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Abstract. We present a hierarchical a posteriori error analysis for the min-
imum value of the energy functional in symmetric obstacle problems. The
main result is that the energy of the exact solution is, up to oscillation terms,
equivalent to an appropriate hierarchical estimator. The proof does not invoke
any saturation assumption. Moreover, we prove an a posteriori error estimate
indicating that the estimator from [12] is asymptotically reliable and we give
sufficient conditions for the validity of a saturation assumption. Finally, we
corroborate and complement our theoretical results with a numerical example.

1. Introduction and main results

A posteriori error estimates are an important tool for the numerical solution of
boundary value problems. For example, they can be used to quantify the error of
a given approximate solution in a computable manner. Moreover, they often split
into local contributions, so-called indicators, and then these indicators may be used
to direct the mesh modifications in an adaptive algorithm.

The hierarchical approach to a posteriori error estimates (see [9, 23] or the mono-
graphs [1, 22]) is based upon a finite-dimensional extension of the given finite ele-
ment space S by a suitable incremental space V . The indicators are obtained from
local defect problems associated with low-dimensional subspaces of V , e.g., the one-
dimensional subspaces spanned by the nodal basis functions. Usually, these local
defect problems are solved explicitely, providing explicit a posteriori error estimates.

An attractive feature of the hierarchical approach is that lower bounds typi-
cally come without unknown constants. On the other hand, as V has only finite
dimension, upper bounds must involve additional terms (see [4, Proposition 2.2])
that measure oscillations beyond V . Ideally these terms are of higher order and
computable. For linear elliptic problems, upper bounds have been shown by local
equivalence to standard residual indicators [4] or with the help of the so-called sat-
uration assumption [2, 9]. The saturation assumption holds, if (data) oscillation
is relatively small [10]. A direct approach to upper bounds has been presented in
[20], where a suitable quasi-interpolation operator onto V is used. All these proofs
rely on the Galerkin orthogonality, or, equivalently, on the fact that the residual of
the finite element approximation is vanishing on S.

Hierarchical concepts have been applied successfully in numerical computations
for various non-smooth nonlinear problems [14], in particular for obstacle problems
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[12, 13], and two-body contact problems in linear elasticity [17]. In all these applica-
tions, hierarchical indicators provided satisfying effectivity rates and quasioptimal
convergence rates without any extra scaling of the various estimator contributions.
On the other hand, the theory of hierarchical error estimates for nonlinear prob-
lems still seems to be in its infancy. Only recently, lower and upper bounds for the
discretization error have been established in [15], based on a saturation assumption
and suitable regularity requirements on the mesh. The a posteriori analysis in [18]
avoids the saturation assumption. However, if no obstacle is present, then the up-
per bound does not reduce to well-known results in the unconstrained case. This
is because [18], whose main concern is the convergence of the adaptive algorithm,
does not fully exploit the cancellations of the linear finite element solution.

In this paper, we derive and analyze hierarchical error estimates for the following
symmetric, elliptic obstacle problem. Let Ω ⊂ R

2 be a bounded polygonal Lipschitz
domain, ψ ∈ C(Ω) a lower obstacle satisfying ψ ≤ 0 on the boundary ∂Ω and
f ∈ L2(Ω) a load term. Find

(1.1) u ∈ K : J (u) ≤ J (v) ∀v ∈ K,

where
K = {v ∈ H1

0 (Ω) | v ≥ ψ a.e. in Ω}

and

(1.2) J (v) = 1
2a(v, v) − (f, v)

is the quadratic functional induced by the symmetric bilinear form with associated
energy norm

a(v, w) = (∇v,∇w), ‖v‖ = a(v, v)1/2

and (·, ·) denotes the L2(Ω)-scalar product. Since K is a nonempty, closed, and
convex set, and a(·, ·) is H1

0 (Ω)-coercive, (1.1) has a unique solution u.
A key feature of obstacle problems is that (1.1) is equivalent to the variational

inequality

(1.3) a(u, v − u) ≥ (f, v − u) ∀v ∈ K

and not to an equality. This is related to the property that a perturbation of the
load f not necessarily affects the solution u. These two features imply that, in
general, the residual is no longer orthogonal to S. This complicates the a pos-
teriori error analysis. In particular, the sharpness of an upper bound cannot be
verified through the continuous dependence of the usual dual residual norm on the
approximate solution; cf. [3, 5, 6, 16, 19], where averaging or residual techniques
are considered. Insensitivity of estimators with respect to certain perturbations of
the load f has been established by means of the notion of full-contact introduced
in [11].

In what follows, we consider a linear finite element solution uS to (1.1), take
V as the span of the quadratic edge bubbles and assume that the obstacle ψ is
continuous and piecewise affine. Our main result is the equivalence

(1.4) J (uS) − J (u) ≈ −IQ(εV)

up to constants depending only on the shape regularity of the mesh and oscillation
terms that are formally of higher order. Here IQ is a quadratic functional of the
form (1.2). The load is given by the residual of uS , and the bilinear form is a
hierarchical preconditioner of a(·, ·), such that the minimum εV of IQ on certain
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localized defect constraints is explicitely known. See Section 2 for precise definitions.
The hidden oscillation terms in (1.4) are computable once uS is known. Moreover,
as a corollary, we bound the discretization error ‖uS −u‖ in terms of a hierarchical
estimator similar to the one proposed in [12]. The equivalence (1.4) seems to be the
first theoretical validation of hierarchical a posteriori error estimates for variational
inequalities that reduces to well-known estimates in the unconstrained case [4] and
that does not not rely on a saturation assumption. Moreover, in Section 4, we even
show that the upper bound in (1.4) implies the following saturation assumption

J (uQ) − J (u) ≤ α
(

J (uS) − J (u)
)

,

where α ∈ (0, 1) and uQ is the quadratic finite element solution of (1.1). In this
way, we generalize well-known results on the relation of error estimates, oscillation
and saturation assumptions from the linear, unconstrained case [4, 10] to obstacle
problems.

In order to prove (1.4) in Section 3, we apply techniques from [18, 20]. In par-
ticular, we handle the possible non-orthogonality of the residual as in [18]. Notice
that we improve and partially simplify arguments. Important novelties are Lemma
3.1 and a suitable generalization of the data oscillation in the linear case. Our
proof makes use of representation formulas involving local residuals on triangles
and jumps of the normal fluxes across their boundary. Such representations do not
extend to piecewise quadratic extensions in three space dimensions, because they
are associated with edges rather than faces. Face-oriented increments in three space
dimensions, like cubic bubble functions, would be covered by our theory, cf. [18].
However, in view of the results on the saturation assumption, we do not consider
the three-dimensional case here.

