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Abstract. Various applications in �uid dynamics and computa-
tional continuum mechanics motivate the development of reliable
and e�cient adaptive algorithms for mixed �nite element methods.
In order to save degrees of freedom, not all but just some selected
set of �nite element domains are re�ned. Hence the fundamen-
tal question of convergence as well as the question of optimality
require new mathematical arguments. The presented adaptive al-
gorithm for Raviart-Thomas mixed �nite element methods solves
the Poisson model problem, with optimal convergence rate.

Chen, Holst, and Xu presented convergence and optimality of

adaptive mixed �nite element methods (2008) following arguments
of Rob Stevenson for the conforming �nite element method. Their
algorithm reduces oscillations separately, before approximating the
solution by some adaptive algorithm in the spirit of W. Dör�er
(1996). The algorithm proposed here appears more natural in
switching to either reduction of the edge-error estimator or of the
oscillations.

1. Introduction

This paper suggests an optimal adaptive mixed �nite element algo-
rithm Amfem for the Poisson model problem with unknown �ux p and
primal variable u with

p+∇u = 0 and div p = f in Ω, while u = 0 on ∂Ω.(1.1)

Given f ∈ L2(Ω), themixed variational formulation reads: Seek (p, u) ∈
H(div,Ω)×L2(Ω) such that, for all (q, v) ∈ H(div,Ω)×L2(Ω), it holds

(p, q)L2(Ω) = (div q, u)L2(Ω) and (div p, v)L2(Ω) = (f, v)L2(Ω) .

Given �nite-dimensional piecewise polynomial subspaces RT0(T`) ⊆
H(div,Ω) and P0(T`) ⊆ L2(Ω), named after Raviart and Thomas and
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2 C. CARSTENSEN AND H. RABUS

described in Section 2, the discrete problem reads: Seek (p`, u`) ∈
RT0(T`)× P0(T`) such that, for all (q`, v`) ∈ RT0(T`)× P0(T`),

(p`, q`)L2(Ω) − (div q`, u`)L2(Ω) + (div p`, v`)L2(Ω) = (f, v`)L2(Ω) .(1.2)

The existence and uniqueness of a discrete solution follows from the
inf-sup condition [11].
The a posteriori error control of mixed �nite element methods dates

back to the independent work of Alonso [2] and Carstensen [12]; the er-
ror reduction and convergence for adaptive mixed �nite element meth-
ods was established by Carstensen and Hoppe [18, 17]. The main con-
tribution of the new algorithm in this paper is the step Mark with
either edge-oriented re�nement or oscillation control. The oscillations
on level ` are de�ned for the triangulation T` of Ω into triangles by

osc` := osc(f, T`) :=

(∑
T∈T`

osc2(f, T )

)1/2

(1.3)

with local oscillations on the domain ω ⊆ Ω of area |ω| de�ned as

osc(f, ω) := |ω|1/2 ‖f − fω‖L2(ω) with

fω :=

 
ω

f dx := |ω|−1

�
ω

f(x) dx .

For the set of all interior edges E` in the triangulation T`, the edge-error
estimator reads

η` := η`
(
E`
)
with η2

` (M) :=
∑
E∈M

η2
` (E) forM⊆ E`(1.4)

and local contributions

η`(E) := |E|1/2 ‖[p`]E‖L2(E) for all E ∈ E`.

Here and in the sequel, [q]E := q|T+
− q|T− denotes the jump of q across

an edge E = T+∩T− shared by the two elements T± ∈ T and νE = νT+

is the unit normal vector exterior to T+ along E. Note that the normal
component [p`] · νE vanishes because of p` ∈ H(div,Ω) and so η`(E)
solely measures the jump parallel to E.
The marking consists of the two alternatives (A) and (B) depending

on the computable osc` and η` and some global parameter κ > 0.
InCase (A) osc2

` ≤ κη2
` , computeM` ⊆ E` with minimal cardinality

|M`| such that

θη2
` ≤ η2

` (M`)

and compute a shape-regular triangulation T`+1, where the edges in
M` are bisected plus a minimal number of other edges in some closure
algorithm to avoid hanging nodes.
In Case (B) osc2

` > κη2
` , run the Thresholding Second Algorithm

plus completion from [6, 7] resulting in a triangulation T of nearly



AN OPTIMAL AMFEM 3

minimal cardinality |T | such that

osc2(f, T ) ≤ Tol2 := ρB osc2
` , with 0 < ρB < 1

and compute the overlay T`+1 := T` ⊕ T .
The Thresholding Second Algorithm of Section 4.4 of [6] is one possi-

ble example; the point here is to enforce an oscillation reduction with
optimal complexity.
The algorithm is feasible in the sense, that the decision in Mark

is solely based on computed quantities and realises the simultaneous
reduction of η` and osc`. This avoids the computation of an initial
triangulation T0, which approximates the data up to a given �xed tol-
erance as in [21].
The main theorem states optimal complexity (Theorem 5.7) for Am-

fem as de�ned in detail in Section 2 for particular positive parameters
α, β, κ, and 0 < ρB, θ < 1. Given (p, f) in some approximation class
As, the sequence of triangulations (T`)` from Amfem with discrete
�uxes (p`)`, Theorem 5.7 implies

|T`| − |T0| . (ε2
` + osc2

`)
−1/(2s) ≈ ξ

−1/s
`

which is optimal with respect to As up to a multiplicative generic
constant. The proof is based on overlay control (Theorem 3.3) and
contraction (Lemma 5.2). In particular, for η`, and osc` as de�ned
above and the exact error ε` := ‖p− p`‖L2(Ω) of the �ux there exists
0 < ρ < 1 such that contraction holds for the weighted term

η2
`+1 + αε2

`+1 + β osc2
`+1 =: ξ2

`+1 ≤ ρξ2
` .

