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Abstra
tThis paper deals with error estimates for spa
e-time dis
retizations in the
ontext of evolutionary variational inequalities of rate-independent type. Afterintrodu
ing a general abstra
t evolution problem, we address a fully-dis
reteapproximation and provide a priori error estimates. The appli
ation of theabstra
t theory to a semilinear 
ase is detailed. In parti
ular, we provideexpli
it spa
e-time 
onvergen
e rates for the isothermal Souza-Auri

hio modelfor shape-memory alloys.1 Introdu
tionThe present analysis is 
on
erned with error estimates for spa
e-time dis
retizationsin the 
ontext evolutionary variational inequalities of rate-independent type. Morepre
isely, letQ be a Hilbert spa
e, E : [0, T ]×Q → R with T > 0 and Ψ : Q → [0,∞)be the energy and dissipation fun
tionals, respe
tively. We assume that E(t, ·) and Ψare 
ontinuous and 
onvex. Moreover, as is 
ommon in modeling hysteresis e�e
t inme
hani
s, we assume that the system is rate-independent whi
h amounts in askingthat Ψ is positively homogeneous of degree 1, i.e., Ψ(γv) = γΨ(v) for all γ ≥ 0.The aim of this work is to show that the solutions q : [0, T ] → Q of the non-smoothdi�erential in
lusion
0 ∈ ∂Ψ(q̇(t)) + DqE(t, q(t)) a.e. in (0, T ) (1.1)
an be well-approximated by spatially dis
retized time-in
remental minimizationproblems. The di�
ulty here is the non-smoothness of the subdi�erential operator

∂Ψ(·) as well as the nonlinearity of the map q 7→ DqE(t, q). In the linear 
asethis would redu
e to 
lassi
al evolutionary variational inequalities for whi
h thenumeri
s is well studied, see e.g. [HaR99, ACZ99, AlC00, COV06, CKO06, Car99,LiB96, LiB97, OrP04℄.In parti
ular, we are here spe
i�
ally interested in a semi-linear 
ase where thepotential energy has the following form
∀q̂ ∈ Q : E(t, q̂)

def
=

1

2
〈Aq̂, q̂〉Q + H(q̂) − 〈ℓ(t), q̂〉Q. (1.2)Here A is a symmetri
 positive de�nite operator, H is a di�erentiable and 
onvexfun
tional and ℓ ∈ C1([0, T ],Q′) is the external loading. This setting is 
loselyrelated to the isothermal Souza-Auri

hio model for shape-memory alloys (SMA).1



The latter are metalli
 alloys showing some surprising thermo-me
hani
al behav-ior, namely, strongly deformed spe
imens regain their original shape after a ther-mal 
y
le (shape-memory e�e
t). Moreover, within some spe
i�
 (suitably high)temperature range, they are super-elasti
, meaning that they fully re
over 
ompa-rably large deformations. These features are not present (at least to this extent)in most materials traditionally used in Engineering and, thus, are at the basis ofinnovative and 
ommer
ially valuable appli
ations. Nowadays, shape-memory alloysare su

essfully used in many appli
ations among whi
h biomedi
al devi
es (vas
u-lar stents, ar
hwires, endo-guidewires) and MEMS (a
tuators, valves, mini-grippersand positioners). The Souza-Auri

hio model here 
onsidered is a phenomenolog-i
al, small-deformation model des
ribing both the shape memory and the supere-lasti
 e�e
t (although in the present isothermal redu
tion no shape memory e�e
tis a
tually reprodu
ed). The reader is referred to [SMZ98, AuS01, AuP04, ARS09℄for the derivation and the me
hani
s and [AuS04, AuS05, MiP07, AMS08℄ for themathemati
al analysis.The paper is organized as follows. After introdu
ing more pre
isely in Se
tion 2our assumptions, we re
all a well-posedness result from [MiT04℄. Then an errorestimate for spa
e-time dis
retizations is derived. To do so, we 
hoose a sequen
eof partitions { 0 = tτ0 < tτ1 < · · · < tτkτ = T } of the time interval [0, T ] with
max{ tτk − tτk−1 : k = 1, ..., kτ } ≤ τ and a sequen
e (Qh)h>0 of �nite-dimensionalspa
es exhausting Q. Then, the spa
e-time dis
retized in
remental minimizationproblem

qk
τ,h

def
= Argmin

{
E(tτk, q̂h) + Ψ(q̂h−qk−1

τ,h )
∣∣ q̂h ∈ Qh

}has a unique solution by uniform 
onvexity. Thus, it is possible to de�ne the pie
e-wise a�ne interpolants qτ,h : [0, T ] → Qh.Our error estimates rely on an abstra
t approximation 
ondition. We refer to (2.10)for its most general version and give here, for brevity, a slightly strengthened form:
∃C > 0 ∀h ∈ (0, 1] ∀(t, qh, w) ∈ [0, T ]×Qh×Q ∃vh ∈ Qh :

〈DqE(t, qh), vh−w〉Q+Ψ(vh−w) ≤ Chβ
(
1+‖qh‖2

Q

)
‖w‖Q.

(1.3)Under suitable additional assumption we 
onstru
t a 
onstant C su
h that
‖qτ,h(t)−q(t)‖Q ≤ C

(
hβ/2 +

√
τ + ‖qτ,h(0)−q(0)‖Q

)
. (1.4)In Se
tion 3 we show that 
ondition (1.3) 
an be established by assuming that

H and Ψ are lower order, if 
ompared with A. This means there exists a big-ger spa
e X with Q ⊂ X and X ′ ⊂ Q′ su
h that Ψ : X → [0,∞) is 
ontinuousand that DqH ∈ C1,Lip(Q,X ′). The power β then relates to an interpolation esti-mate. Moreover, for any suitable initial 
ondition q(0), we 
an �nd qh(0) su
h that
‖qh(0)−q(0)‖Q = O(hβ/2), whi
h provides the desired 
onvergen
e of spa
e-timedis
retizations. We emphasize that our 
onvergen
e rates are obtained without anyfurther assumptions on the smoothness of the solutions to be approximated. Thisis parti
ularly remarkable in 
onne
tion with linearized elastoplasti
ity. Indeed,2



up to now, 
onvergen
e rates for linearized elastoplasti
ity have been obtained in[AlC00℄ (
lassi
al theory) and [DE∗07℄ (strain-gradient theory), by assuming highersmoothness-in-time on the solutions. Here instead the 
onvergen
e analysis followsunder natural regularity 
onditions. Note however that our overall assumptions will
orrespond to the o

urren
e of gradient terms and, in parti
ular, 
lassi
al linearizedelastoplasti
ity 
annot be dire
tly a

ommodated in our setting.Eventually, we show in Se
tion 4 that the abstra
t result obtained for semi-linearproblems remains also valid for the isothermal Souza-Auri

hio model. Related
onvergen
e results for models of phase transformations in shape-memory alloyswere obtained in [KMR05, MiR06, MPP08℄, however, there no 
onvergen
e rateswere obtained. In fa
t, for the relevant models the uniqueness of solutions is notknown and hen
e, only 
onvergen
e of suitable subsequen
es has been established.2 An abstra
t approximation resultWe 
onsider a Hilbert spa
e Q with dual Q′. The norm of Q and the duality produ
tbetween Q′ and Q are denoted by ‖·‖Q and 〈·, ·〉Q, respe
tively. For some referen
etime T > 0 we are given an energy fun
tional E : [0, T ] ×Q → R and a dissipationpotential Ψ : Q → [0,∞). We assume that Ψ is positively homogeneous of degree1, whi
h makes the system rate-independent. Moreover, Ψ will be assumed to bebounded on bounded sets and to satisfy the triangle inequality. Hen
e, we have that
∀γ > 0 ∀q ∈ Q : Ψ(γq) = γΨ(q), (2.1a)
∃cΨ > 0 ∀q ∈ Q : Ψ(q) ≤ cΨ‖q‖Q, (2.1b)
∀q1, q2 ∈ Q : Ψ(q1+q2) ≤ Ψ(q1) + Ψ(q2). (2.1
)Noti
e that (2.1a) and (2.1
) imply that Ψ is 
onvex.In this abstra
t se
tion we pose quite general 
onditions on E that will be spe
i�edto the semilinear 
ase in the following se
tion. Finally, in Se
tion 4, we will showthat these 
onditions are satis�ed for the Souza-Auri

hio model for phase transfor-mations in SMA, see [MiP07, AMS08℄. To simplify the presentation we give slightlystronger 
onditions than those that are really needed. We use the 
onvention that afun
tion f ∈ Ck(Q, Y ) is k times Fré
het di�erentiable su
h that the kth derivativeis still 
ontinuous and bounded on bounded sets. We let

