Stability of external cavity modes in the Lang-Kobayashi system

with large delay

Serhiy Yanchuk' * and Matthias Wolfrum? T

! Humboldt- University of Berlin, Institute of Mathematics,
Unter den Linden 6, D-10099 Berlin, Germany
2 Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstrasse 39, D-10117 Berlin, Germany
(Dated: February 23, 2009)

Abstract

The Lang-Kobayashi model is a system of delay differential equations (DDEs) describing the
dynamics of a semiconductor laser under delayed optical feedback. In this paper, we study the
stability of so called external cavity modes (ECMs), which are harmonic oscillations corresponding
to stationary lasing states. We focus on experimentally relevant situations, when the delay is large
compared to the internal time scales of the laser. In this case, both the number of ECMs and the
number of critical eigenvalues grows to infinity. Applying a newly developed asymptotic description
for the spectrum of linearized DDEs with long delay, we are able to overcome this difficulty and to
give a complete description of the stability properties of all ECMs. In particular, we distinguish
between different types of weak and strong instabilities and calculate bifurcation diagrams that

indicate the regions with different stability properties and the transitions between them.
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I. INTRODUCTION

Semiconductor lasers are key elements in many modern optoelectronic systems, generating
and processing optical signals at high speed [1, 2|. Depending on the condition of operation,
they can show, besides stationary lasing, a huge variety of nonlinear dynamical behavior,
including e.g. pulsations of different type and frequency, excitability, or high dimensional
chaos. In particular, the presence of optical feedback from a distant mirror has been shown
to be the origin of a variety of complicated dynamics. The finite propagation speed of light
causes here a delay of the feedback signal, leading to a destabilization of the stationary
lasing state. With increasing delay, also the dynamical complexity increases and finally a
high-dimensional chaotic behavior can be observed.

The Lang-Kobayashi model [3] for a semiconductor laser with delayed optical feedback
has been used extensively to study these dynamical phenomena. In dimensionless form the
Lang-Kobayashi model can be written as follows [4-11]

E'(t) = (1 +ia)n(t)E(t) + ne"“E(t — ), ,

n'(t) =elJ —n(t) — 2n(t) + V| E()[*]. =
The equations describe the evolution of the complex electric field E(t) and excess carrier
density n(t). The physical meaning of the system parameters is as follows: J is the excess
pump current, 7 > 0 is the external cavity round trip time measured in the units of the
photon lifetime, 7 > 0 and ¢ are the feedback strength and feedback phase, respectively. The
presence of the so called linewidth enhancement factor « is the main reason for dynamical
instability under delayed feedback, which is typical for semiconductor lasers. In experiments,
the length of the external cavity can vary from less then 1 mm in monolithically integrated
devices up to ~ 1 m in the case of reflection from a distant mirror.

Due to the equivariance with respect to optical phase-shifts (E,n) — (Ee™ n), periodic
solutions of the form F(t) = ae™!, n(t) = N appear generically in (1), which are relative
equilibria with respect to this symmetry. They are usually called ezternal cavity modes
(ECMs) and correspond to stationary lasing with a constant relative optical frequency w.
Depending on the choice of the parameters, the ECMs can have different stability properties
and can be considered as the starting point for the development of different dynamical

regimes [4, 12-14].



The main goal of this paper is to analyze the stability properties of the ECMs in the case
of large delay. This is a difficult task, since delay differential equations have an infinite num-
ber of eigenvalues and with increasing delay time an increasing number of these eigenvalues
become relevant for the issue of stability. Our main tool will be a recently developed theo-
retical approach to the asymptotic behavior of the spectrum for delay-differential equations
with large delay [15-18]. Using this method, we are able to distinguish between eigenvalues
with different scaling behavior for 7 — oo, leading to the notion of strong and weak insta-
bility, and to calculate explicit asymptotic approximations for their location. Based on this,
we can determine the stability of the ECM solutions, indicate the dimension of the unstable
manifolds, and distinguish different types of instability.

The paper is organized as follows. In Sec. II, we introduce some notations and review
some basic facts about ECMs. The main results about stability of ECMs will be presented
in Sec. III. In particular, we classify all ECMs of the Lang-Kobayashi system accordingly
to their stability properties. The resulting classification will reveal: stable ECMs; strongly
unstable ECMs of oscillatory or antimode type; weakly unstable ECMs with modulational,
Turing-type, or uniform instability.