Here and in the sequel, |T`| := card(T`) denotes the number of elements
in the �nite set T` and A . B represents A ≤ CB for some mesh-
independent, positive generic constant C, whereas A ≈ B represents
A . B . A. Moreover, standard notation of Lebesgue and Sobolev
spaces is employed, e.g., the di�erential operators are de�ned for vector
valued functions v(x) ∈ R2 for all x ∈ R2 as

div v :=
∂v1

∂x1

+
∂v2

∂x2

, curl v :=
∂v2

∂x1

− ∂v1

∂x2

,

and for scalar valued functions v for all x ∈ R2

Curl v :=

(
∂v

∂x2

,− ∂v

∂x1

)
.

The remaining part of the paper is organised as follows. Section
2 introduces notation and describes further details of the proposed
Amfem. The focus is on the optimal oscillation reduction in Mark
with the concept of the overlay T`⊕T , de�ned as the coarsest common
regular re�nement of both T` and T . Section 3 is based on the notion
of trees and forests to represent re�ned meshes and overlays and to
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combine the control of elements in Case (A) and (B). For the �nite

sequenceM(0)
` , . . . ,M(K(`))

` of sets of edges from Algorithm 3.2 with

T` ⊕ T = Refine
(
T`,
(
M(k)

`

)
k=0,...,K(`)

)
the key estimate in Theorem 3.3 reads

K(`)∑
k=0

∣∣M(k)
`

∣∣ ≤ |T | − |T0| .

Section 4 introduces the discrete stability and quasi-orthogonality for
the proof of contraction and optimality in Section 5.

2. Adaptive mixed finite element method algorithm
(Amfem)

This section is devoted to the design of an adaptive algorithm for
the lowest-order mixed �nite element method for solving the Poisson
model problem (1.2).

2.1. Outline of the adaptive algorithm. Given a regular, initial
coarse triangulation T0 of Ω into closed triangles, where two distinct
elements are either disjoint or share exactly one node or one common
edge. Moreover, each element of T ∈ T0 has at least one node in the
interior of Ω. For any T ∈ T0, one edge from the set of its interior edges
E(T ) is selected and called its reference edge E(T ).
In successive loops of the basic steps Solve, Estimate, Mark and

Refine, discrete solutions (p`, u`) ∈ V` are computed on each level
` ≥ 0 based on the current shape-regular triangulation T` of Ω with
the sets of its nodes N`, free nodes K` := Ω ∩N` and edges E`.
The adaptive algorithm is based on a combination of an edge-based

error estimator and oscillation control in step Mark described in the
sequel.

2.2. Solve. The Poisson model problem (1.2) is solved on the current
triangulation T` with the space of Raviart-Thomas �nite elements of
lowest order for the triangulation T` of level ` [8, 11], namely

RT0(T`) := {q ∈ H(div,Ω) | ∀T ∈ T`
∃a ∈ R2 ∃b ∈ R ∀x ∈ T q(x) = a+ bx}.

Matlab implementations and documentations of Solve are provided
in [5]. Notice that, in particular,

div p` + f` = 0 a.e. in Ω

for the piecewise integral mean f` ∈ P0(T`) de�ned by f`|T = fT =�
T
f(x) dx for all T ∈ T`.
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(e) bisec3 (T )

Figure 2.1. Possible re�nements of a triangle T . The
reference edge of each (sub-)triangle is identi�ed through
an additional parallel line inside it.

2.3. Estimate. The error estimator η` of (1.4) and the oscillations
osc` of (1.3) allow reliable and e�cient error control on the given tri-
angulation T`.

Theorem 2.1 ([2, 16, 12]). The error estimator η` of (1.4) plus the
oscillations osc` of (1.3) are reliable and e�cient in the sense that there
exist positive constants Ce�, Crel, which depend on the shape but not on
the size of the element domains, with

�(2.1) Ce�η
2
` ≤ ε2

` := ‖p− p`‖2
L2(Ω) ≤ Crel(η

2
` + osc2

`).

2.4. Adaptive mesh-re�nement: Mark andRefine. Given bulk
parameter 0 < θ < 1 positive κ, the algorithm distinguishes Cases (A)
for osc2

` ≤ κη2
` and (B) for κη2

` < osc2
` .

The nonempty setM` ⊆ E` is speci�ed by Mark and used in Re-
fine to compute T`+1 by the Newest Vertex Bisection (NVB) and com-
pletion from [7, 6, 9, 30] w.r.t. M`.

2.5. Case (A) for osc2
` ≤ κη2

` . Case (A) performs an error estimator
reduction: Sort the set of all edges E` in (E1, . . . , EN) with ηE1 ≤ · · · ≤
ηEN

. Compute a set M` := {EN , . . . , EN−k} of minimal cardinality
|M`| = k + 1 with

θη2
` ≤ η2

` (M`).(2.2)

Possible re�nement rules green, blue, and bisec3 are depicted in Fig-
ure 2.1. The re�ned triangulation T`+1 := Refine(T`, C`(M`)) from
T` is uniquely de�ned in the way, that exactly the edges in C`(M`) are
bisected. C`(M`) is the minimal subset of E` which includes M` and
is closed in the sense that

{E(T ) ∈ E` | T ∈ T` and E(T ) ∩ C`(M`) 6= ∅} ⊆ C`(M`).(2.3)



6 C. CARSTENSEN AND H. RABUS

2.6. Case (B) for osc2
` > κη2

` . Case (B) reduces the oscillations:

Given f , T0, 0 < ρB < 1, set Tol := ρ
1/2
B osc` and run Thresholding

Second Algorithm plus completion [6, 7] to compute an optimal T with

osc2(f, T ) ≤ Tol2 and |T | − |T0| . Tol−1/s .

