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Abstract

The paper considers the time integration of frictionless dynamical contact
problems between viscoelastic bodies in the frame of the Signorini condition.
Among the numerical integrators, interest focuses on the contact-stabilized
Newmark method recently suggested by Deuflhard et al., which is compared to
the classical Newmark method and an improved energy dissipative version due
to Kane et al. In the absence of contact, any such variant is equivalent to the
Störmer-Verlet scheme, which is well-known to have consistency order 2. In
the presence of contact, however, the classical approach to discretization errors
would not show consistency at all because of the discontinuity at the contact.
Surprisingly, the question of consistency in the constrained situation has not
been solved yet. The present paper fills this gap by means of a novel proof
technique using specific norms based on earlier perturbation results due to the
authors. The corresponding estimation of the local discretization error requires
the bounded total variation of the solution. The results have consequences for
the construction of an adaptive timestep control, which will be worked out
subsequently in a forthcoming paper.
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1 Introduction

Dynamical contact problems play an important role in structural mechanics as
well as in biomechanics. One of the main difficulties in the numerical treatment
of such problems is the physically meaningful non-penetration condition, usually
formulated via the classical Signorini contact condition, which is leading to non-
smoothness at contact interfaces between bodies. In view of this difficulty, the
non-penetration condition is quite often relaxed, both in analytical models and in
numerical integration schemes. However, for the medical applications that we are
treating (see [11]), any violation of this condition would be unacceptable.

As for the numerical integration of dynamical contact problems, various dis-
cretization schemes are known, see the monograph [12] for a survey. Among them
the classical Newmark method is the most popular one. Unfortunately, its unsatis-
factory handling of the non-penetration condition may lead to artificial oscillations
at contact boundaries and even give rise to an undesirable energy blow-up [3, 11].
Therefore, Kane, Repetto, Ortiz, and Marsden [7] suggested an improved energy
dissipative variant, which, however, is still unable to avoid the artificial oscillations
at contact boundaries. For this reason, Deuflhard, Krause, and Ertel [3] (see also
[11]) suggested a contact–stabilized Newmark method, which avoids unphysical os-
cillations and is still energy dissipative at contact. In view of challenging real life
problems (e.g., the motion of a human knee), an adaptive timestep control would
be desirable for the contact-stabilized Newmark scheme. Such a device requires a
realistic estimation of the local discretization error (cf., e.g., [2]) based on consis-
tency of the scheme and the corresponding consistency order, which is the topic of
the present paper.

In the absence of contact, the classical Newmark scheme is equivalent to the
Störmer-Verlet scheme and well–known to be second order consistent (see, e.g., the
textbook [6]). In the presence of contact, however, the classical discretization error
analysis would not supply any consistency at all because of the discontinuity at the
contact. Up to now, to the best of our knowledge, consistency results for Newmark
schemes in the presence of contact have not been given, neither in the engineering
nor in the mathematical literature. In fact, the problem turned out to be really
hard. As a preparatory step, we recently studied the stability of dynamical contact
problems under perturbation of the initial data [9]. That study gave us the idea
about a non-trivial mix of norms in function space which we will exploit here.

The paper is organized as follows. In Section 2, we fix notation and write
down the dynamical Signorini contact problem together with the three variants of
Newmark schemes to be treated below. Section 3 contains our main consistency
result in a norm that may be interpreted as a sum of the physical kinetic and
potential energies (including the viscoelastic part). This result requires a regularity
assumption quite different from the classical approach. Finally, in Section 4, we give
consistency results in some norm of the local error in displacements only. Numerical
consequences of our results for the construction of an adaptive timestep control are
postponed to a forthcoming paper.
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2 Notation and Background

In order to fix notation, we write down the classical contact problem formulation
via Signorini’s contact conditions. Next, we present the three types of Newmark
schemes for linearly viscoelastic materials, that we want to compare in the sequel.

2.1 Problem formulation

In this paper, we study dynamical contact problems between two linear viscoelastic
bodies fulfilling the Kelvin-Voigt constitutive law. The model is based on Signorini’s
contact conditions and has been described at length in [9] for the viscoelastic case,
or in [3], respectively, for the purely elastic case. For the convenience of the reader,
we here merely collect the notation used therein.

Notation. Let the two bodies be identified with the union of two domains which
are understood to be bounded subsets in Rd with d = 2, 3. Each of the bound-
aries are assumed to be Lipschitz and decomposed into three disjoint parts: ΓD,
the Dirichlet boundary, ΓN , the Neumann boundary, and ΓC , the possible contact
boundary. The actual contact boundary is not known in advance, but is assumed
to be contained in a compact strict subset of ΓC . Tensor and vector quantities are
written in bold characters, e.g., v. Time derivatives are indicated by dots ( ˙ ).
Dirichlet boundary conditions give rise to subspaces

H1
D :=

{
v

∣∣v ∈ H1, v|ΓD
= 0

}
.

For given Banach space X and time interval 0 < T < ∞, let C([0, T ],X) be the con-
tinuous functions v : [0, T ] → X. The space L2(0, T ;X) consists of all measurable
functions v : (0, T ) → X for which

‖v‖2
L2(0,T ;X) :=

∫ T

0
‖v(t)‖2

X dt < ∞

holds. We identify L2 with its dual space and obtain the evolution triple

H1 ⊂ L2 ⊂ (
H1

)∗

where we denote by
(
H1

)∗ the dual space to H1. With reference to this evolution
triple, the Sobolev space W1,2(0, T ;H1,L2) means the set of all functions v ∈
L2(0, T ;H1) that have generalized derivatives v̇ ∈ L2(0, T ;

(
H1

)∗), see, e.g., [15].

Variational problem formulation. At the contact interface ΓC , the two bodies
may come into contact but must not penetrate each other. We use the model of
linearized non-penetration as it has been presented in [3]. The convex set of all
admissible displacements is denoted by K.