The fundamental assumption for our analysis is that the delay 7 is large. In physical
terms, the mathematical limit 7 — oo is justified as soon as the delay of optical feedback is
larger than the period of the relaxation oscillations, i.e. 7> Tro ~ 27/v/2eJ. The obtained
results (e.g. bifurcation diagrams) are independent on the actual value of 7 and hold as soon
as 7 is large enough. This fact allows in particular to overcome difficulties arising with the
use of standard numerical bifurcation analysis for DDEs, where the condition of the problem

is getting worse with large delay.

II. EXTERNAL CAVITY MODES

In this section, we recall some facts about the ECMs of the Lang-Kobayashi system.
Substituting E(t) = ae™ n(t) = N into (1), we obtain for N,w, and a:

N = —ncos(p + wT), (2)
w—aN = —nsin(¢ + wT), (3)
J—N
2
= . 4
CTONTI (4)



Figure 1: Location (6) of ECMs in the (w, N)-plane for fixed n and varying ¢, 7. SN: Location of

saddle-node ECMs; ECMs with maximum and minimum gain at N = £n.

By physical reasons, the Lang-Kobayashi system makes sense only for 0 < n < 1. By this

reason, the denominator in (4) is positive and we can conclude that
N <, (5)

in order to obtain a real amplitude a.

From (2) and (3) we obtain
N? + (w—aN)? =7 (6)

Hence, for all ECMs the corresponding values w and N lie on an ellipse (6) of size 7, see Fig. 1.
The positions of ECMs on the ellipse are given by solutions w of the transcendental
equation
—n(sin(e + wr) + acos(p + wr)) = w, (7)
obtained from (2) and (3). The corresponding values of N are given by (2). It is easy to see
that the number of ECMs (solutions to (7)) is proportional to n7 and can be estimated as
2rV/1 + a2 (see also [19]). For large 7, the ellipse (6) becomes filled densely with ECMs.
Varying the feedback phase ¢, the position of an individual ECM can be moved along
the ellipse and pairs of ECMs are created or annihilated in saddle-node bifurcations. The
location of the saddle-node can be found by calculating double roots of (7). Differentiating

(7) with respect to w, we obtain the condition
nt(cos(¢ + wr) — asin(p + wr)) = —1. (8)
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Using this together with (2) and (3), we obtain the condition for the saddle-node bifurcation
in (w, N)-plane as
1

N(l—i—on)—ozw:;. 9)

It is a straight line and, if 7 or 7 are large enough, it has two intersections with the ellipse,
corresponding to two saddle-nodes. Note that there is a saddle-node bifurcation of ECMs,
only if one of these points satisfies additionally (7). This can be understood as follows.
Keeping n and 7 fixed and varying ¢, the ECMs move along the ellipse, being created
and annihilated respectively at the two saddle-node points given by these intersections.
For increasing 7, consecutive pairs of ECMs are generated at both saddle-node points, see
Figure 2. In the limit 7 — oo, the saddle-node points tend to the rightmost and the leftmost
points on the ellipse, compare Fig. 1. At each saddle-node the ECM that emanate to the
upper half of the ellipse are of saddle type and remain unstable (see e.g. [19]). They are
usually called antimodes. The ECMs on the lower part, which under some conditions can be
stable, are called modes. Note that, according to (4) only the ECMs below the line N = J

lead to physically relevant solutions with positive real amplitude a.

0.5r

Figure 2: ECM frequencies w versus delay 7 fora =2, o =1, n = 0.3.

III. STABILITY OF ECMS

Now we will investigate the stability properties of the ECMs. Our primary bifurcation
parameters are the feedback parameters n and . The third main parameter is the delay

time 7. We consider 7 to be large and our results will turn out to be independent on the
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precise value of 7. As in various papers on the Lang-Kobayashi system we will use, instead of
classical bifurcation diagrams, a representation in the (w, N)-plane. In the previous section
we have shown that any ECM is uniquely described by its position in this plane and how
this position is related to the feedback parameters n and ¢.