Hence, the overlay triangulation T`+1 := T ⊕ T`, computed by means
of the corresponding forests in Section 3, satis�es

osc2
`+1 ≤ Tol2 and |T`+1| − |T0| . Tol−1/s .

By de�nition of Tol in each level of Case (B), an oscillation reduction
with 0 < ρB < 1 holds

(2.4) osc2
`+1 ≤ ρB osc2

` .

The re�nement in (B) is not level-oriented in the sense that one
element domainK of T` might contain a seemingly uncontrolled number
of re�ned element domains in {T ∈ T`+1 | T ⊆ K} ⊆ T`+1. The control
requires the investigations of the subsequent section.

3. Combining the two Cases in one optimal algorithm

This section is devoted to the overall control of the number of �nite
element domains treated in the two separate ways (A) and (B).

3.1. Forests representing triangulations. This subsection brie�y
recalls the concepts of trees and forests from [6] to clarify the notion of
an overlay and to embed oscillation reduction into the successive loops
of the estimator reduction in Case (B) and (A).
A rooted tree is a graph, where one vertex is designated to be the root

and any two vertices are connected by exactly one path. If two vertices
are connected by an edge, the vertex closer to the root is called parent
the other its child. A vertex with at least one child is called interior
vertex and otherwise leaf. A pairwise disjoint set of trees, is called a
forest.

This paper focuses on triangulations generated from some coarse
triangulation T0 by NVB with re�nements of Figure 2.1. Any possible
re�ned triangulation T` from T0 is represented by one forest F` and the
re�nement of each triangle T of the initial triangulation T0 corresponds
to one tree with root T in F`. The leaves of all trees of F` represent
the elements of T`. Each vertex in F` has either two children or none
and all but the root in T0 have an ancestor.
In steps Mark and Refine of Case (A) in Amfem, a re�ned tri-

angulation is computed by marking a set of edges followed by NVB.
In Case (B), however, the current triangulation T` is overlaid with a
triangulation T represented by a forest F with osc(f, T )2 ≤ Tol2. The
subsequent subsection explains the de�nition and the key estimate for
the overlay of triangulations. Then, on each level ` a triangulation T`
and its forest F` is available.
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3.2. Overlay of two re�nements of T0. The coarsest common re-
�nement T` ⊕T of two triangulations T` and T re�ned from T0, called
overlay, is de�ned by the union of their forests F` ∪ F . Its number of
elements is bounded as stated in the following Lemma.

Lemma 3.1 ([20]). The overlay T` ⊕ T of two triangulations T` and
T re�ned from T0 by NVB satis�es

�(3.1) |T` ⊕ T | − |T`| ≤ |T | − |T0| .

The following algorithm is for theoretical purposes only and allows
a common re�nement control for Case (A) and (B).

Algorithm 3.2 (Embed Oscillation Control). This algorithm
provides a �nite sequence of sets of successively marked reference edges(
M(k)

`

)
k
in order to embed Case (B) of Amfem in the standard level-

oriented overall adaptive mesh-re�nement. The output of the algorithm
realises a �nite number of successive re�nements, written

T`+1 := T` ⊕ T = Refine
(
T`,
(
M(k)

`

)
k=0,...,K(`)

)
,(3.2)

where in each step k each triangulation is re�ned as shown in Figure

2.1, with respect to the set of marked edgesM(k)
` as follows.

Input: Given T` and T` ⊕ T , set T (0)
` := T`, E (0)

` := E`, k := 0.
Loop: For k = 0, 1, . . . until termination for k = K(`) set

M(k)
` :=

{
E(T ) ∈ E (k)

` | T ∈ T
(k)
` \ T`+1

}
and run NVB to re�neM(k)

` in T (k)
` with output

T (k+1)
` := Refine

(
T (k)
` ,M(k)

`

)
.(3.3)

If T (k+1)
` $ T` ⊕ T update k, else stop with k = K(`).

Output: A sequence of reference edges
(
M(k)

`

)
k=0,...,K(`)

.

The bene�t of the arti�cial marked edgesM(0)
` , . . . ,M(K(`))

` in Case
(B) is, that the re�nement (3.3) is level-oriented such that each triangle

in T (k)
` is re�ned as shown in Figure 2.1 to obtain T (k+1)

` .

3.3. Re�nement control in Case (B).

Theorem 3.3. Given two triangulations T` and T re�ned from T0 by
NVB, Algorithm 3.2 stops after a �nite number K(`) ≥ 0 of steps with

T (K(`)+1)
` = T` ⊕ T

and outputs a �nite sequence of sets
(
M(k)

`

)
k=0,...,K(`)

with (3.2)-(3.3)

and
K(`)∑
k=0

∣∣M(k)
`

∣∣ ≤ |T | − |T0| .
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Proof. Let F`, F (k)
` , and F`+1 = F` ∪ F denote the forests associated

to the triangulations T`, T (k)
` , and T`+1 := T` ⊕ T , respectively. By

mathematical induction, one oberserves that NVB leads to a nested
sequence

F` = F (0)
` $ F (1)

` $ · · · $ F (K(`))
` $ F (K(`)+1)

` = F`+1.