E ∈ C3([0, T ] ×Q,R), (2.2a)
∃κ > 0 : E(t, ·) is κ-uniformly 
onvex, i.e, D2

qE(t, q) ≥ κI, (2.2b)We 
onsider the following doubly nonlinear evolution equation
0 ∈ ∂Ψ(q̇(t)) + DqE(t, q(t)) a.e. in (0, T ). (2.3)3



As usual, (˙) denotes the time derivative d
dt
. We say that q is a solution of the rate-independent system (Q, E ,Ψ) if q ∈ W 1,1([0, T ],Q) and (2.3) holds. We say that qsolves the initial-value problem (Q, E ,Ψ, q0) if additionally q(0) = q0 holds.Using the de�nition of the subdi�erential ∂Ψ(q̇), relation (2.3) turns out to beequivalent to the variational inequality

∀v ∈ Q : 〈DqE(t, q(t)), v−q̇(t)〉Q + Ψ(v) − Ψ(q̇(t)) ≥ 0. (2.4)We de�ne the set of stable states at time t via
S(t)

def
=

{
q ∈ Q

∣∣ ∀q̂ ∈ Q : E(t, q) ≤ E(t, q̂) + Ψ(q̂−q)
}
. (2.5)Sin
e 1-homogeneity of Ψ implies ∂Ψ(q̇) ⊂ ∂Ψ(0) we see that (2.3) implies q(t) ∈

S(t) a.e. in (0, T ). This 
an be seen as a stati
 stability 
ondition, whi
h has tohold for all t ∈ [0, T ] by 
ontinuity of DqE and the 
losedness of ∂Ψ(0), entailingthe natural restri
tion q0 ∈ S(0) for the initial datum. The following results provideuseful a priori estimtates.Proposition 2.1 Assume that (2.1) and (2.2) hold.(a) Then, for all t ∈ [0, T ] we have
q ∈ S(t) ⇐⇒ −DqE(t, q) ∈ ∂Ψ(0). (2.6)(b) There is a 
onstant CR

0 > 0 su
h that
q ∈ S(t) =⇒ ‖q‖Q ≤ CR

0 , ‖DqE(t, q)‖Q′ ≤ cΨ and (2.7a)
∀q̂ ∈ Q : E(t, q) +

κ

2
‖q̂−q‖2

Q ≤ E(t, q̂) + Ψ(q̂−q). (2.7b)(
) If (t, q0) ∈ [0, T ] ×Q and q∗ minimizes q 7→ E(t, q) + Ψ(q−q0), then q∗ ∈ S(t).Proof. Part (a) follows from the very de�nition of subdi�erential, for more details,the reader is referred to [MiT04℄ . Moreover, (2.7b) is an immediate 
onsequen
e ofthe fa
t that q ∈ S(t) is the unique minimizer of the fun
tional q̂ 7→ E(t, q̂)+Ψ(q̂−q),whi
h is still κ-uniformly 
onvex (
f. [MPP08, Theorem 4.1℄).To establish (2.7a) we �rst observe that η ∈ ∂Ψ(0) implies ‖η‖Q′ ≤ cΨ be
ause of(2.1b). Now let Λ = supt∈[0,T ] ‖DqE(t, 0)‖Q′ and estimate
κ‖q‖2

Q = κ‖q−0‖2
Q ≤ 〈DqE(t, q)−DqE(t, 0), q−0〉

≤
(
‖DqE(t, q)‖Q′+‖DqE(t, 0)‖Q′

)
‖q‖Q ≤

(
cΨ+Λ

)
‖q‖Q,whi
h implies that (2.7a) holds with CR

0 =
(
cΨ+Λ

)
/κ. This proves Part (b).Part (
) follows easliy form Part (a), sin
e the minimizer satis�es −DqE(t, q∗) ∈

∂Ψ(q∗−q0) ⊂ ∂Ψ(0). �4



We treat now the question of the error estimate of spa
e-time dis
retizations. Letus 
hoose a set of parameters h ∈ (0, 1] (mesh sizes) having in mind the limit h→ 0and let Qh be 
losed subspa
es of Q. Typi
ally, Qh is a �nite-dimensional subspa
eof Q, like a �nite-element spa
e. By 
onvention, let Q0
def
= Q to in
lude the full 
asevia h = 0.It is 
onvenient to introdu
e the set of stable states Sh(t) for any t ∈ [0, T ] by simplyrepla
ing Q by Qh in (2.5).We re
all now that for all h ∈ [0, 1] the rate-independent variational inequality(2.4) restri
ted to Qh admits a unique solution qh : [0, T ] → Qh for any givenstable initial data q0

h, i.e, q0
h ∈ Sh(0). This existen
e theory has been developed in[MiT04℄ and is based on the 
onstru
tion of a sequen
e of in
remental minimizationproblems. The theory avoids any 
ompa
tness arguments and uses smoothnessto obtain strong 
onvergen
e. More pre
isely, we 
onsider a se
ond approximationparameter τ ∈ (0, T ] (time step) and a partition Πτ = {0 = tτ0 < tτ1 < . . . < tτkτ = T}with

tτk − tτk−1 ≤ τ for k = 1, . . . , kτ .We let q0
τ,h

def
= q0

h and we 
onsider the following in
remental problems:(IP)τ,h

{for k = 1, . . . , kτ �nd
qk
τ,h ∈ Argmin{ E(tτk, q̂h)+Ψ(q̂h−qk−1

τ,h ) | q̂h ∈ Qh

}
.By uniform 
onvexity and 
ontinuity, whi
h implies weak lower semi
ontinuity, thesolutions qk

τ,h exist and are uniquely determined. We de�ne an approximate solution
qτ,h : [0, T ] → Qh as the pie
ewise a�ne interpolants given by

qτ,h(t)
def
=

tτ
k
−t

tτ
k
−tτ

k−1

qk−1
τ,h +

t−tτ
k−1

tτ
k
−tτ

k−1

qk
τ,h for t ∈ [tτk−1, t

τ
k], k = 1, . . . , kτ , (2.8)where qk

τ,h solves (IP)τ,h.Then, for ea
h �xed h ∈ [0, 1], we show that a subsequen
e of qτ,h has a limit as τtends to 0 and this limit fun
tion qh : [0, T ] → Qh satis�es (2.4), where Q is repla
edby Qh.In rate-independent problems uniqueness results and Lips
hitz-
ontinuous depen-den
e on the initial data are rather ex
eptional, as usually strong assumptions onthe nonlinearities are needed, see [MiT04, MiR07℄. In the present 
ase these assump-tions hold and we are able to 
on
lude for the 
onvergen
e of the whole sequen
e
qτ,h to the unique solution of (Qh, E ,Ψ, q0

h). Let us summarize this dis
ussion in thefollowing statement, whi
h is a slight generalization of Theorem 7.1 in [MiT04℄, inparti
ular sin
e we state uniformity in h ≥ 0.Theorem 2.2 Assume (2.1) and (2.2). Then, for all h ∈ [0, 1] and all q0
h ∈ Sh(0),there exists a unique solution qh ∈ CLip([0, T ],Qh) of the initial-value problem5



(Q, E ,Ψ, q0
h). Moreover, there exist positive 
onstants CR

0 , CR
1 and C̄ su
h that,for all h ∈ [0, 1] and all partitions Πτ , we have

‖qτ,h(t)‖Q ≤ CR
0 , ‖qh(t)‖Q ≤ CR

0 for all t ∈ [0, T ]; (2.9a)
‖q̇τ,h(t)‖Q ≤ CR

1 , ‖q̇h(t)‖Q ≤ CR
1 for a.a. t ∈ [0, T ]; (2.9b)

‖qτ,h(t)−qh(t)‖Q ≤ C̄
√
τ for all t ∈ [0, T ]. (2.9
)The important fa
t is that estimate (2.9
) for the time approximation is uniform in

h. The reader is referred to the Appendix for the detailed proof of (2.9
) whi
h is a
ru
ial ingredient to obtain the error estimate of spa
e-time dis
retizations. Condi-tion (2.9a) follows from Propostion 2.1 by 
ombining parts (b) and (
). Con
erning(2.9b), we leave the veri�
ation to the reader sin
e it su�
es to follow the ideasdeveloped in [MiT04℄.We are now addressing the question of the limit h→ 0. For this, we have to imposesuitable 
onditions that allow us to approximate elements in Q via elements of Qh.Again we will use smoothness and uniform 
onvexity in the spirit of Se
tion 7.2in [MiT04℄. The approximation 
ondition for our error bounds involves additionalsymmetri
 operators Bh ∈ Lin(Q,Q′) and reads as follows:
∃CA, CB > 0 ∀h ∈ (0, 1] ∀t ∈ [0, T ], qh ∈ Sh(t), q ∈ S(t), w ∈ Q ∃vh ∈ Qh :

|〈Bhq, q〉Q| ≤ CBhβ, (2.10a)
〈DqE(t, qh), vh−w〉Q+Ψ(vh−w) ≤ CA

(
hβ+‖qh−q‖2

Q

)
‖w‖Q+〈Bhq, w〉Q. (2.10b)This 
ondition is formulated in su
h a way that we still see the interplay between thepotential for
es DqE(t, q) and the dissipation Ψ, be
ause of the de�nition of S and