ECMs are periodic solutions and their stability is determined by an infinite set of Floquét
multipliers. Due to their invariance with respect to the phase shift symmetry they can be

considered as relative equilibria. Under the coordinate transformation
E — 6ith’

an ECM solution E = ae™?, n = N is transformed into a one-parameter family of equilibria
E = ae””,n = N with the free parameter p. In this way, their stability can be analyzed
by linearizing the system and computing eigenvalues, i.e. the roots of the characteristic
equation. However, one has to regard that a zero eigenvalue will appear, corresponding
to perturbations along the family of equilibria. In this way one obtains the characteristic

equation (compare [19], [5]):

NEe™ —1)+X  ple*—-1) —a
X(A)i=det | —B(e™* —1) N(e M —1)+ A —aa =0. (10)
2ae(2N + 1) 0 e(1+2a%) + A

We have used the abbreviation 5 = w — N, and the expression (4) for the amplitude a
of the corresponding ECM. This characteristic equation should be understood as follows.
Fixing the laser parameters «, e, 7 we obtain the eigenvalues for any ECM by inserting the
corresponding parameters w, N, and a. In this way, the values of the bifurcation parameters
are entering implicitly equations (2) — (4).

Figure 3 shows some typical spectra of eigenvalues for ECMs at different positions on the
ellipse, i.e. for fixed 7, fixed large delay, and different values of ¢. One can observe that
most of the eigenvalues accumulate along two curves of varying shape. It turns out that this
behavior is typical for delay-differential equations with large delay and can be understood
by some recently developed asymptotic approach [15-18|. The curves in Figure 3 where

obtained by the asymptotic formulas which will be presented in the next section.
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Figure 3: Typical spectra of ECMs. Points: numerically computed eigenvalues; Lines: analytical
curves of pseudo-continuous spectrum. Parameter values: 7 = 500, n = 0.1, ¢ = 0.01, J = 0.01.
Depending on the position of the ECM on the ellipse (6), qualitatively different types of spectra
appear: (I): asymptotically stable ECM; (II) and (IV): weak modulational type instability; (III):
Turing-type instability with rotational invariance; (V): strong antimode instability; (VI): strong

oscillatory instability.

IV. ASYMPTOTIC PROPERTIES OF SPECTRUM

In this section we briefly recall some ideas for the asymptotic approximation of the eigen-
values of stationary states of a delay-differential equation in the limit of large delay [15-18|.

Let be
2'(t) = Az(t) + Bz(t — 1), xe€R" (11)

a linear system of DDEs, where the matrices A and B should be considered as the Jacobians

with respect to the instantaneous and the delayed variables for a given fixed point of a



nonlinear DDE. The characteristic equation reads as
det(M + A+ Be™7) =0, (12)

where [ is the identity matrix. As shown in [15-18|, the spectrum can be decomposed into
two parts with different scaling properties with respect to 7: pseudo-continuous spectrum,
which scales as Re (A\) ~ 1/7, and strongly unstable spectrum, which scales as Re (A\) ~ 1 for
large 7. The strongly unstable spectrum asymptotically coincides with the unstable part of
the spectrum of the instantaneous part of the equation, i.e. the equation without feedback
' = Ax and satisfies

det(A—A)=0, Re()\) >0. (13)
The pseudo-continuous spectrum is obtained by introducing the scaling

A= +ip (14)
T
with the real parameters v and u. Inserting this into Eq. (12), we obtain in leading order
the equation
det (—ipl + A+ Be7e'®) =0, (15)

® is rapidly oscillating in

where we have introduced ® = —£. Note that for large 7 the term e
1. Based on this observation, we consider ® as an artificial phase parameter and determine
the solution to (15) as a curve in the (v, p)-plane that is parametrized by ®. In fact, it is
even possible to eliminate ® and obtain this curve by expressing 7 as a function of x. To this
end, we have to calculate the roots of a polynomial with the degree given by the number of
delayed variables and obtain a corresponding number of solution branches v;(1). Below, we
show in detail how in this way one can obtain the curves in Figure 3 for the Lang-Kobayashi
system. Note that the calculation of these branches is extremely simplified with respect to
the original problem and moreover is independent on the singular parameter 7. To recover
the location of the eigenvalues one has to regard the scaling ansatz (14). Additionally,
one needs some information about the actual positions of the eigenvalues along this curve.
For our purpose here it is sufficient to notice that, again to leading order, the distance of
eigenvalues along the curves behaves like 27k /7 (for more details, see [15-18]). This shows
that, using the scaling (14), in the limit of large 7 the eigenvalues accumulate along the

curves given by (15), while their distance tends to zero. By this reason, we call the set of
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Figure 4: Different destabilization scenarios in delay systems with long delay, caused by bifurcations
of the pseudo-continuous spectrum. (a) Turing instability, (b) modulational instability, (c) uniform

instability. Stability for bifurcation parameter v < 0, instability for v > 0.

