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Abstract

This paper deals with error estimates for space-time discretizations in the
context of evolutionary variational inequalities of rate-independent type. After
introducing a general abstract evolution problem, we address a fully-discrete
approximation and provide a priori error estimates. The application of the
abstract theory to a semilinear case is detailed. In particular, we provide
explicit space-time convergence rates for the isothermal Souza-Auricchio model
for shape-memory alloys.

1 Introduction

The present analysis is concerned with error estimates for space-time discretizations
in the context evolutionary variational inequalities of rate-independent type. More
precisely, let Q be a Hilbert space, £ : [0,7]xQ — RwithT > 0and ¥ : Q — [0, 00)
be the energy and dissipation functionals, respectively. We assume that £(¢,-) and W
are continuous and convex. Moreover, as is common in modeling hysteresis effect in
mechanics, we assume that the system is rate-independent which amounts in asking
that U is positively homogeneous of degree 1, i.e., W(yv) = yU(v) for all v > 0.

The aim of this work is to show that the solutions ¢ : [0,7] — Q of the non-smooth
differential inclusion

0€0VY(g(t))+D,E(tq(t)) ae in (0,7) (1.1)

can be well-approximated by spatially discretized time-incremental minimization
problems. The difficulty here is the non-smoothness of the subdifferential operator
OU(-) as well as the nonlinearity of the map ¢ — D,E(t,q). In the linear case
this would reduce to classical evolutionary variational inequalities for which the
numerics is well studied, see e.g. [HaR99, ACZ99, AIC00, COV06, CKO06, Car99,
LiB96, LiB97, OrP04].

In particular, we are here specifically interested in a semi-linear case where the
potential energy has the following form

VTE Qi E(tD ™ 5(ATGo+ M@ — (D). Do (12

Here A is a symmetric positive definite operator, H is a differentiable and convex
functional and ¢ € C'([0,7], Q') is the external loading. This setting is closely
related to the isothermal Souza-Auricchio model for shape-memory alloys (SMA).
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The latter are metallic alloys showing some surprising thermo-mechanical behav-
ior, namely, strongly deformed specimens regain their original shape after a ther-
mal cycle (shape-memory effect). Moreover, within some specific (suitably high)
temperature range, they are super-elastic, meaning that they fully recover compa-
rably large deformations. These features are not present (at least to this extent)
in most materials traditionally used in Engineering and, thus, are at the basis of
innovative and commercially valuable applications. Nowadays, shape-memory alloys
are successfully used in many applications among which biomedical devices (vascu-
lar stents, archwires, endo-guidewires) and MEMS (actuators, valves, mini-grippers
and positioners). The Souza-Auricchio model here considered is a phenomenolog-
ical, small-deformation model describing both the shape memory and the supere-
lastic effect (although in the present isothermal reduction no shape memory effect
is actually reproduced). The reader is referred to [SMZ98, AuS01, AuP04, ARS09]
for the derivation and the mechanics and [AuS04, AuS05, MiP07, AMS08| for the
mathematical analysis.

The paper is organized as follows. After introducing more precisely in Section 2
our assumptions, we recall a well-posedness result from [MiT04|. Then an error
estimate for space-time discretizations is derived. To do so, we choose a sequence
of partitions {0 = tJ < ¢] < --- < tl. = T} of the time interval [0,7] with
max{t, —t,_; : k=1,..,k"} <7 and a sequence (Qp)s>¢ of finite-dimensional
spaces exhausting Q. Then, the space-time discretized incremental minimization
problem
gk, < Argmin {E(t7, @) + V(@h—a,") | Gn € Qn}

has a unique solution by uniform convexity. Thus, it is possible to define the piece-
wise affine interpolants ¢, p, : [0, 7] — Q.

Our error estimates rely on an abstract approzimation condition. We refer to (2.10)
for its most general version and give here, for brevity, a slightly strengthened form:

3C > 0Vh € (O, 1] ‘v’(t,qh,w) € [O,T]XQhXQ Ju, € Qp

(1.3)
(D& (t, an), va—w) o+ ¥ (vn—w) < OB (1+|an]|3) [lw]lo-
Under suitable additional assumption we construct a constant C' such that
lgrn () —a®)llo < C (W7 + VT + [lg-(0)=4(0) ]| o) (1.4)

In Section 3 we show that condition (1.3) can be established by assuming that
‘H and ¥ are lower order, if compared with A. This means there exists a big-
ger space X with @ C X and X' C Q' such that ¥ : X — [0,00) is continuous
and that D,;H € CYUP(Q, X7). The power § then relates to an interpolation esti-
mate. Moreover, for any suitable initial condition ¢(0), we can find ¢,(0) such that
1g,(0)—q(0)||o = O(hP/?), which provides the desired convergence of space-time
discretizations. We emphasize that our convergence rates are obtained without any
further assumptions on the smoothness of the solutions to be approximated. This
is particularly remarkable in connection with linearized elastoplasticity. Indeed,



up to now, convergence rates for linearized elastoplasticity have been obtained in
[AIC00] (classical theory) and [DE*07] (strain-gradient theory), by assuming higher
smoothness-in-time on the solutions. Here instead the convergence analysis follows
under natural regularity conditions. Note however that our overall assumptions will
correspond to the occurrence of gradient terms and, in particular, classical linearized
elastoplasticity cannot be directly accommodated in our setting.

Eventually, we show in Section 4 that the abstract result obtained for semi-linear
problems remains also valid for the isothermal Souza-Auricchio model. Related
convergence results for models of phase transformations in shape-memory alloys
were obtained in [KMRO05, MiR06, MPP08|, however, there no convergence rates
were obtained. In fact, for the relevant models the uniqueness of solutions is not
known and hence, only convergence of suitable subsequences has been established.

2 An abstract approximation result

We consider a Hilbert space @ with dual Q. The norm of Q and the duality product
between Q" and Q are denoted by ||-||g and (-, ), respectively. For some reference
time 7' > 0 we are given an energy functional £ : [0,7] x Q — R and a dissipation
potential ¥ : Q — [0,00). We assume that U is positively homogeneous of degree
1, which makes the system rate-independent. Moreover, W will be assumed to be
bounded on bounded sets and to satisfy the triangle inequality. Hence, we have that

Vy>0Vge Q: ¥(yg) =~Y(q), (2.1a)
36 > 099 € Q: W(g) < gl (2.1h)
V1,42 € Q: V(q1+q2) < VY(q1) + V(g). (2.1¢)

Notice that (2.1a) and (2.1c) imply that ¥ is convex.