The materials under consideration are assumed to be linearly viscoelastic, i.e.,
the stresses satisfy the Kelvin-Voigt constitutive relation (cf. [9]). Both elasticity
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and viscoelasticity tensors are assumed to be sufficiently smooth, symmetric, and
uniformly positive definite. If the viscoelasticity tensor vanishes, the constitutive
law reduces to Hooke’s law as used in [3] for purely linear elastic materials.

The external forces are represented by a linear functional fext on H1
D which

accounts for the volume forces and the tractions on the Neumann boundary. The
internal forces can be written as a bilinear form a in H1 for the linearly elastic part,
respectively b for the viscous part. Both bilinear forms are bounded in H1. The
sum of internal elastic and external forces can be represented by

〈F(w),v〉(H1)∗×H1 = a(w,v)− fext(v) , v,w ∈ H1

and the viscoelastic forces can be written as

〈G(w),v〉(H1)∗×H1 = b(w,v) , v,w ∈ H1 .

Via integration by parts and exploiting the boundary conditions, see [4] and [8], the
contact problem in the weak formulation can be written as a hyperbolic variational
inequality: For almost every t ∈ [0, T ] find u ∈ K with u(·, t) ∈ C([0, T ],H1) and
u̇ ∈ W1,2(0, T ;H1,L2) such that

〈ü,v− u〉(H1)∗×H1 + 〈F(u),v− u〉(H1)∗×H1 + 〈G(u̇),v− u〉(H1)∗×H1 ≥ 0 , ∀ v ∈ K
(1)

and

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) in Ω . (2)

Incorporating the constraints v(t) ∈ K for almost all t ∈ [0, T ] by the characteristic
functional IK(v),

IK(v) :=

{
0 if v ∈ K
∞ else

, v ∈ H1
D

the variational inequality (1) can equivalently be formulated as the variational in-
clusion

0 ∈ ü + F(u) + G(u̇) + ∂IK(u) (3)

utilizing the subdifferential ∂IK of IK (see, e.g., [5]). For a given solution u of
this variational inequality, we define for almost every t ∈ [0, T ] the contact forces
Fcon(u) ∈ (

H1
)∗ via

〈Fcon(u),v〉(H1)∗×H1 = 〈ü + F(u) + G(u̇),v〉(H1)∗×H1 , v ∈ H1 . (4)

As shown, for instance, in [1], the unilateral contact problem between a viscoelastic
body and a rigid foundation has at least one weak solution.
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2.2 Newmark schemes

Here, we give details about the spatio-temporal discretization of the dynamical
contact problem (1). It is based on the Rothe approach, which means a discretiza-
tion first in time and then in space. In this setting, the temporal discretization
can be entirely formulated in function space, which, apart from a less clumsy no-
tation, makes it independent of any spatial discretization argument. The arising
constrained minimization problems in space can be solved using adaptive monotone
multigrid methods (see [10, 11]). In what follows, we consider three variants of the
Newmark method. These three schemes have already been described in [3] for the
purely elastic case, but – in view of perturbation results in [9] – we here give the
generalization to the viscoelastic case. Special attention is paid to the predictor
step, which will turn out to be crucial in the analysis of consistency errors given
below. In order to fix notation, let the continuous time interval [0, T ] be subdivided
by N4 + 1 discrete time points

0 < t1 < · · · < tN4 = T

forming a mesh 4 = {0, t1, . . . , T} on [0, T ]. In addition, let

τn = tn+1 − tn , n = 0, . . . , N4

denote the (not necessarily equidistant) step size.

Classical Newmark scheme (N-CL). This scheme can be found, e.g., in the
textbooks [12, 13]. For our contact problem (1) it reads

un+1
pred = un + τ u̇n

0 ∈ un+1 − un+1
pred + 1

2τ2
(
F2β(un,un+1) + G2β(u̇n, u̇n+1)− F̃2β

con(un,un+1)
)

u̇n+1 = u̇n − τ
(
Fγ(un,un+1) + Gγ(u̇n, u̇n+1)− Fγ

con(un,un+1)
)

(5)
where, for ease of writing, we introduced the shorthand notations

Fλ(un,un+1) := (1− λ)F(un) + λF(un+1) , λ ∈ [0, 1] (6)

and
F̃2β

con(u
n,un+1) := (1− 2β)Fcon(un)− 2β∂IK(un+1) . (7)

We will concentrate on the most popular symmetric case 2β = γ = 1
2 which guar-

antees consistency order 2 in the absence of contact. In the presence of contact,
however, the energy of the system cannot be guaranteed to remain bounded dur-
ing time integration and an undesirable energy blow–up may occur (see [12]). In
addition, depending on the parameter specification, the improper handling of the
non–penetration condition may give rise to spurious numerical oscillations at con-
tact boundaries.
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Modified Newmark scheme (N-M). In [7], Kane, Repetto, Ortiz, and Mars-
den suggested a modification of the above classical scheme, replacing the term
F̃2β

con(un,un+1) by ∂IK(un+1), so that, for our contact problem (1), we arrive at

un+1
pred = un + τ u̇n ,

0 ∈ un+1 − un+1
pred + 1

2τ2
(
F2β(un,un+1) + G2β(u̇n, u̇n+1) + ∂IK(un+1)

)

u̇n+1 = u̇n − τ
(
Fγ(un,un+1) + Gγ(u̇n, u̇n+1)− Fcon(un+1)

)
.

(8)
In the symmetric case 2β = γ = 1

2 , the fully implicit treatment of the non-
penetration constraints leads to energy dissipativity of the scheme (as has been
shown in [3]). Unfortunately, this modification is still not able to get rid of the
artificial oscillations at contact interfaces.