eigenvalues behaving in this way pseudo-continuous spectrum (PCS). It turns out that, in
general, all eigenvalues are either part of the strongly unstable or of the pseudo-continuous
spectrum. Moreover, one can show that the destabilization of a stationary state happens
always through a branch of PCS moving through the imaginary axis. Note that in such cases
immediately a large number of eigenvalues crosses the imaginary axis, and a description of
the destabilization scenario in terms of classical bifurcation theory is valid only in a region
of asymptotically small size. Instead, a description of the occurring instabilities in analogy
to spatially extended systems is much more appropriate and has already been applied by
several authors, e.g. [17, 20-23] .

As for instabilities of spatially extended systems, one has to distinguish different types of
instabilities, depending on the shape of the branch that moves through the imaginary axis:
modulational instability, Turing instability, and uniform instability, see Fig. 4.

We call these instabilities weak, since after destabilization the real parts of the involved
eigenvalues are of order 1/7, leading to correspondingly slow divergence rates. At the same
time, there is a large number of weakly unstable eigenvalues located on the unstable part of
the pseudo-continuous spectrum. As a result, a weakly unstable stationary state will possess
a high-dimensional unstable manifold, whose dimension is proportional to the large delay.
In contrast to that, the presence of strongly unstable spectrum implies a strong divergence

in a low-dimensional unstable manifold.



V. INSTABILITIES IN THE LANG-KOBAYASHI SYSTEM

In this chapter, we will give a complete description of the stability properties of the
ECM solutions in the case of large delay, using the asymptotic approach explained in the
previous chapter. As a final result we will present a partition of the (w, N)-plane in different
regions where the spectra behave qualitatively like one of the examples in Figure 3. The
transitions between these regions will be described by bifurcation curves where a specific
singular behavior of the spectrum can be observed.

In order to calculate the strongly unstable part of the spectrum. According to to (13),

we have to use only the instantaneous terms

det -0 N — A\ aa =0 (16)
—2ae(2N+1) 0 —e(1+2a%) — A\

from (10) and solve for solutions with positive real part.

The pseudo-continuous spectrum is given by the two solution branches

() = =Y, j =12 (17)

where the complex valued functions Y;(u) satisfy the equation

NY =) +ip  BY —1) —a
det | —B(Y —1) N —1)+ip —aa =0, (18)
2¢(1+2N)a 0 e(1+2a?) +iu

which has been obtained by inserting Y (i) := e 7¢’® and the corresponding Jacobians for

A and B into (15).

A. Stable ECMs

At first, we show that a small part of ECMs with low N is asymptotically stable. We
prove this by showing the stability of the so called maximum gain ECM at the bottom of the
ellipse, i.e N = —n (compare Fig. 1) . Stability for a set of neighboring ECMs follows then

by continuity arguments and asymptotic closeness of ECMs on the ellipse for large 7. The
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maximum gain ECM is given by w = aN, or 8 = 0. After substituting this into Eq. (18),

the characteristic equation factorizes and we obtain for the PCS
IN(Y = 1) + i) - [2e(J = N) + (e(1 4 2a®) + ip)(N(Y — 1) 4+ ip)] = 0.

Solving for Y and taking into account that N = —n for this ECM, we obtain from the first

factor the solution branch

Vil =11 (19)

and from the second

L 2e(J +n)[e(1 4 2a?) — iy
B =t G e e

(20)

Taking into account that 7n,e, and J — n are positive quantities, one can find easily that
|Ya(pe)| > 1 and |Yy(p)| > 1 for all p. According to (17), the corresponding PCS curves
satisfy 71 2(p) < 0 that implies stability with respect to the PCS. In order to look for strong
instabilities, we have to insert § = 0 and N = —n into (16) and check whether there are
solutions with positive real part. Again we obtain the characteristic equation in a factorized
form

A+ n) (N + Ae(1 4 2a%) + 1) +en(l + 2a*) + 22a*(1 — 27)) = 0.

