program, TRANSF must be declared as external.

MDCHNG – User–supplied function.

This is a subroutine which the user provides to define the mode changes of the switched
DAE. It is of the form

SUBROUTINE MDCHNG (MODE, J, NMODE, MXTRAN, NEWMOD, IERR)

The subroutine takes as input the integer MODE defining the current mode, the integer J
providing the active transition, the integer NMODE providing the number of modes and the
integer MXTRAN providing the maximal number of transitions. As output, the subroutine
produces the successor mode NEWMOD according to the Jth transition coming from mode
MODE. The integer flag IERR is always zero on input and MDCHNG should alter IERR if
a problem occurs (set IERR = −1). If INFO(23)=1, i.e., no switching is desired MDCHNG
must be a dummy-subroutine.

Note: In the calling program, MDCHNG must be declared as external.

GFUN – User–supplied function.

This is a subroutine which the user provides to define the switching functions gℓ
j(t, x

ℓ, ẋℓ) of
the switched DAE for each mode ℓ ∈ M. It is of the form

SUBROUTINE GFUN(T, IDIF, X, XPRIME, GT, NRTFN, IPAR, RPAR, IERR).

The subroutine takes as input the time T, and integer IDIF, the vector X containing an
approximation to the solution, the vector XPRIME containing an approximation to the
derivative of the solution and NRTFN, the number of root functions in the current mode
ℓ ∈ M. IPAR is an integer array which can be used for the communication between the
user’s calling program and the subroutine. IPAR(1) contains the current mode and IPAR(2)
contains the total number of modes. As output, the subroutine produces the array GT,
of length NRTFN, with components gℓ

j(t, x
ℓ, ẋℓ). The integer flag IERR is always zero on

input. The subroutine should return a non-zero value if an error occurred. If INFO(23)=1,
i.e., no switching is desired GFUN must be a dummy-subroutine.

Note: In the calling program, GFUN must be declared as external.
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4.2.2 Arguments In

INFO – INTEGER array of DIMENSION (27).

The basic task of the code is to solve the switched system from T to TOUT and return an
answer at TOUT. INFO is an integer array which is used to communicate exactly how the
user wants this task to be carried out. The simplest use of the code corresponds to setting
all entries of INFO to 0. To enable mode switching INFO(23) must be set to 0. For details
see Section 4.3.

METHOD – INTEGER array of DIMENSION (NMODE).

Indicates which integration method should be used in mode I:

METHOD(I)=1 the code uses the BDF solver,

METHOD(I)=2 the code uses the Runge-Kutta solver.

Note: For nonlinear problems only a BDF solver is implemented. Setting METHOD(I)=2
here, yields an error message.

SOLVER – INTEGER array of DIMENSION (NMODE).

Indicates which solver should be used in each mode I as follows:

SOLVER(I)=1 the code uses the solver DGENDA.

SOLVER(I)=2 the code uses the solver DGELDA. If the problem is nonlinear an error is
reported.

M – INTEGER array of DIMENSION (NMODE).

The number of equations in mode I. M(I) ≥ 1.

N – INTEGER array of DIMENSION (NMODE).

The number of components of xI in mode I. N(I) = M(I) in this version of DGENDA.

NMAX – INTEGER.

The maximal size of the vector X: NMAX= MAX[(MXINDX + 2) ∗ N(I)].

T – DOUBLE PRECISION.

The initial point of the integration.
Note: This scalar is overwritten.

TOUT – DOUBLE PRECISION.

The point at which a solution is desired. Integration either forward in T (TOUT > T) or
backward in T (TOUT < T) is allowed. At the beginning of the integration the user can set
T = TOUT. If INFO(11)=0 consistent initial values will be computed and stored in X.

X – DOUBLE PRECISION array of DIMENSION (NMAX).

If INFO(11)=0, this array may contain a guess for the initial value and for DGENDA in
addition for the first NMAX derivatives at the initial time T. A consistent initial value and
consistent initial derivatives close (in the least square sense) to this guess are then computed.
If no guess is available, all elements of X are set to zero.

If INFO(11)=1, this array must contain consistent initial values of the NMAX solution
components and for DGENDA in addition for the first NMAX derivatives at the initial
time.
Note: This array is overwritten.
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CVAL – INTEGER array of DIMENSION (5, NMODE).

Contains the characteristic values of the DAE in mode I:

CVAL(1, I) contains the strangeness index µI in mode I,

CVAL(2, I) contains the number dI of differential components in mode I,

CVAL(3, I) contains the number aI of algebraic components in mode I,

CVAL(4, I) contains the number uI of undetermined components in mode I,

CVAL(5, I) contains the number vI of vanishing equations in mode I.

IPAR – INTEGER array of DIMENSION (LIPAR).

This integer array can be used for communication between the calling program and the user
supplied subroutines. The use of the first three entries is defined as follows.

IPAR(1) contains the initial mode (this is overwritten with the current mode),

IPAR(2) contains the number of modes,

IPAR(3) contains the sliding mode (if dot defined set =0).

If INFO(23)=1, i.e., no switching is desired, IPAR is not altered by DGESDA or its sub-
programs. If this array is used, it must be dimensioned in the calling program and in the
user supplied subroutines as array of appropriate length. Otherwise, this array is ignored by
treating it as dummy array of length one.

LIPAR – INTEGER.

The length of IPAR.

RPAR – DOUBLE PRECISION array of DIMENSION (*).

This real array can be used for communication between the calling program and the user
supplied subroutines. RPAR is not altered by DGESDA or its subprograms. If this array is
used, it must be dimensioned in the calling program and in the user supplied subroutines as
array of appropriate length. Otherwise, this array is ignored by treating it as dummy array
of length one.

IFIX – INTEGER array of DIMENSION (NMAX).

Only used in the solver DGENDA. If INFO(12)=1, the user can set IFIX(I)=1 if he wants
to keep the value of X(I) fixed when DGENDA tries to compute consistent initial values. All
other entries of IFIX should be set to zero. If INFO(23)=0, i.e., mode switching is desired
the array IDIFCO has to be used to specify which components should be fixed.

Note: This may lead to a rank-deficient Jacobian.

IDIFCO – INTEGER array of DIMENSION (NMODE*NMAX).

Contains information of differential components. By setting IDIFCO(I)=1 the corresponding
variables is kept fixed during the computations of consistent initial values.

SCALC – DOUBLE PRECISION array of DIMENSION ((MXINDX+2)NMAX).