Contact–stabilized Newmark scheme (N-CS). In [3], Deuflhard, Krause,
and Ertel suggested a contact-stabilized version of (N-M) that avoids the occur-
rence of undesirable oscillations and is still energy dissipative in the presence of
contact. This desirable feature is achieved by introducing an additional discrete
L2-projection at contact interfaces per each time step, which can easily be incorpo-
rated into (N-M) by exchanging the predictor step. This is therefore the scheme in
the main focus of the present paper.

Assume that the spatial quantities corresponding to un are obtained via finite
elements Sh with h > 0 a spatial mesh size parameter. Note that now K ⊂ Sh has
to be understood as a discrete approximation of the set of admissible displacements.
For details concerning this part of the discretization, we refer the reader to [8, 10].
Then

0 ∈ un+1
pred − (un + τnu̇n) + ∂IK(un+1

pred)

0 ∈ un+1 − un+1
pred + 1

2τ2
n

(
F1/2(un,un+1) + G(un+1−un

τn
) + ∂IK(un+1)

)

u̇n+1 = u̇n − τn

(
F1/2(un,un+1) + G(un+1−un

τn
)− Fcon(un+1)

)
(9)

where the contact forces Fcon(un+1) are defined via

〈Fcon(un+1),v〉(H1)∗×H1

= 〈un+1 − un+1
pred + 1

2τ2
n

(
F1/2(un,un+1) + G(un+1−un

τn
)
)
,v〉(H1)∗×H1 , v ∈ H1 .

(10)
The variational inclusion defining the modified predictor in (N-CS) requires the

evaluation of the normal trace of u. Although the trace of a finite element function
in Sh is always well-defined, this is not the case for an arbitrary L2-function. This
corresponds to the fact that the values of a function u ∈ Sh at the boundary also
serve as values of the finite element function within the small strip given by the
elements at the boundary. By discretization in space the boundary gets assigned to
a mass, although for the continuous case the boundary has measure zero. It is this
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double role of the degrees of freedom on the boundary as interior and boundary val-
ues, which, on one hand, causes artificial oscillations at the contact interface and,
on the other hand, allows for removing the oscillations by means of the discrete
L2-projection. Both schemes (N-CL) and (N-M) translate this discrete boundary
mass into forces at the contact boundary, which thus can be understood to be the
main causes for the artificial oscillations at the interfaces. In (N-CS), by means of
the contact–stabilization, this non-physical part of the boundary forces is removed.

Before we dive into the technicalities of the consistency proofs, we want to
mention a trivial, but important observation. In the spatial limit h → 0, the
discrete L2-projection introduced in (N-CS) vanishes, since the boundaries have
measure zero in L2. This leads to the following proposition:

Proposition 2.1. The predictors (N-CL), (N-M) and (N-CS) coincide in the L2-
sense, i.e. the relation

(un+1
pred,v)L2 = (un + τnu̇n,v)L2 for all v ∈ L2 (11)

holds for all three variants.

For the proofs to follow in the subsequent Sections 3 and 4, we introduce a
convenient

Notation. Let
ε(tn,u, τn) := u(tn+1)− un+1 (12)

denote the consistency error in the position variables, and

ε(tn, u̇, τn) := u̇(tn+1)− u̇n+1 (13)

the consistency error in the velocities, respectively. We will also need

ε̄(s, u̇, τn) := u̇(s)− un+1 − un

τn
, s ∈ [tn, tn+1] . (14)

In order to analyze and estimate these errors, the following norm will play the
central role:

E(tn, τn) := 1
2‖ε(tn, u̇, τn)‖2

L2 + 1
2a(ε(tn,u, τn), ε(tn,u, τn))

+
tn+1∫
tn

b (ε̄(s, u̇, τn), ε̄(s, u̇, τn)) ds .
(15)

Obviously, this norm may be interpreted as a sum of the kinetic energy, measured
in L2, and the potential energy, measured in the usual energy norm in H1, including
the viscoelastic part. We will therefore call it the physical energy norm throughout
the paper.
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3 Consistency error in the physical energy norm

This section contains our main consistency results, in the presence of contact, for
the classical, the modified, and the contact-stabilized Newmark method. We derive
an estimate for the local discretization error in a special norm suggested by our
previous perturbation results in [9].

We start with the analysis of the discretization errors for the Newmark schemes
(N-M) and (N-CS), which we afterwards transfer to the classical scheme (N-CL).

Lemma 3.1. Assume that ü,Fcon(u) ∈ (H1)∗ for all t ∈ [0, T ]. Then, for initial
values on the exact solution, the local errors of (N-M) and (N-CS) satisfy

E(tn, τn)− 〈
Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1

〉
(H1)∗×H1

= −
tn+1∫
tn

a
(
u(s)− u(tn)+u(tn+1)

2 , ε̄(s, u̇, τn)
)

ds

+
tn+1∫
tn

〈Fcon(u(s))− Fcon(u(tn+1)), ε̄(s, u̇, τn)〉(H1)∗×H1 ds

−
tn+1∫
tn

(
1− 2(s−tn)

τn

)
〈ü(s)− ü(tn+1), ε̄(tn, u̇, τn)〉(H1)∗×H1 ds .

(16)

Proof. A simple calculation shows that for (N-M) and (N-CS)

u̇n+1 = u̇n +
2
τn

(
un+1 − un+1

pred

)
.

By means of Proposition 2.1, we can write the local error of the velocities in L2-sense
as

1
2‖u̇(tn+1)− u̇n+1‖2

L2 = 1
2‖u̇(tn+1)− u̇n − 2

τn

(
un+1 − un − τnu̇n

) ‖2
L2 .