By a straight forward application of the Routh-Hurwitz criterion, we conclude that there
are no positive roots and hence no strong instabilities. Since the property of asymptotic
stability is robust under small perturbations, the same holds for all ECMs which are close
enough to the maximum gain ECM. In Fig. 3(I) we show a plot of corresponding PCS curves
together with the numerically computed eigenvalues for some fixed value of 7. In Fig. 11
the region of stability is shown in white. We will now determine the boundary of this region

by calculating the conditions for different types of instabilities.

B. Weak modulational instability

It turns out that one of the stability boundaries is given by a weak modulational instability,
compare Fig. 3(IV) and Fig. 4 (b). It occurs when the curvature of the PCS branch that is
pinned to the origin by symmetry becomes positive there, i.e. 77(0) > 0. The condition for

the corresponding stability boundary is given by
7;(0) =0.
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Using Eq. (18), we obtain for the function Y (u) near the origin the expansion:

Yi(p) =1+ kyp + kop® + O(p®),  where

ot d B G214 a?)(1+2J)
TN M T ORB - NE(+2N)(J - N)

R1
Taking into account (17), we have for the function 7 (u)

Y1 (p) = cap® + O(p),

where )
1 1

= Koy — — ) 21
2=y (ozﬁ — N) (21)

The condition 77 (0) = 0 is equivalent to ¢y = 0. This yields

1+2J

1+ )3 =(J—N)(af - N 22
(14 a?)F o = (7= N)(ag = ) (22)

as the condition for the onset of weak modulational instability. In Figure 5 the region
of ECMs with weak modulational instability are shown. There is destabilization of stable
ECMs by the onset of modulational instability and also, as we will show later, transition
from Turing-unstable to modulationally unstable ECMs. Additionally, there is a transition
from modulational instability to uniform instability by a branch-switching as indicated in
Fig. 6. In this scenario the stable second branch of PCS approaches the origin as well and
both branches merge there, before the unstable branch detaches itself from the origin and

exhibits a uniform instability. As the condition for this transition we obtain the expression
N —af =0. (23)

by inserting 7 = oo into the saddle-node condition (9). Note that inserting this into (21)
leads to ¢y = 00, i.e. the curvature of the branches in Fig. 6 (middle) as a function () is
infinite. From Eq. (22) we obtain that the curve for the onset of modulational instability is
always in the region below the asymptotic saddle node line (23) where N — a3 < 0. This
follows immediately from the fact that both, the left-hand side of Eq. (22), and J — N are
positive. From this we can conclude that the saddle-node bifurcation SN does not produce a
pair of stable and unstable ECM, but rather two unstable ECMs. Moreover, at a sufficiently
long delay, ECMs already have high-dimensional weakly unstable manifold at the SN point.
This is in contrast to the short delay regime, where at SN point a pair of stable and unstable

ECMs appears.
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-0.08 Weak modulational |

0.2

Figure 5: Region of weak modulational instability (gray area) in the (w./V)-plane, enclosed by (22)
and branch-switching (dashed), given by (23). Bold curve: ellipse of ECMs for 7 = 0.1. There are
no ECMs in the region N > J = 0.01; a = 3.

Im A Im A Im A
— — T
\ T ReA \> T ReA > T ReA
w > (o +1/a)N w = (a +1/a)N w < (o +1/a)N

Figure 6: Transition form modulational to uniform instability by branch-switching.

C. Weak Turing instability

A weak Turing instability occurs when a branch of pseudo-continuous spectrum touches

the imaginary axis and the interval of frequencies 0 < p_ < p < py < oo is destabilized,

cf. Fig. 3(III).