In fact, T (k)
` \T`+1 denotes the triangles andM(k)

` the marked edges to
be re�ned in step k. Since F`+1 \F` is �nite, Algorithm 3.2 terminates

after K(`) steps with F (K(`)+1)
` = F`+1.

For each E ∈ M(k)
` with 0 ≤ k ≤ K(`), at least one element in T (k)

`

is re�ned into at least two new elements in T (k+1)
` . Furthermore, if E

is an interior edge, at least two elements in T (k)
` are bisected to at least

four new elements in T (k+1)
` . Therefore it holds∣∣M(k)

`

∣∣ ≤ ∣∣T (k+1)
`

∣∣− ∣∣T (k)
`

∣∣.(3.4)

Recall T (0)
` = T`, T (K(`)+1)

` = T`+1 = T` ⊕ T and apply (3.1), (3.4) to
deduce

K(`)∑
k=0

∣∣M(k)
`

∣∣ ≤ |T` ⊕ T | − |T`| ≤ |T | − |T0| . �

3.4. Closure. There are several strategies to realise the implemen-
tation of re�ning a mesh by NVB with respect to a set of marked edges
M`. One way is �rst to run some Closure algorithm to compute the
smallest superset C`(M`) ofM` with (2.3). Thereafter, second, re�ne
each triangle according to Figure 2.1 and apply the indicated de�nition
of reference edges.
The overhead of Closure is bounded in the following sense. A

sequence of triangulations (T`)` and corresponding sets of marked edges
(M`)` satis�es

|T`| − |T0| ≤ C0

`−1∑
j=0

|Mj|

for some positive constant C0 depending solely on T0 [6, 30]. This
estimate is usually employed to Case (A), but holds in Case (B) in the
sense that

|T`| − |T0| ≤ C0

`−1∑
j=0

K(j)∑
k=0

∣∣∣M(k)
j

∣∣∣ ,(3.5)

whereM(0)
j , . . . ,MK(j)

j is the output of Algorithm 3.2 in Case (B), and

whereM(0)
j :=Mj and K(j) := 0 in Case (A).
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4. Further preliminaries

This section summarises some key arguments for the contraction
property and optimal convergence. The following Lemmas apply to
triangulations T`+k re�ned from T` in possibly more than one level of
re�nements from Figure 2.1.
In contrast to the new version of [21], the proof of Lemma 4.2 presents

a direct veri�cation of the discrete stability based on the following
nonstandard Poincaré inequality.

Let mid(E) denote the midpoint of any edge E, and ED` the set
of edges along the boundary ∂Ω. Furthermore, let ∇`+k denote the
piecewise action of the gradient ∇ on T`+k.
The subsequent analysis of MFEM employs the nonconforming �nite

element spaces

PNC
1 (T`) := {v ∈ P1(T`) | ∀E ∈ E`, v continuous at mid(E)},
PNC

1,0 (T`) := {v ∈ PNC
1 (T`) | ∀E ∈ ED` , v(mid(E)) = 0}.

Lemma 4.1 (Poincaré inequality). A nonstandard discrete Poincaré
inequality for a`+k ∈ PNC

1 (T`+k) and T ∈ T` reads
‖a`+k − aT‖L2(T ) . hT ‖∇`+ka`+k‖L2(T ) .(4.1)

Proof. The estimate (4.1) is a consequence of the work of Brenner. For
a proof one transforms T and its re�ned mesh T`+k|T onto the reference
triangle Tref with a re�ned mesh of right isosceles triangles. Further-
more a`+k and aT are transformed onto Tref to ã`+k and ãT , respec-
tively. Hence, the estimate from [10, Theorem 10.6.16] for arbitrary
shape-regular meshes, cf. [10, p. 301f] simpli�es to

‖ã`+k − ãT‖L2(Tref)
. ‖∇`+kã`+k‖L2(Tref)

.

A careful transformation from Tref to T yields the factor hT in (4.1). �

Lemma 4.2 (Discrete Stability). Given a triangulation T`+k re�ned
from T`, k ∈ N, let p`+k and p̂`+k be the respective discrete MFEM
solutions in RT0(T`+k) with right-hand sides f`+k and f`, e.g.,

div p`+k + f`+k = 0 and div p̂`+k + f` = 0.

Then, there exists some constant C1 > 0 (depending solely on the shape-
regularity of T0) such that

C−1
1
‖p`+k − p̂`+k‖L2(Ω) ≤

(∑
T∈T`

h2
T ‖f`+k − f`‖

2
L2(T )

)1/2

≤ osc` .

Proof. Let x`+k ∈ P0(T`+k; R2) denote the triangle midpoints, x`+k|T :=
mid(T ) for T ∈ T`+k. It is well established [24, 5] that

p`+k(x) = ∇`+ku
NC
`+k + (x− x`+k)f`+k/2 for x ∈ T ∈ T`+k,

p̂`+k(x) = ∇`+kû
NC
`+k + (x− x`+k)f`/2 for x ∈ T ∈ T`+k,
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while uNC`+k ∈ PNC
1 (T`+k) solves�

Ω

∇`+ku
NC
`+k · ∇`+kv

NC
`+k dx =

�
Ω

f`+kv
NC
`+k dx for all vNC`+k ∈ PNC

1,0 (T`+k)

with piecewise constant right-hand side f`+k ∈ P0(T`+k).
When, (• − x`+k) represents the factor (x − x`+k) of x ∈ Ω, the

de�nition a`+k := uNC`+k − ûNC`+k yields

∇`+ka`+k = ∇`+ku
NC
`+k−∇`+kû

NC
`+k = p`+k−p̂`+k−(•−x`+k)(f`+k−f`)/2.