Sh. Moreover, the stability sets are usually mu
h smaller to turn (2.10) into weakerstatements than those obtained by 
onsidering qh and q in large balls. Clearly,
ondition (1.3) implies (2.10) with Bh ≡ 0.Theorem 2.3 Assume that Q, Qh, E and Ψ satisfy (2.1), (2.2), and that (2.10)hold. Then, there exists a 
onstant C∗ > 0 su
h that, for any h ∈ (0, 1], q0
h ∈ Sh(0),any partition Πτ , and any q0 ∈ S(0), the unique solution q of the initial-valueproblem (Q, E ,Ψ, q0) satis�es the estimate

‖qτ,h(t)−q(t)‖Q ≤ C∗

(
hβ/2+

√
τ+‖q0

h−q0‖Q
) for all t ∈ [0, T ], (2.11)where qτ,h : [0, T ] → Qh is de�ned via (2.8) with q0

τ,h = q0
h.There are two possible strategies to establish the desired result. For ea
h �xed

h ∈ (0, 1] we may dis
retize in time and show that the error between the time-dis
rete qτ,h and time-
ontinuous solutions qh 
an be 
ontrolled by √
τ , uniformly in

h. Then, we 
an use variational inequalities on the time-
ontinuous level to estimate
‖qh(t)−q(t)‖2

Q. This is the approa
h of the proof given below. Another alternative6



would be to 
onsider a �xed time-dis
retization and to estimate ‖qk
τ,h−qk

τ‖2
Q uni-formly with respe
t to τ and k = 1, . . . , kτ (
f. [AMS08℄).In the following, the notations for the 
onstants introdu
ed in the proofs are validonly in the proof.Proof. Sin
e the �rst term in the right-hand side of

‖qτ,h(t)−q(t)‖Q ≤ ‖qτ,h(t)−qh(t)‖Q + ‖qh(t)−q(t)‖Q, (2.12)is already estimated in (2.9
) it remains to estimate the se
ond one. Sin
e qh solves
(Qh, E ,Ψ, q0

h) and q solves (Q, E ,Ψ, q0) we have the two variational inequalities
∀vh ∈ Qh : 〈DqE(t, qh(t)), vh−q̇h(t)〉Q + Ψ(vh) − Ψ(q̇h(t)) ≥ 0, (2.13)
∀v ∈ Q : 〈DqE(t, q(t)), v−q̇(t)〉Q + Ψ(v) − Ψ(q̇(t)) ≥ 0, (2.14)whi
h hold a.e. in (0, T ). We may 
hoose v = q̇h(t) in (2.14) and add it to (2.13),obtaining

〈DqE(t, qh(t)), vh−q̇h(t)〉Q + 〈DqE(t, q(t)), q̇h(t)−q̇(t)〉Q + Ψ(vh) − Ψ(q̇(t)) ≥ 0.Employing the triangle inequality (2.1
) we �nd
〈DqE(t, qh(t))−DqE(t, q(t)), q̇h(t)−q̇(t)〉Q ≤ 〈DqE(t, qh(t)), vh−q̇(t)〉Q + Ψ(vh−q̇(t)).Sin
e qh(t) ∈ Sh(t) and q(t) ∈ S(t) we 
an use (2.10b) and �nd

〈DqE(t, qh(t))−DqE(t, q(t)), q̇h(t)−q̇(t)〉Q
≤ CA

(
hβ+‖qh(t)−q(t)‖2

Q

)
‖q̇(t)‖Q + 〈Bhq(t), q̇(t)〉Q,

(2.15)where we took advantage from the fa
t that vh in (2.13) was arbitrary. De�ne now
γ(t)

def
= 〈DqE(t, qh(t))−DqE(t, q(t)), qh(t)−q(t)〉Q ≥ κ‖qh(t)−q(t)‖2

Q, (2.16)where we used the κ-uniform 
onvexity of E . We have
γ̇ = 〈∂tDqE(t, qh)−∂tDqE(t, q), qh−q〉Q + 2〈DqE(t, qh)−DqE(t, q), q̇h−q̇〉Q

+ 〈DqE(t, q)−DqE(t, qh)+D2
qE(t, qh)[qh−q], q̇h〉Q

+ 〈DqE(t, qh)−DqE(t, q)+D2
qE(t, q)[q−qh], q̇〉Q.Using the smoothness of E , 
f. (2.2), (2.15) implies that there exists C1 > 0 (inde-pendent of h) su
h that

γ̇ ≤ 0 + 2CACR
1 h

β + 2〈Bhq, q̇〉Q + C1

(
‖q̇‖Q+‖q̇h‖Q

)
‖qh−q‖2

Q.Owing to Theorem 2.2, (2.16), and the notation Ĉ def
= 2CR

1 max
(
CA, C1

), we dedu
ethat
γ̇ ≤ Ĉ

(
hβ+

γ

κ

)
+ 2〈Bhq, q̇〉Q.7



Multipli
ation by e−
bCt/κ and integration over (0, t) results in

γ(t)e−
bCt/κ ≤ γ(0) + κ

(
1−e−

bCt/κ
)
hβ +

∫ t

0

2e−
bCs/κ〈Bhq(s), q̇(s)〉Qds.We multiply now by e

bCt/κ and integrate by parts the last term on the right-handside. Sin
e Bh is a symmetri
 operator, we obtain
γ(t) ≤ γ(0)e

bCt/κ + κ
(
e

bCt/κ−1
)
hβ +

[
e

bC(t−s)/κ〈Bhq(s), q(s)〉Q
]t

0

+
bC
κ

∫ t

0

e
bC(t−s)/κ〈Bhq(s), q(s)〉Qds.Sin
e q(t) ∈ S(t), 
ondition (2.10a) allows us to estimate the last two terms on theright-hand side, and we obtain

κ‖qh(t) − q(t)‖2
Q ≤ γ(t) ≤ e

bCt/κ
(
γ(0) + ĉ hβ) where ĉ = κ + 2CB. (2.17)Note that q(0) and qh(0) are bounded, uniformly with respe
t to h. Hen
e we
on
lude that there exists C2 > 0 (independent of h) su
h that γ(0) ≤ C2‖q0

h−q0‖2
Q.This implies that the solutions q : [0, T ] → Q and qh : [0, T ] → Qh of the rate-independent systems (Q, E ,Ψ, q0) and (Qh, E ,Ψ, q0

h), respe
tively, satisfy
‖qh(t)−q(t)‖2

Q ≤ 1

κ
e

bCT/κ
(
C2‖q0

h−q0‖2
Q + ĉ hβ).Together with (2.12) this 
ompletes the proof. �Remark 2.4 From the proof it is 
lear that we may repla
e the symmetri
 linearoperators Bh in (2.10) by more general fun
tionals Bh ∈ C1(Q,R). Instead of(2.10a) one requires |Bh(q)| ≤ CBhβ, and 〈Bhq, w〉 is repla
ed by 〈DqBh(q), w〉 in(2.10b) and elsewhere.3 Spe
i�
ation to the semi-linear 
aseIn this se
tion, we apply the abstra
t theory developed above to the 
ase where theenergy has a leading-order quadrati
 part and a lower-order nonlinear part H thatis still 
onvex. Moreover, the dissipation potential will also be of lower-order. Then,we will be able to exploit the situation where the approximation of points q ∈ Q viapoints qh ∈ Qh has a order of 
onvergen
e in the weaker norm ‖·‖X , where X is aBana
h spa
e su
h that Q ⊂ X densely and 
ontinuously and X ′ ⊂ Q′. We will usethe symbol 〈·, ·〉X for the duality pairing between X ′ and X . Re
all that we havethat

