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Abstract

Structuring of surface meshes is a labor intensive task in reverse engi-
neering. For example in CAD, scanned triangle meshes must be divided
into characteristic/uniform patches to enable conversion into high-level
spline surfaces. Typical industrial techniques, like rolling ball blends, are
very labor intensive.

We provide a novel, robust and quick algorithm for the automatic
generation of a patch layout based on a topology consistent feature graph.
The graph separates the surface along feature lines into functional and
geometric building blocks. Our algorithm then thickens thickens the edges
of the feature graph and forms new regions with low varying curvature.
Further these new regions - so called fillets and node patches - will have
highly smooth boundary curves making it an ideal preprocessor for a
subsequent spline fitting algorithm.

1 Introduction

Reverese engineering deals with the reconstruction of CAD surfaces, typically
from scanned 3D geometries. Since current CAD system are based mainly on
spline geometries, a scanned triangle mesh must be converted into a highly
structured and segmented data structure. Our algorithm aims to automize the
reconstruction process. It is a two step process. In a first step we generate the
topology of the final patch layout. This topology is encoded in a feature graph,
i.e. there exists a one to one relation between feature graph elements such as
nodes, edges and regions to the patches of the final layout. Furthermore the
feature graph is an intersection free graph embedded on the surface whereas its
smooth edges are oriented along surface features. In a second step, out of the
feature graph a geometrically reasonable patch layout is generated. The result-
ing patches patches have a uniform curvature distribution and are encircled by
smooth boundaries. Such an automatic algorithm avoids many labor intensive
manual segmentation approaches.

1.1 Previous work

Our patch layout algorithm has contact to many previous techniques in surface
segmentation and graph smoothing algorithms.



A general overview about surface segmentation methods is given in [Sha06].
It contains an outline from its roots in image processing, where surfaces are
treated as height fields up to segmentation algorithms working on triangulated
surfaces.

The variety of segmentation algorithms is very huge due to different aims.
Objectives range from remeshing, simplification, shape matching, mesh editing
to geometry compression and other areas. Here, we focus on segmentation of
CAD parts into reasonable surface patches.

Some related work focuses on surface segmentation by approximation with
several kinds of primitives. In [CSADO04]|, planes are being fitted, [WLKO05] uses
a collection of CAD primitives, such as spheres or rolling ball blends.

A tiling of a given model into nearly-developable charts is done in [JKS05]
and [STLO6]. Developable surfaces can be made out of a sheet of paper. This
kind of chart tiling enables to make a papercraft model of the given surface.

Another work [LPRMO02] uses a region growing algorithm for creating patches
whose boundaries run along sharp features. In a first step, some surface features
are being detected. Then a set of regions are constructed, which meet at these
features.

There are many approaches on computing a feature layout using Morse the-
ory. In [DBGT06], an eigenvector of the Laplacian is computed and used as
Morse function. The Morse complex which is then build from this Morse func-
tion, segments the surface into quads. In [EHZ01] and [CCLO03], the construction
of a Morse-Smale complex is described. With prescribing an adequate Morse
function which represents the important parts of the surface, one can control the
alignment of the feature layout. In [Ede05], a curvature based Morse function
is used to construct a Morse-Smale complex which aligns to surface features.

We also need to smooth patch boundary curves. In [LL0O2] the use of
snakes for the generation of smooth curves on triangulated surfaces is proposed.
This approach requires the repeated projection of the actual curve onto a two-
dimensional domain. The curve smoothness is controlled via an energy term.
Recasting the problem of smooth curves on triangulated manifolds to a high di-
mensional optimization problem is described in [HP04b]. Further the alignment
of curves along features can be driven by the use of the feature sensitive metric
introduced in [PSHT04].

1.2 Contributions

The underlying structure of a given CAD surface is determined by its main
building blocks, i.e. a set of characteristic CAD surface types. In general these
building blocks are detected in a time consuming process by hand. In our work,
we demonstrate how to create a consistent patch layout on CAD surfaces in a
reliable and fast way.

Our main contributions can be summarized as follows:

e an algorithm to generate a net of curves, running along surface features

e an energy formulation to align and smooth a curve within a feature region



e a method to decompose a surface into its functional parts based on a given
feature graph, where the single parts are encircled by smooth boundaries

aligned to nearby surface features

Starting with a triangle mesh as shown in fig.1 we will end up with a de-
composition like the one in fig.2.

