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Abstract

We consider a new adaptive finite element (AFEM) algorithm for el-
liptic PDE-eigenvalue problems. In contrast to other approaches we incor-
porate the iterative solution of the resulting finite dimensional algebraic
eigenvalue problems into the adaptation process. In this way we can bal-
ance the costs of the adaption process for the mesh with the costs for the
iterative eigenvalue method. We present error estimates that incorporate
the discretization errors, approximation errors in the eigenvalue solver and
roundoff errors and use these for the adaptation process. We show that
for the adaptation process it is possible to restrict to very few iterations
of a Krylov subspace solver for the eigenvalue problem on coarse meshes.
We present several examples and show that this new approach achieves
much better complexity than previous AFEM approaches which assume
that the algebraic eigenvalue problem is solved to full accuracy.
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1 Introduction

Many modern technological applications, e.g. computation of acoustic fields
or energy levels in quantum mechanics, involve the solution of the eigenvalue
problems for partial differential equations (PDEs). It is well understood that
numerical methods for PDEs, such as the finite element method (FEM) with
fine meshes, give good approximations but they typically lead to a very high
computational effort. Therefore, it has been an important research topic in the
last 30 years to design adaptively refined meshes to reduce the computational
complexity, while retaining the overall accuracy. This approach is usually called
the adaptive finite element method (AFEM). An adaptation of the mesh requires
to determine the regions where the solution deviates from a regular behavior and
concentrating grid points in these regions. To do this, a priori and a posteriori
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error estimates for the error between the exact solution and the computational
solution are computed and used to control the mesh refinement. In most AFEM
approaches it is assumed that the resulting finite dimensional algebraic problem
(linear system or eigenvalue problem) is solved exactly and the computational
costs for this part of the method as well as the fact that this problem is solved in
finite precision arithmetic are typically ignored. This is acceptable if the costs
for the algebraic problems are small and these problems are well-conditioned
so that the solution of these problems to full accuracy is possible. However, in
particular, in the context of eigenvalue problems, often the costs for the solution
of the algebraic eigenvalue problem dominate the total costs, and (in particular
for nonsymmetric problems) the desired accuracy may not be achievable due to
ill-conditioning.

In this paper we therefore introduce a new approach for the adaptive finite
element solution of elliptic PDE eigenvalue problems that incorporates the solu-
tion (in finite precision arithmetic) of the algebraic problem into the adaptation
process. In order to stress this fact we call the new approach AFEMLA, where
the letters ’LA’ indicate that the adaptation also involves the numerical Linear
Algebra part of the process. We will focus on the computation of the smallest
real eigenvalues of selfadjoint elliptic PDE eigenvalue problems with associated
real symmetric algebraic eigenvalue problems. The extension of these ideas
to eigenvector computation and to the solution of non-selfadjoint problems is
discussed in forthcoming papers.

We begin the discussion with a short historical overview of the development
of adaptive finite element methods for elliptic selfadjoint eigenvalue problems.

First a priori error estimates for eigenvalues and eigenvectors were developed
for elliptic operators by Strang and Fix [41]. Further improvements were estab-
lished for selfadjoint operators by Chatelin [16], Raviart and Thomas [38], and
Knyazev [27]. Babuška and Osborn [5], [6] proved estimates for compact oper-
ators. All these approaches, although optimal, contain mesh size restrictions,
i.e. the mesh has to be sufficiently refined (h << 1) which cannot be verified or
quantified, neither a priori nor a posteriori.

In 2006 Knyazev and Osborn [32] presented first truly a priori error estimates
for symmetric eigenvalue problems. They introduced new a priori bounds for
eigenvalues based on angles between subspaces and proved that the eigenvalue
error depends on the approximability of the eigenfunctions in the corresponding
invariant subspace both for single and multiple eigenvalues. Other works by
Argentati et al. [3], Knyazev and Argentati [31] take advantage of this technique
to obtain a priori Rayleigh-Ritz majorization error bounds and apply them in
the context of the finite element method. Further results on a priori error
estimates can be found in Raviart and Thomas [38] and Larsson and Tomée
[34].