∀x′ ∈ X ′ ∀q ∈ Q : 〈x′, q〉X = 〈x′, q〉Q.8



More pre
isely, the energy fun
tional has the following form:
∀t ∈ [0, T ] ∀q ∈ Q : E(t, q)

def
= 1

2
〈Aq, q〉Q + H(q) − 〈ℓ(t), q〉Q, (3.1a)where

A ∈ Lin(Q,Q′), A = A
∗, and ∃κ > 0 ∀q̂ ∈ Q : 〈Aq̂, q̂〉Q ≥ κ‖q̂‖2

Q, (3.1b)
H ∈ C3(Q; R), H : Q → R 
onvex, and DqH ∈ C0(Q;X ′), (3.1
)
ℓ ∈ C3([0, T ];X ′). (3.1d)We 
all ℓ the external loading and H the hardening potential. Clearly, (3.1) impliesthat E satis�es assumptions (2.2) and that the derivative is semilinear, namely

DqE(t, q) = Aq + DqH(q) − ℓ(t).For the dissipation fun
tional Ψ we strengthen the 
ondition (2.1) as follows:
Ψ : Q → [0,∞) satis�es (2.1) and ∃CΨ > 0 ∀q ∈ X : Ψ(q) ≤ CΨ‖q‖X . (3.2)The next result establishes a new a priori estimate for solutions, or more generallyfor stable states. Taking advantage of the semilinear stru
ture we obtain a boundfor ‖Aq‖X ′, whi
h is 
ru
ial to establish the approximation 
ondition (2.10b). Forthis result, we introdu
e the notations CH

1
def
= sup‖q‖Q≤CR

0
‖DqH(q)‖X ′ and Cℓ

0
def
=

supt∈[0,T ]‖ℓ(t)‖X ′.Proposition 3.1 Assume that (3.1) and (3.2) hold. Then, there exists a 
onstant
CX su
h that for all (t, q) with q ∈ S(t) we have DqE(t, q),Aq ∈ X ′, ‖DqE(t, q)‖X ′ ≤
CΨ, and ‖Aq‖X ′ ≤ CX .Proof. By Proposition 2.1, there exists a 
onstant CR

0 > 0 su
h that ‖q‖Q ≤ CR
0and −DqE(t, q) ∈ ∂Ψ(0) for all q ∈ S(t). The se
ond 
ondition in (3.2) implies thatevery η ∈ ∂Ψ(0) ⊂ Q′ satis�es |〈η, v〉| ≤ CΨ‖v‖X . Thus, we have η ∈ X ′ ⊂ Q′and ‖η‖X ′ ≤ CΨ for every η ∈ ∂Ψ(0). We �nd Aq = DqE(t, q) − DqH(q) + ℓ(t) =

−η − DqH(q) + ℓ(t) ∈ X ′ with the bound
‖Aq‖X ′ ≤ ‖η−DqH(q)+ℓ(t)‖X ′ ≤ CΨ + CH

1 + Cℓ
0.Thus, the assertion holds with CX def

= CΨ + CH
1 + Cℓ

0. �As a 
orollary, every solution of (Q, E ,Ψ) satis�es ‖Aq(t)‖X ′ ≤ CX for all t ∈ [0, T ].To satisfy the approximation 
ondition we have to �nd ve
tors vh ∈ Qh approxi-mating a given w ∈ Q in a suitable way. For this we assume the existen
e of linearoperators Ph : Q → Qh with the following properties. There exist positive 
onstants
CP

0 and CP

i and positive exponents αi for i = 1, 2, 3, su
h that for all h ∈ (0, 1],
v ∈ Q, and vh ∈ Qh we have

‖Phv‖Q ≤ CP

0 ‖v‖Q, (3.3a)
‖(Ph−I)v‖X ≤ CP

1 h
α1‖v‖Q, (3.3b)

‖(P∗
hA−APh)v‖Q′ ≤ CP

2 h
α2‖v‖Q, (3.3
)

‖(Ph−I)vh‖Q ≤ CP

3 h
α3‖vh‖Q, (3.3d)9



where I denotes the identity on Q.In Subse
tion 4.2 we will see that the above 
onvergen
e rates 
an be easily realizedin pra
ti
e. In parti
ular, if Ph is a proje
tion, then (3.3d) holds with CP

3 = 0 andany α3 > 0. Moreover, if Ph 
ommutes with A like Galerkin proje
tions, then (3.3
)holds with CP

2 = 0 and any α2 > 0. We keep the more general setting here, sin
ein general 
ases the Galerkin proje
tion may not work well with the fun
tionals Hand Ψ, see e.g. [AMS08, MiR06℄.In light of the above proposition the following result will be useful in the sequel.It provides an approximation result for q ∈ Q in the Q-norm under the additionalassumption of higher regularity, i.e., Aq ∈ X ′.Lemma 3.2 Assume (3.1b) and (3.3). Then, there exists CP

4 > 0 su
h that forea
h h ∈ (0, 1] and q ∈ Q with Aq ∈ X ′ we have the estimate
‖(Ph−I)q‖Q ≤ CP

4 max
{(
hα1‖q‖Q‖Aq‖X ′

)1/2
, hα2‖q‖Q, hα3/2‖q‖Q

}
. (3.4)Proof. To estimate ηh

def
= ‖(Ph−I)q‖Q we employ A via (3.1b) and (3.3). Using theabbreviation R def

= ‖q‖Q we obtain
κη2

h ≤ 〈A(Ph−I)q, (Ph−I)q〉Q
= 〈(P∗

hA−APh)(Ph−I)q, q〉Q + 〈A(Ph−I)Phq, q〉Q − 〈A(Ph−I)q, q〉Q
≤ ηhC

P

2 h
α2R+ CP

3 h
α3‖Phq‖Q‖A‖Lin(Q,Q′)R + ‖Aq‖X ′‖(Ph−I)q‖X

≤ ηhC
P

2 h
α2R+ CP

3 C
P

0 h
α3‖A‖Lin(Q,Q′)R

2 + ‖Aq‖X ′CP

1 h
α1R

≤ κ

2
η2

h +
1

2κ

(
CP

2

)2
h2α2R2 + CP

3 C
P

0 h
α3‖A‖Lin(Q,Q′)R

2 + ‖Aq‖X ′CP

1 h
α1R,where we used y1y2 ≤ κ

2
y2

1 + 1
2κ
y2

2 in the last passage. Can
eling the �rst term onthe right-hand side we have the desired estimate. �Before formulating the main theorem we give the typi
al situation we have in mind.Note that in the examples 3.3 and 3.7, the derivative with respe
t to x is denotedby (·)′.Example 3.3 Consider Ω = (0, 1), Q = H1
0(Ω), ‖q‖2

Q =
∫ 1

0
(q′(x))2 dx, X = L2(Ω),and Au = −(au′)′ where a ∈ Cθ([0, 1]) with a(x) ≥ κ > 0 for all x ∈ Ω and

θ ∈ (0, 1]. For h ∈ (0, 1] subdivide Ω into k subintervals of equal length, su
hthat 1 ≥ hk > 1−1/k. Then, we de�ne Qh as the 
ontinuous and pie
ewise a�nefun
tions on the 
orresponding intervals. Moreover Ph as the proje
tor de�ned via
(Phq)

′(x) = k
∫ j/k

(j−1)/k
q′(y) dy for x ∈

(
j−1
k
, j

k

). Then, (3.3) holds with the exponents
α1 = 1, α2 = θ, arbitrary α3 > 0, and the 
onstants CP

0 = 1, CP

1 = 1/π, CP

2 =
‖a‖Cθ([0,1]), and CP

3 = 0 .The approximation in Q provided in Lemma 3.2 is not always optimal. If a ∈
C1([0, 1]), then Aq ∈ X ′ = L2(Ω) implies q ∈ H2(Ω) and, hen
e, ‖(Ph−I)q‖H1 ≤
Ch‖q‖H2, while the lemma just gives the bound h1/2.10



Using all the above assumptions we will now be able to establish the approximation
ondition and hen
e 
ontrol the spa
e-time dis
retization error via Theorem 2.3. Inaddition, we also 
onstru
t approximate initial 
onditions q0
h ∈ Sh(0) whi
h have thesame approximation order. Note that the error estimate provides the same order ofapproximation as is obtained via Ph in Lemma 3.2.Theorem 3.4 Assume (3.1), (3.2) and (3.3). Then, there exists Csl

∗ > 0 su
h thatfor all q0 ∈ S(0), h ∈ (0, 1], q0
h ∈ Sh(0), and all partitions Πτ we have

‖qτ,h(t)−q(t)‖Q ≤ Csl
∗

(
hβ/2+

√
τ+‖q0−q0

h‖Q
) for all t ∈ [0, T ] (3.5)with β def

= min{α1, 2α2, α3}, where q : [0, T ] → Q is the solution of (Q, E ,Ψ, q0) and
qτ,h : [0, T ] → Qh is de�ned via (2.8) with q0