Only used in DGENDA. User scaling of the iteration vector X. If set to zero DGENDA will
try to calculate an appropriate SCALC.

SCALR – DOUBLE PRECISION array of DIMENSION ((MXINDX+1)NMAX).

Only used in DGENDA. User row scaling of the Jacobian. Only applicable as input if
INFO(13)=1 and the user supplied scaling subroutine USCAL takes SCALR as an input
argument.
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MXTRAN – INTEGER.

The maximal number of transitions.

TRAN – INTEGER array of DIMENSION (NMODE).

The number of possible transitions for each mode.

LTS – INTEGER.

The length of the array TS containing the switch points. The length of TS must be set in
the calling program. If more than LTS switching points occur during the integration the
codes stops with an error message. In this case probably chattering has occurred.

RTOL – DOUBLE PRECISION array of DIMENSION (*).

The relative error tolerances which the user provides to indicate how accurately he wishes
the solution to be computed. The user may choose RTOL and ATOL to be both scalars or
else both vectors for all modes. If RTOL and ATOL are scalars (INFO(2) = 0) the user has
to declare this array to be RTOL(1).

ATOL – DOUBLE PRECISION array of DIMENSION (*).

The absolute error tolerances which the user provides. If ATOL and RTOL are scalars
(INFO(2) = 0) the user has to declare this array to be ATOL(1). For details on the use of
the error tolerances see the documentation of DGELDA [14] and DGENDA [15].

4.2.3 Arguments Out

T – DOUBLE PRECISION.

The solution was successfully advanced to the output value of T.

X – DOUBLE PRECISION array of DIMENSION (NMAX).

Contains the computed approximation of the solution at time T in its first NMAX elements.
For DGENDA the further elements contain approximations to the first (MXINDX+1) deriva-
tives of the solution at the last time step of the BDF solver.

XPRIME – DOUBLE PRECISION array of DIMENSION (NMAX).

Contains the computed first derivative of the solution approximated at T.

CVAL – INTEGER array of DIMENSION (5, NMODE).

Contains the characteristic values of the DAE as described in 4.2.2. If INFO(16)=1 and
DGENDA detects any changes in the characteristic values, the code will return with an
error message and CVAL will be overwritten with the new characteristic values.

TS – DOUBLE PRECISION array of DIMENSION (LTS).

Contains the switching points found during the integration.

NSP – INTEGER.

Contains the number of switching points found during the integration.

IWORK – INTEGER array of DIMENSION at least (LIW).

This integer arrays provide the workspace. The entries are slightly different for the use
in DGELDA and DGENDA. Usually the information they contain are of no interest, but
sometimes the following may be useful:
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IWORK(7) contains the order of the method to be attempted on the next step.

IWORK(8) contains the order of the method used on the last step.

IWORK(11) contains the number of steps taken so far in the current mode.

IWORK(12) contains the number of calls to MATSUB or FUN in the current mode.

IWORK(13) contains the number of factorizations of the Jacobian in the current mode.

IWORK(14) contains the total number of error test failures so far in the current mode.

LIW – INTEGER.

The length of IWORK.
For DGENDA we need: LIW ≥ 127 + (MXINDX + 2)N.

For DGELDA we need: LIW ≥ 20+2N if METHOD = 1, LIW ≥ 20+6N if METHOD = 2.

RWORK – DOUBLE PRECISION array of DIMENSION at least (LRW).

This real arrays provide the workspace. The entries are slightly different for the use in
DGELDA and DGENDA. Usually the information they contain are of no interest, but some-
times the following may be useful:

RWORK(3) contains the stepsize H to be attempted on the next step.

RWORK(4) contains the current value of the independent variable, i.e., the farthest point
integration has reached. This will be different from T only when interpolation has been
performed (IERR = 3).

RWORK(7) contains the stepsize used on the last successful step.

LRW – INTEGER.

The length of RWORK.
For DGENDA we need: LRW ≥ 3N .

For DGELDA we need:

If METHOD = 1 then

LRW ≥ 50 + (21 + MAXORD + 14MXINDX)N

+(6 + MXINDX + 6(MXINDX + 1)2)N2.

If METHOD = 2 then

LRW ≥ 20 + (29 + 14MXINDX)N

+(15 + MXINDX + 6(MXINDX + 1)2)N2.

For good performance, LRW should generally be larger.

DWORK – DOUBLE PRECISION array of DIMENSION (4+NMAX).

providing the workspace used in DGESDA. (See documentation of the INFO array).

DWORK(1) contains the tolerance TTOL used in the root finding procedure DRTFND.

DWORK(2) contains the chattering tolerance TOLC.

DWORK(3) contains the tolerance δ in the approximation of the sliding condition.

DWORK(4) contains the maximal allowed number MAXCGN of immediate transitions.

DWORK(5) contains the interpolated and transferred solution at the last switch point.

ISMTH – INTEGER.
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Integer indicating if nonsmooth transitions occur.

ISMTH = 0 only smooth transitions occur.

ISMTH = -1 non-smooth transition due to transition function occur.

ISMTH = -2 non-smooth transition due to consistent initialization occur.

MDHIST – INTEGER array of DIMENSION (LTS+1).

Contains the mode history.

STATS – INTEGER array of DIMENSION(5).

The array STATS contains some statistic of the integration:

STATS(1) contains the number of integration steps so far.

STATS(2) contains the number of calls to MATSUB or FUN so far.

STATS(3) contains the number of factorizations so far.

STATS(4) contains the number of error test failures.

STATS(5) contains the number of convergence test failures.

4.2.4 Error and Warning Indicator

IERR – INTEGER.

Unless the code detects an error, IERR contains a positive value on exit.

IERR = 1: in the BDF solver a step was successfully taken in the intermediate output mode.
The code has not yet reached TOUT.

IERR = 2: The integration to TOUT was successfully completed (T=TOUT) by stepping
exactly to TOUT.

IERR = 3: The integration to TOUT was successfully completed (T=TOUT) by stepping
past TOUT. X is obtained by interpolation.

IERR = 4: At the first step the user set T=TOUT and the code computed successfully
the strangeness index and the other characteristic quantaties. Furthermore, if
INFO(11)=0 consistent initial values are stored in X.

For a description of the errors occurring in the routines DGELDA or DGENDA see the
documentations of these codes [14, 15].

IERR = −1 · · · − 9: An error occurred in the integration routine DGELDA or DGENDA.