Since a priori error estimates yield information about theoretical properties
such as asymptotic convergence rates or stability, one needs some fully com-
putable lower and upper error bounds to control an adaptive mesh refinement
procedure. On the other hand a posteriori error estimators, based on the numer-
ical solution and initial data, control the whole adaptive process by indicating
the error distribution.

A first approach on a posteriori error analysis for symmetric second order
elliptic eigenvalue problems can be found in Verfürth [44]. These results, though
of only suboptimal order, introduced a new way of analyzing eigenvalue problems
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as parameter dependent nonlinear equations.
A combination of a posteriori and a priori analysis was used by Larson [33]

to prove a posteriori estimates of optimal order. Under the assumption that
the mesh is fine enough to guarantee that the computed eigenvalue is close
to the exact one as well as appropriate regularity of the eigenfunction, it was
proved that for smooth eigenvectors the error in eigenvalues and eigenvectors is
bounded in terms of the mesh size, a stability factor, and the residual.

Durán, Padra, and Rodŕıguez [21] showed that the edge residual (i.e. the
residual on the edges of the mesh) is an upper bound for the volumetric part of
the residual. They constructed an explicit residual-based estimator equivalent
to the error up to higher order terms. Mao, Shen, and Zhou [35] achieved
similar results by applying a local averaging technique. Also Neymeyr [37],
based on the analysis of the residual equations, presented an a posteriori error
estimator that works on a subspace of eigenvector approximations obtained by
the preconditioned inverse iteration.

Recently Carstensen and Gedicke [15] improved the results by Durán et
al. [21] and Mao et al. [35] by showing that for all eigenvalues refinement is
possible without the volume contribution in the estimator and that the higher
order terms can in fact be neglected.

An approach for nonsymmetric elliptic eigenvalue problems was presented
by Heuveline and Rannacher [25]. Using the general optimal control framework
of Galerkin approximations of nonlinear variational equations by Becker and
Rannacher [9] they developed a residual-based estimator with explicitly given
remainder terms. Unfortunately also this result, as it needs the knowledge of
the exact solution of the adjoint problem and provides only upper bounds of
the error, is not a true a posteriori error estimate. A survey about a posteriori
error estimation can be found in the books of Verfürth [44] and Ainsworth and
Oden [1].

Recently some work has been carried out towards proving optimality of the
adaptive finite element method for second order elliptic eigenvalue problems.
Giani and Graham [23] proved convergence of an adaptive linear finite element
method for computing eigenpairs with a refinement procedure that considers
both a standard a posteriori error estimator and eigenfunction oscillations. The
global convergence result by Carstensen and Gedicke [15] requires no additional
mesh size assumptions and inner node properties. Additionally their AFEM
with an averaging scheme has optimal empirical convergence rate. Nearly at
the same time Garau, Morin and Zuppa [22] proved convergence of AFEM for
any reasonable marking strategy and any initial mesh.

Also some complexity estimates for adaptive eigenvalue computations were
obtained by Dahmen et al. [18].

As we have already noted, none of these discussed approaches is complete.
In particular, in all these approaches the error and complexity of the algebraic
eigenvalue problems is ignored. This may be partially justified for those elliptic
boundary value problems, where the solution of small dense symmetric posi-
tive definite linear systems can be easily achieved with direct methods like the
Cholesky decomposition, or iterative methods like the conjugate gradient meth-
ods. Even in the case of linear boundary value problems, however, this may not
be justified if the algebraic problem is ill-conditioned.

In the context of eigenvalue problems, however, the cost for the solution of
the algebraic eigenvalue problem often dominates the overall costs and the error
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estimates for the solution of the algebraic eigenvalue problem with an iterative
method have to be included.