In this abstract section we pose quite general conditions on £ that will be specified
to the semilinear case in the following section. Finally, in Section 4, we will show
that these conditions are satisfied for the Souza-Auricchio model for phase transfor-
mations in SMA, see [MiP07, AMS08|. To simplify the presentation we give slightly
stronger conditions than those that are really needed. We use the convention that a
function f € C*(Q,Y) is k times Fréchet differentiable such that the kth derivative
is still continuous and bounded on bounded sets. We let

£ e C0,T] x Q,R), (2.2a)
dk >0 : &(t,-) is k-uniformly convex, i.e, Dgg(t,q) > ki, (2.2b)

We consider the following doubly nonlinear evolution equation

0 € dT(4(t)) + D,E(E q(t)) ae. in (0,T). (2.3)



As usual, (') denotes the time derivative .. We say that ¢ is a solution of the rate-
independent system (Q, &, V) if ¢ € WHL([0,T], Q) and (2.3) holds. We say that ¢
solves the initial-value problem (Q, &, ¥, ¢°) if additionally ¢(0) = ¢° holds.

Using the definition of the subdifferential OW(q), relation (2.3) turns out to be
equivalent to the wvariational inequality

Yo e Q: (D&t q(t)), v—4(t))o + ¥(v) — ¥(4(t)) = 0. (2.4)
We define the set of stable states at time t via

St)={ge Qe Q: &(t.q) <E(t.q) +V(I—a)}. (2:5)

Since 1-homogeneity of W implies 0U(g) C 0V(0) we see that (2.3) implies q(t) €
S(t) a.e. in (0,7). This can be seen as a static stability condition, which has to
hold for all ¢ € [0,7] by continuity of D,£ and the closedness of OU(0), entailing
the natural restriction ¢° € S(0) for the initial datum. The following results provide
useful a priori estimtates.

Proposition 2.1 Assume that (2.1) and (2.2) hold.
(a) Then, for allt € [0,T] we have

qgeS(t) <= -D,E(t,q) € 0Y(0). (2.6)
(b) There is a constant Cf' > 0 such that

geS(t) = |dllo <G5, D&t )l < ¥ and (2.7a)
~ K~ ~ ~
Vg Q: E(ta)+ 5 lT-alo < £t D) + V(@—q). (2.7b)

(¢) If (t,¢°) € [0, T] x Q and q. minimizes q — E(t,q) + ¥(q—q"), then q. € S(t).

Proof. Part (a) follows from the very definition of subdifferential, for more details,
the reader is referred to [MiT04| . Moreover, (2.7b) is an immediate consequence of
the fact that ¢ € S(¢) is the unique minimizer of the functional g +— £(t,q)+¥(g—q),
which is still k-uniformly convex (cf. [MPP08, Theorem 4.1]).

To establish (2.7a) we first observe that n € OW(0) implies ||n||or < ¢ because of
(2.1b). Now let A = sup,¢(o 7y [|D4E(t,0)[| o and estimate

kllqllg = #lla—0llg < (D,E(t, q)—D,E(t, 0),4—0)

< (IDE(t )l +IDEE, 0)lle) llalle < (" +A) ldllo,

which implies that (2.7a) holds with C§* = (¢+A)/k. This proves Part (b).

Part (c) follows easliy form Part (a), since the minimizer satisfies —D,E(t,q.) €
O (g.—q¢") C 0U(0). O



We treat now the question of the error estimate of space-time discretizations. Let
us choose a set of parameters h € (0, 1] (mesh sizes) having in mind the limit A — 0
and let @, be closed subspaces of Q. Typically, Q) is a finite-dimensional subspace
of Q, like a finite-element space. By convention, let Qg & O to include the full case
via h = 0.

It is convenient to introduce the set of stable states Sy (t) for any t € [0, T] by simply
replacing Q by Qj, in (2.5).

We recall now that for all h € [0, 1] the rate-independent variational inequality
(2.4) restricted to Qj admits a unique solution g, : [0,7] — Qp for any given
stable initial data q), i.e, ¢) € S,(0). This existence theory has been developed in
[MiT04] and is based on the construction of a sequence of incremental minimization
problems. The theory avoids any compactness arguments and uses smoothness
to obtain strong convergence. More precisely, we consider a second approximation
parameter 7 € (0,77 (time step) and a partition II" = {0 =1t < t] < ... <t}. =T}
with
ty =t <7 for k=1... k.

We let g2, = ¢ and we consider the following incremental problems:

+n Jfor k=1 ... k" find
(TP)" . ) o -
b, € Argmin{ E(t7, @)+ P (@ —q7") [ Gn € O }-

By uniform convexity and continuity, which implies weak lower semicontinuity, the
solutions qf,h exist and are uniquely determined. We define an approximate solution
¢rp 1 [0, T] — Qp as the piecewise affine interpolants given by

def t7—t

qT,h(t> = t}’;ft};7 q

1

t—t;

f,ﬁl+mqli,h fort e [t i t7], k=1,... .k, (2.8)

where ¢¥, solves (1P)™"

Then, for each fixed h € [0, 1], we show that a subsequence of ¢, has a limit as 7
tends to 0 and this limit function g, : [0, 7] — Q, satisfies (2.4), where Q is replaced
by Q.

In rate-independent problems uniqueness results and Lipschitz-continuous depen-
dence on the initial data are rather exceptional, as usually strong assumptions on
the nonlinearities are needed, see [MiT04, MiR07|. In the present case these assump-
tions hold and we are able to conclude for the convergence of the whole sequence
¢r., to the unique solution of (Qp, £, ¥, ¢)). Let us summarize this discussion in the
following statement, which is a slight generalization of Theorem 7.1 in [MiT04], in
particular since we state uniformity in A > 0.

Theorem 2.2 Assume (2.1) and (2.2). Then, for all h € [0,1] and all ) € Sy(0),
there exists a unique solution q, € CYP([0,T],Qn) of the initial-value problem



(Q,E,V,qY). Moreover, there exist positive constants Cf, CF and C such that,
for all h € [0,1] and all partitions 11", we have

lgn (Dl < CF', lan(t)lle < Cg' for all t € [0,T; (2.9a)
lgrn ()l < CT, ldn(t)lle < CF for a.a. t € [0,T); (2.9b)
Grn(®)—an(t)|lo < CV/T for all t € [0, T). (2.9¢)

The important fact is that estimate (2.9¢) for the time approximation is uniform in
h. The reader is referred to the Appendix for the detailed proof of (2.9¢) which is a
crucial ingredient to obtain the error estimate of space-time discretizations. Condi-
tion (2.9a) follows from Propostion 2.1 by combining parts (b) and (c¢). Concerning
(2.9b), we leave the verification to the reader since it suffices to follow the ideas
developed in [MiT04].