IERR = −11: The integration was stopped due to a call to UINTER (IRTRN=-1).

IERR = −20 · · · − 27: An error occurred in the integration routine DGELDA or DGENDA.

IERR = −101.. − 131: An error occurred in the integration routine DGELDA or DGENDA.

IERR = −201: Some element of the INFO vector is not zero or one.

IERR = −202: The number of modes is <= 0.

IERR = −203: The current mode exceeds the number of modes.

IERR = −204: N ℓ ≤ 0 or M ℓ ≤ 0.
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IERR = −205: Mode chattering occurs

IERR = −206: METHOD(I)> 1 not possible for the nonlinear case.

IERR = −207: Wrong maximal transition number.

IERR = −208: TRAN(I) has an invalid value.

IERR = −209: TTOL has an invalid value.

IERR = −211: An error was signalled by the subroutine DRTFND.

IERR = −212: IERR in MDCHNG has a negative value.

IERR = −213: IERR in TRANSF has a negative value.

IERR = −215: Chosen solver not implemented yet.

IERR = −216: Wrong transition function detected: J≤ 0 or J> IPAR(3).

IERR = −217: Number of switch points exceeds LTS. Probably chattering has occurred!

IERR = −218: Wrong arguments in DWORK array.

IERR = −219: No root found by DRTFND, but an event was detected by UINTER.

IERR = −220: Too many immediate mode changes occur.

IERR = −221: An error was signalled by the subroutine DCKCON.

IERR = −222: Invalid value in IDIFCO.

IERR = −223: An immediate mode change occur and TRAN(I)>1.

IWARN – INTEGER.

Integer containing warnings:

IWARN > 0 the strangeness index has changed and IWARN contains its new value.

IWARN = −1 a high number of switch points occur, possibly chattering occurs!

IWARN = −2 an immediate mode change occurs.

4.3 Setting up the INFO array

The INFO array is used to give the code more details about how the user wants the problem to
be solved. The entries are slightly different in the use of the codes DGELDA and DGENDA, for
details see documentation of these codes [14, 15]. The user must respond to the items, which are
arranged as questions. The simplest use of the code corresponds to answering all questions as yes,
i.e., setting all entries of INFO to 0. INFO(1)-INFO(22) are used in the solvers DGELDA and
DGENDA. The following items are important in the use of DGESDA.

INFO(1) This parameter enables the code to initialize itself. The user must set it to indicate
the start of every new problem. Is this the first call for this problem ?

Yes – Set INFO(1) = 0

No – Not applicable here. For continuing the integration, see [14, 15].
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INFO(7) The user can specify a maximum stepsize HMAX, so that the code will avoid passing
over very large regions. The default value for HMAX is 1.0. Do you want the code to decide
on its own maximum stepsize ?

Yes – Set INFO(7)=0

No – Set INFO(7)=1 and define HMAX by setting RWORK(2)=HMAX.

INFO(23) If INFO(23)=0 the subroutine UINTER is called after each successful step in the
integration, i.e., the integration can be interrupted if a transition condition is defined in
UINTER. If INFO(23)=1 then no calls to UINTER are performed, i.e., no switching is
possible. Do you want the code to call UINTER after each successful step ?

Yes – Set INFO(23)=0

No – Set INFO(23)=1

INFO(24) The root finding procedure DRTFND determines the switch point within a tolerance
of TTOL. By default the TTOL is computed by TTOL =100U (|ti+1|+|h|) where U is the
unit roundoff. Do you want to use the default tolerance ?

Yes – Set INFO(24)=0

No – Set INFO(24)=1 and define TTOL by setting DWORK(1)=TTOL.

INFO(25) The codes detect chattering behavior. By default the chattering tolerance TOLC is
set to TOLC=10−5 and the parameter δ used for the approximation of the sliding condition
is δ = 10−5. Do you want to use the default tolerances ?

Yes – Set INFO(25)=0

No – Set INFO(25)=1 and set DWORK(2)=TOLC and DWORK(3)= δ.

INFO(26) The codes enables sliding mode simulation. The detection of chattering can be dis-
abled. Do you want the code to detect chattering ?

Yes – Set INFO(26)=0

No – Set INFO(26)=1

INFO(27) The codes allows a maximal number of immediate mode changes. The default value
for the maximal allowed number of immediate transitions MAXCGN is 100. Do you want
to use the default value ?

Yes – Set INFO(27)=0

No – Set INFO(27)=1 and define MAXCGN by setting DWORK(4)=MAXCGN.
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A Numerical Example

We consider the example of stick-slip friction between two rigid bodies as depicted in Figure 2,
see also [5]. The equations of motion of the two-body system with dry friction are given by
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Figure 2: Stick-slip friction between rigid bodies
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(19)

where p1, p2 describe the positions and v1, v2 are the velocities of the bodies, f1, f2 are the applied
forces, µf is the coefficient of friction, and FN is the normal force on the contact surface. System
(19) represents a hybrid system with two modes depending on the direction of the relative velocity,
i.e., the system is in mode 1 if sign(v1 −v2) = 1 and the system is in mode 2 if sign(v1 −v2) = −1.
Note that the model equations (19) cannot be applied if the relative velocity is vrel = v1 − v2 = 0,
since sign(0) is not defined. We apply a small hysteresis band of width 2ε around zero relative
velocity to define the transition conditions

L1
1(v1, v2) = v1 − v2 < −ε, L2

1(v1, v2) = v1 − v2 > ε.