Figure 1: Typical CAD part as triangle mesh.
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Figure 2: Patch layout of the CAD part from figure 1.

1.3 Organization of the paper

In section 2, we explain our basic concepts and underlying notions of a feature
graph and a patch layout. Section 3 deals with the generation of a feature
graph. The creation of the patch layout from a given feature graph is explained
in section 4. Finally, results of our tests are given in section 5.



2 Setting

The two main structures needed for our algorithm are the feature graph (fig.3,
left) and the patch layout. Both encode a decomposition of the surface, i.e.
have a graph like structure. As will be shown the most important structure for a
proper layout is the feature graph. This structure encodes all the relevant surface
information needed to create the final decomposition, i.e. out of this graph we
create regions encircled by a set of boundaries, meeting our smoothness and
alignment requirements. The final patch layout is used to denote the actual cell
decompostion of the surface, where each cell can be assigned a CAD type such
as face, fillet or node area. For a complete description of our layout generation
method we define:

Feature graph. A graph on the surface (fig.3, left), which represents the un-
derlying structure of a CAD surface. The feature graph is a net of smooth
surface curves, which run along surface features. It consists of:

Faces Main parts of the surface with a plane-like inner part as
well as the tendency to be curved along its boundary

Feature edges  Smooth edges which separate two adjacent faces and corre-
spond to cylindrical regions.

Node points Isolated points, which correspond to spherical/hyperbolic
regions and where several feature edges meet.

Figure 3: Left: Feature graph on CAD part consiting of faces, feature edges
and node points. The dark grey parts within each face denote the plane-like
or weakly curves parts whereas in the light grey part the surface starts to get
curved. Right: Patch layout with face patches, fillets and node patches, as well
as offset and node curves and offset nodes.

Patch layout. A graph on the surface (fig.3, right), which decomposes the sur-
face into various cells. In contrast to the faces of the feature graph, which can
be curved along their boundaries, within each cell heavily changing curvature is
not allowed. The possible cell types can be categorized as follows:



Face patches  Represent the planar or weakly curved part of feature graph
faces.

Fillets Connectors between adjacent faces. They correspond to
edges in the feature graph. Typically, a fillet is a cylindri-
cal or conical part with high curvature in direction of the
connecting faces.

Node patches Connectors of several fillets. They can have a spherical or
hyperbolic shape of any kind.

Regarding the boundaries between these cells we will encounter two types:

Offset curves Encircle face patches. Each offset curve separates a face
patch from an adjacent fillet. The feature edge which rep-
resents this fillet runs more or less parallel to the offset
curve. An offset curve can be seen as a shifted version of
a feature edge, i.e. an offset curve results from parallel
translation of a feature edge by a variable distance value.

Node curves  Separate fillets from node areas. In general each node patch
is bounded by a sequence of smooth node curves.

Start and endpoints of these boundaries will be denoted as offset nodes. Further
we will refer to the triangle mesh by M and its triangles by T

3 Feature graph

The basis of a consistent layout is a feature graph representing the layout’s
topological structure based on our geometric requirements, where node points
should be placed and feature edges are expected. So given a triangulated mesh
M we present a strategy to built all parts of a feature graph, such as faces,
feature edges and nodes. The basic idea is to detect plane-like regions I; on
M and expand these regions to cover all of M. So we will have a one-to-one
relation between initial regions I; and expanded regions R;. Having covered
all of M we detect node points. This gives us a first approximation to our
final feature graph, because at this stage the node points are connected by
edge based polygons, which need to be smoothed to meet our alignment and
orientation requirements. The result of this last step is a net of smooth curves
on the surface - the feature graph. These curves encircle the feature graph faces
containing the regions I;, the weakly curved or plane-like part of each face. The
algorithm to generate the feature graph can be outlined as follows:



Algorithm 1: Generate feature graph

Input: triangle mesh M

Output: feature graph

Compute principle curvatures

Detect initial regions I;

Expand regions I; by a region growing process

Extract nodes and edge based face boundaries

Create smooth feature edges from edge based face boundaries
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The details for every step of our feature graph algorithm (alg.1) are explained
in detail in the following subsections.