We are now addressing the question of the limit A — 0. For this, we have to impose
suitable conditions that allow us to approximate elements in Q via elements of Qj,.
Again we will use smoothness and uniform convexity in the spirit of Section 7.2
in [MiT04]. The approzimation condition for our error bounds involves additional
symmetric operators By, € Lin(Q, Q') and reads as follows:

3CA,CB > 0Vh € (0,1)Vt € [0,T], qn € Su(t), € S(t), we Q v, € Qp :
[(Bha, q)o| < C®R7, (2.10a)
(DyE(t, an), vn—w) o+ ¥ (vh—w) < C* (A +|lgn—q[|3) [w]lo+(Brg, w)o.  (2.10b)

This condition is formulated in such a way that we still see the interplay between the
potential forces D,E(t, q) and the dissipation W, because of the definition of S and
Sp. Moreover, the stability sets are usually much smaller to turn (2.10) into weaker
statements than those obtained by considering ¢, and ¢ in large balls. Clearly,
condition (1.3) implies (2.10) with B, = 0.

Theorem 2.3 Assume that Q, Qp, € and V satisfy (2.1), (2.2), and that (2.10)
hold. Then, there exists a constant C, > 0 such that, for any h € (0,1], ¢} € Sx(0),
any partition 117, and any ¢° € S(0), the unique solution q of the initial-value
problem (Q,E,W,q°) satisfies the estimate

lgrn(t)—a(®)lla < C.(RP+vT+]ay—d"llQ) for all t €0,T], (2.11)

where qrp, : [0,T] — Qy is defined via (2.8) with qgvh =q).

There are two possible strategies to establish the desired result. For each fixed
h € (0,1] we may discretize in time and show that the error between the time-
discrete ¢, and time-continuous solutions g, can be controlled by /7, uniformly in
h. Then, we can use variational inequalities on the time-continuous level to estimate
|qn(t)—q(t)||. This is the approach of the proof given below. Another alternative



would be to consider a fixed time- dlscretlzatlon and to estimate ||¢,—¢F(|3 uni-
formly with respect to 7 and k = 1,..., k. (cf. [AMS08]).

In the following, the notations for the constants introduced in the proofs are valid
only in the proof.

Proof. Since the first term in the right-hand side of

lgrn(t)=a(®)lle < llgrn(t)—an(t)lle + llan(t)—q(t)]l o, (2.12)

is already estimated in (2.9¢) it remains to estimate the second one. Since g, solves
(O, E,¥,qY) and ¢ solves (Q, &, ¥, ¢°) we have the two variational inequalities

Vop € Qn i (DgE(t, qn(t)), v—an(t)) o + ¥(vr) — ¥ (gn
Vo e Q: (DE(t,q(t)), v—q(t)) g + ¥(v) — V(q(t))

which hold a.e. in (0,7"). We may choose v = ¢,(t) in (2.14) and add it to (2.13),
obtaining

(De€(t, an(t)), vn—=an(t)) o + (De€(t, 4(1)), gn(t)=4(t)) o + W(vn) — ¥(4(t)) = 0.

Employing the triangle inequality (2.1¢) we find

(Dg€(t, gn(t)) =Dy (L, (1)), gn(t)—4(t)) o < (Dy&(t, qn(t)), vn—q(t)) o + ¥ (vn—4(t)).
Since ¢, (t) € Sip(t) and ¢(t) € S(t) we can use (2.10b) and find
(DGE (1, 01(6)~DyE (1, 1)), in(t)—d(H))e
< CH (W +lan(®)—a®)[R) la®)llo + (Bra(t). d(t)) e,

where we took advantage from the fact that v, in (2.13) was arbitrary. Define now

() = (D€ (t, an(t))~DeE(t, (1)), an(t)—a(t)) o = kllan(t)—a ()3, (2.16)

where we used the s-uniform convexity of £. We have

’y = <8th€(ta Qh)_athg(t> q)a Qh_Q>Q + 2<Dq5(t> qh)_Dqg(ta q)a Qh_Q>Q
+ <Dq8(t7 q)_Dqg(tu Qh)_'_ng(t? Qh)[Qh_Q]u Qh>Q

(1)) >0, (2.13)
> 0, (2.14)

(2.15)

Using the smoothness of £, cf. (2.2), (2.15) implies that there exists C; > 0 (inde-
pendent of h) such that

Y <0+ 202CTR +2(Brg, 4)o + Ci ([|dll o+ dnllo) lan—allo-

Owing to Theorem 2.2, (2.16), and the notation cu 207 maX(C’A, C’l), we deduce
that

i< O(h+1) +2(Bug. o

7



—Ct/r

Multiplication by e and integration over (0,t) results in

~ ~ t .
Y(t)e™ " < 4(0) + i (1—eT)h7 + / 20~/ (Bng(s), q(s)) o ds.
0
We multiply now by eCt/% and integrate by parts the last term on the right-hand
side. Since By, is a symmetric operator, we obtain

Y (t) < 7(0)eC 4 k(TR 1) hE + [T/ (Byg(s), q(s)) o]

. t
L@ / S/ (Brg(s), a(s)) o ds.
0

Since ¢(t) € S(t), condition (2.10a) allows us to estimate the last two terms on the
right-hand side, and we obtain

kllan(t) — g(0)]% < 7() < eCY5(4(0) +2h?)  where e= Kk +2CB.  (2.17)

Note that ¢(0) and ¢4(0) are bounded, uniformly with respect to h. Hence we
conclude that there exists C5 > 0 (independent of &) such that (0) < Cs|lgh—¢"||%.
This implies that the solutions ¢ : [0,7] — Q and ¢, : [0,T] — Q of the rate-
independent systems (Q, &, ¥, ¢°) and (9, €, ¥, ¢?), respectively, satisfy

1

Jon(®) a0y < e (Coll "I + 207).

Together with (2.12) this completes the proof. O

Remark 2.4 From the proof it is clear that we may replace the symmetric linear
operators By, in (2.10) by more general functionals B, € C'(Q,R). Instead of
(2.10a) one requires |By(q)| < CBRP, and (Bq,w) is replaced by (D,Bi(q),w) in
(2.10b) and elsewhere.