τ,h = q0
h.Moreover, there exists a positive 
onstant Csl

0 su
h that for ea
h q0 ∈ S(0) thereexists q0
h ∈ Sh(0) su
h that ‖q0

h−q0‖Q ≤ Csl
0 h

β/2.The proof of this result is de
omposed in two propositions. The �rst part, giving theestimate (3.5), follows dire
tly from Theorem 2.2 if we establish the approximation
ondition (2.10). The se
ond part about the existen
e of good q0
h is 
ontained inProposition 3.6.Proposition 3.5 Assume (3.1), (3.2), and (3.3). Then, the approximation 
on-dition (2.10) holds with vh = Phw, Bh

def
= −

(
(A(Ph−I)+(A(Ph−I))∗

), and β =
min{α1, 2α2, α3} where αi, i = 1, 2, 3, are de�ned in (3.3).Proof. We �x t ∈ [0, T ] and take any q ∈ S(t), qh ∈ Sh(t), and w ∈ Q. ByPropositions 2.1 and 3.1 and by (3.3b) we have

‖q‖Q ≤ CR
0 , ‖qh‖Q ≤ CR

0 , ‖Aq‖X ′ ≤ CX , ‖vh−w‖X ≤ CP

1 h
α1‖w‖Q. (3.6)With the de�nition (3.1a) of E and assumptions (3.1
) and (3.2), we get

〈DqE(t, qh), vh−w〉Q + Ψ(vh−w) = 〈Aqh+DqH(qh)−ℓ(t), vh−w〉Q + Ψ(vh−w)

≤ 〈A(qh−q), vh−w〉Q +
(
‖Aq‖X ′+‖DqH(qh)‖X ′+‖ℓ(t)‖X ′+CΨ

)
‖vh−w‖X .Using CH

1 and Cℓ
0 as de�ned above, we �nd

〈DqE(t, qh), vh−w〉Q + Ψ(vh−w)

≤ 〈A(qh−q), vh−w〉Q +
(
CX+CH

1 +Cℓ
0+C

Ψ
)
CP

1 h
α1‖w‖Q.

(3.7)Sin
e α1 ≥ β the se
ond term in the above right hand side is as required in (2.10b).Hen
e, it remains to estimate the �rst term on the right-hand side of (3.7). Re
allingthe de�nition of Bh and using vh = Phw some elementary rearrangements give
〈A(qh−q), vh−w〉Q = 〈A(qh−q), (Ph−I)w〉Q
= 〈(P∗

hA−APh)(qh−q), w〉Q + 〈A(Ph−I)qh, w〉Q + 〈Aq, (Ph−I)w〉Q + 〈Bhq, w〉Q.11



Using (3.3) and Young's inequality , we obtain
〈A(qh−q), (Ph−I)w〉Q
≤

(
CP

2 h
α2‖qh−q‖Q+CP

3 ‖A‖Lin(Q,Q′)h
α3‖qh‖Q+CP

1 ‖Aq‖X ′hα1
)
‖w‖Q + 〈Bhq, w〉Q

≤
(1

2

(
CP

2

)2
h2α2+

1

2
‖qh−q‖2

Q+CP

3 C
R
0 ‖A‖Lin(Q,Q′)h

α3+CP

1 C
Xhα1

)
‖w‖Q+〈Bhq, w〉Q.Inserting this into (3.7) we have established (2.10b).To obtain (2.10a) we simply use 〈Bhq, q〉Q = −2〈Aq, (Ph−I)q〉Q and obtain

|〈Bhq, q〉Q| ≤ 2‖Aq‖X ′‖(Ph−I)q‖X ≤ 2CXCP

1 h
α1‖q‖Q ≤ 2CXCP

1 C
R
0 h

α1 ,whi
h gives (2.10a). This �nishes the proof. �The next proposition supplies a useful initial 
ondition q0
h for the spatially dis
retizedrate-independent systems (Qh, E ,Ψ). For a given q0 ∈ Q and h ∈ (0, 1] we de�ne

q0
h

def
= Argmin{E(0, q̂h)+Ψ(q̂h−Phq

0) | q̂h ∈ Qh}. (3.8)By the uniform 
onvexity of E(0, ·) the value is uniquely de�ned. Moreover, thetriangle inequality (2.1
) implies
E(0, q0

h) ≤ E(0, q̂h)+Ψ(q̂h−Phq
0)−Ψ(q0

h−Phq
0) ≤ E(0, q̂h)+Ψ(q̂h−q0

h),for all q̂h ∈ Qh, i.e. q0
h ∈ Sh(0). We now prove that it is 
lose to Phq

0 and q0 if
q0 ∈ S(0).Proposition 3.6 Assume (3.1), (3.2), and (3.3). Then, there exists Csl

0 > 0 su
hthat for all q0 ∈ S(0) and all h ∈ (0, 1] the value q0
h ∈ Qh de�ned via (3.8) satis�es

‖q0
h−q0‖Q ≤ Csl

0 h
β/2, (3.9)with β = min{α1, 2α2, α3} where αi, i = 1, 2, 3, are de�ned in (3.3).Proof. Sin
e q0 ∈ S(0) we 
an apply (2.7b) for q̂ = q0

h, we obtain
κ

2
‖q0

h−q0‖2
Q ≤ E(0, q0

h) − E(0, q0) + Ψ(q0
h−q0)

≤ E(0, q0
h) − E(0, q0) + Ψ(q0

h −Phq
0) + Ψ(Phq

0 − q0)

≤ E(0,Phq
0) + E(0, q0) + Ψ((Ph−I)q0),

(3.10)where we have used the triangle inequality (2.1
) in the se
ond estimate and thefa
t that q0
h is a minimizer in the third. De�ne

I(q0,Phq
0)

def
=

∫ 1

0

〈DqE(0, q0+s(Ph−I)q0)−DqE(0, q0), (Ph−I)q0〉Qds.12



Thus using Taylor's formula, (3.2) and Proposition 3.1, we dedu
e from (3.10) that
κ

2
‖q0

h−q0‖2
Q ≤ I(q0,Phq

0) + 〈DqE(0, q0), (Ph−I)q0〉Q + Ψ((Ph−I)q0)

≤ I(q0,Phq
0) + ‖DqE(0, q0)‖X ′‖(Ph−I)q0‖X+CΨ‖(Ph−I)q0‖X

≤ I(q0,Phq
0) + 2CΨCP

1 h
α1‖q0‖Q.

(3.11)For I(q0,Phq
0)) we use that, by (3.3a) and (2.9a), we know ‖Phq

0‖Q ≤ CP

0 C
R
0 . Onthe ball of radius (1+CP

0 )CR
0 the se
ond derivative of E is bounded by a 
onstant

CE
2 > 0 and we obtain I(q0,Phq

0) ≤ CE
2

2
‖(Ph−I)q0‖2

Q. Sin
e q0 ∈ S(0), Proposition3.1 yields ‖Aq0‖X ′ ≤ CX . Thus, Lemma 3.2 implies that there exists CI > 0 su
hthat I(q0,Phq
0) ≤ CIhβ . Hen
e we infer from (3.11) the desired result. �Finally, we noti
e that the power of h in (3.3b) and (3.3
) depends on the 
hoi
e of

X . Of 
ourse, the optimal 
hoi
e is to make X as big as allowed by the 
ondition(3.2) for Ψ. We illustrate this in the following example, whi
h gives a �rst examplefor 
onvergen
e rates of spa
e-time dis
retizations.Example 3.7 We 
onsider the situation of Example 3.3 with Ω = (0, 1), Q =

H1
0(Ω), E(t, q) =

∫ 1

0

(
1
2
(q′(x))2+H(q(x))−ℓ(t, x)·q(x)

)
dx and Ψ(q̇) =

∫ 1

0
|q̇| dx. Weassume that H ∈ C3(R; R) is 
onvex and that ℓ ∈ C1([0, 1]; L∞(Ω)). Thus, theabstra
t nonsmooth di�erential in
lusion (1.1) takes the expli
it form

0 ∈ Sign
(
q̇(t, x)

)
− q′′(t, x) + DqH(q(t, x)) − ℓ(t, x) for (t, x) ∈ [0, T ] × Ω,

q(t, 0) = q(t, 1) = 0 for t ∈ [0, T ].Here �Sign� denotes the multi-valued signum fun
tion with Sign(0) = [−1, 1].As in Example 3.3 the subspa
es Qh 
ontain the pie
ewise a�ne fun
tions on anequidistant partitions of Ω = (0, 1) and Ph : Q → Qh are the orthogonal Galerkinproje
tors. Then, taking X = Lp(Ω) with p ∈ [1,∞], we may prove that the poweris α1 = α̂(p)
def
= min