3.1 Principal curvatures.

The algorithm starts with computing the principal curvatures of the surface.
Curvature information is computed for each vertex of the mesh. We use an
approximation of the shape operator given in [HP04a]. i.e. a stable and re-
liable method where no fitting needs to be performed. Other methods (e.g.
[CSM03, PWYT07]) would also be practicable. Having curvature values at all
vertices we then assign curvature information to all triangles T € M by averag-
ing curvature information of all three incident vertices. Thus, for each triangle
four unit vectors pointing in principle curvature directions (£X,a0, =Xmin)
are given together with their corresponding curvature values (Kmaz and Kpmin)
Wlth |’{max‘ 2 ‘Kminl

3.2 Detect initial faces

Initial faces I; are taken to be the seeds for the set of feature graph faces (fig.3
left fig.4 left). We use a curvature treshold 7 to characterize all triangles as
being part of an initial face. Thus we define the following set of flat triangles
F := {triangle T'| |kmaz| < 7}. In general, F can be split into a set of simply
connected components I;, i.e. F = {ly,...,I,}.

3.3 Expand initial regions

The expansion of the initial regions I; gives us a rough approximation of the
feature graph. This process sets up the final topology of the feature graph and
therefore defines its faces, feature edges and node points. The detected node
points are held fixed during the rest of the algorithm, whereas the alignment
of the feature edges get adapted later in a smoothing step. In order to ensure
the correct placement of feature graph nodes and edges, we developed a special
growing strategy based on curvature information.

Feature function. Our feature function is required to drive the expansion
process in two ways. We expect feature graph edges mainly to run along a ridge
or in our case, where |Kpq.| is high. Further feature graph nodes should be
placed within regions of high Gaussian curvature K. Therefore we propose
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Figure 4: Left: Initial regions I;. Middle: Complete covering of M by expanded
regions R;. Right: Parts of the unsmoothed feature graph.

a growing strategy which uses |Kq.| values within cylindrical, i.e. fillet-like,
regions, whereas in spherical/hyperbolical regions K¢ values should drive the
expansion.

Region growing. We classify the free triangles, i. e. not assigned to one of the
initial regions I;, into the following two categories:

N := {triangle T'|T' ¢ F, [|[kmaz — kmin|| <t}, tER
E:=M\(FUN)

So our region growing will be driven by K4, for T € N and K¢ for T' € E. First
the initial regions are expanded into the set N giving us a rough approximation
of the feature edge within fillet like regions. During this stage the growing is
controlled by k4. In the second step the rest of the surface gets covered, i.e.
regions are expanded into areas with spherical/hyperbolic character, i.e. into
E, using |Kg| as the growing function.

Algorithm 2: Expand Regions
Input: Set of initial regions I = {Iy,...,I,} with I, C M
Output: Set of disjoint regions R = {Ry,..., R,} with U R, = M
Initialize set of patches R = @
foreach Region I; do
Mark all T € I; as members of region R;
add region R; to R
end
regionGrowing(R, kmaz, N,)
regionGrowing(R, kg, F)
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Procedure "regionGrowing (R, f, C)”

Input: Set of regions R = {Ry, ..., R,}, feature function f, one region
into which growing is allowed C

Output: Expanded regions R; with C' C U} R;

1 PriorityQueue queue;

2 foreach triangle T € R; do

3 | queue.enqueue((T, i) with key=f(T));

4 end

5 while queue not empty do

6 (T, i) = queue.extractMin();

7 foreach neighbours T' of T do

8 if T has not been marked as patch member and T' € C' then

9 Mark 7" as member of patch R;;

10 queue.enqueue((T”, 1), key=f(T"));
11 end

12 end

13 end

Finally the node points of the feature graph are found. Points of the triangle
mesh where more than two regions meet get identified as nodes of the feature
graph (fig.4 right). An algorithm for our two step growing strategy is given in
alg.2, also containing the details of our actual region growing procedure. The
method is similiar to a watershed technique from image segmentation, see e.g.
[MW99], where the order when to add triangles to an initial region I; is also
done via a priority queue.