The corresponding switching functions are given by

g1
1(v1, v2) = v1 − v2 + ε, g2

1(v1, v2) = v1 − v2 − ε,

the mode allocation functions are simply given by

S1(1) = 2, S2(1) = 1,

and the transition functions are the identity mappings. The hybrid system (19) is solved with the
solver DGESDA using the BDF method of the DAE solver DGELDA. Since (19) is an ordinary
differential equation, the characteristic values in both modes are given by µ = 0, dµ = 4, aµ = vµ =
uµ = 0. The solution is computed in the interval [0, 10] using m1 = m2 = 1, f1 = sin(t), f2 = 0,
FN = 1, µf = 0.4, and ε = 0.003 with relative and absolute error tolerance ATOL = RTOL =
10−8 and initial values p1(0) = p2(0) = 1, v1(0) = v2(0) = 0 in initial mode 1. The computed
solution of the system and the relative velocity vrel between the two bodies are given in Figure 3.
In the beginning, both bodies move together since the applied force is less than the friction force.
If the applied force exceeds the friction force the bodies slid over each other until the applied
force is again lower than the friction force and the two bodies stick together once more. The
relative velocity oscillates around zero during stiction resulting in a large number of integration
steps. Altogether, the code requires 8209 integration steps, and 396 mode switches are detected.
Physically, the oscillations around zero relative velocity do not occur, since during stiction both
bodies move together. Using sliding mode simulation we can define the system behavior during
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Figure 3: Solution of (19) and relative velocities between the two bodies
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defining the DAE in sliding mode (mode 3). Now, system (20) represents a DAE with characteristic
quantities µ = 1, dµ = 3, and aµ = 2. The system stays in sliding mode as long as the applied force
is less than the friction force. If the applied force exceeds the friction force, then the system leaves
the sliding mode, i.e., if f1 + f2 − 2µf‖FN‖ > 0, then the system switches back to mode 1, and
if f1 + f2 + 2µf‖FN‖ < 0, then the system switches back to mode 2. Again, the system is solved
with DGESDA now using sliding mode simulation with chattering tolerance TOLC=0.01 and
δ = 10−5. The solution of the system together with the relative velocity vrel using sliding mode
simulation is given in Figure 4. We can see that the oscillations in the relative velocity during
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Figure 4: Solution and relative velocity using sliding mode simulation

stiction disappear. Altogether, 12 switch points are detected during the numerical integration
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using sliding mode simulation and the number of integration step is reduced to 4737. The switch
points together with the corresponding mode changes are given in Table 2.

Switch points t⋆ Mode changes Switch points t⋆ Mode changes
0.0038 1 → 2 2.8886 1 → 3
0.0112 2 → 1 4.0689 3 → 2
0.0188 1 → 3 6.0340 2 → 3
0.9273 3 → 1 7.2105 3 → 1
2.8719 1 → 2 9.1465 1 → 2
2.8776 2 → 1 9.1521 2 → 3

Table 2: Detected switch points in the solution of (19) using sliding mode simulation

A.1 Program Text

C .. Subroutine Arguments ..

C .. Scalar Arguments ...

INTEGER NMODE, M1, N1, M2, N2, M3, N3, NQMAX, LIW,LRW,

$ NIPAR, NRPAR, MXTRAN, LTS

PARAMETER (NMODE=3, N1=4, M1=4,N2=4, M2=4, M3=5, N3=5,

$ NQMAX=20, LIW=200, LRW=50000, NIPAR=5, NRPAR=2,

$ MXTRAN=2, LTS=2000)

C .. Array Arguments ...

INTEGER IWORK(LIW), CVAL(5,NMODE), M(NMODE), N(NMODE),

$ INFO(27), IFIX(NQMAX), IPAR(NIPAR), STATS(5),

$ TRAN(NMODE), IDIFCO(3*N3),

$ SOLVER(NMODE), METHOD(NMODE), MDHIST(LTS+1)

DOUBLE PRECISION X(NQMAX), XPRIME(NQMAX), RWORK(LRW),RPAR(NRPAR),

$ SCALC(NQMAX), SCALR(NQMAX), RTOL, ATOL, TS(LTS),

$ DWORK(9)

DOUBLE PRECISION T, TOUT, DSEC

INTEGER KPRINT, IERR, LUN, I, IWARN, NOUT, IOUT, NFE,

$ NJE, NST, NSP, NETF, NCTF, ISMTH

PARAMETER (KPRINT = 3, LUN = 6, NOUT = 100)

DOUBLE PRECISION DTOUT(NOUT)

C .. External Functions ..

DOUBLE PRECISION DSECND

EXTERNAL DSECND

EXTERNAL FUN, DFUN, USCAL, UINTER, TRANSF, MDCHNG, GFUN,

$ MATSUB

C .. Data Statements ..

DATA DTOUT / 0.1D0, 0.2D0, 0.3D0, 0.4D0, 0.5D0,

$ 0.6D0, 0.7D0, 0.8D0, 0.9D0, 1.0D0,

$ 1.1D0, 1.2D0, 1.3D0, 1.4D0, 1.5D0,

$ 1.6D0, 1.7D0, 1.8D0, 1.9D0, 2.0D0,

$ 2.1D0, 2.2D0, 2.3D0, 2.4D0, 2.5D0,

$ 2.6D0, 2.7D0, 2.8D0, 2.9D0, 3.0D0,

$ 3.1D0, 3.2D0, 3.3D0, 3.4D0, 3.5D0,

$ 3.6D0, 3.7D0, 3.8D0, 3.9D0, 4.0D0,

$ 4.1D0, 4.2D0, 4.3D0, 4.4D0, 4.5D0,

$ 4.6D0, 4.7D0, 4.8D0, 4.9D0, 5.0D0,

$ 5.1D0, 5.2D0, 5.3D0, 5.4D0, 5.5D0,
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$ 5.6D0, 5.7D0, 5.8D0, 5.9D0, 6.0D0,

$ 6.1D0, 6.2D0, 6.3D0, 6.4D0, 6.5D0,

$ 6.6D0, 6.7D0, 6.8D0, 6.9D0, 7.0D0,

$ 7.1D0, 7.2D0, 7.3D0, 7.4D0, 7.5D0,

$ 7.6D0, 7.7D0, 7.8D0, 7.9D0, 8.0D0,

$ 8.1D0, 8.2D0, 8.3D0, 8.4D0, 8.5D0,

$ 8.6D0, 8.7D0, 8.8D0, 8.9D0, 9.0D0,

$ 9.1D0, 9.2D0, 9.3D0, 9.4D0, 9.5D0,

$ 9.6D0, 9.7D0, 9.8D0, 9.9D0, 10.0D0/

C .. Executable Statements ..

C

C Set the INFO array to tell the code how to solve the problem.