The paper concludes with a numerical example in Section 5 that corroborates
and complements the aforementioned theoretical results.

2. Discretization and hierarchical error estimate

In this section, we introduce a finite element approximation of (1.1) and then
derive the hierarchical a posteriori error estimate IQ(εV).

Suppose T is a conforming triangulation of Ω. Then S denotes the space of
continuous functions that are piecewise affine over T and vanish on ∂Ω. The space
S is spanned by the nodal basis {φP | P ∈ N ∩ Ω}, where N stands for the set of
vertices of T ∈ T , and the continuous piecewise affine functions φP associated with
P ∈ N are characterized by φP (P ′) = δP,P ′ (Kronecker-δ). The resulting finite
element approximation of (1.1) is given by

uS ∈ KS : J (uS) ≤ J (v) ∀v ∈ KS

or, equivalently,

(2.1) uS ∈ KS : a(uS , v − uS) ≥ (f, v − uS) ∀v ∈ KS .

The closed, convex, and non-empty set

KS = {v ∈ S | v(P ) ≥ ψ(P ) ∀P ∈ N ∩ Ω}

is the discrete counterpart ofK. As in the continuous case, existence and uniqueness
follow from the coercivity of of a(·, ·) on S ⊂ H1

0 (Ω). We assume that

(2.2) ψ is continuous and piecewise affine over T .
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As a consequence, KS ⊂ K so that (2.1) is a conforming method. It is worth
mentioning that the continuity in (2.2) may be dropped and is assumed here only
for simplicity [18]. The errors arising from the approximation of non-conforming
obstacles are not considered here.

We are interested in the a posteriori control of the error

(2.3) J (uS) − J (u) ≥ 0

between the exact and the approximate energy minimum. If no obstacle is present
or, formally, if ψ = −∞, then the energy error (2.3) corresponds to the discretiza-
tion error measured in the energy norm, i.e., J (uS) − J (u) = 1

2‖uS − u‖2. In
presence of an obstacle, however, we only have ‘≥’ instead of ‘=’, in general.

We start to derive a hierarchical a posteriori error estimate for the energy error
(2.3), by introducing the error function e = u− uS . Let

(2.4) I(v) =
1

2
a(v, v) − ρS(v), ρS(v) = (f, v) − a(uS , v), v ∈ H1

0 (Ω),

and

A = {v ∈ H1
0 (Ω) | v ≥ ψ − uS} = −uS +K.

Note that (2.2) implies 0 ∈ A. Then, the error function e solves the defect problem

e ∈ A : I(e) ≤ I(v) ∀v ∈ A

or, equivalently,

(2.5) e ∈ A : a(e, v − e) ≥ ρS(v − e) ∀v ∈ A

and there holds

(2.6) J (uS) − J (u) = −I(e).

Note that the right hand side ρS is a key quantity to determine e. It depends only
on the load f and on the approximate solution uS . In the context of variational
equations, ρS is called the residual of uS . In view of the relationship (2.6), we
will derive the a posteriori estimate IQ(εV) occurring in (1.4) in two steps. First,
the defect problem (2.5) is discretized with respect to an extension of S that is
rich enough to extract enough information from ρS or, equivalently, to provide a
sufficiently accurate approximation of e. In the second step, the resulting discrete
problem is decomposed into local defect problems that can be solved explicitely.

Piecewise quadratic finite elements provide approximations of higher order [8],
and, therefore, are natural candidates for the discretization of (2.5) (see [4, 9, 10]
for the unconstrained case). Let Q denote the space of continuous functions that
are piecewise quadratic over T and vanish on ∂Ω. Each function v ∈ Q is uniquely
determined by its values in NQ = N ∪ {xE | E ∈ E}. Here, E stands for the set of
interior edges of T ∈ T and xE denotes the midpoint of E ∈ E . The approximation
eQ of e in Q is the unique solution of the discrete defect problem

(2.7) eQ ∈ AQ : a(eQ, v − eQ) ≥ ρS(v − eQ) ∀v ∈ AQ,

where the closed, convex, and non-empty set

AQ = {v ∈ Q | v(P ) ≥ ψ(P ) − uS(P ) ∀P ∈ NQ ∩ Ω}

is the discrete counterpart of the defect constraints A. Note that, in general,
AQ 6⊂ A.
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In order to localize (2.7), we modify the bilinear form a(·, ·) and the constraints
AQ. To this end, we introduce the hierarchical splitting

Q = S + V , V = span {φE | E ∈ E},

involving the quadratic bubble functions φE ∈ Q characterized by φE(P ) = δxE,P

for all P ∈ NQ (Kronecker-δ). Since S ∩ V = {0}, the decomposition v = vS + vV
of each v ∈ Q into the contributions vS ∈ S and vV ∈ V is uniquely determined.
Therefore, using this notation, the bilinear form

aQ(v, w) = a(vS , wS) +
∑

E∈E

vV(xE)wV (xE)a(φE , φE), v, w ∈ Q,

is well-defined. Note that aQ(·, ·) is resulting by decoupling of S and V and subse-
quent diagonalization of a(·, ·) on the incremental space V . It provides an optimal
preconditioner of a(·, ·) in the sense that the associated energy norm

‖v‖Q = aQ(v, v)1/2, v ∈ Q,

is equivalent to ‖ · ‖ with constants depending only on the shape regularity of
T [4, 9]. The bilinear form aQ(·, ·) gives rise to the approximate energy

IQ(v) =
1

2
aQ(v, v) − ρS(v), v ∈ Q.

However, in contrast to the unconstrained case, the minimization problem

εQ ∈ AQ : IQ(εQ) ≤ IQ(v) ∀v ∈ AQ

or, equivalently, the preconditioned defect problem

(2.8) εQ ∈ AQ : aQ(εQ, v − εQ) ≥ ρS(v − εQ) ∀v ∈ AQ

cannot be solved explicitely, because the contributions from S and V are still cou-
pled through the constraints AQ. As a remedy, we suppress the contributions from
S by introducing

AV = {v ∈ V | v(xE) ≥ ψ(xE) − uS(xE) ∀E ∈ E},

which is a proper subset of AQ. Note that (2.2) implies 0 ∈ AV . We finally arrive
at the localized discrete defect problem

εV ∈ AV : IQ(εV) ≤ IQ(v) ∀v ∈ AV

or, equivalently,

(2.9) εV ∈ AV : aQ(εV , v − εV) ≥ ρS(v − εV) ∀v ∈ AV .