For a given branch ~(u) of the pseudo-continuous spectrum, the condition for the onset

of Turing instability is

Y(pr) =0, ~(ur) =0, pr#0. (24)

Since analytic expressions are becoming non tractable, we solve the system (24) together
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with (18) numerically. By a continuation procedure we can find solution curves w(N) for
a fixed choice of parameters o and a. The result of such a continuation is given by the
solid line (T) in Fig. 7. Together with the dashed line (M), where the Turing instability
is transformed into a modulational instability, it constitutes the boundary of the region of
Turing-unstable ECMs. The dynamics in the vicinity of such ECMs is determined by a large
number of weakly unstable eigenmodes which are located close to the relaxation frequency
of the solitary laser. This situation, where the oscillation mode of the solitary laser is split

into a number of resonances by the delayed feedback has already been described in [13].

N
2004} T M
-0.08 f
7 Turing instability
.
-0.4 -0.2 0 0.2

Figure 7: Region of weak Turing-instability in the plane (w, N') (gray), enclosed by the curve (24)

(T), and a transition to modulational instability (M), cf. Fig.5.

D. Weak uniform instability

The weak uniform instability occurs when a branch of the pseudo-continuous spectrum is
positive v;(x) > 0 for some interval —pg < p1 < 19, where po > 0, cf. 4(c). Recalling that as
a result of the phase-shift invariance one branch of the pseudo-continuous spectrum passes

always through the origin, the condition for the onset of weak uniform instability is
71,2(0) =0

i.e. both branches meet the origin. Using Eq. (17), this requires either Y; =1 or Y; = —1.
The first condition is satisfied at the saddle-node point (23) where the branch-switching
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transition from modulational to uniform instability takes place. The second condition Y; =
—1 describes a transition to uniform instability without a branch-switching and leads to the

condition
1+2N

1+2J

Combining Egs. (23) and (25), we obtain a region of weak uniform instability, which is shown

N?+ 3% +

(J — N)(af — N) =0, (25)

in Fig. 8.

N
| Weak uniform instability
-0.04
-0.08 |
SN
-0.4 -0.2 0 0.2

Figure 8: Region of weak uniform instability in the plane (w, N) (gray area); the boundary is given

by (25) and (23), cf. Fig. 5.

E. Strong antimode instability

As we already mentioned above, any destabilization in systems with large delay is me-
diated by the PCS. Consequently, the onset of a strong instability is always a transition
from weak to strong instability. Strong antimode instability we call the occurrence of an
eigenvalue A which is real with A > 0 and behaves asymptotically as A = O(1) for large
7. Figure 3(V) shows the spectrum of an ECM with such an instability: One leading real
eigenvalue can be observed. In order to obtain the corresponding condition for the onset of
this type of strong instability, we have to look for solutions A = 0 of (16). This leads to the

condition
1+2N

1+2J

N? + 3 +2 (J = N)(af — N) =0. (26)
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Arguing similarly as above, we can find that this stability boundary is always located in the
half-plane above the asymptotic saddle-node line (23), i.e in the region where N — a3 > 0.

In Fig. 9 we have plotted condition (26) after substituting & = 3 and J = 0.01 and
solving with respect to w(N). The obtained curves delineate a region, where strong antimode
instability occurs. In Fig. 9, this region is shown in gray. Before the onset of this instability,
the ECMs are already weakly uniform unstable. The weak uniform instability originates
from the branch-switching (23). Recalling from (6) that n* = N? 4+ 32, one can observe
that, according to Eq. (26), the distance from the branch-switching to the strong antimode
instability is of order n?, i.e. it decreases quadratically for small values of 7. By this reason
we interpret this instability as the principal origin of the instability of the antimodes in the

upper half of the ellipse and call it strong antimode instability.

N
-0.04 +
-0.08 SN
L .~
-0.4 -0.2 0 0.2

Figure 9: Region of strong antimode instability in the (w, N)-plane (gray). The distance to the

onset of weak uniform instability at the asymptotic saddle-node (SN) is of order n?.