Since (• − x`+k)⊥L2(Ω)P0(T`)2 there holds

‖p`+k − p̂`+k‖2
L2(Ω) = ‖(• − x`+k)(f`+k − f`)/2‖2

L2(Ω)

+ ‖∇`+ka`+k‖2
L2(Ω) .

(4.2)

Moreover, an elementwise integration by parts shows

‖∇`+ka`+k‖2
L2(Ω) = (p`+k − p̂`+k,∇`+ka`+k)L2(Ω)

= −
(
div
(
p`+k − p̂`+k

)
, a`+k

)
L2(Ω)

+
∑

E∈E`+k

�
E

(
p`+k − p̂`+k

)
· νE[a`+k]E ds

=
∑
T∈T`

�
T

(f`+k − f`)(a`+k − aT ) dx

with the integral mean aT of a`+k on a coarser triangle T ∈ T`. The
last identity follows for T ∈ T` and E ∈ E`+k from�

T

(f`+k − f`) dx = 0 =

�
E

[a`+k]E ds .

Recall that h` is the piecewise constant function with h`|T = hT =
diam(T ) for all T ∈ T`. The combination of (4.1) of Lemma 4.2 with
the aforementioned arguments and orthogonality in (4.2) leads to

‖∇`+ka`+k‖2
L2(Ω) .

(∑
T∈T`

h2
T ‖f`+k − f`‖

2
L2(T )

)1/2

‖∇`+ka`+k‖L2(Ω) .�

Lemma 4.3 (Quasiorthogonality). Let T`+k be a triangulation re�ned
from T`. Given C1 > 0 from Lemma 4.2, for the exact solution (p, u)
of (1.1), and the MFEM solutions (p`+k, u`+k) ∈ RT0(T`+k)×P0(T`+k),
and (p`, u`) ∈ RT0(T`)× P0(T`) of (1.2), quasiorthogonality holds

(p− p`+k, p`+k − p`)L2(Ω) ≤ C1ε`+k osc`;(4.3)

‖p`+k − p`‖2
L2(Ω) ≤ ε2

` − ε2
`+k + 2C1ε`+k osc`;(4.4)

ε2
` − ε2

`+k ≤ ‖p`+k − p`‖
2
L2(Ω) + 2C1ε`+k osc` .(4.5)
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Proof. Let p̂`+k ∈ RT0(T`+k) be the intermediate solution of Lemma 4.2
with div p̂`+k + f` = 0. An integration by parts and div

(
p̂`+k− p`

)
= 0

show (p− p`+k, p̂`+k − p`)L2(Ω) = 0.
Hence an application of Lemma 4.2 yields∣∣∣(p− p`+k, p`+k − p`)L2(Ω)

∣∣∣ ≤ ε`+k ‖p`+k − p̂`+k‖L2(Ω)

≤ C1ε`+k osc` .

This proves (4.3) and leads to (4.4) via

‖p`+k − p`‖2
L2(Ω) = ε2

` − ε2
`+k − 2 (p− p`+k, p`+k − p`)L2(Ω)

≤ ε2
` − ε2

`+k + 2C1ε`+k osc` .

The same arguments yield (4.5), namely

ε2
` − ε2

`+k = ‖p`+k − p`‖2
L2(Ω) + 2 (p− p`+k, p`+k − p`)L2(Ω)

≤ ‖p`+k − p`‖2
L2(Ω) + 2C1ε`+k osc` . �

Lemma 4.4 ([21]). Let T`+k be a triangulation re�ned from T`. Given
C1 > 0 from Lemma 4.2, and the respective MFEM solutions of (1.2)
(p`+k, u`+k) ∈ RT0(T`+k) × P0(T`+k) and (p`, u`) ∈ RT0(T`) × P0(T`),
there exists a constant C2 > 0, which solely depends on T0, such that∣∣E` \ E`+k∣∣ ≤ 3

(
|T`+k| − |T`|

)
, and(4.6)

‖p`+k − p`‖2
L2(Ω) ≤ C2η

2
`

(
E` \ E`+k

)
+ C2

1
osc2

` .(4.7)

Proof of (4.6) of Lemma 4.4. For each E ∈ E` \ E`+k there is a re�ne-
ment of the neighbourhood ω̄E := T+∪T− of E and each neighbouring
K ∈ {T+, T−} ⊂ T` with E ⊆ ∂K is, at least, bisected in the re�ne-
ments from T` to T`+k. Let

χj(K) := |{T ∈ Tj | T ⊆ ω̄E}| for K ∈ T` and j = `, `+ 1, . . . ;

mE :=


1/2 if E interior, E ∈ E` \ E`+k,
1 if E ⊆ ∂Ω, E ∈ E` \ E`+k,
0 otherwise.