Observe that (2.9) is completely decoupled into local defect problems associated
with the edges E ∈ E . Their solution is explicitly given by

(2.10) εV(xE) =
max{−dE, ρE}

‖φE‖

where

(2.11) dE =
(

uS(xE) − ψ(xE)
)

‖φE‖ ≥ 0, ρE =
ρS(φE)

‖φE‖
.

The quantity

(2.12) ‖εV‖Q =

(

∑

E∈E

η2
E

)1/2

, ηE = |εV(xE)|‖φE‖,
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has been proposed in [12] as an a posteriori error estimator for ‖u− uS‖ (see also
[13]). Here we propose

(2.13) −IQ(εV) = − 1
2aQ(εV , εV) + ρS(εV)

as an a posteriori error estimator for (2.3). Corresponding local indicators will be
derived in Section 3.1. We will show in Section 3 that −IQ(εV) is equivalent to
J (uS) − J (u) up to oscillation terms that are formally of higher order, in spite of
the above discretization and localization.

3. A posteriori error analysis

In this section we prove our main result (1.4) stating that −IQ(εV) defined in
(2.13) is a reliable and efficient a posteriori error estimator for the energy error
J (uS) − J (u). In particular, we specify and discuss the hidden terms in (1.4). In
what follows, we write ‘.’ instead of ‘≤ C’ where the constant C depends only on
the shape regularity of T . The notation ‘A ≈ B’ stands for A . B and B . A.

3.1. Error, residual and local indicators. As the starting point of our a pos-
teriori error analysis, we collect some basic properties of the error e = u − uS and
its various approximations.

Lemma 3.1. The error e = u− uS satisfies the inequalities

(3.1) 1
2‖e‖

2 ≤ 1
2ρS(e) ≤ −I(e) ≤ ρS(e)

Proof. As a consequence of (2.2), the function v = 0 is contained in A. Inserting
v = 0 into (2.5), we obtain the first inequality of (3.1). From this inequality, we
immediately get

1
2ρS(e) ≤ − 1

2‖e‖
2 + ρS(e) ≤ ρS(e).

In view of the definition (2.4) of I, this concludes the proof. �

As the approximations eQ, εQ, and εV of e solve the variational inequalities
(2.7), (2.8), and (2.9), respectively, the arguments in the proof of Lemma 3.1 can
be literally repeated to show the related estimates

1
2‖eQ‖

2 ≤ 1
2ρS(eQ) ≤ −I(eQ) ≤ ρS(eQ),(3.2)

1
2‖εQ‖

2
Q ≤ 1

2ρS(εQ) ≤ −IQ(εQ) ≤ ρS(εQ),(3.3)

1
2‖εV‖

2
Q ≤ 1

2ρS(εV) ≤ −IQ(εV) ≤ ρS(εV).(3.4)

As a first application, we derive local indicators for our approximate energy
error −IQ(εV). As −IQ(εV) and ρS(εV) are equivalent up to the constant 1/2,
local contributions to ρS(εV) can be used as indicators for −IQ(εV). Utilizing the
definitions (2.10), (2.11), and (2.12), ρS(εV) can be decomposed according to

(3.5) ρS(εV) =
∑

E∈E

εV(xE)ρS(φE) =
∑

E∈E

ηE |ρE |.

This suggests the local indicators ηE |ρE |, E ∈ E , for −IQ(εV). These indicators
have been already used in [18], but they were collected in a different way.

In view of the identity (2.6) and Lemma 3.1, the energy error J (uS) − J (u) is
equivalent to the quantity ρS(e). Therefore, it is useful to provide some further
properties of ρS . As in the unconstrained case, ρS depends only on the load f
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and on the discrete solution uS . More precisely, after integration by parts on each
T ∈ T , the identity ∆uS = 0 on each T yields the representation

ρS(v) =

∫

Ω

fv +
∑

E∈E

∫

E

jEv, jE = ∂nuS |T2
− ∂nuS |T1

.

Here, n denotes the unit normal vector on the common edge E = T1 ∩ T2 of two
triangles T1, T2 ∈ T pointing from T1 to T2, and jE ∈ R represents the jump of the
normal flux associated with uS across E.

In contrast to the unconstrained case, the equivalence ρS = 0 ⇐⇒ e = 0 in
general does not hold for variational inequalities. However, Lemma 3.1 implies

(3.6)
(

ρS(v) ≤ 0 ∀v ∈ A
)

=⇒ e = 0

which is an extension of ρS = 0 =⇒ e = 0. As uS solves the discrete problem (2.1),
we can insert v = uS + φP ∈ KS to obtain ρS(φP ) ≤ 0 for all P ∈ N ∩ Ω, which
means that the approximation of e in S is just zero. If uS(P ) > ψ(P ), we can even
insert vα = uS − αφP ∈ KS with sufficiently small α > 0 to obtain ρS(φP ) = 0.
Combining our observations, we obtain the discrete complementarity properties

(3.7) ρS(φP ) ≤ 0, ψ(P ) − uS(P ) ≤ 0, ρS(φP )
(

ψ(P ) − uS(P )
)

= 0

for all P ∈ N ∩ Ω. Note that ρS(φP ) < 0 might occur for certain P so that, in
contrast to the unconstrained case, ρS in general does not vanish on S. The discrete
complementarity properties (3.7) are compatible with the following localization of
ρS . Invoking the partition of unity

(3.8)
∑

P∈N

φP = 1 in Ω,

we decompose

(3.9) ρS =
∑

P∈N

ρP

into the local contributions

ρP (v) = ρS(vφP ) =

∫

ωP

fvφP +
∑

E∈EP

∫

E

jEvφP , v ∈ H1(Ω),

where

ωP = supp φP , EP = {E ∈ E | E ∋ P},

denote the support of φP and the internal edges emanating from P , respectively.
Then, (3.7) takes the form

ρP (1) ≤ 0,(3.10a)

uS(P ) > ψ(P ) =⇒ ρP (1) = 0,(3.10b)

for all P ∈ N ∩Ω. These complementarity properties suggest to introduce the sets

N 0 = {P ∈ N ∩ Ω | uS(P ) = ψ(P )}, N+ = {P ∈ N ∩ Ω | uS(P ) > ψ(P )}

of interior contact and non-contact nodes, respectively.
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3.2. Oscillation terms. As the extension V has finite dimension, the correspond-
ing approximation −IQ(εV) can only provide upper bounds of −I(e) up to ad-
ditional terms (see [4, Proposition 2.2]) measuring oscillation beyond V . In this
subsection, we introduce the additional terms that appear in the upper bound of
−I(e) in Section 3.3 below and formally explain their oscillation and higher order
character. For the the latter, we consider global refinements of a triangulation

with (2.2) and with the expected order h of ‖u − uS‖ or
(

J (uS) − J (u)
)

1
2 . Rig-

orous proofs would go beyond the scope of this article. Our heuristic reasoning is
supported by the numerical example in Section 5.