3.4 Smooth feature graph

The rough approximation to the final feature graph from the last step corre-
sponds to the set of boundaries of the expanded initial regions (fig.4 right, fig.5
left) - a set of polyons, where each polygon runs along edges of the underlying
triangulation. Because a feature graph with smooth edges is neccessary to end
up with a consistent patch layout we need to smooth these polygons (fig.5 right).
Smoothing energy. If the feature edges just get smoothed, e.g. by Laplace
smoothing, they would leave the highly curved feature areas of the surface.
Instead, we introduce an algorithm which alters a curve on a surface such that
the curve gets aligned to a given vector field. This approach can be applied
to the field of minimal principle curvature directions X,,;,. In practice this
works fine, since in highly curved areas, the principal curvature directions are
very stable and smooth. So we are looking for a smooth curve connecting our
already detected node points and being aligned to the X,,;, field within that
curved area.

In general our alignment energy for a curve v can be defined with respect to
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Figure 5: Smooting feature curveswith end points held fixed. Left: Edge based
region boundary. Right: Smoothed region boundary.

a given a tangential vector field X as follows:

E(y) = / (%)d 1)

where J denotes the rotation by 90 degrees in the oriented tangent planes. It
can be seen as a measure of how much curve tangents and vector field deviate.
The energy vanishes if the curve is an integral curve of X. The alignment energy
(eq.1) is non-linear and non-quadratic in the vertex positions, which makes it
more difficult to find a minimum. But since we are optimizing a 1D polygon, the
number of degrees of freedom stays relatively small, so even a standard Euler
method finds a local minimum in a reasonable time. We discretized a feature
curve by a polygon, whose vertices lie on the surface. The edges are not forced
to stay on the surface. Assuming, that the vectorfield X is locally nearly parallel
(its covariant derivative vanishes), the variation of the energy (eq.1) at vertex
v € 7 is approximated by

’.}/ JX <€wan> (X’LU)
(SUE%2/ 51]%,— ds ~ 2 —_——— 2
w1 2 el ®

5 we{v—1,0+1}
In (eq.2) X, = (X(y(w)) + X(y(v)))/2 is the mean vector of X at the edge
(v,w) and e,, = y(w) —y(v). Applying several steps of an explicit Euler method
leads to smooth feature curves (fig.5 right).

4 Patch layout

Given a consistent topological feature graph we are now able to create the final
patch layout, i.e. the structure which decomposes the surface into its functional
parts such as faces, fillets and node areas. Our patch layout generation process
can be visualized as thickening the feature graph edges back into its faces plus



Algorithm 4: Patch Layout

Input: Feature graph

Output: Patch layout

foreach Node point of the feature graph do

‘ Compute all its offset nodes

end

foreach Face F; of the feature graph do

foreach Feature graph edge «y; bounding F; do
Determine offset direction dir = getSide(v;, F;) € {left,right}
Compute distance map d?”’

Smooth distance map
Compute offset curves 5;»1”
end
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end
Compute node curves

[
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cutting of areas around its nodes. The complete algorithm for the computation
of patch layout related curves and nodes is given in alg.4.

The proposed thickening procedures ensures the alignment of face boundaries
to nearby feature lines. Furthermore we connect feature oriented boundaries in
the vicinity of nodes areas at offset nodes. After having computed a consistent
loop of smooth offset curves around each face, we cut out the node areas by
node curves. An illustration of the whole process is given in (fig.6).

4.1 Offset nodes

Offset nodes are points on the surface where offset curves and node curves meet.
By construction a region is bounded by a set of feature edges, which start and
end in node points. So to each face of the feature graph exists an associated set
of node points. For each associated node point an offset node gets created (fig.6,
top left). A canonical choice for an offset node within a certain face is the point
closest to the node within the flat or weakly curved part, i.e. the corresponding
initial region I. Here we use Dijkstra distances to determine those points. We
refer to an offset node within a face by n;;, where the two indices denote the
offset curves, which meet there (fig.7 left).

4.2 Offset curves

Each feature edge 7; gets offset into its two adjacent faces resulting in two offset
curves 6:°/* and 679" The upper index refers to the offset direction as seen
from ~y;, whereas the lower index indicates the feature curve this offset curve
belongs to. Each of these curves is created from a scalar function denoted by
d' Tt (t) and dI"9"(t) defined along ;. Here the indices of d!(t) are defined in
the same manner as for the offset curves. In the remainding section we skip
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Figure 6: Generation of offset curves. Top left: Compute offset nodes as nearest
points to feature nodes in each adjacent initial patch I;. Top right: Regard
distance to initial patch I; as a one dimensional graph over the feature line.
Bottom left: Smooth and aligned offset lines. Bottom right: Final offset layout
after smoothing the distance function.

the indices on, i.e. d{ (t) becomes d(t), to shorten the notation. d(t) measures
the distance between a feature edge and an the flat part of the corresponding
adjacent face. This is in general a nonsmooth function, so we apply convolution
to get rid of spikes within the set of distance values. The resulting distance
values then encode points on the final offset curve.

