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I. INTRODUCTIONSemiconductor lasers are key elements in many modern optoelectronic systems, generatingand processing optical signals at high speed [1, 2]. Depending on the condition of operation,they can show, besides stationary lasing, a huge variety of nonlinear dynamical behavior,including e.g. pulsations of di�erent type and frequency, excitability, or high dimensionalchaos. In particular, the presence of optical feedback from a distant mirror has been shownto be the origin of a variety of complicated dynamics. The �nite propagation speed of lightcauses here a delay of the feedback signal, leading to a destabilization of the stationarylasing state. With increasing delay, also the dynamical complexity increases and �nally ahigh-dimensional chaotic behavior can be observed.The Lang-Kobayashi model [3] for a semiconductor laser with delayed optical feedbackhas been used extensively to study these dynamical phenomena. In dimensionless form theLang-Kobayashi model can be written as follows [4�11]
E ′(t) = (1 + iα)n(t)E(t) + ηe−iϕE(t − τ),

n′(t) = ε[J − n(t) − (2n(t) + 1)|E(t)|2].
(1)The equations describe the evolution of the complex electric �eld E(t) and excess carrierdensity n(t). The physical meaning of the system parameters is as follows: J is the excesspump current, τ > 0 is the external cavity round trip time measured in the units of thephoton lifetime, η > 0 and ϕ are the feedback strength and feedback phase, respectively. Thepresence of the so called linewidth enhancement factor α is the main reason for dynamicalinstability under delayed feedback, which is typical for semiconductor lasers. In experiments,the length of the external cavity can vary from less then 1 mm in monolithically integrateddevices up to ∼ 1 m in the case of re�ection from a distant mirror.Due to the equivariance with respect to optical phase-shifts (E, n) → (Eeiψ, n), periodicsolutions of the form E(t) = aeiωt, n(t) = N appear generically in (1), which are relativeequilibria with respect to this symmetry. They are usually called external cavity modes(ECMs) and correspond to stationary lasing with a constant relative optical frequency ω.Depending on the choice of the parameters, the ECMs can have di�erent stability propertiesand can be considered as the starting point for the development of di�erent dynamicalregimes [4, 12�14]. 2



The main goal of this paper is to analyze the stability properties of the ECMs in the caseof large delay. This is a di�cult task, since delay di�erential equations have an in�nite num-ber of eigenvalues and with increasing delay time an increasing number of these eigenvaluesbecome relevant for the issue of stability. Our main tool will be a recently developed theo-retical approach to the asymptotic behavior of the spectrum for delay-di�erential equationswith large delay [15�18]. Using this method, we are able to distinguish between eigenvalueswith di�erent scaling behavior for τ → ∞, leading to the notion of strong and weak insta-bility, and to calculate explicit asymptotic approximations for their location. Based on this,we can determine the stability of the ECM solutions, indicate the dimension of the unstablemanifolds, and distinguish di�erent types of instability.The paper is organized as follows. In Sec. II, we introduce some notations and reviewsome basic facts about ECMs. The main results about stability of ECMs will be presentedin Sec. III. In particular, we classify all ECMs of the Lang-Kobayashi system accordinglyto their stability properties. The resulting classi�cation will reveal: stable ECMs; stronglyunstable ECMs of oscillatory or antimode type; weakly unstable ECMs with modulational,Turing-type, or uniform instability.The fundamental assumption for our analysis is that the delay τ is large. In physicalterms, the mathematical limit τ → ∞ is justi�ed as soon as the delay of optical feedback islarger than the period of the relaxation oscillations, i.e. τ � TRO ∼ 2π/
√

2εJ . The obtainedresults (e.g. bifurcation diagrams) are independent on the actual value of τ and hold as soonas τ is large enough. This fact allows in particular to overcome di�culties arising with theuse of standard numerical bifurcation analysis for DDEs, where the condition of the problemis getting worse with large delay.II. EXTERNAL CAVITY MODESIn this section, we recall some facts about the ECMs of the Lang-Kobayashi system.Substituting E(t) = aeiωt, n(t) = N into (1), we obtain for N, ω, and a:
N = −η cos(ϕ + ωτ), (2)