DO 10 I=1,27

INFO(I)=0

10 CONTINUE

C

C Set TTOL

C INFO(24)=0

C DWORK(1)=1D-10

C

C chattering tolerance

INFO(25) = 1

DWORK(2) = 0.01D0

DWORK(3) = 1.0D-5

C

C Set the characteristic values

C

CVAL(1,1) = 0

CVAL(2,1) = 4

CVAL(3,1) = 0

CVAL(4,1) = 0

CVAL(5,1) = 0

CVAL(1,2) = 0

CVAL(2,2) = 4

CVAL(3,2) = 0

CVAL(4,2) = 0

CVAL(5,2) = 0

CVAL(1,3) = 1

CVAL(2,3) = 3

CVAL(3,3) = 2

CVAL(4,3) = 0

CVAL(5,3) = 0

C

C Initial mode

IPAR(1) = 1

IPAR(2) = NMODE

c SLIDING MODE

IPAR(3) = 3

IPAR(4) = 1

C

RPAR(2) = 0.003D0

C

TRAN(1) = 1

TRAN(2) = 1
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TRAN(3) = 2

C

C SOLVER to be used in each mode

C SOLVER(I) = 1 -> use DGENDA

SOLVER(1) = 2

SOLVER(2) = 2

SOLVER(3) = 2

C

METHOD(1)=1

METHOD(2)=1

METHOD(3)=1

C

C use SVD =1

INFO(18)=1

C

IERR=0

IWARN=0

ISMTH=0

C

C Set the starting time and the initial values.

T = 0.0D0

DO 20 I=1,NQMAX

X(I)=0.0D0

SCALC(I)=0.0D0

IFIX(I)=0

XPRIME(I)=0.0D0

20 CONTINUE

X(3)=1.0D0

X(4)=1.0D0

C

C differential components in mode 1:

IDIFCO(1)= 1

IDIFCO(2)= 1

IDIFCO(3)= 1

IDIFCO(4)= 1

IDIFCO(5)= 1

C differential components in mode 2:

IDIFCO(6)= 1

IDIFCO(7)= 1

IDIFCO(8)= 1

IDIFCO(9)= 1

IDIFCO(10)=1

C differential components in mode 3:

IDIFCO(11)=1

IDIFCO(12)=1

IDIFCO(13)=1

IDIFCO(14)=1

IDIFCO(15)=0

C

C Display results in MATLAB

CALL WRMLAB(1)

C

C Set sizes for each mode

M(1)=M1
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M(2)=M2

N(1)=N1

N(2)=N2

M(3)=M3

N(3)=N3

C

C Now we have to set the tolerances for the solver to indicate how

C accurate we want the solution to be computed.

C In this case we use a combined error test with the same absolute

C and relative tolerance.

C

RTOL=1.0D-8

ATOL=1.0D-8

C

IF (KPRINT .GT. 2) THEN

WRITE (LUN,115) (X(I),I=1,NQMAX)

ENDIF

115 FORMAT(’ GIVEN INITIAL VALUES’/(’ ’,6E12.4/))

C

C Display initial values in MATLAB

WRITE(10,307) 1,T

307 FORMAT( ’T(’,I5,’)=’,F25.10,’;’)

WRITE(10,308) 1,X(1),X(2),X(3),X(4),X(5)

308 FORMAT( ’X(:,’,I5,’)=[’,F25.10,’;’,F25.10,’;’,F25.10,’;’,

$ F25.10,’;’,F25.10,’];’)

WRITE(10,309) 1,XPRIME(1),XPRIME(2)

309 FORMAT( ’XPRIME(:,’,I5,’)=[’,F25.10,’;’,F25.10,’];’)

C

C The next step is to solve the problem.

C We will use DGESDA to compute NOUT intermediate solutions from

C DTOUT(1) to DTOUT(100) (see above).

C

C For each intermediate solution some statistics are displayed, where

C T is the actual time,

C X(1) is the computed first solution component at time T,

C X(2) is the computed second solution component at time T,

C IPAR(1) is the current mode.

C

IF (KPRINT .GT. 2) THEN

WRITE (LUN,110)

ENDIF

C

110 FORMAT(///

$ 10X,’T’,14X,’X(1)’,10X,’X(2)’,8X,’MODE’/)

DSEC = DSECND()

DO 200 IOUT = 1,NOUT

TOUT = DTOUT(IOUT)

CALL DGESDA(INFO, MATSUB, FUN, DFUN, USCAL, UINTER,

$ TRANSF, MDCHNG, GFUN, MXTRAN, TRAN, SOLVER, METHOD,

$ M, N, NQMAX, T, TOUT, TS, LTS, NSP, X, XPRIME, CVAL,

$ IPAR, NIPAR, RPAR, IFIX, IDIFCO,SCALC,SCALR, RTOL, ATOL,

$ MDHIST, IWORK, LIW, RWORK, LRW, STATS,DWORK, ISMTH,

$ IWARN, IERR)

IF (IERR.LT.0) THEN
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CALL DGSERM (INFO, MATSUB, FUN, DFUN, USCAL,

$ SOLVER, METHOD, M, N, T, TOUT , X,

$ XPRIME, CVAL, IPAR, RPAR, IFIX, IDIFCO,SCALC,SCALR,

$ RTOL, ATOL, IWORK, LIW, RWORK, LRW, ISMTH, IWARN,

$ IERR)

STOP

END IF

IF (KPRINT .GT. 2) THEN

WRITE (LUN,130) T,X(1),X(2),IPAR(1)

ENDIF

C

C Display results in MATLAB

130 FORMAT(1X,E15.5,E16.5,E16.5,I6)

WRITE(10,407) IPAR(4)+1,T

407 FORMAT( ’T(’,I5,’)=’,F25.10,’;’)

WRITE(10,408) IPAR(4)+1,X(1),X(2),X(3),X(4),X(5)

408 FORMAT( ’X(:,’,I5,’)=[’,F25.10,’;’,F25.10,’;’,F25.10,’;’,

$ F25.10,’;’,F25.10,’];’)

WRITE(10,409) IPAR(4)+1,XPRIME(1),XPRIME(2)

409 FORMAT( ’XPRIME(:,’,I5,’)=[’,F25.10,’;’,F25.10,’];’)

IPAR(4)=IPAR(4)+1

C

200 CONTINUE

C

C Finally, we display some final statistics

C

DSEC = DSECND()-DSEC

NST = STATS(1)

NFE = STATS(2)

NJE = STATS(3)

NETF= STATS(4)

NCTF= STATS(5)

IF (KPRINT .GT. 2) THEN

WRITE (LUN,210) NST,NFE,NJE,NETF,NCTF, DSEC

ENDIF

C

210 FORMAT(//1X,’ FINAL STATISTICS FOR THIS RUN..’,/

$ 1X,’ NUMBER OF STEPS =’,I5/

$ 1X,’ NUMBER OF EVALUATIONS =’,I5/

$ 1X,’ NUMBER OF FACTORIZATIONS =’,I5/

$ 1X,’ NUMBER OF ERROR TEST FAILURES =’,I5/

$ 1X,’ NUMBER OF CONVERGENCE TEST FAILURES =’,I5/

$ 1X,’ RUNTIME =’,E10.2)