3 Specification to the semi-linear case

In this section, we apply the abstract theory developed above to the case where the
energy has a leading-order quadratic part and a lower-order nonlinear part H that
is still convex. Moreover, the dissipation potential will also be of lower-order. Then,
we will be able to exploit the situation where the approximation of points ¢ € Q via
points ¢, € Qp, has a order of convergence in the weaker norm ||-||x, where X is a
Banach space such that @ C X densely and continuously and X’ € Q'. We will use
the symbol (-, -)» for the duality pairing between X’ and X. Recall that we have
that
Vo' e X' Vge Q : (2, ¢)x = (2, ¢)o.



More precisely, the energy functional has the following form:

vt e[0,T] Vg e Q: E(t,q) = 5(Aq,q)o +H(q) — (1), a)e, (3.1a)
where

AcLin(Q,Q), A=A", and 3k >0Y5€ Q: (A7 Do > wll7l3,  (3.1)
H e C*(Q;R), H:Q — R convex, and D,/H € C°(Q; &), (3.1¢)
(e C3(0,T); X). (3.1d)

We call ¢ the external loading and H the hardening potential. Clearly, (3.1) implies
that &£ satisfies assumptions (2.2) and that the derivative is semilinear, namely

De&(t,q) = Aq + DyH(q) — £(2).
For the dissipation functional U we strengthen the condition (2.1) as follows:

U : Q — [0, 00) satisfies (2.1) and 3CY >0Vg € X : U(q) < C%|qllx.  (3.2)

The next result establishes a new a priori estimate for solutions, or more generally
for stable states. Taking advantage of the semilinear structure we obtain a bound
for ||Aql|xs, which is crucial to establish the approximation condition (2.10b). For

. . . def def
this result, we introduce the notations C}* = sup|igio<cr[DgH(g)[[ and c§ =
suDyefo, 7y | €(4)]]

Proposition 3.1 Assume that (3.1) and (3.2) hold. Then, there exists a constant
C% such that for all (t,q) with ¢ € S(t) we have D,E(t,q), Aqg € X', [[DE(t, q)|lx <
C\II, and ||A(J||X/ S CX.

Proof. By Proposition 2.1, there exists a constant C§ > 0 such that |q||g < C&
and —D,E(t, q) € 0¥(0) for all ¢ € S(t). The second condition in (3.2) implies that
every n € 0U(0) C Q' satisfies |(n,v)| < C¥||v||x. Thus, we have n € X’ C Q'
and ||n|lxr < CY for every n € d¥(0). We find Ag = D,E(t,q) — D;H(q) + £(t) =
—n — D H(q) + £(t) € X" with the bound

1Aqlla < [In=DgH(q)+((t)l|lx < C¥ + CT* + Cp.
Thus, the assertion holds with C* = C¥ + C* 4 CL. O

As a corollary, every solution of (Q, €, ¥) satisfies ||Aq(t)||x < C¥ for all ¢ € [0, 7.

To satisfy the approximation condition we have to find vectors v, € Q approxi-
mating a given w € Q in a suitable way. For this we assume the existence of linear
operators Py, : Q — O, with the following properties. There exist positive constants
CP and CF and positive exponents «; for i = 1,2,3, such that for all h € (0, 1],
v €E€ Q, and v, € Q) we have

Prvlle < CF llvfle, (3.3a)
|(Ph=T)v[lx < CTA ]l o, (3.3b)
[(PLA—-AP)v]lor < C3 h*%2|Jv]lo, (3.3¢)
[(Ph—T)valo < CFh||uall o, (3.3d)



where I denotes the identity on Q.

In Subsection 4.2 we will see that the above convergence rates can be easily realized
in practice. In particular, if Py, is a projection, then (3.3d) holds with C¥ = 0 and
any ag > 0. Moreover, if P, commutes with A like Galerkin projections, then (3.3¢)
holds with C¥ = 0 and any ay > 0. We keep the more general setting here, since
in general cases the Galerkin projection may not work well with the functionals H

and W, see e.g. [AMS08, MiR06|.

In light of the above proposition the following result will be useful in the sequel.
It provides an approximation result for ¢ € Q in the Q-norm under the additional
assumption of higher regularity, i.e., Aqg € X”.

Lemma 3.2 Assume (3.1b) and (3.3). Then, there exists C§ > 0 such that for
each h € (0,1] and q € Q with Aq € X' we have the estimate

aq 1/2 s as
I(Ph-T)glle < CF max { (h* |lqllol| Aqllx) ", A2 allo. B2l gl o }- (3.4)

Proof. To estimate 1, = ||(P,—I)¢|lo we employ A via (3.1b) and (3.3). Using the
abbreviation R = ||¢/lo we obtain
wny < (A(Pr=T)g, (Pr—T)q)o
= (PLA=AP,)(Pr—I)q, q)o + (A(Pr—D)Prq, q) o — (A(Pr—I)q, g)o
< mC3 h** R+ C5h** |Prallol| AllLine.0n R + |Aglla (Pr—T)al x
< nhCPhO‘2R + CYCY || Allringo,0n R* + || Aq|l2CT R R

"+ g (CEVR B 4 CFCER Allin.o) B + | Adle OF R R,

2
where we used y1y, < §y1 + ﬂyQ in the last passage. Canceling the first term on
the right-hand side we have the desired estimate. 0

Before formulating the main theorem we give the typical situation we have in mind.
Note that in the examples 3.3 and 3.7, the derivative with respect to = is denoted

by (-)".

Example 3.3 Consider Q = (0,1), Q@ = H{(Q), [|q||5 = fo )dz, X = L*(Q),
and Au = —(au') where a € C%([0,1]) with a( ) > K > 0 for all z € Q and
0 € (0,1]. For h € (0,1] subdivide €2 into k subintervals of equal length, such
that 1 > hk > 1—1/k. Then, we define Q), as the continuous and piecewise affine
flmctions on the corresponding intervals. Moreover Py, as the projector defined via

(Prq)'(z) =k fé/kl Vi ¢ (y)dy for x € ( ) Then, (3.3) holds with the exponents

o = 1 ag =0, arb1trary az > 0, and the constants C§ = 1, C¥ = 1/x, C§ =
HCLHC@([OJ}): and C:f =0.

The approximation in Q provided in Lemma 3.2 is not always optimal. If a &€
C'([0,1]), then Aq € X’ = L*(Q) implies ¢ € H*(Q) and, hence, ||(P,—1)q||m <
Ch||q||u2, while the lemma just gives the bound h'/2.

10



Using all the above assumptions we will now be able to establish the approximation
condition and hence control the space-time discretization error via Theorem 2.3. In
addition, we also construct approximate initial conditions g9 € S, (0) which have the
same approximation order. Note that the error estimate provides the same order of
approximation as is obtained via P in Lemma 3.2.