ω − αN = −η sin(ϕ + ωτ), (3)
a2 =

J − N

2N + 1
. (4)3
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Figure 1: Location (6) of ECMs in the (ω,N)-plane for �xed η and varying ϕ, τ . SN: Location ofsaddle-node ECMs; ECMs with maximum and minimum gain at N = ±η.By physical reasons, the Lang-Kobayashi system makes sense only for 0 < η � 1. By thisreason, the denominator in (4) is positive and we can conclude that
N ≤ J, (5)in order to obtain a real amplitude a.From (2) and (3) we obtain

N2 + (ω − αN)2 = η2. (6)Hence, for all ECMs the corresponding values ω and N lie on an ellipse (6) of size η, see Fig. 1.The positions of ECMs on the ellipse are given by solutions ω of the transcendentalequation
−η(sin(ϕ + ωτ) + α cos(ϕ + ωτ)) = ω, (7)obtained from (2) and (3). The corresponding values of N are given by (2). It is easy to seethat the number of ECMs (solutions to (7)) is proportional to ητ and can be estimated as

2τη
√

1 + α2 (see also [19]). For large τ , the ellipse (6) becomes �lled densely with ECMs.Varying the feedback phase ϕ, the position of an individual ECM can be moved alongthe ellipse and pairs of ECMs are created or annihilated in saddle-node bifurcations. Thelocation of the saddle-node can be found by calculating double roots of (7). Di�erentiating(7) with respect to ω, we obtain the condition
ητ(cos(ϕ + ωτ) − α sin(ϕ + ωτ)) = −1. (8)4



Using this together with (2) and (3), we obtain the condition for the saddle-node bifurcationin (ω, N)-plane as
N(1 + α2) − αω =

1

τ
. (9)It is a straight line and, if τ or η are large enough, it has two intersections with the ellipse,corresponding to two saddle-nodes. Note that there is a saddle-node bifurcation of ECMs,only if one of these points satis�es additionally (7). This can be understood as follows.Keeping η and τ �xed and varying ϕ, the ECMs move along the ellipse, being createdand annihilated respectively at the two saddle-node points given by these intersections.For increasing τ, consecutive pairs of ECMs are generated at both saddle-node points, seeFigure 2. In the limit τ → ∞, the saddle-node points tend to the rightmost and the leftmostpoints on the ellipse, compare Fig. 1. At each saddle-node the ECM that emanate to theupper half of the ellipse are of saddle type and remain unstable (see e.g. [19]). They areusually called antimodes. The ECMs on the lower part, which under some conditions can bestable, are called modes. Note that, according to (4) only the ECMs below the line N = Jlead to physically relevant solutions with positive real amplitude a.
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Figure 2: ECM frequencies ω versus delay τ for α = 2, ϕ = 1, η = 0.3.III. STABILITY OF ECMSNow we will investigate the stability properties of the ECMs. Our primary bifurcationparameters are the feedback parameters η and ϕ. The third main parameter is the delaytime τ . We consider τ to be large and our results will turn out to be independent on the5



precise value of τ . As in various papers on the Lang-Kobayashi system we will use, instead ofclassical bifurcation diagrams, a representation in the (ω, N)-plane. In the previous sectionwe have shown that any ECM is uniquely described by its position in this plane and howthis position is related to the feedback parameters η and ϕ.ECMs are periodic solutions and their stability is determined by an in�nite set of Floquétmultipliers. Due to their invariance with respect to the phase shift symmetry they can beconsidered as relative equilibria. Under the coordinate transformation
E → eiωtE,an ECM solution E = aeiωt, n = N is transformed into a one-parameter family of equilibria

E = aeiρ,n = N with the free parameter ρ. In this way, their stability can be analyzedby linearizing the system and computing eigenvalues, i.e. the roots of the characteristicequation. However, one has to regard that a zero eigenvalue will appear, correspondingto perturbations along the family of equilibria. In this way one obtains the characteristicequation (compare [19], [5]):
χ(λ) := det