Since u̇ ∈ W1,2(0, T ;H1,L2), integration by parts (see, e.g., Prop. 23.23 in [15])
yields

1
2‖u̇(tn+1)− u̇n+1‖2

L2

= 1
2

∥∥∥u̇(s)− u̇n − 2(s−tn)
τ2
n

(
un+1 − un − τnu̇n

)∥∥∥
2

L2

∣∣∣∣
s=tn+1

s=tn

=
tn+1∫
tn

〈
ü(s)− 2

τ2
n

(
un+1 − un − τnu̇n

)
,

u̇(s)− u̇n − 2(s−tn)
τ2
n

(
un+1 − un − τnu̇n

) 〉
(H1)∗×H1 ds .

By means of

u̇(s)− u̇n − 2(s−tn)
τ2
n

(
un+1 − un − τnu̇n

)

= u̇(s)− un+1−un

τn
−

(
1− 2(s−tn)

τn

)(
u̇n − un+1−un

τn

)
,
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we can split up the term on the right-hand side as

1
2‖u̇(tn+1)− u̇n+1‖2

L2

=
tn+1∫
tn

〈
ü(s)− 2

τ2
n

(
un+1 − un − τnu̇n

)
, u̇(s)− un+1−un

τn

〉
(H1)∗×H1

ds

−
tn+1∫
tn

(
1− 2(s−tn)

τn

)〈
ü(s)− 2

τ2
n

(
un+1 − un − τnu̇n

)
, ε̄(tn, u̇, τn)

〉
(H1)∗×H1

ds .

Inserting the definitions of the continuous and discrete contact forces (4) and (10)
into the first term, we find that (due to the linearity of the external forces)

1
2‖u̇(tn+1)− u̇n+1‖2

L2

= −
tn+1∫
tn

a
(
u(s)− un+un+1

2 , u̇(s)− un+1−un

τn

)
ds

−
tn+1∫
tn

b
(
u̇(s)− un+1−un

τn
, u̇(s)− un+1−un

τn

)
ds

+
tn+1∫
tn

〈
Fcon(u(s))− Fcon(un+1), u̇(s)− un+1−un

τn

〉
(H1)∗×H1

ds

−
tn+1∫
tn

(
1− 2(s−tn)

τn

)〈
ü(s)− 2

τ2
n

(
un+1 − un − τnu̇n

)
, ε̄(tn, u̇, τn)

〉
(H1)∗×H1

ds .

The first term representing the purely elastic material behaviour can be reformu-
lated by the fundamental theorem of calculus (cf. [15]) as

−
tn+1∫
tn

a
(
u(s)− un+un+1

2 , u̇(s)− un+1−un

τn

)
ds

= −1
2

tn+1∫
tn

a
(
u(tn+1)− un+1, u̇(s)− un+1−un

τn

)
ds

−
tn+1∫
tn

a
(
u(s)− un+u(tn+1)

2 , u̇(s)− un+1−un

τn

)
ds

= −1
2a

(
u(tn+1)− un+1,u(tn+1)− un+1

)

−
tn+1∫
tn

a
(
u(s)− u(tn)+u(tn+1)

2 , u̇(s)− un+1−un

τn

)
ds .



10

The third term containing the contact forces can be written as

tn+1∫
tn

〈
Fcon(u(s))− Fcon(un+1), u̇(s)− un+1−un

τn

〉
(H1)∗×H1

ds

=
tn+1∫
tn

〈
Fcon(u(s))− Fcon(u(tn+1)), u̇(s)− un+1−un

τn

〉
(H1)∗×H1

ds

+
〈
Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1

〉
(H1)∗×H1 .

Summing up these expressions yields

1
2‖ε(tn, u̇, τn)‖2

L2 + 1
2a(ε(tn,u, τn), ε(tn,u, τn)) +

tn+1∫
tn

b (ε̄(s, u̇, τn), ε̄(s, u̇, τn)) ds

− 〈
Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1

〉
(H1)∗×H1

= −
tn+1∫
tn

a
(
u(s)− u(tn)+u(tn+1)

2 , ε̄(s, u̇, τn)
)

ds

+
tn+1∫
tn

〈Fcon(u(s))− Fcon(u(tn+1)), ε̄(s, u̇, τn)〉(H1)∗×H1 ds

−
tn+1∫
tn

(
1− 2(s−tn)

τn

)〈
ü(s)− 2

τ2
n

(
un+1 − un − τnu̇n

)
, ε̄(tn, u̇, τn)

〉
(H1)∗×H1

ds .

Due to
tn+1∫

tn

(
1− 2(s− tn)

τn

)
ds = 0 ,

we can replace the constant term 2
τ2
n

(
un+1 − un − τnu̇n

)
in the last line by an

arbitrary functional in
(
H1

)∗ that is constant in time. Choosing ü(tn+1), we can
reformulate the last term on the right-hand side as

−
tn+1∫
tn

(
1− 2(s−tn)

τn

)〈
ü(s)− 2

τ2
n

(
un+1 − un − τnu̇n

)
, ε̄(tn, u̇, τn)

〉
(H1)∗×H1

ds

= −
tn+1∫
tn

(
1− 2(s−tn)

τn

)
〈ü(s)− ü(tn+1), ε̄(tn, u̇, τn)〉(H1)∗×H1 ds .

Note that the above proof works for both Newmark schemes due to the fact
that they both use the Störmer-Verlet discretization in the absence of contact. Due
to the admissibility of the continuous and discrete solutions u(tn+1) and un+1, it
holds (see [3])

〈
Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1

〉
(H1)∗×H1 ≤ 0 . (17)
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Hence, in a next step, we can omit this term on the left-hand side of equality (16).
In order to derive consistency error estimates for both schemes, we will exploit the
inequalities of Korn and Young.