Oscillation osc(uS , ψ, f) consists of two different terms

(3.11) osc(uS , ψ, f) = osc1(uS , ψ) + osc2(uS , ψ, f),

depending on the data of the given problem (1.3) and its discretization (2.1). Note
the dependence on the discrete solution uS , which is a novelty with respect to the
unconstrained case and the reason why we use only the term ‘oscillation’ instead
of ‘data oscillation’.

The first term osc1(uS , ψ) measures a kind of obstacle oscillation. It is given by

(3.12) osc1(uS , ψ) =

(

∑

P∈N 0+

‖∇(ψ − uS)‖2
0,ωP

)1/2

,

where

N 0+ =
{

P ∈ N 0 | uS > ψ in ωP \ {P}
}

denotes the set of isolated contact nodes and ‖·‖0,ωP
stands for the norm of L2(ωP ).

Isolated contact nodes are discrete counterparts of isolated contact points, which are
strict minima x ∈ Ω of u − ψ with u(x) = ψ(x). If isolated contact nodes persist
under refinement, then, under certain regularity conditions, the exact solution u
should have corresponding isolated contact points. In this case, the set ∪P∈N 0+ωP

shrinks towards these isolated contact points of u. This entails that osc1(uS , ψ)
has at least the order of the error. Higher order should arise if ψ is smooth in the
isolated contact points. In fact, assuming also that u is also smooth enough, we
get

(

∇u − ∇ψ
)

(x) = 0 for all isolated contact points x. One thus expects that
osc1(uS , ψ) is vanishing with higher order. A similar argument applies if ψ is the
nodal interpolation of some smooth obstacle ψ0 to S, which however is outside
the conforming framework considered here. It is worth mentioning that the set
N 0+ can be made smaller, at the expense of a slightly more complicated notion of
isolated contact nodes [18].

To define osc2(uS , ψ, f), we introduce the set

(3.13) N++ = {P ∈ N+ | ρE ≥ −dE ∀E ∈ EP }

of non-contact nodes where the approximate error εV solving (2.9) is not in contact
and the set

N 0− = {P ∈ N 0 | uS = ψ, f ≤ 0 in ωP and jE ≤ 0 ∀E ∈ EP }

of full-contact nodes with certain monotonicity properties. The latter are equivalent
to f + ∆ψ ≤ 0 in the interior of ωP (in distributional sense), which in turn is
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necessary for u = ψ in ωP . Then, we define
(3.14)

osc2(uS , ψ, f) =





∑

P∈N++

h2
P ‖f − f̄P ‖

2
0,ωP

+
∑

P∈N\(N 0−∪N++)

h2
P ‖f‖

2
0,ωP





1/2

,

where, for any P ∈ N , hP = maxE∈EP
|E| is a measure for the diameter of ωP , and

f̄P =
1

|ωp|

∫

ωp

f

is the mean value of f on ωP . The term osc2(uS , ψ, f) is a generalization of well-
known data oscillation from the unconstrained case [1, 22] to obstacle problems. In
fact, if no obstacle is present, then the definition (3.14) reduces to

(3.15) osc2(uS , ψ, f) =

(

∑

P∈N∩Ω

h2
P ‖f − f̄P ‖

2
0,ωP

+
∑

P∈N∩∂Ω

h2
P ‖f‖

2
0,ωP

)1/2

.

Observe that unconstrained data oscillation (3.15) has two types of indicators:
the indicators associated with non-Dirichlet nodes involve local means, while the
indicators associated with Dirichlet nodes do not (because the corresponding hat
functions are not in S). In view of the approximation properties of local means
and since ∪P∈N∩∂ΩωP shrinks to the Dirichlet boundary under refinement, data
oscillation (3.15) is of higher order for sufficiently smooth loads f .

The oscillation term osc2(uS , ψ, f) has only contributions from outside of the full-
contact region. These contributions have a similar structure as data oscillation for
unconstrained problems: indicators that are sufficiently far away from the discrete
free boundary involve local means, while indicators in the vincinity of the discrete
free boundary do not. If the discrete free boundary converges under refinement
(see, e.g., [7]), then the set ∪P∈N\(N 0−∪N++)ωP shrinks towards the exact free
boundary, in addition to ∂Ω. Hence, osc2(uS , ψ, f) is expected to be of higher
order. The analogy between generalized oscillation osc2(uS , ψ, f) defined in (3.14)
and its unconstrained counterpart (3.15) reflects that the obstacle problem (1.3)
reduces to an unconstrained Dirichlet problem on a reduced computational domain,
once the exact free boundary is known.

3.3. Reliability. In this subsection, we derive an upper bound for the energy error
J (uS)−J (u) = −I(e) consisting of the hierarchical estimate −IQ(εV), introduced
in (2.13), and an additional oscillation term osc(uS , ψ, f), defined in (3.11).

The reduction of the continuous error e = u− uS ∈ H1
0 (Ω), solving the infinite-

dimensional defect problem (2.5), to its approximation εV ∈ V , obtained from the
localized discrete defect problem (2.9), will be performed by local projections

ΠP : H1(Ω) → QP = span{φP } ∪ VP , VP = span {φE | E ∈ EP }, P ∈ N .

For given v ∈ H1(Ω), the value ΠP v ∈ QP is uniquely defined by the conditions

(3.16)

∫

E

ΠP v =

∫

E

v ∀E ∈ EP and

{

∫

ωP
ΠP v =

∫

ωP
v if P ∈ N++,

ΠP v ∈ VP otherwise.

In contrast to similar projections [18], ΠP also preserves the mean value in ωP

for all P ∈ N++. This property prepares the ground for an upper bound with



10 QINGSONG ZOU, ANDREAS VEESER, RALF KORNHUBER, AND CARSTEN GRÄSER

oscillation term osc(uS , ψ, f) defined in (3.11). It can be verified by straightforward
calculations that the coefficients in the hierarchical basis representation

(3.17) ΠP v = αP (v)φP +
∑

E∈EP

αE(v)φE

are given by

(3.18) αP (v) =

{

cP (v)
cP (φP ) if P ∈ N++,

0 otherwise,
αE(v) =

∫

E v − αP (v)
∫

E φP
∫

E
φE

,

where

cP (v) =

∫

ωP

v −
∑

E∈EP

(

∫

E

v
)(

∫

ωP

φE

)(

∫

E

φE

)−1

.