Then, for all E ∈ E` \ E`+k,
1 ≤ mE

(
χ`+k(ωE)− χ`(ωE)

)
,

holds, and hence

|E` \ E`+k| ≤
∑

E∈E`\E`+k

mE (χ`+k(ωE)− χ`(ωE))

=
∑
T∈T`

∑
E∈E`(T )

mE (χ`+k(ωE)− χ`(ωE))

≤ 3
∑
T∈T`

(|{K ∈ T`+k | K ⊆ T}| − 1) = 3 (|T`+k| − |T`|) .
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This veri�es (4.6) with factor 3 on the right-hand side. In fact, this
factor could be 2 with a more detailled inspection and an assignment
of one proper neighbour TE of E with similar arguments. �

Proof of (4.7) of Lemma 4.4. Let p̂`+k ∈ RT0(T`+k) be the intermedi-
ate solution of Lemma 4.2 with div p̂`+k + f` = 0.
Then, div

(
p̂`+k − p`

)
= 0 shows (p̂`+k − p`+k, p̂`+k − p`)L2(Ω) = 0.

This and Lemma 4.2 yield

‖p`+k − p`‖2
L2(Ω) = ‖p̂`+k − p`‖2

L2(Ω) + ‖p`+k − p̂`+k‖2
L2(Ω)

≤ ‖p̂`+k − p`‖2
L2(Ω) + C1 osc2

` .
(4.8)

It remains to bound ‖p̂`+k − p`‖2
L2(Ω). The discrete orthogonal Helmholtz

decomposition [3] yields a`+k ∈ PNC
1,0 (T`+k) and b`+k ∈ P̂1(T`+k) :={

v ∈ P1(T`+k) ∩ C
(
Ω̄
)
|
�

Ω
v dx = 0

}
with

p̂`+k − p` = ∇`+ka`+k + Curl b`+k.

Let b` := I`b`+k some (e.g., Scott-Zhang) quasi-interpolation with

‖b`+k − I`b`+k‖L2(E) ≤ Ch
1/2
E |b`+k|H1(ωE)

for E ∈ E` and its neighbourhood ωE. Notice that

‖b`+k − I`b`+k‖L2(E) = 0 if E ∈ E`+k ∩ E`.

The L2 orthogonality (p̂`+k − p`)⊥L2(Ω)∇`+ka`+k veri�es

‖p̂`+k − p`‖2
L2(Ω) = (p̂`+k − p`,Curl b`+k)L2(Ω) ,

while the discrete conditions (1.2) with test function Curl b` ∈ RT0(T`) ⊆
RT0(T`+k) lead to

(p̂`+k,Curl b`+k)L2(Ω) = 0 = (p`,Curl b`)L2(Ω) .

Hence,

‖p̂`+k − p`‖2
L2(Ω) = (p`,Curl(b` − b`+k))L2(Ω)

=
∑
E∈E`

�
E

[p`]E · τE(b` − b`+k) ds

−
∑
T∈T`

�
T

curl(p`)(b` − b`+k) ds

=
∑

E∈E`+k\E`

�
E

[p`]E · τE(b` − b`+k) ds .

In 2D it holds |b`+k|H1(Ω) ≤ ‖p̂`+k − p`‖L2(Ω) . Thus,

‖p̂`+k − p`‖2
L2(Ω) ≤

∑
E∈E`+k\E`

‖[p`]E‖L2(E) ‖b` − b`+k‖L2(E)

≤ C
1/2
2
η` (E` \ E`+k) ‖p̂`+k − p`‖L2(Ω) .
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A division by ‖p̂`+k − p`‖L2(Ω) plus (4.8) lead to the assertion (4.7). �

5. Convergence and optimality of Amfem

This section is devoted to the convergence analysis of the adaptive
mixed �nite element method (Amfem).

5.1. Contraction Property.

Lemma 5.1. There exists some constant C3 > 0, which depends only
on the triangulation T0, such that for any δ > 0 and Cδ := C3(1 + 1/δ)
and on any level ` with Case (A) and 0 < θ < 1 or with Case (B) and
k ≥ 1 it holds

η2
`+1 ≤(1 + δ)(1− θ/2)η2

` + Cδ ‖p`+1 − p`‖2
L2(Ω) in Case (A),(5.1)

η2
`+k ≤(1 + δ)η2

` + Cδ ‖p`+k − p`‖2
L2(Ω) in Case (B).(5.2)

Proof. The estimates are proven by applying Young's inequality and
by exploiting that p`+k − p` is piecewise constant on T`+k, k ≥ 1 (cf.
e.g., [14, 20]). �

Lemma 5.2 (Contraction). For any choice of 0 < θ, ρB < 1, there
exists positive parameters α, β, κ0 and 0 < ρ < 1, such that for any 0 <
κ < κ0 and on any level ` ≥ 0 in Case (A) or (B) of algorithm Amfem
the weighted term ξ2

` of exact error, estimated error and oscillations
satis�es contraction

ξ2
`+1 ≤ρξ2

` , ξ2
` := η2

` + αε2
` + β osc2

` .(5.3)

Proof. Given positive constants C1, Cδ, Crel from Lemmas 4.2, 5.1, and
Theorem 2.1, respectively. Let 0 < θ, ρB < 1. Contraction is proven
for the following choice of positive parameters A, B, D, α, β, δ, γ, κ0,
and 0 < ρA < 1 and all 0 < κ < κ0

δ :=θ/ (4− 2θ) , ρA :=(1 + δ)(1− θ/2),

γ :=
1

2
min

{
1,

1− ρA
CδCrel

}
, B :=

3

4
min

{
1,

1− ρA
CδCrel

}
,

A :=2(C1Cδ/γ + CδCrelB), α :=Cδ (1− γ) ,

κ0 :=
1− ρA − CδCrelB

A
, D :=

1/2 + δ + CδCrelB

κ
,

β := 2 max

{
C1Cδ/γ + CδCrelB +D

1− ρB
, A− C1Cδ/γ − CδCrelB

}
.