Lemma 3.2. Assume that ü,Fcon(u) ∈ (H1)∗ for all t ∈ [0, T ]. Then, for initial
values on the exact solution, the local errors of (N-M) and (N-CS) satisfy

E(tn, τn)1/2 ≤ C




(
tn+1∫
tn

‖u(s)− u(tn)+u(tn+1)
2 ‖2

H1 ds

)1/2

+

(
tn+1∫
tn

‖u̇(s)− u̇(tn)‖2
H1 ds

)1/2

+

(
tn+1∫
tn

‖u̇(s)− u̇(tn)+u̇(tn+1)
2 ‖2

H1 ds

)1/2

+

(
tn+1∫
tn

‖ü(s)− ü(tn+1)‖2
(H1)∗ ds

)1/2

+

(
tn+1∫
tn

‖Fcon(u(s))− Fcon(u(tn+1))‖2
(H1)∗ ds

)1/2

 .

(18)

Proof. Omitting the term (17) on the left-hand side of (16) by positivity and split-
ting up the last term on the right-hand side, we find

E(tn, τn) ≤ −
tn+1∫
tn

a
(
u(s)− u(tn)+u(tn+1)

2 , ε̄(s, u̇, τn)
)

ds

+
tn+1∫
tn

〈Fcon(u(s))− Fcon(u(tn+1)), ε̄(s, u̇, τn)〉(H1)∗×H1 ds

−
tn+1∫
tn

(
1− 2(s−tn)

τn

)
〈ü(s)− ü(tn+1)), ε̄(s, u̇, τn)〉(H1)∗×H1 ds

+
tn+1∫
tn

(
1− 2(s−tn)

τn

)
〈ü(s)− ü(tn+1)), u̇(s)− u̇(tn)〉(H1)∗×H1 ds .

After using the continuity of the bilinear forms a and b in H1, we can apply the
inequality of Young to estimate

E(tn, τn) ≤



(
tn+1∫
tn

‖u(s)− u(tn)+u(tn+1)
2 ‖2

H1 ds

)1/2

+

(
tn+1∫
tn

‖Fcon(u(s))− Fcon(u(tn+1))‖2
(H1)∗ ds

)1/2

+

(
tn+1∫
tn

‖ü(s)− ü(tn+1)‖2
(H1)∗ ds

)1/2

 ·

(
tn+1∫
tn

‖ε̄(s, u̇, τn)‖2
H1 ds

)1/2

+

(
tn+1∫
tn

‖ü(s)− ü(tn+1)‖2
(H1)∗ ds

)1/2 (
tn+1∫
tn

‖u̇(s)− u̇(tn)‖2
H1 ds

)1/2

.

(19)
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Due to the inequality of Korn and Cauchy-Schwarz, a simple calculation shows that

(
tn+1∫
tn

‖ε̄(s, u̇, τn)‖2
H1 ds

)1/2

≤ C

(
tn+1∫
tn

b (ε̄(s, u̇, τn), ε̄(s, u̇, τn)) ds +
tn+1∫
tn

‖u̇(s)− u̇n+u̇n+1

2 ‖2
L2 ds

)1/2

≤ C

(
tn+1∫
tn

b (ε̄(s, u̇, τn), ε̄(s, u̇, τn)) ds + τn
4 ‖ε(tn, u̇, τn)‖2

L2

)1/2

+ C

(
tn+1∫
tn

‖u̇(s)− u̇(tn)+u̇(tn+1)
2 ‖2

L2 ds

)1/2

.

Hence, (19) yields an inequality of the type

E(tn, τn) ≤ 2a · E(tn, τn)1/2 + b2

where a, b ≥ 0. Writing (
E(tn, τn)1/2 − a

)2
≤ b2 ,

we obtain the inequality
E(tn, τn)1/2 ≤ a + b .

Finally, b2 consists of several summands, some of the form α · β. Application of the
inequality α · β ≤ 1

2(α2 + β2), yields the result of the lemma.

Classical consistency theory. For the sake of comparison, let us have a look into
the classical theory. There we would assume that the continuous solution is k-times
continuously differentiable with respect to time t. In order to obtain the highest
possible consistency order, we would make the assumption that the accelerations,
respectively the contact forces, satisfy

u̇ ∈ C1([0, T ],H1) , ü ∈ C1([0, T ], (H1)∗)

and
Fcon(u) ∈ C1([0, T ], (H1)∗) .

Inserting these regularity assumptions into the right-hand side of (18) would yield
an error estimate of the kind

E(tn, τn)1/2 = O(τ3/2
n ) , (20)

i.e. a consistency order 3/2. Upon applying the standard techniques (like “Lady
Windermere’s Fan”,[6]), we would lose one order of τ for convergence. Unfortu-
nately, in the presence of contact, we cannot even assume continuity of velocities
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and accelerations. If we assume only boundedness of these quantities, we come to
an estimate of the form

E(tn, τn)1/2 = O(τ1/2
n ) , (21)

i.e. to a consistency order 1/2. This, again upon applying standard techniques,
would not give rise to any convergence! That is why a detailed discretization error
analysis for the Newmark schemes has been missing up to now. Obviously, a more
advanced concept is required to treat this complex situation.

Bounded variation. Let (X; ‖ · ‖X) be a Banach space. The (total) variation of
a function f : [a, b] → X is defined as

Var(f, [a, b], X) := sup





n∑

j=1

‖f(tj)− f(tj−1)‖X : a = t0 < t1 < . . . < tn = b



 ,

i.e. as the supremum of the above differences taken over all partitions of [a, b]
into finitely many subintervals. As usual, BV([a, b], X) denotes the set of all func-
tions from [a, b] into X that have bounded variation, i.e. for which the property
Var(f, [a, b], X) < ∞ holds. Let f : [a, b] → X be a function of bounded variation.
Note that Var(f, [a, b], X) is only a seminorm on the linear space BV(a, b;X), while
the norm

‖f‖BV([a,b];X) := ‖f(a)‖X + Var(f, [a, b], X)

makes BV([a, b];X) complete. Moreover, the intriguing property

Var(f, [a, c], X) + Var(f, [c, b], X) = Var(f, [a, b], X) for a < c < b . (22)

holds for every function of bounded variation. Observe that the left- and right-hand
limes exists at every t ∈ [a, b]. However, a function with bounded variation need
not to be continuous. It can be shown that it is only continuous except at count-
ably many points of [a, b] (compare, e.g., [14, 19.21] for these notations and results).