N(e−λτ − 1) + λ β(e−λτ − 1) −a

−β(e−λτ − 1) N(e−λτ − 1) + λ −αa

2aε(2N + 1) 0 ε(1 + 2a2) + λ











= 0. (10)We have used the abbreviation β = ω − αN , and the expression (4) for the amplitude aof the corresponding ECM. This characteristic equation should be understood as follows.Fixing the laser parameters α, ε, τ we obtain the eigenvalues for any ECM by inserting thecorresponding parameters ω, N , and a. In this way, the values of the bifurcation parametersare entering implicitly equations (2) � (4).Figure 3 shows some typical spectra of eigenvalues for ECMs at di�erent positions on theellipse, i.e. for �xed η, �xed large delay, and di�erent values of ϕ. One can observe thatmost of the eigenvalues accumulate along two curves of varying shape. It turns out that thisbehavior is typical for delay-di�erential equations with large delay and can be understoodby some recently developed asymptotic approach [15�18]. The curves in Figure 3 whereobtained by the asymptotic formulas which will be presented in the next section.
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Figure 3: Typical spectra of ECMs. Points: numerically computed eigenvalues; Lines: analyticalcurves of pseudo-continuous spectrum. Parameter values: τ = 500, η = 0.1, ε = 0.01, J = 0.01.Depending on the position of the ECM on the ellipse (6), qualitatively di�erent types of spectraappear: (I): asymptotically stable ECM; (II) and (IV): weak modulational type instability; (III):Turing-type instability with rotational invariance; (V): strong antimode instability; (VI): strongoscillatory instability.IV. ASYMPTOTIC PROPERTIES OF SPECTRUMIn this section we brie�y recall some ideas for the asymptotic approximation of the eigen-values of stationary states of a delay-di�erential equation in the limit of large delay [15�18].Let be
x′(t) = Ax(t) + Bx(t − τ), x ∈ R

n (11)a linear system of DDEs, where the matrices A and B should be considered as the Jacobianswith respect to the instantaneous and the delayed variables for a given �xed point of a7



nonlinear DDE. The characteristic equation reads as
det(λI + A + Be−λτ ) = 0, (12)where I is the identity matrix. As shown in [15�18], the spectrum can be decomposed intotwo parts with di�erent scaling properties with respect to τ : pseudo-continuous spectrum,which scales as Re (λ) ∼ 1/τ , and strongly unstable spectrum, which scales as Re (λ) ∼ 1 forlarge τ . The strongly unstable spectrum asymptotically coincides with the unstable part ofthe spectrum of the instantaneous part of the equation, i.e. the equation without feedback

x′ = Ax and satis�es
det(A − λI) = 0, Re (λ) > 0. (13)The pseudo-continuous spectrum is obtained by introducing the scaling

λ =
γ

τ
+ iµ (14)with the real parameters γ and µ. Inserting this into Eq. (12), we obtain in leading orderthe equation

det
(

−iµI + A + Be−γeiΦ
)

= 0, (15)where we have introduced Φ = −µ

τ
. Note that for large τ the term eiΦ is rapidly oscillating in

µ. Based on this observation, we consider Φ as an arti�cial phase parameter and determinethe solution to (15) as a curve in the (γ, µ)-plane that is parametrized by Φ. In fact, it iseven possible to eliminate Φ and obtain this curve by expressing γ as a function of µ. To thisend, we have to calculate the roots of a polynomial with the degree given by the number ofdelayed variables and obtain a corresponding number of solution branches γj(µ). Below, weshow in detail how in this way one can obtain the curves in Figure 3 for the Lang-Kobayashisystem. Note that the calculation of these branches is extremely simpli�ed with respect tothe original problem and moreover is independent on the singular parameter τ . To recoverthe location of the eigenvalues one has to regard the scaling ansatz (14). Additionally,one needs some information about the actual positions of the eigenvalues along this curve.For our purpose here it is su�cient to notice that, again to leading order, the distance ofeigenvalues along the curves behaves like 2πk/τ (for more details, see [15�18]). This showsthat, using the scaling (14), in the limit of large τ the eigenvalues accumulate along thecurves given by (15), while their distance tends to zero. By this reason, we call the set of8