The application of Young's inequality and reliability (2.1) to qua-
siorthogonality (4.4) leads to

‖p`+1 − p`‖2
L2(Ω) ≤(1−B)ε2

` − (1− γ)ε2
`+1

+ (C1/γ + CrelB) osc2
` +CrelBη

2
` .

(5.4)
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On each level with Case (A), substituting (5.4) in (5.1) reveals

η2
`+1 ≤ (ρA + CδCrelB) η2

` + Cδ(1−B)ε2
`

− Cδ(1− γ)ε2
`+k + Cδ (C1/γ + CrelB) osc2

` .

Together with reliability, osc2
`+1 ≤ osc2

` and κη
2
` ≤ osc2

` , this veri�es

ξ2
`+1 ≤ (ρA + Aκ+ CδCrelB) η2

` + Cδ (1−B) ε2
`

+ (β + C1Cδ/γ − A+ CδCrelB) osc2
` .

Thus, with the proposed choice of parameters, on any level with Case
(A) contraction is realised, i.e., ξ2

`+1 ≤ ρ1ξ
2
` holds with ρ1 de�ned by

0 < ρ1 := max {(ρA + Aκ+ CδCrelB) , Cδ (1−B) /α,

(β + C1Cδ/γ − A+ CδCrelB) /β} < 1.

In Case (B), similarly to Case (A), substituting (5.4) in (5.2) and
applying osc2

`+1 ≤ ρB osc2
` , as well as κη

2
` ≤ osc2

` proves

ξ2
`+1 ≤(1 + δ + CδCrelB −Dκ)η2

` + Cδ(1−B)ε2
`

+ (C1Cδ/γ + CδCrelB + βρB +D) osc2
` .

Thus, for the special choice of parameters, contraction of ξ2
` on any

level with Case (B), i.e., ξ2
`+1 ≤ ρ2ξ

2
` holds with ρ2 de�ned as

0 < ρ2 := max {1 + δ + CδCrelB −Dκ,Cδ(1−B)/α,

+(C1Cδ/γ + CδCrelB + βρB +D)/β} < 1.

Hence, there exist parameters α, β, κ0 > 0 such that for all 0 < κ < κ0

on any level, irrespective of the relation between η` and osc` contraction
(5.3) of the weighted term ξ` with ρ := max {ρ1, ρ2} is ensured. �

Remark 5.3 (Upper and lower bounds). Let T`+k be some re�nement
of T`. Given Ce�, Crel, C1, α, β, κ from Theorem 2.1, and Lemmas 4.2,
5.2, respectively, and set

Ca := 1 + αCrel + (αCrel + β)κ, Cb := Ca/κ,

Cc := max
{

2(α + C−1
e�

)/α,
(
4C2

1
(α + C−1

e�
) + β

)
/β
}
.

Then, the weighted terms ξ` and ξ`+k of the MFEM errors ε`, ε`+k, the
estimated errors η`, η`+k, and oscillations osc`, osc`+k satisfy

ξ2
` ≤

{
Caη

2
` if Case (A) applies on level `,

Cb osc2
` if Case (B) applies on level `,

(5.5)

ε2
`+k ≤ 2ε2

` + 4C2
1

osc2
` , αε2

`+k ≤ ξ2
`+k ≤ Ccξ

2
` ,(5.6)

ξ2
` ≈ ε2

` + osc2
` .(5.7)
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Proof. (5.5) is proven by applying reliability and the speci�c relation
of the estimated error and oscillations in Case (A) and (B); while the
estimates (5.6) are proven by applying quasiorthogonality and Young's
inequality, which yields

ε2
`+k ≤ ε2

` + 2C1ε`+k osc`−‖p`+k − p`‖2
L2(Ω)

≤ ε2
` + 2C2

1
osc2

` +ε2
`+k/2− ‖p`+k − p`‖

2
L2(Ω) ,

plus e�ciency for the second estimate of (5.6). (5.7) follows directly
from e�ciency and reliability (2.1) of η`. �

5.2. Optimal convergence. This subsection is devoted to the opti-
mal convergence rate [6, 29] of the adaptive algorithm Amfem.

De�nition 5.4 (Approximation Class). Given an initial regular trian-
gulation T0 of Ω and s > 0, let

As := {(p, f) ∈ H(div,Ω)×L2(Ω) | ‖(p, f)‖As
<∞} with

‖(p, f)‖As
:= sup

N∈N

(
N s inf

|T |−|T0|≤N

(
ε2(T ) + osc2(f, T )

)1/2
)
,

ε(T ) := ‖p− pT ‖L2(Ω) .

The in�mum is with respect to all NVB-generated re�nements T of
T0, called admissible triangulations, with number of element domains
|T | ≤ N + |T0| and with the exact error ε(T ) of the �ux-part pT ∈
RT0(T ) of the MFEM solution.

Remark 5.5. The approximation class As can be characterised [29,
p.255 Remark 5.1, p.263 l.17] by (p, f) ∈ As if and only if for all ε > 0
there exists an admissible triangulation Tε such that the associated
MFEM solution (pε, uε) in RT0(Tε)× P0(Tε) satis�es

ε2(Tε) + osc2(f, Tε) ≤ ε2 and |Tε| − |T0| . ε−1/s ‖(p, f)‖1/s
As
.