Assumption 3.3. Throughout the remaining paper, we want to restrict our con-
siderations to dynamical contact problems where the assumptions

u̇ ∈ BV([0, T ],H1) , ü ∈ BV([0, T ],
(
H1

)∗) (23)

hold.

Since the displacements u are absolutely continuous in H1, they are especially
of bounded variation, i.e. u ∈ BV([0, T ],H1). By the definition of the contact
forces (4), Assumption 3.3 leads to Fcon(u) ∈ BV(0, T ;

(
H1

)∗). In particular, the
velocities u̇, the accelerations ü and the contact forces Fcon(u) have to be defined in
H1, respectively in

(
H1

)∗, for every time t ∈ [0, T ]. We remark that the assumption
of bounded variation excludes the case of highly oscillatory functions in time.
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In all of the subsequent theorems, the term

R(u, [tn, tn+1]) := Var(u, [tn, tn+1],H1) + Var(u̇, [tn, tn+1],H1)

+ Var(ü, [tn, tn+1],
(
H1

)∗)
(24)

will arise.

Theorem 3.4. Let Assumption 3.3 hold. Then, for initial values on the exact
solution, the local errors of (N-M) and (N-CS) satisfy

E(tn, τn)1/2 = O(τ1/2
n ) ·R(u, [tn, tn+1]) . (25)

Proof. Under the regularity assumptions on the solution, we find that

E(tn, τn)1/2 = O(τ1/2
n )

(
sups∈[tn,tn+1] ‖u(s)− u(tn)+u(tn+1)

2 ‖H1

+ sups∈[tn,tn+1] ‖u̇(s)− u̇(tn)‖H1 + sups∈[tn,tn+1] ‖u̇(s)− u̇(tn+1)‖H1

+ sups∈[tn,tn+1] ‖ü(s)− ü(tn+1)‖(H1)∗

+sups∈[tn,tn+1] ‖Fcon(u(s))− Fcon(u(tn+1))‖(H1)∗
)

= O(τ1/2
n )

(
Var(u, [tn, tn+1],H1) + Var(u̇, [tn, tn+1],H1)

+Var(ü, [tn, tn+1],
(
H1

)∗) + Var(Fcon(u), [tn, tn+1],
(
H1

)∗)) .

We want to transfer our consistency result for the modified and the contact–
stabilized Newmark scheme to the classical Newmark scheme. Since the predictor
steps of all three schemes coincide in L2-sense (see Proposition 2.1), we have to
modify the above proofs only marginally.

Theorem 3.5. Let Assumption 3.3 hold. Then, for initial values on the exact
solution, the local error of (N-CL) satisfies

E(tn, τn)1/2 = O(τ1/2
n ) ·R(u, [tn, tn+1]) . (26)

Proof. Performing the same calculations as in the proof of Lemma 3.1, we just have
to replace Fcon(un+1) in expression (19) by 1

2

(
Fcon(un) + Fcon(un+1)

)
. Then, we

can write
tn+1∫
tn

〈
Fcon(u(s))− Fcon(un)+Fcon(un+1)

2 , u̇(s)− un+1−un

τn

〉
(H1)∗×H1

ds

=
tn+1∫
tn

〈
Fcon(u(s))− Fcon(u(tn))+Fcon(u(tn+1))

2 , u̇(s)− un+1−un

τn

〉
(H1)∗×H1

ds

+ 1
2

〈
Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1

〉
(H1)∗×H1
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where the last term on the right-hand side is again non-positive. In analogy to
Lemma 3.1, we find that

E(tn, τn)− 1
2

〈
Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1

〉
(H1)∗×H1

= −
tn+1∫
tn

a
(
u(s)− u(tn)+u(tn+1)

2 , ε̄(s, u̇, τn)
)

ds

+
tn+1∫
tn

〈
Fcon(u(s))− Fcon(u(tn))+Fcon(u(tn+1))

2 , ε̄(s, u̇, τn)
〉

(H1)∗×H1
ds

−
tn+1∫
tn

(
1− 2(s−tn)

τn

)
〈ü(s)− ü(tn+1), ε̄(tn, u̇, τn)〉(H1)∗×H1 ds .

Applying again the inequalities of Korn and Young, we find the corresponding result
to Lemma 3.2, namely

E(tn, τn)1/2 ≤ C




(
tn+1∫
tn

‖u(s)− u(tn)+u(tn+1)
2 ‖2

H1 ds

)1/2

+

(
tn+1∫
tn

‖u̇(s)− u̇(tn)‖2
H1 ds

)1/2

+

(
tn+1∫
tn

‖u̇(s)− u̇(tn)+u̇(tn+1)
2 ‖2

H1 ds

)1/2

+

(
tn+1∫
tn

‖ü(s)− ü(tn+1)‖2
(H1)∗ ds

)1/2

+

(
tn+1∫
tn

‖Fcon(u(s))− Fcon(u(tn))+Fcon(u(tn+1))
2 ‖2

(H1)∗ ds

)1/2

 .

Introducing the total variations as in the proof of Theorem 3.4 yields the estimate
of the theorem.