C

IF (KPRINT .GT. 2) THEN

WRITE (LUN,220) NSP

IF(NSP.GT.0) THEN

DO 221 I=1,NSP

WRITE(LUN,230) TS(I)

221 CONTINUE

WRITE (LUN,240)

DO 222 I=1,NSP+1

WRITE(LUN,250) MDHIST(I)

222 CONTINUE
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ENDIF

ENDIF

C

220 FORMAT(//1X,’NUMBER OF SWITCH POINTS =’,I5)

230 FORMAT(1X,E15.5)

240 FORMAT(//1X,’MODE HISTORY:’)

250 FORMAT(1X,I5)

IF (KPRINT .GT. 2) THEN

WRITE(LUN,260) ISMTH

ENDIF

260 FORMAT(//1X,’SMOOTH TRANSITION POSSIBLE? ISMTH=’,I5)

C

C Display results in MATLAB

CALL WRMLAB(2)

C

STOP

C *** Last line ***

END

SUBROUTINE USCAL(M, N, A, LDA, SCALC, SCALR, IERR)

C .. Scalar Arguments ...

INTEGER M, N, LDA, IERR

C .. Array Arguments ...

DOUBLE PRECISION A(LDA,*), SCALC(*), SCALR(*)

C .. Executable Statements ..

RETURN

C *** Last line of USCAL ***

END

SUBROUTINE UINTER(T,X,XPRIME,RPAR,IPAR,ATOL,IRTRN)

C

C ARGUMENT LIST

C

C ARGUMENTS IN

C T - current mesh point

C X,XPRIME - current state at time T

C RPAR,IPAR - user supplied parameter arrays

C

C ARGUMENTS OUT

C IRTRN - Serves to interrupt the integration

C If IRTRN

C * is set 0, the integration is continued

C * is set -1, DGENDA returns to the calling program

C -----------------------------------------------------------------

C ..Scalar Arguments..

DOUBLE PRECISION MU

PARAMETER (MU=0.4D0)

DOUBLE PRECISION T

INTEGER IRTRN

C ..Array Arguments..

INTEGER IPAR(*)

DOUBLE PRECISION X(*), XPRIME(*), RPAR(*), ATOL(*), VC
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C .. Executable Statements ..

C

VC= RPAR(2)

IF(IPAR(1) .EQ. 1) THEN

IF( (X(1)-X(2).LT.-VC)) THEN

IRTRN = -1

ENDIF

ENDIF

IF (IPAR(1) .EQ. 2) THEN

IF( X(1)-X(2).GT.VC ) THEN

IRTRN=-1

END IF

END IF

IF (IPAR(1) .EQ. 3) THEN

IF( DSIN(T)-2*MU.GT. 0.0D0 ) THEN

IRTRN=-1

END IF

IF( DSIN(T)+2*MU.LT. 0.0D0 ) THEN

IRTRN=-1

END IF

END IF

RETURN

END

C *** Last line of UINTER ***

SUBROUTINE GFUN(T,IDIF, X, XPRIME, GT, NRTFN, IPAR, RPAR, IERR)

C

C ARGUMENT LIST

C

C ARGUMENTS IN

C T - DOUBLE PRECISION. The current mesh point

C X, XPRIME - DOUBLE PRECISION arrays of DIMENSION (*).

C The current state at time T.

C IPAR - INTEGER array of DIMENSION (*).

C User supplied parameter arrays

C NRTFN - INTEGER. The number of root functions for

C the current mode.

C

C ARGUMENTS OUT

C GT - DOUBLE PRECISION array of DIMENSION (NRTFN).

C The root functions for the current mode.

C

C ERROR INDICATOR

C

C IERR - INTEGER.

C Unless the routine detects an error,

C IERR contains 0 on exit.

C

C WARNINGS AND ERRORS DETECTED BY THE ROUTINE

C

C IERR = -1 : On entry, the number of the current mode stored

C in IPAR(1) is greater than the total number

C of modes in IPAR(2).
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C ----------------------------------------------------

C ..Scalar Arguments..

DOUBLE PRECISION MU

PARAMETER (MU=0.4D0)

DOUBLE PRECISION T

DOUBLE PRECISION X(*), XPRIME(*), GT(NRTFN), RPAR(*), VC

INTEGER IERR, IPAR(*), NRTFN, MODE, NMODE, IDIF

C .. Executable Statements ..

IERR =0

MODE = IPAR(1)

NMODE = IPAR(2)

VC = RPAR(2)

C

IF( MODE .GT. NMODE) THEN

IERR = -1

RETURN

C MODE 1

ELSE IF( MODE .EQ. 1) THEN

IF(IDIF.EQ.0)THEN

GT(1)=X(1)-X(2)+VC

ELSE

IERR=-1

ENDIF

C MODE 2

ELSE IF( MODE.EQ.2) THEN

IF(IDIF.EQ.0) THEN

GT(1)=X(1)-X(2)-VC

ELSE

IERR=-1

ENDIF

C SLIDING MODE

ELSE IF(MODE .EQ. 3) THEN

IF(IDIF.EQ.0) THEN

GT(1)=DSIN(T)-2*MU

GT(2)=DSIN(T)+2*MU

ELSE

IERR=-1

ENDIF

ENDIF

RETURN

END

C *** Last line of GFUN ***

SUBROUTINE TRANSF(XNEW,XOLD,N,MODNEW,MODOLD,IERR)

C

C ARGUMENT LIST

C

C ARGUMENTS IN

C XOLD - The state of the system in the old mode.

C MODNEW - the new mode of the system.

C MODOLD - The old mode of the system.

C
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C ARGUMENTS OUT

C XNEW - The state of the system in the new mode.

C

C ERROR INDICATOR

C

C IERR - INTEGER.

C Unless the routine detects an error,

C IERR contains 0 on exit.

C

C WARNING AND ERRORS DETECTED BY THE ROUTINE

C

C IERR = -1 : Wrong mode change is detected.

C -----------------------------------------------------------------

C ..Scalar Arguments..

INTEGER MODNEW,MODOLD, IERR, N(*)

C ..Array Arguments..