Figure 4: Di�erent destabilization scenarios in delay systems with long delay, caused by bifurcationsof the pseudo-continuous spectrum. (a) Turing instability, (b) modulational instability, (c) uniforminstability. Stability for bifurcation parameter ν < 0, instability for ν > 0.eigenvalues behaving in this way pseudo-continuous spectrum (PCS). It turns out that, ingeneral, all eigenvalues are either part of the strongly unstable or of the pseudo-continuousspectrum. Moreover, one can show that the destabilization of a stationary state happensalways through a branch of PCS moving through the imaginary axis. Note that in such casesimmediately a large number of eigenvalues crosses the imaginary axis, and a description ofthe destabilization scenario in terms of classical bifurcation theory is valid only in a regionof asymptotically small size. Instead, a description of the occurring instabilities in analogyto spatially extended systems is much more appropriate and has already been applied byseveral authors, e.g. [17, 20�23] .As for instabilities of spatially extended systems, one has to distinguish di�erent types ofinstabilities, depending on the shape of the branch that moves through the imaginary axis:modulational instability, Turing instability, and uniform instability, see Fig. 4.We call these instabilities weak, since after destabilization the real parts of the involvedeigenvalues are of order 1/τ , leading to correspondingly slow divergence rates. At the sametime, there is a large number of weakly unstable eigenvalues located on the unstable part ofthe pseudo-continuous spectrum. As a result, a weakly unstable stationary state will possessa high-dimensional unstable manifold, whose dimension is proportional to the large delay.In contrast to that, the presence of strongly unstable spectrum implies a strong divergencein a low-dimensional unstable manifold.
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V. INSTABILITIES IN THE LANG-KOBAYASHI SYSTEMIn this chapter, we will give a complete description of the stability properties of theECM solutions in the case of large delay, using the asymptotic approach explained in theprevious chapter. As a �nal result we will present a partition of the (ω, N)-plane in di�erentregions where the spectra behave qualitatively like one of the examples in Figure 3. Thetransitions between these regions will be described by bifurcation curves where a speci�csingular behavior of the spectrum can be observed.In order to calculate the strongly unstable part of the spectrum. According to to (13),we have to use only the instantaneous terms
det











N − λ β a

−β N − λ αa

−2aε(2N + 1) 0 −ε(1 + 2a2) − λ











= 0 (16)from (10) and solve for solutions with positive real part.The pseudo-continuous spectrum is given by the two solution branches
γj(µ) = − ln |Yj(µ)|, j = 1, 2, (17)where the complex valued functions Yj(µ) satisfy the equation

det











N(Y − 1) + iµ β(Y − 1) −a

−β(Y − 1) N(Y − 1) + iµ −αa

2ε(1 + 2N)a 0 ε(1 + 2a2) + iµ











= 0, (18)which has been obtained by inserting Y (µ) := e−γeiΦ and the corresponding Jacobians for
A and B into (15).A. Stable ECMsAt �rst, we show that a small part of ECMs with low N is asymptotically stable. Weprove this by showing the stability of the so called maximum gain ECM at the bottom of theellipse, i.e N = −η (compare Fig. 1) . Stability for a set of neighboring ECMs follows thenby continuity arguments and asymptotic closeness of ECMs on the ellipse for large τ . The10



maximum gain ECM is given by ω = αN , or β = 0. After substituting this into Eq. (18),the characteristic equation factorizes and we obtain for the PCS
[N(Y − 1) + iµ] ·

[

2ε(J − N) + (ε(1 + 2a2) + iµ)(N(Y − 1) + iµ)
]

= 0.Solving for Y and taking into account that N = −η for this ECM, we obtain from the �rstfactor the solution branch
Y1(µ) = 1 + i

µ

η
(19)and from the second

Y2(µ) = 1 + i
µ

η
+

2ε(J + η)[ε(1 + 2a2) − iµ]