The dynamics in the neighborhood of the strongly unstable antimodes is determined by
the leading unstable characteristic root. Therefore, the orbit, which starts in the vicinity
of such ECM will be repelled along a one-dimensional strong unstable manifold on a time
scale which is faster than the delay time 7. In addition, it is interesting to note that the

condition (26) for this instability is independent on the parameter e.
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F. Strong oscillatory instability

Strong oscillatory instability occurs when a pair of characteristic roots \; o = v £ with
v > 0 and Q # 0 appears, and the real part scales as v = O(1) for 7 — co. Figure Fig. 3(VI)
shows an example of such a spectrum. According to (13), the strongly unstable eigenvalues
are approximately given by eigenvalues \; o = v £ i€ with positive 7 of the instantaneous
characteristic equation (16). The condition for the onset of this instability can be found by
inserting A = i) into (16). Separating real and imaginary parts, the frequency 2 can be
eliminated as

Q= N>+ 3 +2¢(a®> — N), (27)

leading to the condition

N(N*+ %) +¢

J—2N(N+1) 1+2J
ON —
1+ 2N { “T+2N

} +e(J—N)(af — N) =0. (28)
Figure 10 illustrates the region of strong oscillatory instability (gray area). The boundary
of this region, is a solution to (28). One can notice, that the strong oscillatory instability
appears mainly for ECMs with positive inversion N. Indeed, the condition (28) can be
further simplified by taking into account the scaling of other parameters. For instance, if
e < nand ¢ < w, we obtain the approximation N ~ ¢Ja/w as a criterion for the occurrence

of the strong oscillatory instability.

-strong oscillatory inst.
-0.04 +

-0.08 1

-0.4 -0.2 0 0.2

Figure 10: Region of strong oscillatory instability in the (w, IV)-plane, determined by Eq. (28) (gray

area).
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The dynamics in the neighborhood of the strongly oscillatory unstable ECMs are deter-
mined by the leading pair of unstable characteristic roots A\; o = v £ €2, v > 0. Therefore,
an orbit, which starts in the vicinity of such ECM will be repelled along the two-dimensional
unstable manifold exhibiting oscillatory behavior with the frequency €2. The time of escaping

is much less than the round-trip time 7 like in the case of antimode instability.

G. Combined stability map of ECMs and primary destabilization mechanisms

Collecting together the results from the preceding sections, we show in Fig. 11 the global
picture for the regions with different stability properties (cf. Figs. 5-10).

[ Stable Weak bifurcations Strong bifurcations

] Weakly unst. [§ — Turing-type — Hopf

[ Strongly unst. § — Modulational o
N W Forbidden Uniform Antimode
-0.04 + VI
-0.08 P 1 / ~ v

i /‘ -
-0.4 -0.2 0 0.2
()

Figure 11: Combined stability map for ECMs. The numbers I to VI denote the type of spectrum

for the corresponding region. Corresponding spectra are given in Fig. 3.

Based on this rather complicated picture, we can summarize the following main observa-

tions and results:
e There is a region of stable ECMs around the maximum gain mode (I).

e On the lower part of the ellipse (modes), the stable region is followed by a large weakly
unstable region. The stability boundary is given by a Turing instability (IIT), which

is followed by a transition to modulational instability (IV).

e The ECMs on the upper part (antimodes) are mainly strongly unstable. In a rather

small region close to the maximum gain mode, first a weak modulational instability
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(IT) appears which, after a transition to uniform instability transforms into a strong

antimode-instability (V).

e In the region close to N = 0, a strong oscillatory instability (VI) can be observed,

both for modes and antimodes.

Note that this global picture can provide a more detailed understanding of the well known
low-frequency-fluctuations [12]. In this regime, the solutions move close to the weakly unsta-
ble ECMs along the lower part of the ellipse. The high dimensional chaotic behavior along
this itinerary is governed by the high dimensional weakly unstable manifolds of the weakly
unstable ECMs. Finally, they come close to the maximum gain mode, where the influence

of the nearby strong instability leads to the well-known power dropout.

VI. CONCLUSIONS

Using a new asymptotic approach for delay equations with large delay, we have studied
in detail the stability properties of the ECM solutions of the Lang-Kobayashi system. Equa-
tions (16) — (18) provide simple asymptotic expressions for the location of infinitely many
eigenvalues and describe two different types of their scaling behavior for large delay 7. In
contrast to earlier works we use no further scaling assumptions except that the delay time
7 is large. Based on these asymptotic expressions for the location of the spectrum, we are
not only able to describe the stability properties of a single ECM solution, but also to find
conditions for the transition between stability an different types of instability. Since the
destabilization in delay equations with large delay involve a large number of eigenvalues, we

can classify different types of instabilities in analogy to spatially extended systems.
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