(
1, 1

2
+1

p

) in (3.3b). Sin
e α2 and α3 may be taken as big as welike, our main approximation result (3.5) in Theorem 3.4 gives the following errorbound
‖qτ,h(t)−q(t)‖H1 ≤ Csl

∗

(√
τ+hbα(p)/2+‖qτ,h(0)−q(0)‖H1

) for t ∈ [0, T ].By 
hoosing p ∈ [1, 2] we obtain the spatial 
onvergen
e rate h1/2.4 Appli
ation to isothermal Souza-Auri

hio model4.1 The isothermal Souza-Auri

hio modelLet us start by brie�y re
alling some modeling issues. The reader is referred to[SMZ98, AuP04, AuP02, ARS07℄ for additional details and motivation.13



We 
onsider a material with a referen
e 
on�guration Ω ⊂ R
d with d ∈ {2, 3}. Weassume that Ω is an open bounded set with Lips
hitz boundary. This body mayundergo displa
ements u : Ω → Rd and phase transformations. The latter will be
hara
terized by a mesos
opi
 internal variable z : Ω → R

d×ddev where R
d×ddev is thespa
e of d× d tensors with vanishing tra
e. In parti
ular, the tensor z stands as theinelasti
 part of the deformation due to the martensiti
 phase transformation.The set of admissible displa
ements F is 
hosen as a suitable subspa
e of H1(Ω; Rd)by pres
ribing homogeneous Diri
hlet data on the measurable subset ΓDir of ∂Ω, i.e.,

F def
=

{
u ∈ H1(Ω; Rd)

∣∣ u = 0 on ΓDir }
.Non-homogeneous Diri
helet 
onditions 
ould be 
onsidered as well by letting u =

ũ + uDir with ũ ∈ F . The internal variable z belongs to Z def
= H1(Ω; Rd×ddev ) and welet Q def

= F × Z.We 
hoose X def
= XF × XZ where, given ζ ∈ [0, 1/2),
XF

def
= L2(Ω; Rd) ×H−ζ(ΓNeu; Rd), XZ

def
= L2(Ω; Rd×ddev )where ΓNeu def

= ∂Ω \ ΓDir. Moreover, we will denote by 〈·, ·〉XF
the duality pairingbetween X ′

F and XF . In parti
ular, note that the inje
tion i : Q → X givenby iu
def
= (u, γu), where γ : H1(Ω) → L2(ΓNeu) in the standard tra
e operator, is
ontinuous and dense. Hen
e, one has that
X ′ = X ′

F × X ′
Z =

(
L2(Ω; Rd) ×Hζ

0 (ΓNeu; Rd)
)
× L2(Ω; Rd×ddev ) ⊂ Q′.We will denote the states by q

def
= (u, z). The linearized strain tensor is given by

e(u)
def
= 1

2
(∇u+∇uT) ∈ Rd×d

sym where Rd×d
sym is the spa
e of symmetri
 d×d tensorsendowed with the s
alar produ
t v:w def

= tr(vTw) and the 
orresponding norm |v|2 def
=

v:v for all v, w ∈ R
d×d
sym . Here (·)T and tr(·) denote the transpose and the tra
e ofthe tensor , respe
tively. We assume that ΓDir has positive surfa
e measure so thatKorn's inequality holds, i.e. there exists CKorn > 0 su
h that
∀u ∈ F : ‖e(u)‖2

L2(Ω;Rd×dsym )
≥ CKorn‖u‖2

H1(Ω;Rd). (4.1)For more details on Korn's inequality and its 
onsequen
es, we refer to [KoO88℄ or[DuL76℄.The stored-energy potential takes the following form
E(t, u, z)

def
=

∫

Ω

(
W (x, e(u)(x), z(x))+

ν

2
|∇z(x)|2

)
dx− 〈l(t), u〉XF

. (4.2)Here ν is a positive 
oe�
ient that is expe
ted to measure some nonlo
al intera
tione�e
t for the internal variable z, whereas W : Ω × Rd×d
sym × R

d×ddev → R is the stored-energy density and reads
W (x, e(u)(x), z(x))

def
=

1

2

(
(e(u)(x)−z(x)):C(e(u)(x)−z(x))

)
+ Ĥ(z(x)).14



In the latter, C is the elasti
 tensor, Ĥ : R
d×ddev → R represents the hardeningpotential. For simpli
ity, we will omit any dependen
e on the material point x ∈ Ω.Moreover l(t) denotes an applied me
hani
al loading of the form

〈l(t), u〉XF

def
=

∫

Ω

fappl(t, x)·u(x)dx+

∫

ΓNeu gappl(t, x)·u(x)dΓ, (4.3)where fappl and gappl are given body for
es and a surfa
e tra
tions on ΓNeu.In [SMZ98, AuS01, AuP04℄, the authors are interested in Ĥ = HSoAu with
HSoAu(z) def

= c1
√
δ2+|z|2 +

c2
2
|z|2 +

((|z|−c3)+)4

δ(1+|z|2) , (4.4)where c1 > 0 is an a
tivation threshold for initiation of martensiti
 phase transfor-mations, c2 > 0 measures the o

urren
e of hardening with respe
t to the internalvariable z, and c3 > 0 represents the maximum modulus of transformation strainthat 
an be obtained by alignment of martensiti
 variants. The original model isobtained in the limit δ → 0 in (4.4) and ν → 0 in (4.2). More pre
isely, Ĥ = Horgis de�ned as follows
Horg(z) def

= c1|z| +
c2
2
|z|2 + χ(z),where χ : R

d×ddev → [0,∞] is the indi
ator fun
tion of the ball {
z ∈ R

d×ddev ∣∣ |z| ≤ c3
}.To model the hystereti
 behavior of shape-memory materials, we de�ne the dissipa-tion potential as follows

ψ(v)
def
=

∫

Ω

ρ|v(x)|dx, where ρ > 0. (4.5)The material 
onstitutive relation reads as the following doubly nonlinear di�erentialin
lusion (
0

∂ψ(ż)

)
+

(
∂uE(t, q)
∂zE(t, q)

)
∋

(
0
0

)
, (4.6)where ∂uE(t, q) = −div (C(e(u)−z))−l(t), ∂zE(t, q) = −C(e(u)−z)+∂zĤ(z)−ν∆z.Hen
e, the �rst 
omponent provides the elasti
 equilibrium equations, whereas these
ond 
omponent gives the �ow law for the internal variable z.De�ning q = (u, z), Ψ(q̇) = ψ(ż), and 〈ℓ(t), q〉Q = 〈l(t), u〉XF
, system (4.6) 
an berewritten in the abstra
t form

∂Ψ(q̇) + Aq + DqH(q) − ℓ(t) ∋ 0, (4.7)where H(q)
def
=

∫
Ω
H(u(x), z(x))dx with H(u, z) = Ĥ(z) − c2

2
|z|2 and

A
def
=

(
−div(Ce(·)) div (C(·))

−Ce(·) C(·) − ν∆(·) + c2I(·)

)
. (4.8)15



Here we assume that the elasti
ity tensor C is a symmetri
 positive de�nite map,i.e.
∃µ > 0 ∀e ∈ R

d×d
sym : e:C:e ≥ µ|e|2. (4.9)By assuming fappl ∈ C3([0, T ]; L2(Ω; Rd)) and gappl ∈ C3([0, T ];Hζ

0(ΓNeu; Rd)) in(4.3) we readily 
he
k that ℓ ∈ C3([0, T ];X ′) (see (3.1d)). Moreover, we may provethat the fun
tional H built on H = HSoAu satis�es (3.1
). Furthermore, by using(4.9), we infer that (3.1b) holds for A de�ned in (4.8). Then it follows that (3.1) issatis�ed. This is however not the 
ase for the original model with Horg, the readeris referred to [AMS08℄ for some dis
ussion on the limit (ν, δ) → (0, 0).Existen
e and uniqueness results for a temperature dependent variant of (4.7) wereobtained in [MiP07℄. Following [AuS01℄ a fun
tion Ĥ(z, θ) = HSoAu(z, θ) is 
on-sidered by allowing the 
onstants ci(θ), i = 1, 2, 3, in (4.4) and C(θ) to depend onthe temperature θ. Then, the authors assumed that the temperature is given as anapplied load, θ = Θ(t, x), while here we treat a simpler 
ase where the temperatureis 
onstant. The assumption to 
onsider the temperature given as an applied loadis a

eptable if the 
hanges of the loading are slow and the body is small in at leastone dire
tion. Hen
e, the ex
essive or missing heat 
an be balan
ed through theenvironment.4.2 The spatial dis
retizationBefore introdu
ing the spatial dis
retization, we shall reinfor
e our assumptionsby asking Ω to be a polyhedron. This requirement is quite 
lassi
al and basi
allymeant to simplify the forth
oming presentation. In parti
ular, our analysis 
an begeneralized to pie
ewise smooth domains by means of additional te
hni
alities (see,for instan
e, [BrS94, Cia02℄). Moreover, for the sake of de�niteness we require thatea
h fa
e of ∂Ω is 
ontained either in ΓDir or in ΓNeu.Our spa
e-dis
rete analysis will follow from the H1+σ regularity of the asso
iatedboundary value problem for linearized elastostati
s and the Neumann problem.Namely, we expli
itly require that Ω, ΓDir, and C satisfy the following 
ondition:
∃σ ∈ (0, 1] ∃C̃ > 0 ∀f ∈ X ′