η(µ2 + ε2(1 + 2a2)2)
. (20)Taking into account that η, ε, and J − η are positive quantities, one can �nd easily that

|Y2(µ)| > 1 and |Y1(µ)| ≥ 1 for all µ. According to (17), the corresponding PCS curvessatisfy γ1,2(µ) ≤ 0 that implies stability with respect to the PCS. In order to look for stronginstabilities, we have to insert β = 0 and N = −η into (16) and check whether there aresolutions with positive real part. Again we obtain the characteristic equation in a factorizedform
(λ + η)(λ2 + λ(ε(1 + 2a2) + η) + εη(1 + 2a2) + 2εa2(1 − 2η)) = 0.By a straight forward application of the Routh-Hurwitz criterion, we conclude that thereare no positive roots and hence no strong instabilities. Since the property of asymptoticstability is robust under small perturbations, the same holds for all ECMs which are closeenough to the maximum gain ECM. In Fig. 3(I) we show a plot of corresponding PCS curvestogether with the numerically computed eigenvalues for some �xed value of τ . In Fig. 11the region of stability is shown in white. We will now determine the boundary of this regionby calculating the conditions for di�erent types of instabilities.B. Weak modulational instabilityIt turns out that one of the stability boundaries is given by a weak modulational instability,compare Fig. 3(IV) and Fig. 4 (b). It occurs when the curvature of the PCS branch that ispinned to the origin by symmetry becomes positive there, i.e. γ′′

j (0) > 0 . The condition forthe corresponding stability boundary is given by
γ′′
j (0) = 0.11



Using Eq. (18), we obtain for the function Y1(µ) near the origin the expansion:
Y1(µ) = 1 + κ1µ + κ2µ

2 + O(µ3), where
κ1 =

i

αβ − N
and κ2 =

β2(1 + α2)(1 + 2J)

2(αβ − N)3(1 + 2N)(J − N)
.Taking into account (17), we have for the function γ1(µ)

γ1(µ) = c2µ
2 + O(µ3),where

c2 = κ2 −
1

2

(

1

αβ − N

)2

. (21)The condition γ′′
1 (0) = 0 is equivalent to c2 = 0. This yields

(1 + α2)β2
1 + 2J

1 + 2N
= (J − N)(αβ − N) (22)as the condition for the onset of weak modulational instability. In Figure 5 the regionof ECMs with weak modulational instability are shown. There is destabilization of stableECMs by the onset of modulational instability and also, as we will show later, transitionfrom Turing-unstable to modulationally unstable ECMs. Additionally, there is a transitionfrom modulational instability to uniform instability by a branch-switching as indicated inFig. 6. In this scenario the stable second branch of PCS approaches the origin as well andboth branches merge there, before the unstable branch detaches itself from the origin andexhibits a uniform instability. As the condition for this transition we obtain the expression

N − αβ = 0. (23)by inserting τ = ∞ into the saddle-node condition (9). Note that inserting this into (21)leads to c2 = ∞, i.e. the curvature of the branches in Fig. 6 (middle) as a function γ(µ) isin�nite. From Eq. (22) we obtain that the curve for the onset of modulational instability isalways in the region below the asymptotic saddle node line (23) where N − αβ < 0. Thisfollows immediately from the fact that both, the left-hand side of Eq. (22), and J − N arepositive. From this we can conclude that the saddle-node bifurcation SN does not produce apair of stable and unstable ECM, but rather two unstable ECMs. Moreover, at a su�cientlylong delay, ECMs already have high-dimensional weakly unstable manifold at the SN point.This is in contrast to the short delay regime, where at SN point a pair of stable and unstableECMs appears. 12



SN

Figure 5: Region of weak modulational instability (gray area) in the (ω.N)-plane, enclosed by (22)and branch-switching (dashed), given by (23). Bold curve: ellipse of ECMs for η = 0.1. There areno ECMs in the region N > J = 0.01; α = 3.
τ λRe τ λRe τ λRe

ω = (α +1/α)N

Im ImIm λ λλ

ω > (α +1/α)N ω < (α +1/α)NFigure 6: Transition form modulational to uniform instability by branch-switching.C. Weak Turing instabilityA weak Turing instability occurs when a branch of pseudo-continuous spectrum touchesthe imaginary axis and the interval of frequencies 0 < µ− < µ < µ+ < ∞ is destabilized,cf. Fig. 3(III).For a given branch γ(µ) of the pseudo-continuous spectrum, the condition for the onsetof Turing instability is
γ′(µT ) = 0, γ(µT ) = 0, µT 6= 0. (24)Since analytic expressions are becoming non tractable, we solve the system (24) together13