Theorem 3.4 Assume (3.1), (3.2) and (3.3). Then, there exists C*! > 0 such that
for all ¢° € §(0), h € (0,1], ¢) € S1(0), and all partitions II™ we have

lgri(t)=a(t)llo < CH (W2 4v/T+a" a3l Q) for all t € [0, T] (3-5)

with = min{ay, 2aq, az}, where q : [0,T] — Q is the solution of (Q,&,¥,q°) and
Grp 2 [0, T] — Qy is defined via (2.8) with 2, = q;.

Moreover, there exists a positive constant CS' such that for each ¢° € S(0) there
exists q) € Sp(0) such that ||¢)—q°|lo < C§'hP/2.

The proof of this result is decomposed in two propositions. The first part, giving the
estimate (3.5), follows directly from Theorem 2.2 if we establish the approximation
condition (2.10). The second part about the existence of good ¢y is contained in
Proposition 3.6.

Proposition 3.5 Assume (3.1), (3.2), and (3.3). Then, the approzimation con-
dition (2.10) holds with v, = Pyw, By, & —((AP,—I)+(A(P,-1))*), and 8 =
min{ay, 2ag, az} where «;, i = 1,2,3, are defined in (3.3).

Proof. We fix t € [0,7] and take any ¢ € S(t), q» € Sp(t), and w € Q. By
Propositions 2.1 and 3.1 and by (3.3b) we have
lalle < €&, llanllo < Cg's [Aqllar < C%, [lon—wllax < CTRM Jwllo. (3.6
With the definition (3.1a) of £ and assumptions (3.1¢) and (3.2), we get
(D (L, qn), vp—w)o + ¥(vp—w) = (Agr+D H(qn)—L(t), vp—w) o + ¥ (vp—w)
< (A(gn—q), vn—w)o + ([ Aqlla+ 1D H(gn)ll 2 +11£(t) | 2+C%) [lr—w]lx.
Using CT* and C§ as defined above, we find

(D(t,aqn), vh—w) o + ¥(v,—w) (3.7)
< (Algn—q), n—w)o + (CT+CI+Cp+CY) CTh™ [w] o, |
Since a; > 3 the second term in the above right hand side is as required in (2.10b).

Hence, it remains to estimate the first term on the right-hand side of (3.7). Recalling
the definition of Bj and using v, = PLw some elementary rearrangements give

(Algn—q), vn—w)o = (A(gn—1q), (Pr—Tw)o
= ((PLA—=AP;)(qn—q), w)o + (A(Pr=T)gn, w)o + (Aq, (P,—T)w)o + (Brg, w)g.

11



Using (3.3) and Young’s inequality , we obtain

(A(gn—q), (Pr—Tw)o
< (CF R lgn—qlo+CF | AllLinc@,0n 2™ lanlo+CF || Agl|ah®) || o + (Brg, w)o

1 2 o ]- a [e%
< (GO0 H gl CE O Alhanio anh™+CF ¥R ) o (B, wh o
Inserting this into (3.7) we have established (2.10b).
To obtain (2.10a) we simply use (Byq,q)o = —2(Aq, (P,—I)q)o and obtain

[(Bra. 2ol < 2[|Aq]la]|(Pr—T)gllx < 2C7CYh* [lqllo < 207 CY C'h™,

which gives (2.10a). This finishes the proof. O

The next proposition supplies a useful initial condition ¢Y for the spatially discretized
rate-independent systems (Qy, &, ¥). For a given ¢° € Q and h € (0, 1] we define

¢ = Argmin{&E(0,3,)+Y(@—Pnd®) | G € Q1) (3:8)

By the uniform convexity of £(0,-) the value is uniquely defined. Moreover, the
triangle inequality (2.1¢) implies

£(0,qy) < E0,q)+Y (0 —Prg") =¥ (g—Prq°) < £(0, )+ (qh—qy),

for all @, € Qp, i.e. ¢) € S,(0). We now prove that it is close to Ppq° and ¢° if
q° € S(0).

Proposition 3.6 Assume (3.1), (3.2), and (3.3). Then, there exists C§ > 0 such
that for all ¢° € S(0) and all h € (0, 1] the value q) € Qy, defined via (3.8) satisfies

lan—4"llo < C5'R72, (3.9)

with [ = min{ay, 2as, az} where oy, i = 1,2, 3, are defined in (3.3).

Proof. Since ¢° € S(0) we can apply (2.7b) for ¢ = ¢?, we obtain

K

§||q2—q0!|2’g < E(0,q)) — £(0,¢°) + ¥ (g)—q")
<E(0,¢)) — £(0,¢°) + V(g —Prg®) + U(Prg’ — ¢  (310)
< E(0,Pud°) + £(0,¢") + U((P,—TI)q¢"),

where we have used the triangle inequality (2.1c) in the second estimate and the
fact that ¢ is a minimizer in the third. Define

1
Z(¢°, Prg®) = / (DE(0,¢"+s(P,—1)¢")—D,E(0, ¢°), (P,—1)¢%) o ds.
0

12



Thus using Taylor’s formula, (3.2) and Proposition 3.1, we deduce from (3.10) that

K

§||q2—q0||29 < Z(¢°, Prg”) + (D,£(0,4%), (PL—T)q") o + ¥ ((P,L—I)q")
< Z(q°, Prg®) + [IDE(0, )| [|(Ph=D) || o +CY (P —T)g° |2 (3-11)
< Z(¢°, Pug®) + 2CYCP R |¢) .

For Z(q°, P,q°)) we use that, by (3.3a) and (2.9a), we know [|P¢°||o < C¥CE. On
the ball of radius (1+C¥)CE the second derivative of £ is bounded by a constant
CS > 0 and we obtain Z(¢°, Ppq°) < %§||(Ph—1)q0||2g. Since ¢° € §(0), Proposition
3.1 yields [|[Aq°||x» < C*. Thus, Lemma 3.2 implies that there exists C* > 0 such
that Z(¢°, P»q®) < CThP. Hence we infer from (3.11) the desired result. O

Finally, we notice that the power of h in (3.3b) and (3.3¢) depends on the choice of
X. Of course, the optimal choice is to make X as big as allowed by the condition
(3.2) for W. We illustrate this in the following example, which gives a first example
for convergence rates of space-time discretizations.

Example 3.7 We consider the situation of Example 3.3 with Q@ = (0,1), Q =

HYQ), E(t.) = J; (5(¢'@)+ H(a(w)~(t, 0)-(x)) do and $(G) = [2]d] do. We
assume that H € C3(R;R) is convex and that ¢ € C'([0,1];L>(2)). Thus, the
abstract nonsmooth differential inclusion (1.1) takes the explicit form

0 € Sign(q(t,z)) — ¢"(t,x) + DeH (q(t, x)) — L(t,x) for (t,z) € [0,T] x Q,
q(t,0) =q(t,1) =0 fort e [0,T].