Distance function: d(t) is represented by a set of points uniformly distributed
along the feature edge. Measuring distances is done along rays which start at
these points and point into the face. How to extend a ray geodesically can be
found in [PS98]. We also restrict the domain of d(¢) to a subset of 7, because
close to offset nodes distance measures of different feature edges would overlap,
see (fig.7).

Convolution: We smooth d(¢) by convolution with a hat function with large
support (e.g. half of the length of the feature curve). Let d* : [a,b] — R be
the distance map after parameterizing the supporting interval on the feature
curve by arc length. By construction, the function values d(a) and d(b) at
the endpoints are the geodesic distance of the feature curve to the offset nodes
(fig. 7, right). When keeping these values fix during the smoothing process,
the resulting offset curves will start and end in offset nodes. Thus, we have to
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Figure 7: Left: Initial patch I of one face with adjacent feature curves ~; and
corresponding offset curves 5" and offset nodes n;;. Right: Offsetting a feature
curve +y;, definition of the distance function d¥"(¢) only on a subset of ;

convolute d* with a hat function and keep the function values at the endpoints.
The trick for doing this is to extend d* to a larger domain in R by mirroring at
the endpoints, i.e.

d*(a—xz) = 2d"(a) —d*(a+ x),
d'(b+x) = 2d°(b)—d*(b—2x), x€][0,b—a].

Convolution of this function with a hat function will (by symmetry) not change
the function values at a and b. These convoluted distances define a sequence of
points along the feature curve. Out of these sequence our polygonal offset curve
lying on the surface is created (fig. 6, bottom left).

4.3 Node curves

There is one node area for each node point of the feature graph. In most cases,
a node area gets encircled by a sequence of node lines, which start and end
in offset nodes. As illsustrated in (fig.8) let v be a feature graph node and ~;

a feature line emanating from v. In general, there are two offset curves (ﬁef t

6Zight, which arised by offsetting 7; into the two adjacent faces. So a node
curve needs to be created between the offset nodes n;;, n; to seperate the
node area from the fillet corresponding to . This is done by constructing a
plane out of the two points n;;, 4, and their normals. The plane is defined to
contain the vector connecting n;; and n;, and the average of the two normals.
The intersection curve of this plane and the mesh will then be our actual node
curve. If two feature curves ; and «y; meet at a node point with an angle close
to 180 degrees (fig. 8, right), the corresponding offset node n;; gets split into
two new ones. The two new nodes n?j and nzl7 are found using the distance

12



Figure 8: Left: Node area. The node lines (green) connect the endpoints of
offset curves. Right: Two feature edges meet at node point with angle close to
180, the corresponding offset node gets spilt into two new ones.

map. We look for the first point within the valid range of d(¢). The actual node
curve is constructed as in the ususal case.

5 Results

We tested the algorithm on several CAD parts provided by our industry partner
Tebis AG. Here we discuss two parts in detail: the first part belongs to a scan
of a BMW motorcycle (fig.9). As can be seen, the algorithm finds a suitable
decomposition of the complex surface. The right lower picture shows the patch
layout on the part. The surface contains approximately 100k triangles and the
algorithm took about 1 minute. The main part was the curve smoothing, which
took about 40 seconds. The second part is a deformed metal plate (fig.10).
Common state of the art industrial software, such as Geomagic ® | produces
similiar feature graphs. It could be used as a possible starting point for our patch
layout method. Thus, having an existing reverse engineering pipeline based on
graph like structure our method could easily be plugged in to create a patch
layout. Our method is made to work with geometries having round features,
because at sharp edges a fillet region would be not well defined. Having noisy
data the geometry could be smoothed using [HP04a] or the noise can captured
by our treshold defining the flat parts.
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Figure 9: Feature layout on the BMW motorcycle part. Top: given triangulated
model. 2nd, 3rd: Feature graph from our method. Bottom: Final patch layout.
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