F ∀g ∈ L2(Ω) :

‖uf‖H1+σ(Ω;Rd) ≤ C̃‖f‖X ′
F

and ‖ζg‖H1+σ(Ω) ≤ C̃‖g‖L2(Ω),
(4.10)where uf ∈ F and ζg ∈ H1(Ω) are the unique solution u and ζ , respe
tively, of

∀v ∈ F :

∫

Ω

Ce(u):e(v)dx = 〈f, v〉XF
,

∀η ∈ H1(Ω) :

∫

Ω

c2ζη + ν∇ζ ·∇ηdx =

∫

Ω

gηdx.The latter regularity requirement is quite natural and is ful�lled (with σ = 1)when ΓNeu = ∅ and Ω is either smooth [Cia86, Theorem 2.2-4, p.99℄ or a 
onvex16



polyhedron, see [Gri89℄ in 2D and [DKV88, EbF99℄ in 3D. Non-
onvex polyhedrons
an also be 
onsidered ( possibly with σ < 1) and results for the mixed Neumann-Diri
hlet 
onditions are also available [EbF99℄. Additional details on regularityissues and asymptoti
 developments of solutions near 
orner points may be foundin [Kon67, Dau88, Ni
92, Kne06℄, among others.Let us start from the following lemma whi
h is 
ru
ial to obtain the error estimatesfor spa
e-time dis
retizations of the Souza-Auri

hio model. The lemma relates toProposition 3.1 where we now exploit the 
hoi
e X = XF × XZ . Another impor-tant feature is that the 
oupling between the elasti
ity problem and the Neumannproblöem for the internal variable is of lower order.Lemma 4.1 If (4.10) holds, then there exists CX
1 > 0 su
h that for f ∈ X ′ theunique q ∈ Q solving Aq = f in Q′ satis�es

‖q‖H1+σ(Ω;Rd×R
d×ddev ) ≤ CX

1 ‖f‖X ′, (4.11)where σ ∈ (0, 1] is de�ned in (4.10).Proof. Owing to the 
oer
ivity (3.1b) of A we readily 
he
k that there exists C1 > 0su
h that
‖q‖Q ≤ ‖f‖Q′/κ ≤ C1‖f‖X ′. (4.12)Letting q = (u, z) and f = (f1, f2) ∈ X ′

F × X ′
Z , we have Aq = f if and only if

∀v ∈ F :

∫

Ω

Ce(v):e(u)dx =

∫

Ω

(−div(Cz))·vdx+ 〈f1, v〉XF
, (4.13)

∀w ∈ Z :

∫

Ω

(c2w:z+ν∇w:∇z)dx =

∫

Ω

(
f2+C(e(u)−z)

)
:wdx. (4.14)Using (4.12), the X ′-norm of the right-hand side (

f1−div(Cz), f2+C(e(u)−z)
) isbounded by C2‖f‖X ′. Moreover, (4.14) 
onsists of de
oupled Neumann problemsfor the 
omponents of z. Thus, employing (4.10) we dedu
e

‖q‖H1+σ(Ω;Rd×R
d×ddev ) ≤ C̃‖(f1−div(Cz), f2+Ce(u))‖X ′ ≤ C̃C2‖f‖X ′,whi
h is the desired result. �We shall de�ne the spatial dis
retization by letting Fh and Zh be �nite-dimensionalsubspa
es of F and Z, respe
tively. In parti
ular, assume to be given a regulartriangulation {Tk} of Ω (
f. [QuV94℄) and 
hoose Fh and Zh to be the subspa
esof 
ontinuous, pie
ewise polynomials of �xed degree m ≥ 1 on {Tk}. Finally, let

Qh
def
= Fh ×Zh and assume to be given linear proje
tors Πh : Q → Qh ful�lling

∀s ∈ (0, 1] ∃CΠ > 0 : ‖(Πh−I)q‖Q ≤ CΠhs‖q‖H1+s(Ω;Rd×R
d×ddev ). (4.15)17



The latter 
an be realized, for instan
e, by letting Πh be the L2 orthogonal proje
tor.The interpolation error 
ontrol of (4.15) is well-known for s = 1 and follows from[HP∗05, Lemma 5.6℄ for s ∈ (0, 1).The operator Ph : Q → Qh is instead de�ned to be the Galerkin proje
tion via A.Namely, for all q ∈ Q, we let Phq
def
= q̂h, where q̂h ∈ Qh is the unique solution of

〈Aq̂h, ph〉Q = 〈Aq, ph〉Q for all ph ∈ Qh. (4.16)It remains to prove that Ph de�ned above ful�lls (3.3); then we are in the positionto apply Theorem 3.4 to obtain expli
it a priori error bounds for our spa
e-timedis
retization of the quasistati
 evolution problem for the Souza-Auri

hio model.Theorem 4.2 Assume that (4.10) holds. Then there exist CSoAu
∗ > 0 su
h that forall h ∈ (0, 1] and all partitions Πτ of [0, T ], we have

‖qτ,h(t)−q(t)‖Q ≤ CSoAu
∗

(
hσ/2+

√
τ
) for all t ∈ [0, T ], (4.17)where q : [0, T ] → Q is a solution of (Q, E ,Ψ) and qτ,h : [0, T ] → Qh is de�ned via(2.8) and the initial 
ondition qτ,h(0) = Argmin

{
E(0, q̂h)+Ψ(q̂h−Phq(0))

∣∣ q̂h ∈ Qh

}.Proof. By the de�nition (4.16) we have Ph ◦ Ph = Ph and (3.3d) holds for any
α3 ≥ 0. Moreover, by using (4.16) we readily 
he
k that, for all p, q ∈ Q,

〈(P∗
hA−APh)q, p〉Q = 〈Aq,Php〉Q − 〈APhq, p〉Q(4.16)

= 〈Aq,Php〉Q − 〈APhq,Php〉Q = 〈A(q−Phq),Php〉Q
(4.16)
= 0.Hen
e, (3.3
) holds for any α2 ≥ 0. Further (3.3a) holds with CP

0 = ‖A‖Lin(Q,Q′)/κ,be
ause
κ‖Phq‖2

Q ≤ 〈APhq,Phq〉Q
(4.16)
= 〈Aq,Phq〉Q ≤ ‖A‖Lin(Q,Q′)‖q‖Q‖Phq‖Q.Finally, let us 
he
k for property (3.3b) by means of the 
lassi
al duality te
hniqueby Aubin and Nits
he [Aub67, Nit68℄. Fix q ∈ Q and, by letting JX : X → X ′be the Riesz mapping, de�ne ϕ ∈ Q as the unique solution of Aϕ = JX (Ph−I)q.Then, using A = A

∗ for arbitrary ϕh ∈ Qh we have
‖(Ph−I)q‖2

X = 〈JX (Ph−I)q, (Ph−I)q〉X = 〈Aϕ, (Ph−I)q〉Q
= 〈A(Ph−I)q, ϕ〉Q

(4.16)
= 〈A(Ph−I)q, ϕ−ϕh〉Q ≤ CP

5 ‖q‖Q‖ϕ−ϕh‖Qwhere CP

5
def
= ‖A‖Lin(Q,Q′) suph∈(0,1] ‖Ph−I‖Lin(Q,Q). Choosing ϕh = Πhϕ and exploit-ing (4.15) for s = σ with σ from (4.10) we arrive at

‖(Ph−I)q‖2
X ≤ CP

5 ‖q‖Q‖(Πh−I)ϕ‖Q ≤ CP

5 ‖q‖QCΠhσ‖ϕ‖H1+σ(Ω;Rd×R
d×ddev ).Using the de�nition of ϕ and the regularity theory provided in Lemma 4.1 we 
on-
lude