Remark 5.6. Our main result states optimal convergence of theAmfem
in the following sense: Given (p, f) ∈ As and ` ∈ N, the algorithm
generates a triangulation T` with discrete solutions (p`, u`) in RT0(T`)×
P0(T`) such that

|T`| − |T0| . ξ
−1/s
` ≈

(
ε2
` + osc2

`

)−1/(2s) ≈
(
ε` + osc`

)−1/s
.

Theorem 5.7 (Optimal Convergence Rates). Given positive constants
Ce�, C1, C2 from Theorem 2.1, Lemmas 4.2, 4.4. Furthermore, let
T0 be some intial triangulation, s > 0, and 0 < θ < min{Ce�/C2, 1}.
Then, for all 0 < ρB < 1 there exists positive parameters α, β, κ0,
and 0 < ρA, ρ < 1 from Lemma 5.2, such that for all 0 < κ <
min {κ0, Ce� − C2θ/(2C

2
1
)} and (p, f) ∈ As the algorithm Amfem gen-

erates triangulations which satisfy

|T`| − |T0| . ξ
−1/s
` , for all ` ≥ 0.
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Proof. Moreover, given positive constants Ce�, Crel, C0, C1, C2, Ca

from Theorem 2.1, (3.5), Lemmas 4.2, 4.4, and Remark 5.3, as well as
positive parameters α, β, κ0, and 0 < ρA, ρB, ρ < 1 from Lemma 5.2.
The key of the proof is to verify for any level ` in either Case (A) or

(B) there exist K(`) ∈ N sets of marked edgesM(0)
` , . . . ,MK(`)

` with

(5.8)

K(`)∑
k=0

∣∣M(k)
`

∣∣ . ξ
−1/s
` .

In fact, once (5.8) is veri�ed, (3.5) shows

|T`| − |T0| ≤
`−1∑
j=0

(
|Tj+1| − |Tj|

)
≤ C0

`−1∑
j=0

K(j)∑
k=0

|M(k)
j | .

`−1∑
j=0

ξ
−1/s
j .

This and the contraction property (5.3) from Lemma 5.2 reveal optimal
global convergence owing to the subsequent arguments

|T`| − |T0| ≤ ξ
−1/s
`

∑̀
k=1

ρ−k/(2s) =
1− ρ−(`+1)/(2s)

1− ρ−1/(2s)
ξ
−1/s
` . ξ

−1/s
` .

Hence it remains to prove (5.8). Given the triangulation T` and discrete
solution (p`, u`) of (1.2). Due to the choice of κ, in Case (A) τ can
be chosen to satisfy

0 < τ 2 ≤ α (Ce� − 2C2
1
κ− C2θ)

2CaCc

,

with Ca, Cc > 0 from Remark 5.3. Setting ε := τξ`, Remark 5.5 leads
to the existence of some admissible triangulation Tε re�ned from T0

such that

ξ2(Tε) := η2(Tε) + αε2(Tε) + β osc2(f, Tε) ≤ ε2,

with the exact error ε(Tε), the estimated error η(Tε) and oscillations
osc(f, Tε) on Tε. Then, by applying Lemma 3.1 the overlay T := Tε⊕T`
and its associated quantities ξ2(T ) = η2(T ) + αε2(T ) + β osc2(f, T ),
with estimated error η(T ), ε(T ) = ‖p− pT ‖L2(Ω), and oscillations

osc(f, T ) satisfy

|T | − |T`| = |Tε ⊕ T`| − |T`| ≤ |Tε| − |T0| . ε−1/s ≈ ξ
−1/s
` .

In the next step we prove that E` \ ET ful�ls the bulk criterion (2.2),
namely

θη2
` ≤ η2

` (E` \ ET ).(5.9)

E�ciency, osc2
` ≤ κη2

` , and the combination of (5.5)-(5.6)

αε2(T ) ≤ ξ2(T ) ≤ Ccξ
2(Tε) ≤ Ccτ

2ξ2
` ≤ CaCcτ

2η2
`
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lead to

C2θη
2
` ≤

(
Ce� − 2κC2

1

)
η2
` −

(
2τ 2CaCc/α

)
η2
`

≤ ε2
` − 2C2

1
osc2

` −2ε2(T ),

while (4.5) and Lemma 4.4 show

ε2
` − 2ε2(T ) ≤ ‖pT − p`‖2

L2(Ω) + C2
1

osc2
`

≤ 2C2
1

osc2
` +C2η

2
` (E` \ ET ).

The combination of the previous estimations results in (5.9). SinceM`

was chosen with minimal cardinality and θη2
` ≤ η2

` (M`), Lemma 4.4
yields

|M`| ≤ |E` \ ET | . |T | − |T`| . ξ
−1/s
` .

For each level ` with Case (A), set K(`) := 0 andM(0)
` :=M`.

In Case (B), κη2
` < osc2

` , let T be some re�nement of T` with

osc2(f, T ) ≤ Tol2 and |T | − |T0| . Tol−1/s, Tol2 := ρB osc2
` .

Algorithm 3.2 computes a �nite sequenceM(1)
` , . . . ,M(K(`))

` of marked
reference edges such that

T`+1 := T ⊕ T` = Refine
(
T`,
(
M(k)

`

)
1≤k≤K(`)

)
.

Finally, Theorem 3.3 and (5.5) for Case (B) with ρB osc2
` = Tol2 veri�es

K(`)∑
k=0

|M(k)
` | ≤ |T | − |T0| . Tol−1/s . osc

−1/s
` . ξ

−1/s
` ,

which proves (5.8) in Case (B). �
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