DOUBLE PRECISION XNEW(*), XOLD(*)

C ..Local Scalars..

IERR=0

XNEW(1)=XOLD(1)

XNEW(2)=XOLD(2)

XNEW(3)=XOLD(3)

XNEW(4)=XOLD(4)

XNEW(5)=XOLD(5)

XNEW(6)=XOLD(6)

XNEW(7)=XOLD(7)

XNEW(8)=XOLD(8)

XNEW(9)=XOLD(9)

XNEW(10)=XOLD(10)

RETURN

END

C *** Last line of TRANSF ***

SUBROUTINE MDCHNG(MODE, J, NMODE, MXTRAN, NEWMOD, IERR)

C

C Argument List

C

C Arguments In

C MODE - old mode

C NMODE - number of modes

C MXTRAN - maximal number of transitions

C J - transition number

C

C Arguments Out

C NEWMOD - new mode

C

C ERROR INDICATOR

C IERR - INTEGER

C = 0 , ok

C = -1 wrong transition number J

C = -2 wrong MODE

C -----------------------------------------------------------------

C ..Scalar Arguments..
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INTEGER MODE, NMODE, MXTRAN, IERR, NEWMOD, J

C ..Array Arguments..

C ..Local Scalars..

INTEGER M(NMODE,MXTRAN)

C ..Executable Statements..

IERR=0

DO 10 I=1,NMODE

DO 20 K=1,MXTRAN

M(I,K)=0

20 CONTINUE

10 CONTINUE

C

M(1,1)=2

M(2,1)=1

M(1,2)=3

M(2,2)=3

M(3,1)=1

M(3,2)=2

IF(J .LE. 0 .OR. J .GT. MXTRAN) THEN

IERR = -1

RETURN

ELSE IF (MODE .LE. 0 .OR. MODE .GT. NMODE) THEN

IERR = -2

RETURN

ELSE

NEWMOD=M(MODE,J)

END IF

RETURN

END

C *** Last line of MDCHNG ***

SUBROUTINE FUN(T, IDIF, X, F, IPAR, RPAR, IERR)

C

C ARGUMENT LIST

C

C ARGUMENTS IN

C

C T - DOUBLE PRECISION.

C IDIF - INTEGER.

C X - DOUBLE PRECISION array of DIMENSION (*)

C

C ARGUMENTS OUT

C

C F - DOUBLE PRECISION array of DIMENSION (*).

C The leading N part of this array contains the

C IDIF-th derivative of F(t,x(t),dx/dt(t)) at time T.

C

C ERROR INDICATOR

C

C IERR - INTEGER.

C Unless the routine detects an error (see next section),

C IERR contains 0 on exit.

C
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C WARNINGS AND ERRORS DETECTED BY THE ROUTINE

C

C IERR = -1 : On entry, IDIF is larger than the highest

C derivative the subroutine provides

C

C ---------------------------------------------------------------------

C .. Scalar Arguments ..

DOUBLE PRECISION T

INTEGER IDIF, IERR

C .. Array Arguments ..

INTEGER IPAR(*)

DOUBLE PRECISION RPAR(*), X(*), F(*)

RETURN

END

C *** Last line of FUN ***

SUBROUTINE DFUN(T, IDIF, X, JAC, LJAC, IPAR, RPAR, IERR)

C

C ARGUMENT LIST

C

C ARGUMENTS IN

C T - DOUBLE PRECISION.

C IDIF - INTEGER.

C X - DOUBLE PRECISION arrai of DIMENSION (*)

C LJAC - INTEGER.

C The leading dimension of array JAC as declared in the

C calling program.

C

C ARGUMENTS OUT

C JAC - DOUBLE PRECISION array of DIMENSION (LJAC,*).

C The leading N by (IDIF+1)*N part of this array

C contains the partial derivatives of the IDIF-th

C derivative of F(t,x(t),dx/dt(t)) at time T.

C

C ERROR INDICATOR

C IERR - INTEGER.

C Unless the routine detects an error (see next section),

C IERR contains 0 on exit.

C

C WARNINGS AND ERRORS DETECTED BY THE ROUTINE

C IERR = -1 : On entry, IDIF is larger than the highest

C derivative the subroutine provides

C ------------------------------------------------------------------------

C .. Scalar Arguments ..

DOUBLE PRECISION T

INTEGER IDIF, IERR, LJAC

C .. Array Arguments ..

DOUBLE PRECISION X(*), JAC(LJAC,*), RPAR(*)

INTEGER IPAR(*)

RETURN

END

C *** Last line of DFUN ***
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SUBROUTINE WRMLAB(N)

C

C Writes an m-Files for displaying the results in Matlab

C (WRiteMatlab)

C ACHTUNG: Die erzeugte Datei enthaelt ein "clear all".

C

C INPUT PARAMETERS

C ----------------

C N /1 Initialisierung der Datei

C /2 Plot-anweisungen und Ende der Datei

C

IMPLICIT NONE

INTEGER N

LOGICAL FILEEXIST

C -----------------------------------------------------------------

IF (N .EQ. 1) THEN

C

INQUIRE(FILE=’res.m’,EXIST=FILEEXIST)

IF (FILEEXIST) THEN

OPEN(UNIT=10,FILE=’res.m’,STATUS=’OLD’)

CLOSE(10, STATUS=’DELETE’)

END IF

OPEN(UNIT=10,FILE=’res.m’,STATUS=’NEW’)

C

WRITE(10,99)

99 FORMAT( ’clear all;close all;’)

C

ELSE IF (N .EQ. 2) THEN

WRITE(10,110)

110 FORMAT( ’plot(T,X(1,:),’’b’’);hold on;’)

WRITE(10,111)

111 FORMAT( ’plot(T,X(2,:),’’r’’);’)

WRITE(10,112)

112 FORMAT( ’plot(T,X(3,:),’’g’’);’)

WRITE(10,113)

113 FORMAT( ’plot(T,X(4,:),’’m’’);’)

WRITE(10,114)

114 FORMAT( ’plot(T,X(5,:),’’y’’);’)

WRITE(10,115)

115 FORMAT(’figure(2);plot(T,X(1,:)-X(2,:),’’b’’);’)

CLOSE(10)

C

END IF

RETURN

END

C *** Last line of WRMLAB ***

SUBROUTINE MATSUB(IMAT, M, N, T, IDIF, W, LDW, IPAR,RPAR,IERR)

C

C Provides the matrices E, A, B, C, D (or the vector F, resp.)