In particular, cP (φP ) = − 1
6 |ωP |. The following lemma collects some essential

properties of the projections ΠP .

Lemma 3.2. The coefficients in (3.17) satisfy

(3.19) max
Q∈{P}∪EP

|αQ(v)| . h−1
P

(

‖v‖0,ωP
+ hP ‖∇v‖0,ωP

)

and ΠP is stable in the sense that

(3.20) ‖ΠP v‖0,ωP
. ‖v‖0,ωP

+ hP ‖∇v‖0,ωP
.

Moreover, if P 6∈ N++, then the coefficients αE(v) = (
∫

E
v)(
∫

E
φE)−1 have the

property

(3.21)

∫

E

v ≥

∫

E

(ψ − uS) =⇒ αE(v) & ψ(xE) − uS(xE) ∀E ∈ EP .

Proof. In order to show (3.19) and (3.20), we start with
∣

∣

∣

∫

ωP

v
∣

∣

∣ . hP ‖v‖0,ωP
,

∣

∣

∣

∫

E

v
∣

∣

∣ ≤ h
1
2

E‖v‖0,E . hP (h−1
P ‖v‖0,ωP

+ ‖∇v‖0,ωP
),

where we have used the Cauchy-Schwarz inequality, the ‘scaled’ trace theorem, and
hE = |E| ≤ hP for E ∈ EP . Inserting these estimates and straightforward bounds
of the integrals of φE and φP in terms of hP into (3.18), we obtain (3.19). Then
(3.20) follows from the triangle inequality, ‖φP ‖0,ωP

≈ hP , and ‖φE‖0,ωP
≈ hP .

If P 6∈ N++, then αP (v) = 0 so that (3.18) provides the coefficients αE(v) =
(
∫

E v)(
∫

E φE)−1. Moreover, we have
∫

E(ψ − uS) = |E|
(

ψ(xE) − uS(xE)
)

by
condition (2.2) and the midpoint rule. Thus (3.21) follows from the identity
∫

E φE = 1
6 |E|. �

Utilizing the projections ΠP , we derive an upper bound for ρS(e). In light of
Lemma 3.1, this is the crucial step towards an upper bound for the energy error
J (uS) − J (u) = −I(e).

Proposition 3.3. Assume that (2.2) holds. Then

(3.22) ρS(e) .
∑

E∈E

|ρE |ηE + osc(uS , ψ, f)2

with ρE defined in (2.11), ηE defined in (2.12), and osc(uS , ψ, f) defined in (3.11).
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Proof. Using the decomposition (3.9) we write ρS(e) =
∑

P∈N ρP (e). To derive up-
per bounds for the local contributions ρP (e), we distinguish six cases corresponding
to the splitting

N = N++ ∪
(

N+ \ N++
)

∪ (N ∩ ∂Ω) ∪
(

N 0 \ (N 0+ ∪ N 0−
)

∪ N 0+ ∪ N 0−,

which will be addressed in the given order.

Case 1: P ∈ N++. We claim that

(3.23) ρP (e) .
(

∑

E∈E+

P

|ρE | + hP ‖f − f̄P ‖0,ωP

)

‖∇e‖0,ωP

with E+
P = {E ∈ EP | ρE ≥ −dE}. Note that E+

P = EP , because P ∈ N++. In
order to prove (3.23), we set

w = (e− c)φP , c =
1

|ωP |

∫

ωP

e.

Then, we derive

(3.24)

ρP (e) = ρP (e− c) =

∫

ωP

fw +
∑

E∈EP

∫

E

jEw

=

∫

ωP

fΠPw +
∑

E∈EP

∫

E

jEΠPw +

∫

ωP

f(w − ΠPw)

= ρS(ΠPw) +

∫

ωP

(f − f̄P )(w − ΠPw)

≤
∑

E∈EP

αE(w)ρE‖φE‖ + ‖f − f̄P ‖0,ωP
‖w − ΠPw‖0,ωP

from N++ ⊂ N+ ∩ Ω, (3.10b) and thus ρP (1) = ρS(φP ) = 0, the definition (3.16)
of ΠP , the fact that jE ∈ R is constant, the definition (2.11) of ρE , and the Cauchy-
Schwarz inequality. Notice that, thanks to the choice of c in the definition of w and
P ∈ Ω, we have

(3.25) ‖w‖0,ωP
≤ ‖e− c‖0,ωP

. hP ‖∇e‖0,ωP

by a Poincaré inequality, cf., e.g., [21]. Utilizing (3.19), ‖φP ‖∞,ωP
≤ 1, ‖∇φP ‖∞,ωP

.

h−1
P , and (3.25), we obtain

(3.26)

|αE(w)| . h−1
P

{

‖w‖0,ωP
+ hP ‖∇w‖0,ωP

}

. h−1
P

{

‖(e− c)φP ‖0,ωP
+ hP ‖∇

(

(e− c)φP

)

‖0,ωP

}

. ‖∇e‖0,ωP
≈ ‖φE‖

−1‖∇e‖0,ωP

for all E ∈ EP . In a similar way, we get

(3.27) ‖w − ΠPw‖0,ωP
. ‖w‖0,ωP

+ hP ‖∇w‖0,ωP
. hP ‖∇e‖0,ωP

using (3.20). The desired estimate (3.23) follows by inserting these two inequalities
and EP = E+

P into (3.24).

Case 2: P ∈ N+ \ N++. We claim

(3.28) ρP (e) .
(

∑

E∈E+

P

|ρE | + hP ‖f‖0,ωP

)

‖∇e‖0,ωP
.
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To show (3.28), we first proceed as in the proof of (3.24), to derive the inequality

(3.29) ρP (e) ≤
∑

E∈EP

αE(w)ρE‖φE‖ + ‖f‖0,ωP
‖w − ΠPw‖0,ωP

,

where

w = (e− c)φP , c = min

{

(

∫

E

eφP

)(

∫

E

φP

)−1

| E ∈ EP

}

.

This particular choice of c implies that we have αE(w) = (
∫

E
w)(
∫

E
φE)−1 ≥ 0 for

all E ∈ EP and that the inequalities (3.26) and (3.27) follow from the generalized
Poincaré-Friedrichs inequality in [18, Lemma 3.4]. Hence, inserting (3.26) and
(3.27) into (3.29), we can exploit αE(w)ρE ≤ 0 whenever ρE < −dE ≤ 0, to obtain
the desired inequality (3.28).