At first glance, it looks as if the results above were no progress beyond the mere
boundedness condition of the classical consistency theory, see (21). In fact, the total
variations on the right-hand side of our estimate do not contribute to any additional
order in τn. However, due to the telescoping property (22), the terms R(u, [tn, tn+1])
on the right-hand side sum up to total variations over the whole time interval [0, T ].
Hence, we expect to be able to show global convergence without loosing the order τ
as in the classical theory. A precise proof of this expectation would require a discrete
analog of our continuous perturbation result [9] in the physical energy norm. It is
therefore postponed to a forthcoming paper dedicated to the issue of convergence
of the contact–stabilized Newmark method.
If one aims at a higher consistency order, a weaker norm will be needed. In the
next section, we will present such a norm, which, however as it turns out, will be a
discrete norm (depending on τn).
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4 Consistency error in a discrete displacement norm

In addition to the previous results concerning the local error of Newmark schemes
in the physical energy norm, we here want to give a consistency result in a discrete
norm containing the displacements only.

Notation. We denote the discrete displacement norm by

‖ε(tn,u, τn)‖2
τn

:= ‖ε(tn,u, τn)‖2
L2 + τ2

n
4 a(ε(tn,u, τn), ε(tn,u, τn))

+ τn
2 b(ε(tn,u, τn), ε(tn,u, τn)) .

(27)

The proofs to follow are less complicated than the ones in Section 3, but based
on similar principles. Again the total variation of the continuous solution will show
up. We start with a result equivalent to the one of Lemma 3.1 which gives a
representation of the error in the considered norm.

Lemma 4.1. Assume that u̇ ∈ H1 and ü,Fcon(u) ∈ (H1)∗ for all t ∈ [0, T ]. Then,
for initial values on the exact solution, the local errors of (N-M) and (N-CS) satisfy

‖ε(tn,u, τn)‖2
τn
− τ2

n
2 〈Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1〉(H1)∗×H1

=
tn+1∫
tn

(
s∫

tn

〈ü(r)− ü(tn+1), ε(tn,u, τn)〉(H1)∗×H1 dr

)
ds

+ τ2
n
4 a(u(tn)− u(tn+1), ε(tn,u, τn))

+ τn
2

tn+1∫
tn

b(u̇(s)− u̇(tn+1), ε(tn,u, τn)) ds .

(28)

Proof. Due to the result of Proposition 2.1, we can write the consistency error of
the positions in the L2-norm as

‖u(tn+1)− un+1‖2
L2

= (u(tn+1)− un − τnu̇n,u(tn+1)− un+1)L2 + τ2
n
2 a

(
un+un+1

2 ,u(tn+1)− un+1
)

+ τ2
n
2 b

(
un+1−un

τn
,u(tn+1)− un+1

)
− τ2

n
2 〈Fcon(un+1),u(tn+1)− un+1〉(H1)∗×H1

= (u(tn+1)− un − τnu̇n,u(tn+1)− un+1)L2

− τ2
n
2 〈ü(tn+1),u(tn+1)− un+1〉(H1)∗×H1

+ τ2
n
2 a

(
un+un+1

2 − u(tn+1),u(tn+1)− un+1
)

+ τ2
n
2 b

(
un+1−un

τn
− u̇(tn+1),u(tn+1)− un+1

)

+ τ2
n
2 〈Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1〉(H1)∗×H1
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which is equivalent to

‖ε(tn,u, τn)‖2
L2 + τ2

n
4 a(ε(tn,u, τn), ε(tn,u, τn)) + τn

2 b(ε(tn,u, τn), ε(tn,u, τn))

− τ2
n
2 〈Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1〉(H1)∗×H1

= (u(tn+1)− u(tn)− τnu̇(tn), ε(tn,u, τn))L2

− τ2
n
2 〈ü(tn+1), ε(tn,u, τn)〉(H1)∗×H1

+ τ2
n
4 a(u(tn)− u(tn+1), ε(tn,u, τn))

+ τ2
n
2 b

(
u(tn+1)−u(tn)

τn
− u̇(tn+1), ε(tn,u, τn))

)
.

Since we look for a solution u̇ ∈ W1,2(0, T ;H1,L2), we can use integration by parts
(see, e.g., Prop. 23.23 in [15]) to write

‖ε(tn,u, τn)‖2
τn
− τ2

n
2 〈Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1〉(H1)∗×H1

=
tn+1∫
tn

(u̇(s)− u̇(tn), ε(tn,u, τn))L2 ds

−
tn+1∫
tn

(s− tn)〈ü(tn+1), ε(tn,u, τn)〉(H1)∗×H1 ds

+ τ2
n
4 a(u(tn)− u(tn+1), ε(tn,u, τn)) + τn

2

tn+1∫
tn

b(u̇(s)− u̇(tn+1), ε(tn,u, τn)) ds

=
tn+1∫
tn

(
s∫

tn

〈ü(r)− ü(tn+1), ε(tn,u, τn)〉(H1)∗×H1 dr

)
ds

+ τ2
n
4 a(u(tn)− u(tn+1), ε(tn,u, τn)) + τn

2

tn+1∫
tn

b(u̇(s)− u̇(tn+1), ε(tn,u, τn)) ds .

We notice again that due to

τ2
n

2
〈Fcon(u(tn+1))− Fcon(un+1),u(tn+1)− un+1〉(H1)∗×H1 ≤ 0 , (29)

we can omit this term on the left-hand side of (28). In order to find a suitable
estimate for the right-hand side of this error representation, we use the same tech-
niques as those in the proof of Lemma 3.2.
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Lemma 4.2. Assume that u̇ ∈ H1 and ü,Fcon(u) ∈ (H1)∗ for all t ∈ [0, T ]. Then,
for initial values on the exact solution, the local errors of (N-M) and (N-CS) satisfy

‖ε(tn,u, τn)‖τn = O(τ−1/2
n )

tn+1∫
tn

(
s∫

tn

‖ü(r)− ü(tn+1)‖(H1)∗ dr

)
ds

+O(τ3/2
n )‖u(tn)− u(tn+1)‖H1

+O(τ1/2
n )

tn+1∫
tn

‖u̇(s)− u̇(tn+1)‖H1 ds .