Here “Sign” denotes the multi-valued signum function with Sign(0) = [—1, 1].

As in Example 3.3 the subspaces Q) contain the piecewise affine functions on an
equidistant partitions of Q = (0,1) and P, : Q — Q,, are the orthogonal Galerkin
projectors. Then, taking X = LP(Q2) with p € [1, 00|, we may prove that the power
is ay = a(p) = min (1, %—l—%) in (3.3b). Since ay and a3 may be taken as big as we
like, our main approximation result (3.5) in Theorem 3.4 gives the following error
bound

lgrn () =gl < CF(VTH+RY P24 ]|¢r4(0)=q(0)[ls) ~ for ¢ € [0,T).

By choosing p € [1,2] we obtain the spatial convergence rate h'/2,

4 Application to isothermal Souza-Auricchio model

4.1 The isothermal Souza-Auricchio model

Let us start by briefly recalling some modeling issues. The reader is referred to
[SMZ98, AuP04, AuP02, ARS07| for additional details and motivation.
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We consider a material with a reference configuration Q C R? with d € {2,3}. We
assume that € is an open bounded set with Lipschitz boundary. This body may
undergo displacements u : 2 — R? and phase transformations. The latter will be
characterized by a mesoscopic internal variable z : Q — ]Rfilexvd where Rg:vd is the
space of d x d tensors with vanishing trace. In particular, the tensor z stands as the
inelastic part of the deformation due to the martensitic phase transformation.

The set of admissible displacements F is chosen as a suitable subspace of H!(2; R?)
by prescribing homogeneous Dirichlet data on the measurable subset I'p;, of 0€), i.e.,

FE{ueH(QGRY) | u=0o0n I }.

Non-homogeneous Dirichelet conditions could be considered as well by letting u =
u + up;, with w € F. The internal variable z belongs to Z = o HY(Q; RdXd) and we

dev
let Q= F x Z.
We choose X = Xz x Xz where, given ¢ € [0,1/2),

Xr = LAHO;RY) x H S (Tnew; RY), Xz = L2(Q; R
where Iyey = 9\ Ipi. Moreover, we will denote by (-, x, the duality pairing
between X and Xr. In particular, note that the injection i : @ — X given
by iu = (u,yu), where v : HY(Q) — L?(I'yeq) in the standard trace operator, is
continuous and dense. Hence, one has that
X'= Xhx XL = <L2(Q; R%) x Hg(FNeu;Rd)> * L2 REY) © Q.

dev
We will denote the states by ¢ = (u,z). The linearized strain tensor is given by
e(u) = 5(Vut+Vu') € RS where ]ngxrff is the space of symmetric dxd tensors
endowed with the scalar product v:w = tr(vTw) and the corresponding norm |v]? =
vw for all v,w € RE:Y. Here ()7 and tr(-) denote the transpose and the trace of
the tensor , respectively. We assume that ['p;, has positive surface measure so that
Korn’s inequality holds, i.e. there exists C*°™ > 0 such that
: K
VueF: [le(u )||L2(Q REX) >C OmHUHHl (QRd)- (4.1)

sym

For more details on Korn’s inequality and its consequences, we refer to [KoO88| or

|DuL.76].
The stored-energy potential takes the following form

atuZV“KXWWLQMQ¢Z@»+gWu@Mﬂdx—a@ymxp (4.2)

Here v is a positive coefficient that is expected to measure some nonlocal interaction
effect for the internal variable z, whereas W : 2 x ngxrff x R? . R is the stored-
energy density and reads

W (z,e(u)(z), 2(x)) = 5 ((e(u)(x)—z(x)):Cle(u) (x)—2())) + H(z(z)).



In the latter, C is the elastic tensor, H: R L R represents the hardening

dev
potential. For simplicity, we will omit any dependence on the material point x € €.

Moreover [(t) denotes an applied mechanical loading of the form
(U(t), u) xp d:ef/fappl(t,x)-u(x)dx—l—/ Gappl (t, 7)-u(x)dl, (4.3)
Q 1—\Neu
where f,pp and gapp are given body forces and a surface tractions on I'yey.
In |[SMZ98, AuS01, AuP04|, the authors are interested in H = Hg,p, with

((Jz]=ca)+)"
511z

def &

Hgoau(2) = 1/ 02422 + 52|z|2 + (4.4)

where ¢; > 0 is an activation threshold for initiation of martensitic phase transfor-
mations, co > 0 measures the occurrence of hardening with respect to the internal
variable z, and ¢35 > 0 represents the maximum modulus of transformation strain
that can be obtained by alignment of martensitic variants. The original model is
obtained in the limit 6 — 0 in (4.4) and v — 0 in (4.2). More precisely, H = H,

is defined as follows
def

C
Hong(2) = ] + 212 + x(2),

where y : Ri%? — [0, 0c] is the indicator function of the ball {z € Ri:? | [2] < 3}

dev

To model the hysteretic behavior of shape-memory materials, we define the dissipa-
tion potential as follows

P(v) d:ef/ plv(x)| dz, where p > 0. (4.5)
Q

The material constitutive relation reads as the following doubly nonlinear differential

inclusion
(ove )+ (oetem )2 (o). (1.6)

where 9, (t, q) = —div (C(e(u)—2))—I(t), 0.E(t, q) = —C(e(u)—2)+0, H(z) —vAz.
Hence, the first component provides the elastic equilibrium equations, whereas the
second component gives the flow law for the internal variable z.