Case 3: P ∈ N ∩ ∂Ω. We claim

(3.30) ρP (e) .
∑

E∈E0
P

|ρE |dE +
(

∑

E∈E+

P

|ρE | + hP ‖f‖0,ωP

)

‖∇e‖0,ωP

with E0
P = EP \ E+

P = {E ∈ EP | ρE < −dE}. To prove (3.30), we again start from
the inequality

(3.31) ρP (e) ≤
∑

E∈EP

αE(w)ρE‖φE‖ + ‖f‖0,ωP
‖w − ΠPw‖0,ωP

,

where this time we set

w = (e− c)φP , c = 0.

There is no freedom in the choice of c, since P 6∈ Ω so that we cannot invoke (3.10).
However, e vanishes at least on one edge of ∂ωP , because P ∈ ∂Ω. Hence, the
generalized Poincaré-Friedrichs inequality [18, Lemma 3.4] can be applied again to
obtain (3.26) and (3.27). Inserting these inequalities into (3.31), we get the desired
bound for the contributions fromE ∈ E+

P . In view of uS+w = (1−φP )uS+φPu ≥ ψ,
(3.21) implies αE(w) & ψ(xE) − uS(xE) = −dE‖φE‖−1. Using this inequality, we
get the desired bound for the remaining contributions from E ∈ E0

P .

Case 4: P ∈ N 0 \
(

N 0− ∪ N 0+
)

. We claim

(3.32) ρP (e) .
∑

E∈E0
P

|ρE |dE +
(

∑

E∈E+

P

|ρE | + hP ‖f‖0,ωP

)

‖∇e‖0,ωP
.

In order to show (3.32), we write ρP (e) = ρP (e+) + ρP (e−) with e+ = max(e, 0),
e− = min(e, 0) and prove the desired bound seperately for ρP (e+) and ρP (e−).

Let us start with ρP (e+). Utilizing (3.10a), we proceed as in the Case 2, to
derive the usual upper bound

ρP (e+) ≤ ρP (e+ − c) ≤
∑

E∈EP

αE(w)ρE‖φE‖ + ‖f‖0,ωP
‖w − ΠPw‖0,ωP

,

where

w = (e+ − c)φP , c = min

{

(

∫

E

e+φP

)(

∫

E

φP

)−1

| E ∈ EP

}

≥ 0.
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Then, we continue literally as in the Case 2 and use |∇e+| ≤ |∇e|, to obtain the
desired bound

(3.33) ρP (e+) .
(

∑

E∈E+

P

|ρE | + hP ‖f‖0,ωP

)

‖∇e‖0,ωP
.

Next we consider ρP (e−). As in the Case 3 we get the upper bound

(3.34) ρP (e−) ≤
∑

E∈EP

αE(w)ρE‖φE‖ + ‖f‖0,ωP
‖w − ΠPw‖0,ωP

where

w = (e− − c)φP , c = 0.

Since w = e−φP ≥ e− ≥ ψ − uS , (3.21) provides for all E ∈ EP ,

(3.35) 0 ≥ αE(w) & ψ(xE) − uS(xE) = −dE‖φE‖
−1

and therefore

(3.36) αE(w)ρE‖φE‖ . |ρE |dE ∀E ∈ E0
P .

It remains to bound |αE(w)| for E ∈ E+
P and ‖w − ΠPw‖0,ωP

appropriately. To
this end, we exploit that P 6∈ N 0+ providing that there is at least one edge E ∈ EP

such that e− = 0 on E. As in Case 3, we can therefore apply the generalized
Poincaré-Friedrichs inequality [18, Lemma 3.4] and |∇e−| ≤ |∇e| to show (3.26)
and (3.27). In combination with (3.36), this leads to

(3.37) ρP (e−) .
∑

E∈E0
P

|ρE |dE +
(

∑

E∈E+

P

|ρE | + hP ‖f‖0,ωP

)

‖∇e‖ωP
.

We sum the two estimates (3.33) and (3.37), to obtain the desired bound (3.32).

Case 5: P ∈ N 0+. We claim

(3.38) ρP (e) .
∑

E∈E0
P

|ρE |dE

+
(

∑

E∈E+

P

|ρE | + hP ‖f‖0,ωP

)(

‖∇e‖0,ωP
+ ‖∇(ψ − uS)‖0,ωP

)

.

As in Case 4, we use the splitting ρP (e) = ρP (e+) + ρP (e−) and proceed literally
as above, to show that ρP (e+) satisfies an inequality of the form (3.33), and that
ρP (e−) satisfies

(3.39) ρP (e−) ≤
∑

E∈EP

αE(w)ρE‖φE‖ + ‖f‖0,ωP
‖w − ΠPw‖0,ωP

where

w = (e− − c)φP , c = 0.

As the estimate

(3.40) αE(w)ρE‖φE‖ ≤ |ρE |dE ∀E ∈ E0
P

can be also shown as in Case 4, it remains to bound |αE(w)| for E ∈ E+
P and

‖w − ΠPw‖0,ωP
appropriately. As a first step, we derive the following substitute

for (3.26)

(3.41) |αE(w)|‖φE‖ ≤ |αE(ψ − uS)|‖φE‖ . h
− 1

2

P ‖ψ − uS‖0,E . ‖∇(ψ − uS)‖0,ωP



14 QINGSONG ZOU, ANDREAS VEESER, RALF KORNHUBER, AND CARSTEN GRÄSER

by using ψ − uS ≤ e− ≤ w ≤ 0, the monotonicity of the integral in αE(w) =
(
∫

E w)(
∫

E φE)−1 and a ’scaled’ Poincaré-Friedrichs inequality based on (ψ−uS)(P ) =

0 and ψ − uS ∈ S, which in turn holds thanks to (2.2). Similarly, ψ − uS ≤ e− ≤
w ≤ 0 implies ‖w‖0,ωP

≤ ‖ψ− uS‖0,ωP
, and, in view of (ψ− uS)(P ) = 0, a ’scaled’

Poincaré-Friedrichs inequality provides

‖w‖0,ωP
≤ ‖ψ − uS‖0,ωP

. hP ‖∇(ψ − uS)‖0,ωP
.

As consequence of (3.41), we immediately get

‖ΠPw‖0,ωP
≤
∑

E∈EP

|αE(w)|‖φE‖0,ωP
. hP ‖∇(ψ − uS)‖0,ωP

.