(30)

Proof. Omitting 29 and applying the continuity of the bilinear forms a and b in H1

to (28), we find the estimate

‖ε(tn,u, τn)‖2
τn
≤

(
tn+1∫
tn

(
s∫

tn

‖ü(r)− ü(tn+1)‖(H1)∗ dr

)
ds

)
‖ε(tn,u, τn)‖H1

+O(τ2
n)‖u(tn)− u(tn+1)‖H1‖ε(tn,u, τn)‖H1

+O(τn)

(
tn+1∫
tn

‖u̇(s)− u̇(tn+1)‖H1 ds

)
‖ε(tn,u, τn)‖H1 .

After inserting the inequality of Korn in the form

‖ε(tn,u, τn)‖2
H1 ≤ C

(‖ε(tn,u, τn)‖2
L2 + b(ε(tn,u, τn), ε(tn,u, τn))

)
,

we can divide the whole inequality by the square root of the left-hand side. This
yields the result of the theorem.

In the presence of contact, we make the same assumption on the solution of (1)
as in Section 3. This leads again to an estimate for the consistency error which uses
the total variation of the continuous solution.

Theorem 4.3. Let Assumption 3.3 hold. Then, for initial values on the exact
solution, the local errors of (N-M) and (N-CS) satisfy

‖ε(tn,u, τn)‖τn = O(τ3/2
n ) ·R(u, [tn, tn+1]) . (31)

Proof. Due to our regularity assumption, we can estimate expression (30) as follows:

‖ε(tn,u, τn)‖τn = O(τ3/2
n ) sups∈[tn,tn+1] ‖ü(s)− ü(tn+1)‖(H1)∗

+O(τ3/2
n )‖u(tn)− u(tn+1)‖H1

+O(τ3/2
n ) sups∈[tn,tn+1] ‖u̇(s)− u̇(tn+1)‖H1

= O(τ3/2
n )

(
Var(ü, [tn, tn+1],

(
H1

)∗) + Var(u, [tn, tn+1],H1)

+Var(u̇, [tn, tn+1],H1)
)

.
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We prove again a corresponding consistency result for the classical Newmark
scheme, as done in Theorem 3.5 for the physical energy norm.

Theorem 4.4. Let Assumption 3.3 hold. Then, for initial values on the exact
solution, the local error of (N-CL) satisfies

‖ε(tn,u, τn)‖τn = O(τ3/2
n ) ·R(u, [tn, tn+1]) . (32)

Proof. Following the proof of Lemma 4.1 above, we have to replace Fcon(un+1) by
1
2

(
Fcon(un) + Fcon(un+1)

)
which yields

‖ε(tn,u, τn)‖τn − τ2
n
4 〈Fcon(un+1)− Fcon(u(tn+1)),un+1 − u(tn+1)〉(H1)∗×H1

= −
tn+1∫
tn

(
s∫

tn

〈ü(r)− ü(tn+1), ε(tn,u, τn)〉(H1)∗×H1 dr

)
ds

+ τ2
n
4 a(u(tn)− u(tn+1), ε(tn,u, τn)) + τn

2

tn+1∫
tn

b(u̇(s)− u̇(tn+1), ε(tn,u, τn)) ds

+ τ2
n
4 〈Fcon(u(tn+1))− Fcon(u(tn)),u(tn+1)− un+1〉(H1)∗×H1 .

Compared to Lemma 4.2 we have obtained an additional term including contact
forces on the right-hand side. Following the proof of Lemma 4.2 we end up with

‖ε(tn,u, τn)‖τn = O(τ−1/2
n )

tn+1∫
tn

(
s∫

tn

‖ü(r)− ü(tn+1)‖(H1)∗ dr

)
ds

+O(τ3/2
n )‖u(tn)− u(tn+1)‖H1 +O(τ1/2

n )
tn+1∫
tn

‖u̇(s)− u̇(tn+1)‖H1 ds

+O(τ3/2
n )‖Fcon(u(tn))− Fcon(u(tn+1))‖(H1)∗ .

Introducing the total variation as in the proof of Theorem 4.3 yields the result of
the theorem.

Finally, we want to improve our estimate for the displacements measured in the
a-norm by means of the inequality of Korn.

Corollary 4.5. Let Assumption 3.3 hold. Then, for initial values on the exact
solution, the local errors of (N-CL), (N-M), and (N-CS) satisfy

a(ε(tn,u, τn), ε(tn,u, τn))1/2 = O(τn) ·R(u, [tn, tn+1]) . (33)

Proof. The inequality of Korn yields

‖ε(tn,u, τn)‖H1 ≤ C
(‖ε(tn,u, τn)‖2

L2 + b(ε(tn,u, τn), ε(tn,u, τn))
)1/2

.

Hence, we find, due to Theorem 4.3,

‖ε(tn,u, τn)‖H1 = O(τn) ·R(u, [tn, tn+1]) .

The continuity of the bilinear form a in H1 gives the result of the corollary.
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5 Conclusion

This paper has worked out a consistency theory for three types of Newmark dis-
cretizations — the classical, the modified, and the contact–stabilized one. Con-
sistency error estimates have been given in a physical energy norm (including the
viscoelastic part) and a discrete displacement norm. Both estimates require the
solution together with its first and second derivative, in the presence of contact, to
be in the function space BV . With these results, the basis is laid, on one hand, for
a theoretical convergence theory and, on the other hand, for the derivation of an
automatic step-size control of the contact–stabilized Newmark scheme.
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