with (18) numerically. By a continuation procedure we can �nd solution curves ω(N) fora �xed choice of parameters α and a. The result of such a continuation is given by thesolid line (T) in Fig. 7. Together with the dashed line (M), where the Turing instabilityis transformed into a modulational instability, it constitutes the boundary of the region ofTuring-unstable ECMs. The dynamics in the vicinity of such ECMs is determined by a largenumber of weakly unstable eigenmodes which are located close to the relaxation frequencyof the solitary laser. This situation, where the oscillation mode of the solitary laser is splitinto a number of resonances by the delayed feedback has already been described in [13].

Figure 7: Region of weak Turing-instability in the plane (ω,N) (gray), enclosed by the curve (24)(T), and a transition to modulational instability (M), cf. Fig.5.D. Weak uniform instabilityThe weak uniform instability occurs when a branch of the pseudo-continuous spectrum ispositive γj(µ) > 0 for some interval −µ0 < µ < µ0, where µ0 > 0, cf. 4(c). Recalling that asa result of the phase-shift invariance one branch of the pseudo-continuous spectrum passesalways through the origin, the condition for the onset of weak uniform instability is
γ1,2(0) = 0i.e. both branches meet the origin. Using Eq. (17), this requires either Yj = 1 or Yj = −1.The �rst condition is satis�ed at the saddle-node point (23) where the branch-switching14



transition from modulational to uniform instability takes place. The second condition Yj =

−1 describes a transition to uniform instability without a branch-switching and leads to thecondition
N2 + β2 +

1 + 2N

1 + 2J
(J − N)(αβ − N) = 0. (25)Combining Eqs. (23) and (25), we obtain a region of weak uniform instability, which is shownin Fig. 8.

Figure 8: Region of weak uniform instability in the plane (ω,N) (gray area); the boundary is givenby (25) and (23), cf. Fig. 5.
E. Strong antimode instabilityAs we already mentioned above, any destabilization in systems with large delay is me-diated by the PCS. Consequently, the onset of a strong instability is always a transitionfrom weak to strong instability. Strong antimode instability we call the occurrence of aneigenvalue λ which is real with λ > 0 and behaves asymptotically as λ = O(1) for large

τ . Figure 3(V) shows the spectrum of an ECM with such an instability: One leading realeigenvalue can be observed. In order to obtain the corresponding condition for the onset ofthis type of strong instability, we have to look for solutions λ = 0 of (16). This leads to thecondition
N2 + β2 + 2

1 + 2N

1 + 2J
(J − N)(αβ − N) = 0. (26)15



Arguing similarly as above, we can �nd that this stability boundary is always located in thehalf-plane above the asymptotic saddle-node line (23), i.e in the region where N − αβ > 0.In Fig. 9 we have plotted condition (26) after substituting α = 3 and J = 0.01 andsolving with respect to ω(N). The obtained curves delineate a region, where strong antimodeinstability occurs. In Fig. 9, this region is shown in gray. Before the onset of this instability,the ECMs are already weakly uniform unstable. The weak uniform instability originatesfrom the branch-switching (23). Recalling from (6) that η2 = N2 + β2, one can observethat, according to Eq. (26), the distance from the branch-switching to the strong antimodeinstability is of order η2, i.e. it decreases quadratically for small values of η. By this reasonwe interpret this instability as the principal origin of the instability of the antimodes in theupper half of the ellipse and call it strong antimode instability.

SN∼ η 2

Figure 9: Region of strong antimode instability in the (ω,N)-plane (gray). The distance to theonset of weak uniform instability at the asymptotic saddle-node (SN) is of order η2.The dynamics in the neighborhood of the strongly unstable antimodes is determined bythe leading unstable characteristic root. Therefore, the orbit, which starts in the vicinityof such ECM will be repelled along a one-dimensional strong unstable manifold on a timescale which is faster than the delay time τ . In addition, it is interesting to note that thecondition (26) for this instability is independent on the parameter ε.
16