Combining these two estimates we obtain the following substitute for (3.27)

(3.42) ‖w − ΠPw‖0,ωP
. hP ‖∇(ψ − uS)‖0,ωP

.

We insert the bounds (3.40) for E ∈ E0
P , (3.41) for E ∈ E+

P and (3.42) into (3.39),
to obtain

(3.43) ρP (e−) .
∑

E∈E0
P

|ρE |dE +
(

∑

E∈E+

P

|ρE | + hP ‖f‖0,ωP

)

‖∇(ψ − uS)‖0,ωP
.

Finally, we sum up the two estimates (3.33) and (3.43), to obtain the desired bound
(3.38).

Case 6: P ∈ N 0−. In this case, we have by definition that e = u−ψ ≥ 0, f ≤ 0
in ωP , and jE ≤ 0 for all E ∈ EP . Hence

ρP (e) =

∫

ωP

feφP +
∑

E∈EP

∫

E

jEeφP ≤ 0.

To conclude the proof, we sum the estimates for the six cases, invoke the defini-
tion of the oscillation term, and apply the Cauchy-Schwarz inequality, to obtain

CρS(e) ≤
∑

E∈E0

|ρE |dE+
(

∑

E∈E+

|ρE |
2+osc2(uS , ψ, f)2

)
1
2
(

‖∇e‖2
0,Ω+osc1(uS , ψ)2

)
1
2

.

The constant C > 0 depends only on the shape regularity of T and we have set
E+ = ∪P∈N E+

P , E0 = ∪P∈NE0
P . Then, using Young’s inequality and inserting the

definition (2.12) of ηE , we get

CρS(e) ≤
θ

2

(

‖∇e‖2
0,Ω + osc1(uS , ψ)2

)

+
(

1 +
1

2θ

)(

∑

E∈E

|ρE |ηE + osc2(uS , ψ, f)2
)

for arbitrary θ > 0. In view of the first inequality in (3.1), we can chose θ ≤ C, to
finally prove the assertion (3.22). �

Combining Lemma 3.1 and Proposition 3.3 yields our main result.

Theorem 3.4. Assume that the obstacle ψ satisfies condition (2.2). Then the

hierarchical a posteriori error estimate IQ(εV) defined in (2.10) provides the upper

bound for the energy error

(3.44) J (uS) − J (u) . −IQ(εV) + osc(uS , ψ, f)2

up to the oscillation term defined in (3.11) and a constant depending only on the

shape regularity of T .
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Proof. We estimate

J (uS) − J (u) = −I(e) ≤ ρS(e) .
∑

E∈E

|ρE |ηE + osc(uS , ψ, f)2

= ρS(εV) + osc(uS , ψ, f)2 ≤ −2IQ(εV) + osc(uS , ψ, f)2

with the help of (2.6), Lemma 3.1, Proposition 3.3, (3.5), and (3.4). �

In light of the discussion in Section 3.2, the oscillation term osc(uS , ψ, f) is
expected to be of higher order for suitable data so that −IQ(εV) is asymptotically
reliable. Moreover, if no obstacle is present, then the upper bound (3.44) reduces
to well-known hierarchical a posterior error estimates and data oscillation for linear
elliptic problems [4]. In this case, the above derivation provides a direct proof which
does not invoke other a posteriori error estimates.

We conclude this subsection by an a posteriori estimate of the discretization
error which is closely related to the estimator (2.12) proposed in [12].

Theorem 3.5. Assume that the obstacle ψ satisfies condition (2.2). Then the

localized discrete defect problem (2.9) provides the upper bound for the discretization

error

(3.45) ‖u− uS‖ .
(

∑

E∈E

|ρE |ηE

)1/2

+ osc(uS , ψ, f)

up to the oscillation term defined in (3.11) and a constant depending only on the

shape regularity of T .

Proof. We estimate

1
2‖u− uS‖

2 ≤ ρS(e) .
∑

E∈E

|ρE |ηE + osc(uS , ψ, f)2

by means of Lemma 3.1 and Proposition 3.3. �

Note that the corresponding error estimate
∑

E∈E |ρE |ηE differs from the hi-
erarchical error estimate (2.12) only for internal edges E ∈ E with the property
ρE < −dE < 0. These edges are contained in the set ∪P∈N+\N++ωP , which, ac-
cording to the discussion in Section 3.2, is expected to shrink to the exact free
boundary under refinement. Therefore, Theorem 3.5 provides theoretical support
for the numerical evidence that the estimator (2.12) is asymptotically reliable.

3.4. Efficiency. In this subsection, it is shown that −IQ(εV) provides a lower
bound for J (uS) − J (u) up to a constant that is explicitely known. To this end,
we combine (3.4) with results from [18, 20], which rely on the convexity of J .

Theorem 3.6. Assume that the obstacle ψ satisfies condition (2.2). Then the

hierarchical a posteriori error estimate IQ(εV) defined in (2.10) provides the lower

bound for the energy error

−IQ(εV) ≤ 6
(

J (uS) − J (u)
)

.

Proof. Combining (3.4) and (3.5), we get

−IQ(εV) ≤ ρS(εV) =
∑

E∈E

ηE |ρE |.
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By a variant of [18, Theorem 3.2] (slightly modify the end of the proof to avoid the
sums in the claim therein), we have

∑

E∈E

ηE |ρE | ≤ 6
(

J (uS) − J (u)
)

.

�

4. Verification of a saturation assumption

The purpose of this section is to prove the following variant of the saturation
assumption. The quadratic finite element approximation uQ, determined by

(4.1) uQ ∈ KQ : a(uQ, v − uQ) ≥ (f, v − uQ) ∀v ∈ KQ

with

KQ = uS + AQ = {v ∈ Q | v(P ) ≥ ψ(P ) ∀P ∈ NQ ∩ Ω},

satisfies the inequality

(4.2) J (uQ) − J (u) ≤ α
(

J (uS) − J (u)
)

with some α ∈ (0, 1), provided that the oscillation term osc(uS , f, ψ) is relatively
small. Recall that we have J (uQ) − J (u) = 1

2‖uQ − u‖2 and J (uS) − J (u) =
1
2‖uS − u‖2, if no obstacle is present. Hence, (4.2) can be regarded as a general-
ization of related results for variational equalities [10]. However, in contrast to the
unconstrained case, J (uQ) − J (u) might be negative, because, in general, KQ is
not contained in K. Hence, for obstacle problems (4.2) does not imply that J (uQ)
is more accurate than J (uS).