C and their derivatives up to order IDIF

C of the given descriptor system (or the DAE)
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C -------------------------------------------------------------

C .. Parameters ..

DOUBLE PRECISION ZERO

PARAMETER (ZERO = 0.0D0)

C .. Scalars ..

INTEGER IDIF, IERR, IMAT, LDW, I, J, M, N

DOUBLE PRECISION T

C .. Arrays ..

INTEGER IPAR(*)

DOUBLE PRECISION RPAR(*), W(LDW,*)

C .. External Subroutines ..

EXTERNAL EDIF, ADIF, FDIF

C .. Executable statements ..

C Matrix to be provided

GOTO (100, 200, 300), IMAT

C

C Provide the derivative coefficient E

100 CONTINUE

DO 112 I=1,M

DO 111 J=1,N

W(I,J) = ZERO

111 CONTINUE

112 CONTINUE

C

CALL EDIF(M, N, T, IDIF, W(1,1), LDW, IPAR, RPAR, IERR)

RETURN

C

C Provide the solution coefficient A

200 CONTINUE

DO 212 I=1,M

DO 211 J=1,N

W(I,J) = ZERO

211 CONTINUE

212 CONTINUE

CALL ADIF(M, N, T, IDIF, W(1,1), LDW, IPAR, RPAR, IERR)

RETURN

C

C Provide the inhomogeneity F

300 CONTINUE

DO 310 I=1,M

W(I,1) = ZERO

310 CONTINUE

CALL FDIF(M, T, IDIF, W(1,1), IPAR, RPAR, IERR)

RETURN

END

C *** Last line of MATSUB ***

SUBROUTINE EDIF(M,N,T,IDIF,E,LDE,IPAR,RPAR,IERR)

C

C .. Scalar Arguments ..

DOUBLE PRECISION T, RPAR(*)

INTEGER IDIF, IERR, IPAR(*), LDE, N, M
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C .. Array Arguments ..

DOUBLE PRECISION E(LDE,*)

INTEGER I,J, MODE, NMODE

C .. Executable Statements ..

IERR = 0

MODE=IPAR(1)

NMODE=IPAR(2)

IF(MODE.GT.NMODE)THEN

IERR=-2

RETURN

ENDIF

DO 10 I=1,M

DO 20 J=1,N

E(I,J)=0.0D0

20 CONTINUE

10 CONTINUE

IF(MODE.EQ.1 .OR. MODE.EQ.2) THEN

IF(IDIF.GT.0)THEN

IERR=-2

RETURN

ENDIF

DO 30 J=1,N

E(J,J)=1.0D0

30 CONTINUE

ENDIF

IF(MODE.EQ.3)THEN

IF(IDIF.GT.2)THEN

IERR=-2

RETURN

ENDIF

IF(IDIF.EQ.0)THEN

DO 40 J=1,N-1

E(J,J)=1.0D0

40 CONTINUE

ENDIF

ENDIF

RETURN

C *** Last line of EDIF ***

END

SUBROUTINE ADIF(M,N,T,IDIF,A,LDA,IPAR,RPAR,IERR)

C

C .. Scalar Arguments ..

DOUBLE PRECISION RPAR(*), T

INTEGER IDIF, IERR, IPAR(*), LDA, N, M

C .. Array Arguments ..

DOUBLE PRECISION A(LDA,*)

INTEGER I,J

C .. Executable Statements ..

IERR = 0

MODE=IPAR(1)

NMODE=IPAR(2)

IF(MODE.GT.NMODE) THEN
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IERR=-1

RETURN

ENDIF

DO 10 I=1,M

DO 20 J=1,N

A(I,J)=0.0D0

20 CONTINUE

10 CONTINUE

C

IF(MODE.EQ.1 .OR. MODE .EQ.2) THEN

IF(IDIF.GT.0) THEN

IERR=-2

RETURN

ENDIF

A(3,1)=1.0D0

A(4,2)=1.0D0

ENDIF

IF(MODE.EQ.3) THEN

IF(IDIF.GT.2) THEN

IERR=-2

RETURN

ENDIF

IF(IDIF.EQ.0) THEN

A(1,5)= 1.0D0

A(2,5)=-1.0D0

A(3,1)= 1.0D0

A(4,2)= 1.0D0

A(5,1)= 1.0D0

A(5,2)=-1.0D0

ENDIF

ENDIF

RETURN

C *** Last line of ADIF ***

END

SUBROUTINE FDIF(M,T,IDIF,F,IPAR,RPAR,IERR)

C

C .. Constants

DOUBLE PRECISION MU

PARAMETER (MU=0.4D0)

C .. Scalar Arguments ..

DOUBLE PRECISION T, RPAR(*)

INTEGER IDIF, IERR, IPAR(*), M

C .. Local Arrays ..

DOUBLE PRECISION F(*)

INTEGER MODE, NMODE

C .. Executable Statements ..

IERR =0

MODE = IPAR(1)

NMODE = IPAR(2)

C

IF( MODE .GT. NMODE) THEN

IERR = -2
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RETURN

C MODE 1

ELSEIF( MODE .EQ. 1) THEN

IF(IDIF.EQ.0) THEN

F(1)=DSIN(T)-MU

F(2)=MU

F(3)=0.0D0

F(4)=0.0D0

ELSE

IERR = -2

RETURN

ENDIF

ELSEIF( MODE .EQ. 2) THEN

IF(IDIF.EQ.0) THEN

F(1)=DSIN(T)+MU

F(2)=-MU

F(3)=0.0D0

F(4)=0.0D0

ELSE

IERR = -2

RETURN

ENDIF

ELSEIF( MODE .EQ. 3) THEN

IF(IDIF.EQ.0) THEN

F(1)=DSIN(T)-MU

F(2)=MU

F(3)=0.0D0

F(4)=0.0D0

F(5)=0.0D0

ELSEIF(IDIF.EQ.1)THEN

F(1)=DCOS(T)

F(2)=0.0D0

F(3)=0.0D0

F(4)=0.0D0

F(5)=0.0D0

ELSEIF(IDIF.EQ.2)THEN

F(1)=-DSIN(T)

F(2)=0.0D0

F(3)=0.0D0

F(4)=0.0D0

F(5)=0.0D0

ELSE

IERR = -2

RETURN

ENDIF

ENDIF

RETURN

C *** Last line of FDIF ***

END
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