F. Strong oscillatory instabilityStrong oscillatory instability occurs when a pair of characteristic roots λ1,2 = γ± iΩ with
γ > 0 and Ω 6= 0 appears, and the real part scales as γ = O(1) for τ → ∞. Figure Fig. 3(VI)shows an example of such a spectrum. According to (13), the strongly unstable eigenvaluesare approximately given by eigenvalues λ1,2 = γ ± iΩ with positive γ of the instantaneouscharacteristic equation (16). The condition for the onset of this instability can be found byinserting λ = iΩ into (16). Separating real and imaginary parts, the frequency Ω can beeliminated as

Ω = N2 + β2 + 2ε(a2 − N), (27)leading to the condition
N(N2 + β2) + ε

J − 2N(N + 1)

1 + 2N

[

2N − ε
1 + 2J

1 + 2N

]

+ ε(J − N)(αβ − N) = 0. (28)Figure 10 illustrates the region of strong oscillatory instability (gray area). The boundaryof this region, is a solution to (28). One can notice, that the strong oscillatory instabilityappears mainly for ECMs with positive inversion N . Indeed, the condition (28) can befurther simpli�ed by taking into account the scaling of other parameters. For instance, if
ε � η and ε � ω, we obtain the approximation N ≈ εJα/ω as a criterion for the occurrenceof the strong oscillatory instability.

Figure 10: Region of strong oscillatory instability in the (ω,N)-plane, determined by Eq. (28) (grayarea). 17



The dynamics in the neighborhood of the strongly oscillatory unstable ECMs are deter-mined by the leading pair of unstable characteristic roots λ1,2 = γ ± iΩ, γ > 0. Therefore,an orbit, which starts in the vicinity of such ECM will be repelled along the two-dimensionalunstable manifold exhibiting oscillatory behavior with the frequency Ω. The time of escapingis much less than the round-trip time τ like in the case of antimode instability.G. Combined stability map of ECMs and primary destabilization mechanismsCollecting together the results from the preceding sections, we show in Fig. 11 the globalpicture for the regions with di�erent stability properties (cf. Figs. 5�10).

Figure 11: Combined stability map for ECMs. The numbers I to VI denote the type of spectrumfor the corresponding region. Corresponding spectra are given in Fig. 3.Based on this rather complicated picture, we can summarize the following main observa-tions and results:
• There is a region of stable ECMs around the maximum gain mode (I).
• On the lower part of the ellipse (modes), the stable region is followed by a large weaklyunstable region. The stability boundary is given by a Turing instability (III), whichis followed by a transition to modulational instability (IV).
• The ECMs on the upper part (antimodes) are mainly strongly unstable. In a rathersmall region close to the maximum gain mode, �rst a weak modulational instability18



(II) appears which, after a transition to uniform instability transforms into a strongantimode-instability (V).
• In the region close to N = 0, a strong oscillatory instability (VI) can be observed,both for modes and antimodes.Note that this global picture can provide a more detailed understanding of the well knownlow-frequency-�uctuations [12]. In this regime, the solutions move close to the weakly unsta-ble ECMs along the lower part of the ellipse. The high dimensional chaotic behavior alongthis itinerary is governed by the high dimensional weakly unstable manifolds of the weaklyunstable ECMs. Finally, they come close to the maximum gain mode, where the in�uenceof the nearby strong instability leads to the well-known power dropout.VI. CONCLUSIONSUsing a new asymptotic approach for delay equations with large delay, we have studiedin detail the stability properties of the ECM solutions of the Lang-Kobayashi system. Equa-tions (16) � (18) provide simple asymptotic expressions for the location of in�nitely manyeigenvalues and describe two di�erent types of their scaling behavior for large delay τ . Incontrast to earlier works we use no further scaling assumptions except that the delay time

τ is large. Based on these asymptotic expressions for the location of the spectrum, we arenot only able to describe the stability properties of a single ECM solution, but also to �ndconditions for the transition between stability an di�erent types of instability. Since thedestabilization in delay equations with large delay involve a large number of eigenvalues, wecan classify di�erent types of instabilities in analogy to spatially extended systems.AcknowledgmentsThis work was supported by DFG (Sonderforschungsbereich 555 "Komplexe nichtlineareProzesse" and Research center Matheon �Mathematics for key technologies�).
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