The proof of the saturation assumption will be based on the following simple
observation.

Lemma 4.1. Let α ∈ (0, 1). Then the saturation assumption (4.2) holds, if and

only if −I(eQ) is reliable in the sense that

(4.3) J (uS) − J (u) ≤
−I(eQ)

1 − α
.

Proof. As eQ and uQ solve (2.7) and (4.1), respectively, we have uQ = uS + eQ.
The resulting identity

J (uS) − J (u) = −I(eQ) +
(

J (uQ) − J (u)
)

.

implies the assertion. �

As a consequence of Lemma 4.1, we may prove (4.2) by verifying (4.3). To this
end, we note a useful relation between −I(eQ) and −IQ(εV).

Lemma 4.2. There holds

I(eQ) . IQ(εQ) ≤ IQ(εV) ≤ 0.

Proof. The inequalities IQ(εQ) ≤ IQ(εV) ≤ 0 follow directly from 0 ∈ AV ⊂ AQ,
respectively. Using (3.2) and (3.3), we get

I(eQ) ≤ − 1
2ρS(eQ), −ρS(εQ) ≤ IQ(εQ),

so that I(eQ) . IQ(εQ) follows from ρS(εQ) . ρS(eQ).
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In order to show ρS(εQ) . ρS(eQ), we proceed similarly as in the proof of [13,
Theorem 4.1]. Choosing v = εQ ∈ AQ in (2.7) and utilizing (3.2), we get

(4.4) ρS(εQ − eQ) ≤ a(eQ, εQ − eQ) ≤ ‖eQ‖‖εQ − eQ‖ ≤ ρS(eQ)1/2‖εQ − eQ‖.

To bound ‖εQ − eQ‖ we combine the first inequality in (4.4) and (2.8) with v =
eQ ∈ AQ to obtain

−a(eQ, εQ − eQ) ≤ ρS(eQ − εQ) ≤ aQ(εQ, eQ − εQ).

In combination with the equivalence of the energy norms ‖ · ‖ and ‖ · ‖Q, see, e.g.,
[4, 9], we derive

‖εQ−eQ‖
2 = a(εQ, εQ−eQ)−a(eQ, εQ−eQ) ≤ a(εQ, εQ−eQ)+aQ(εQ, eQ−εQ)

≤ ‖εQ‖‖εQ − eQ‖ + ‖εQ‖Q‖εQ − eQ‖Q . ‖εQ‖Q‖εQ − eQ‖.

In light of (3.3), we have shown

‖εQ − eQ‖ . ‖εQ‖Q ≤ ρS(εQ)1/2.

Inserting this bound into (4.4), we get

ρS(εQ) = ρS(eQ) + ρS(εQ − eQ) ≤ ρS(eQ) + CρS(eQ)1/2ρS(εQ)1/2

with a constant C > 0 depending only on the shape regularity of T . Invoking
Young’s inequality, we finally obtain

ρS(εQ) ≤
(

1 + C2

2

)

ρS(eQ) + 1
2ρS(εQ)

which proves the assertion. �

After these preparations we are ready to prove the main result of this section.

Theorem 4.3. There are constants C > 0 and α ∈ (0, 1) depending only on the

shape regularity of T , such that relatively small oscillation

(4.5) osc(uS , f, ψ)2 ≤ C
(

J (uS) − J (u)
)

implies the saturation assumption

(4.6) J (uQ) − J (u) ≤ α
(

J (uS) − J (u)
)

.

Proof. Theorem 3.4 and Lemma 4.2 yield

J (uS) − J (u) ≤ −C1I(eQ) + C2 osc(uS , f, ψ)2,

where C1 and C2 are constants depending only on the shape regularity of T , and
we may assume C1 ≥ 1. Hence, selecting

C =
1 − C1(1 − α)

C2
, α ∈

(

C1 − 1

C1
, 1

)

,

the assertion is a consequence of Lemma 4.1. In particular, one might chose α =
(2C1 − 1)/(2C1). �

In view of the discussion in Section 3.2, condition (4.5) is expected to hold for
sufficiently smooth data and sufficiently fine global refinements of a triangulation
with (2.2).

Utilizing Theorem 3.6, the condition (4.5) follows from

(4.7) osc(uS , f, ψ)2 ≤ −
C

6
IQ(εV),
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with the same constant C. Apart from the constant C, which, in turn, depends on
C1, C2 from Theorem 3.4 and Lemma 4.2, all quantities in (4.7) are computable.
Thus, for given upper bounds for C1, the condition (4.5) can be verified in practice.

5. Numerical Example

Following [16], we consider the piecewise affine, concave obstacle

ψ(x) = dist(x, ∂Ω) − 1
5 ,

the domain Ω = {(x1, x2) ∈ R | |x1| + |x2| < 1}, and the constant load f = −5.
The triangulations Tj , j = 1, . . . , 9, are obtained by uniform refinement of an
initial triangulation T0, consisting of four congruent triangles. Observe that ψ
is piecewise affine over Tj for all j = 1, . . . , 9. As the exact solution u is not
explicitely known, we use the finite element approximation ũ on level T11 as a
substitute. The left picture in Figure 1 shows the ’exact’ energy error J (uSj

) −
J (ũ) in comparison with our hierarchical a posteriori error estimate IQ(εVj

) and
the oscillation term osc(uSj

, ψ, f) over the number of unknowns. Both the exact
error and the estimator are proportional to h. More precisely, the ’exact’ error is
asymptotically overestimated by a factor of about 1.5. Similar to the unconstrained
case, the oscillation term initially dominates, but vanishes with higher (second)
order under refinement. For an explanation, first note that the set N 0+ of isolated
contact nodes is empty in this example. Hence, osc(uSj

, ψ, f) = osc2(uSj
, ψ, f).

The set
⋃

(Nj\(N
0−

j
∪N++

j
) ωP , whose contributions to osc2(uSj

, ψ, f) do not involve

local means is depicted in the right picture of Figure 1 for the final level j = 9.
Obviously, it concentrates at ∂Ω and at the free boundary, confirming nicely our
heuristic reasoning in Section 3.2.
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estimated error
exact error
oscillation terms

Figure 1. Comparison of the hierarchical error estimator
−IQ(εV) with the exact error J (uS) − J (u) and the oscillation
term osc(uSj

, ψ, f) (left). The set
⋃

(Nj\N
0−

j
)\N++

j
ωP , j = 9,

whose contributions to osc2(uSj
, ψ, f) do not involve local means

(right).
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