Defining ¢ = (u,2), U(4) = (%), and (£(t), q)o = (I(t), uhay, system (4.6) can be
rewritten in the abstract form

OU(4) + Aq + DyH(q) — £(t) 30, (4.7)
where H(q) = [, H(u(z), 2(x)) dz with H(u,z) = H(z) — 2|z|? and
ar (- —div(Ce(-)) div (C(+))
A2 (0 e A0 Yo ) -
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Here we assume that the elasticity tensor C is a symmetric positive definite map,
i.e.
3 >0 Ve € RED: e:Cie > ple)?. (4.9)

Sym

By assuming fapp € C%([0,T]; L2(Q;RY)) and gappt € C3([0,T); H§(Pxew; RY)) in
(4.3) we readily check that ¢ € C3([0,T]; X’) (see (3.1d)). Moreover, we may prove
that the functional H built on H = Hg,a, satisfies (3.1¢). Furthermore, by using
(4.9), we infer that (3.1b) holds for A defined in (4.8). Then it follows that (3.1) is
satisfied. This is however not the case for the original model with H,,,, the reader
is referred to [AMS08| for some discussion on the limit (v,0) — (0,0).

rg)

Existence and uniqueness results for a temperature dependent variant of (4.7) were
obtained in [MiP07]. Following [AuS01| a function H(z,6) = Hsoau(z,0) is con-
sidered by allowing the constants ¢;(f), ¢ = 1,2,3, in (4.4) and C(0) to depend on
the temperature . Then, the authors assumed that the temperature is given as an
applied load, 6 = O(t, x), while here we treat a simpler case where the temperature
is constant. The assumption to consider the temperature given as an applied load
is acceptable if the changes of the loading are slow and the body is small in at least
one direction. Hence, the excessive or missing heat can be balanced through the
environment.

4.2 The spatial discretization

Before introducing the spatial discretization, we shall reinforce our assumptions
by asking €2 to be a polyhedron. This requirement is quite classical and basically
meant to simplify the forthcoming presentation. In particular, our analysis can be
generalized to piecewise smooth domains by means of additional technicalities (see,
for instance, [BrS94, Cia02|). Moreover, for the sake of definiteness we require that
each face of 02 is contained either in I'p;, or in I'yey.

Our space-discrete analysis will follow from the H'*? regularity of the associated
boundary value problem for linearized elastostatics and the Neumann problem.
Namely, we explicitly require that €2, I'p;;, and C satisfy the following condition:

Jo € (0,11 3C > 0Vf € Xy Vg € LA(Q) :

~ _ (4.10)
[usllmre@ray < Cllfllag and [|Gllm+o@) < Cllglliz),

where u; € F and ¢, € H'(Q) are the unique solution u and ¢, respectively, of
YveF: /(Ce(u):e(v)dx = (f, V) xr,
Q

vn € HY(Q) : /CQCn—l-VVQV'r]dx :/g'r]dx.
Q Q

The latter regularity requirement is quite natural and is fulfilled (with ¢ = 1)
when T'ney = 0 and Q is either smooth [Cia86, Theorem 2.2-4, p.99] or a convex
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polyhedron, see [Gri89| in 2D and [DKV88, EbF99| in 3D. Non-convex polyhedrons
can also be considered ( possibly with 0 < 1) and results for the mixed Neumann-
Dirichlet conditions are also available [EbF99]. Additional details on regularity
issues and asymptotic developments of solutions near corner points may be found
in |[Kon67, Dau88, Nic92, Kne06|, among others.

Let us start from the following lemma which is crucial to obtain the error estimates
for space-time discretizations of the Souza-Auricchio model. The lemma relates to
Proposition 3.1 where we now exploit the choice X = X x Xz. Another impor-
tant feature is that the coupling between the elasticity problem and the Neumann
probloem for the internal variable is of lower order.

Lemma 4.1 If (4.10) holds, then there exists C;* > 0 such that for f € X' the
unique q € Q solving Aq = f in Q' satisfies

||Q||H1+J(Q;Rde§:Vd) < C1X||f||X’a (4.11)

where o € (0,1] is defined in (4.10).

Proof. Owing to the coercivity (3.1b) of A we readily check that there exists C; > 0
such that

lalle < [Iflle'/k < Cill f|- (4.12)
Letting ¢ = (u, 2) and f = (fi, fo) € Xr x XZ, we have Ag = f if and only if

Vv e F: /QCe(v):e(u)dx = /Q(—div(Cz))-vdx + (f1, V) xp (4.13)

Yw € Z - /Q(CQw:z—l—l/Vw:Vz)dx = /Q(fg%—((:(e(u)—z)):wda:. (4.14)

Using (4.12), the X’-norm of the right-hand side (f;—div(Cz), fo+C(e(u)—z)) is
bounded by Cs|f||ar. Moreover, (4.14) consists of decoupled Neumann problems
for the components of z. Thus, employing (4.10) we deduce

allrzasgtze) < Cll(A—div(C2), fotCe(w) | < CCo|f |

which is the desired result. O

We shall define the spatial discretization by letting F, and Z, be finite-dimensional
subspaces of F and Z, respectively. In particular, assume to be given a regular
triangulation {7} of Q (cf. [QuV94]|) and choose F}, and Z, to be the subspaces
of continuous, piecewise polynomials of fixed degree m > 1 on {7;}. Finally, let

o) e Fn x Z5, and assume to be given linear projectors II, : Q@ — @Q,, fulfilling

Vs € (0,11 3C" > 0 ¢ (M-Dalo < Ol gpargezsy  (415)
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The latter can be realized, for instance, by letting II;, be the L? orthogonal projector.
The interpolation error control of (4.15) is well-known for s = 1 and follows from
[HP*05, Lemma 5.6] for s € (0, 1).

The operator P, : Q@ — Q, is instead defined to be the Galerkin projection via A.
Namely, for all ¢ € Q, we let Pg £ G, where @, € Q), is the unique solution of

(AQh, pr)o = (Aq,pn)o for all p, € Q). (4.16)

It remains to prove that P defined above fulfills (3.3); then we are in the position
to apply Theorem 3.4 to obtain explicit a priori error bounds for our space-time
discretization of the quasistatic evolution problem for the Souza-Auricchio model.

Theorem 4.2 Assume that (4.10) holds. Then there exist CS°A" > 0 such that for
all h € (0,1] and all partitions 117 of [0, T], we have
lgrn()—a(t)ll@ < CM (h724+/T) for all t € [0,T), (4.17)

where q : [0,T] — Q is a solution of (Q,E, V) and ¢,y : [0,T] — Qy is defined via
(2.8) and the initial condition q,,,(0) = Argmin {€(0,3,)+¥ (G, —Prq(0)) | G € Qu}-

Proof. By the definition (4.16) we have P, o P, = Pj and (3.3d) holds for any
ag > 0. Moreover, by using (4.16) we readily check that, for all p, ¢ € Q,

(PLA—APL)q, p)o = (Aq, Prp)o — (APug, D)o

(4.16) 16

4.
2 (Aq, Pup)o — (AP1q, Prp)o = (A(¢—P1a). Pip)o ' = 0.