‖(Ph−I)q‖2
X ≤ CP

5 ‖q‖QCΠhσCX
1 ‖(Ph−I)q‖X ,whi
h is the desired approximation result (3.3b) with α1 = σ. Hen
e, applyingTheorem 3.4 with β = α1 = σ, the desired result follows. �18



Remark 4.3 In the spe
ial 
ase of a 
onvex referen
e domain Ω for ΓNeu = ∅, weobtain (4.17) with σ = 1.AppendixThe aim of this se
tion is to give the proof of (2.9
). We follow the ideas developedin [MiT04℄ and keep tra
k of all 
onstants to see that they do not depend on h.Proof. We �rst re
all that there exists CR
0 > 0 su
h that all the solutions satisfy thea priori bound

qτ,h(t) ∈ BCR
0

def
=

{
q ∈ Q

∣∣‖q‖Q ≤ CR
0

} for all τ ∈ (0, T ], h ∈ [0, 1], t ∈ [0, T ](see Theorem 2.2).Let now the partition Πτ def
= {0 = tτ0 < tτ1 < · · · < tτkτ

= T} be given and de�ne Πτjby su

essive bise
tions, namely
Πτj

def
= {tτℓ + 2−jr(tτℓ − tτℓ−1) : ℓ = 1, . . . , kτ , r = 0, 1, . . . , 2j}.We shall asso
iate to these partitions the 
orresponding solutions qτj ,h of the in
re-mental problems for (Qh, E ,Ψ, qh(0)). We want to 
ompare qτj ,h and qτj+1,h. To doso, we de�ne E1 and E2 as follows: for tτk ∈ Πτj+1 , let t̄τk def

= max{sτ
n ∈ Πτj | sτ

n ≤ tτk},
E1(tτk, q)

def
= E(t̄τk, q) and E2(tτk, q)

def
= E(tτk, q) for tτk ∈ Πτj+1. Noti
e that qτj ,h and

qτj+1,h are the in
remental solutions obtained with E1 and E2 on the partition Πτj+1 .For the sake of simpli
ity let us introdu
e the following notations:
∀tτk ∈ Πτj+1 : q1,k

τ,h

def
= qτj ,h(t

τ
k) and q2,k

τ,h

def
= qτj+1,h(t

τ
k),and ek

τ,h
def
= q1,k

τ,h−q2,k
τ,h and ηkµ

def
= µk−µk−1 where µ stands for tτ , qj

τ,h and eτ,h (and
γτ,h, see below). Sin
e qj

τ,h solves the in
remental problems (IP)j,τ,h, we have
∀vh ∈ Qh : 〈DqE j(tτk, q

j,k
τ,h), vh−ηkq

j
τ,h〉Q + Ψ(vh) − Ψ(ηkq

j
τ,h) ≥ 0. (4.18)Choosing vh = ηkq

3−j
τ,h and adding the equations for j = 1, 2 gives

〈DqE1(tτk, q
1,k
τ,h)−DqE2(tτk, q

2,k
τ,h), ηkq

1
τ,h−ηkq

2
τ,h〉Q ≤ 0. (4.19)De�ne

γk
τ,h

def
=〈DqE1(tτk, q

1,k
τ,h)−DqE1(tτk, q

2,k
τ,h), q1,k

τ,h−q2,k
τ,h〉Q ≥ κ‖q1,k

τ,h−q2,k
τ,h‖2

Q=κ‖ek
τ,h‖2

Q. (4.20)Let us estimate the in
rement
ηkγτ,h

def
= γk

τ,h − γk−1
τ,h = 〈ηk(DqE1(tτk, q

1,k
τ,h)−DqE1(tτk, q

2,k
τ,h)), e

k−1
τ,h 〉Q

− 〈DqE1(tτk, q
1,k
τ,h)−DqE1(tτk, q

2,k
τ,h), ηkeτ,h〉Q − 2〈DqE1(tτk, q

2,k
τ,h)−DqE2(tτk, q

2,k
τ,h), ηkeτ,h〉Q

+ 2〈DqE1(tτk, q
1,k
τ,h)−DqE2(tτk, q

2,k
τ,h), ηkeτ,h〉Q.19



Let Ak ∈ Lin(Q,Q′) be the symmetri
 operator de�ned by
Ak

def
=

∫ 1

0

D2
qE1(tτk, q

2,k
τ,h+θe

k
τ,h)dθ.We get Ake

k
τ,h = DqE1(tτk, q

1,k
τ,h) − DqE1(tτk, q

2,k
τ,h), thus

〈ηk(DqE1(tτk, q
1,k
τ,h)−DqE1(tτk, q

2,k
τ,h)), e

k−1
τ,h 〉Q

− 〈DqE1(tτk, q
1,k
τ,h)−DqE1(tτk, q

2,k
τ,h), ηkeτ,h〉Q

= 〈Ake
k
τ,h−Ak−1e

k−1
τ,h , e

k−1
τ,h 〉Q − 〈Ake

k
τ,h, ηkeτ,h〉Q

= −〈Akηkeτ,h, ηkeτ,h〉Q + 〈(Ak−Ak−1)e
k−1
τ,h , e

k−1
τ,h 〉Q.

(4.21)By 
onvexity of E1(tτk, ·), we have
∀y ∈ Q : 〈Aky, y〉Q ≥ 0,and sin
e D2

qE is Lips
hitz 
ontinuous on [0, T ] × BR for all R > 0,
‖Ak−Ak−1‖Lin(Q,Q′) ≤ CE,R

(
|tτk−tτk−1|+‖ηkq

1
τ,h‖Q+‖ηkq

2
τ,h‖Q

)where CE,R depends only on E and R > 0 su
h that R ≥ maxτ,h

{
‖ηkq

j
τ,h‖Q; j =

1, 2, tτk ∈ Πτj+1

} and BR denotes the ball of radius R. Using (4.19), it follows that
ηkγτ,h ≤ CE,R

(
|tτk−tτk−1|+‖ηkq

1
τ,h‖Q+‖ηkq

2
τ,h‖Q

)
‖ek−1

τ,h ‖2
Q

+ 2‖DqE1(tτk, q
2,k
τ,h)−DqE2(tτk, q

2,k
τ,h)‖Q′‖ηkeτ,h‖Q.

(4.22)Sin
e E(t, ·) is κ-uniformly 
onvex, the in
remental solutions are Lips
hitz 
ontinu-ous, i.e.
∀j = 1, 2 : ‖ηkq

j
τ,h‖Q ≤ CR

1 |tτk−tτk−1|, (4.23)where CR
1 > 0 is independent of h and τ (
f. Theorem 2.2). Carrying (4.23) and(4.20) in (4.22), and observing that ‖ηkeτ,h‖Q ≤ ‖ηkq

1
τ,h‖Q + ‖ηkq

2
τ,h‖Q, we obtain

ηkγτ,h ≤ CE,R

κ
(1+2CR

1 )γk−1
τ,h |tτk−tτk−1| + 4ρCR

1 |tτk−tτk−1|,where
ρ

def
= max

tτ
k
∈Πτj+1

sup
q∈B

CR
0

‖DqE1(tτk, q)−DqE2(tτk, q)‖Q′.Let us denote C4 = max
{
CE,R(1+2CR

1 )/κ, 4CR
1

}, we infer
γk

τ,h ≤ γk−1
τ,h

(
1+C4(t

τ
k−tτk−1)

)
+ ρC4(t

τ
k−tτk−1).Sin
e γ0

τ,h = 0, by indu
tion over k, we �nd
γk

τ,h ≤ C4ρ

n∑

k=1

(tτk−tτk−1)

n∏

j=k+1

(
1+C4(t

τ
j−tτj−1)

)
≤ C4ρe

C4TT.20



Using (4.20), it follows that
‖q1,k

τ,h−q2,k
τ,h‖2

Q ≤ C4e
C4TT

κ
ρ. (4.24)Owing to the de�nitions of E1 and E2, we infer that there exists a 
onstant C5 > 0su
h that

ρ ≤ C5 max
tτ
k
∈Πτj+1

(tτk−tτk−1) ≤ C52
−jτ,whi
h implies that

∀t ∈ [0, T ] : ‖qτj+1,h(t)−qτj ,h(t)‖Q ≤ C62
−j/2

√
τ , where C6 =

√
C4T eC4T

κ
C5.Note that (qτj ,h(t))j∈N is a Cau
hy sequen
e whi
h limit qh : [0, T ] → Qh is theunique solution for (Qh, E ,Ψ, qh(0)). By adding all these estimates, we infer

∀t ∈ [0, T ] : ‖qτ,h(t)−qh(t)‖Q ≤
∞∑

j=0

C62
−j/2

√
τ ≤ 4C6

√
τ , (4.25)whi
h proves (2.9
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