Hence, (3.3c) holds for any ap > 0. Further (3.3a) holds with Cf = ||Al|Lin(0,01/F,
because

(4.16)
£IPralls < (APwq,Prg)o =" (Aq, Prg)o < ||AllLinco,0nldllel/Pralle-

Finally, let us check for property (3.3b) by means of the classical duality technique
by Aubin and Nitsche [Aub67, Nit68|. Fix ¢ € Q and, by letting J¥ : X — X’
be the Riesz mapping, define ¢ € Q as the unique solution of Ay = J*(P,—I)q.
Then, using A = A* for arbitrary ¢, € Q) we have

|(Pr—T)q||3 = (J¥(P,-1)gq, (P,—1)g)x = (Ap, (P,—1)g)o
— (AP,—T)q, 0)0 "= (A(PL—T)g, o—pn)o < CFllallallo—pnllo

where CF = || A||Lin(0.0/ suPpe(0,1] IPr—1l|Lin(0,0). Choosing ¢y, = I, and exploit-
ing (4.15) for s = o with o from (4.10) we arrive at

|(Pa-Dall% < CEllall o (Th-D¢llo < CF lallo O™ ¢ lgsvn gz

Using the definition of ¢ and the regularity theory provided in Lemma 4.1 we con-
clude
I(Pr—Dgl% < CF llallo CMR7CT|(Pr—T)gl|x,

which is the desired approximation result (3.3b) with ay = o. Hence, applying
Theorem 3.4 with 8 = a1 = o, the desired result follows. O
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Remark 4.3 In the special case of a convex reference domain € for Inew = 0, we
obtain (4.17) with o = 1.

Appendix

The aim of this section is to give the proof of (2.9¢). We follow the ideas developed
in [MiT04] and keep track of all constants to see that they do not depend on h.

Proof. We first recall that there exists C* > 0 such that all the solutions satisfy the
a priori bound

trn(t) € Bor = {q € Qlllglle < CF} for all 7 € (0,T], h € [0,1], t €[0,7]
(see Theorem 2.2).

Let now the partition TI" = {0 = #f < #] < --- < t;. = T'} be given and define 117
by successive bisections, namely

07 {7 +279r(t] — 7 ) : £=1,.. k., r=0,1,...,27}.

We shall associate to these partitions the corresponding solutions g, 5, of the incre-
mental problems for (Qj, &, V,q,(0)). We want to compare ¢, 5 and ¢, 5. To do

s0, we define £' and &2 as follows: for ¢ € 1%+, let 7 = max{s” € 117 | sT < {7},
EVtr,q) = E(t,q) and E2(t],q) = E(t],q) for ¢] € II%+1. Notice that ¢, and
Gr,,,,n are the incremental solutions obtained with €' and £2 on the partition II77+!.

For the sake of simplicity let us introduce the following notations:
T T Jk de T k T
Vi, € 7+ q71-7h = qu,h(tk> and QEh = Arj1,h n(th);
and efvh - qi,lj th and 7 p 4 pe—pp—1 where p stands for ¢7, qih and e, (and
Yr.h, see below). Since qT’h solves the incremental problems (IP)"™", we have
Von € Qn: (D€ (1, a23), vn—ml ) + W (vn) — W(mkal,) > 0. (4.18)

Choosing v, = nkqi;j and adding the equations for 7 = 1,2 gives

(Dy g (tk Th) -D 52( k’qrh) Uin,h_quz,ﬁQ <0. (4.19)
Define
def T T 2ky Lk 2k
YW (DE (T, arn)—DeE (4. a20), arn—aomdo > Kllarn—dainlo=rllef 5. (4.20)
Let us estimate the increment

MY = 90 — A0t = (D€ (4, ) Do (. a21)). €8 o
— (D€t ar)—DgE (17, 1) Mrern) 0 — 2(DeE (1, 25 —DoE2 (. 424 Mierin)
+ 2(DgE (. qi) —DeE2 (17, 427, Mkerp) -
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Let Ay € Lin(Q, Q') be the symmetric operator defined by
1
Ak d:ef/o Dggl( k’th+9€Th)d9
We get Apel, = DyE( k,th) D,EY( k,th) thus

(me(DgE" (17, 477) D€ (8, 421))s €31 0
< ( Zﬁth) D g (tk7q7’h) nk67h>
= (Arer—Areryt el o — (Arel mern)o

—<Ak7]k67,h7 Uk%h)g + <(Ak_Ak—1)6§;L17 61;,21)@

(4.21)

By convexity of EX(¢7,-), we have

Vye Q: (Awy,y)o >0,

and since DZ€ is Lipschitz continuous on [0,7] x Bg for all R > 0,

[ A= Ar—1lltince,0) < COF(|ti—tr_y |+ kgt sl o+ Imkdzall o)

where C%f depends only on £ and R > 0 such that R > maxnh{anqi’hHQ; Jj =
1,2, ] € HTJ'“} and Bg denotes the ball of radius R. Using (4.19), it follows that

MY < COF ([t [+ Inar nllotImaznll o) e 1

Lir 2k 9 (4.22)
+2||Dq5 (tk)’qT,h) -D g ( k’QTh)HQ/aneThHQ

Since &(t,-) is k-uniformly convex, the incremental solutions are Lipschitz continu-
ous, i.e. ’
Vi=1,2: lmdlpllo < ORI, (4.23)

where Cf > 0 is independent of h and 7 (cf. Theorem 2.2). Carrying (4.23) and
(4.20) in (4.22), and observing that |[nxe-nllo < |medrnlle + [17k¢2, ] 0, we obtain

C&R R 1 RiyT T
M Vrh < T(1+QC )’th te—th_1| +4pC |t —t_1|,

where
def T T
= max sup [|D,E (th,0)—DEX(th, )| o

o)
7 €i+1 quCé?

p

Let us denote Cy = max{C*"(1+2C")/k,4C{*}, we infer

Yon < Ven (HCUt—ti 1)) + pCalti—th o).
Since 47, = 0, by induction over k, we find

n

< C'4pz (ti—tr ) [] (+Cult;—1t5)) < Cape™™T.

k=1 j=k+1
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Using (4.20), it follows that

C4T
1k 2k o Cae™tT
lati—a2hlE < = (4.24)
Owing to the definitions of &' and £2, we infer that there exists a constant Cys > 0
such that
p<Cs max (t,—t;_;) < C5277T,
t7ell’i+1

which implies that
C4T€C4T

vt e [O>T] : ||qu+17h(t)_qu7h(t)||Q S 062_j/2\/;, where CG - T C5.

Note that (g, n(t))jen is a Cauchy sequence which limit g, : [0,7] — Q is the
unique solution for (Qp, &, ¥, ¢,(0)). By adding all these estimates, we infer

Ve 0.T): lea)-m(dlle <3 C2IV7 <ACw/7,  (425)
=0
which proves (2.9¢). O
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