The long term goal of our work is to develop fully adaptive algorithms for lin-
ear and nonlinear, selfadjoint and non-selfadjoint eigenvalue problems for PDEs.
To achieve this objective, we first investigate elliptic eigenvalue problems for
selfadjoint operators to find an alternative way of working when fundamental
theoretical results, eg. min-max principles [19], are not available. In this paper
we focus on the computation of a few smallest eigenvalues of elliptic selfadjoint
PDE eigenvalue problems. This paper is organized as follows: In Section 2
we introduce the notation and basic facts about elliptic eigenvalue problems
and the Ritz-Galerkin method. The construction of the AFEMLA algorithm
is presented in Section 3. Section 4 contains error bounds for the discrete and
continuous eigenvalues based on backward error analysis and a saturation as-
sumption. Finally Section 5 contains some numerical examples.

2 Notation and preliminaries

Let Ω be a bounded, polygonal domain in Rd, d = 1, 2, 3. We consider the
variational formulation of an elliptic eigenvalue problem of the form

Find an eigenpair (λ, u) ∈ R× U s.t. (2.1)
a(u, v) = λb(u, v) for all v ∈ V,

where (V, ‖ · ‖V ) and (U, ‖ · ‖U ) are Hilbert spaces.
The inner products and their induced norms will be denoted by (·, ·)V , ‖ ·

‖V :=
√

(·, ·)V and b(·, ·), ‖ · ‖U :=
√

b(·, ·), respectively.
We assume that the bilinear form a : V × V → R is bounded, i.e.

|a(u, v)| ≤ C‖u‖V ‖v‖V for all u, v ∈ V, with some constant C > 0,

and V-elliptic, i.e.

a(v, v) ≥ α‖v‖2V for all v ∈ V, for some α > 0.

For the symmetric case, i.e. when

a(u, v) = a(v, u) for all u, v ∈ V,

a(·, ·) defines an inner product for V and its induced norm ‖ · ‖a =
√

a(·, ·),
called energy norm, is equivalent to the ‖ · ‖V norm on V . In the following we
will use a classical Galerkin approach with U = V .

Let TH be the partition of the domain Ω̄ into elements and let Pp denote
the set of continuous piecewise polynomial functions of total degree p ≥ 1 [10].
Then the Ritz-Galerkin discretization of (2.1) is given by

a(uH , vH) = λHb(uH , vH) for all vH ∈ VH , (2.2)

where VH ⊂ V is finite dimensional with dimension dim VH = nH , i.e.

VH(Ω) := {v ∈ V : v|T ∈ Pp, for all T ∈ TH} .
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Here, subscripts H, h correspond to diameters of the coarse and the fine space
elements, respectively (i.e. H > h). Suppose that

{
ϕH

1 , . . . , ϕH
nH

}
, is a basis for

VH . Since globally the solution uH is determined by its values at the nH grid
points it can be written as

uH =
nH∑
i=1

uH,iϕ
H
i .

Then (2.2) can be written as a generalized eigenvalue problem of the form

AHuH = λHBHuH ,

where

AH := [a(ϕH
i , ϕH

j )]1≤i,j≤nH
, BH := [b(ϕH

i , ϕH
j )]1≤i,j≤nH

,

and
uH = [uH,i]1≤i≤nH

.

The matrix AH is usually called the stiffness matrix and BH the mass matrix.
In the following we will concentrate on the solution of a model problem

of the form

−∆u = λu in Ω, (2.3)
u = 0 on ∂Ω.

A corresponding weak formulation is of the form

Determine u ∈ V s.t. a(u, v) = λb(u, v) for all v ∈ V, (2.4)

where V := H1
0 (Ω) with usual norm ‖ · ‖V := ‖ · ‖H1

0 (Ω). The bilinear form a(·, ·)
is bounded, V-elliptic and symmetric, b(·, ·) represents the standard L2(Ω) inner
product. It is known that (2.4) has a countable set of real eigenvalues [37]

0 < λ1 ≤ λ2 ≤ . . . .

and corresponding eigenfunctions

u1, u2, . . . .

We discretize (2.4) using the standard finite element space of continuous piece-
wise linear elements to obtain uH ∈ VH from the finite dimensional variational
formulation

a(uH , vH) = λH(uH , vH) for all vH ∈ VH .

In every T ∈ TH , a function vH ∈ VH has the form v(x, y) = w1x + w2y + w3,
and is uniquely defined by its values at the three vertices of the triangle.

The associated algebraic eigenvalue problems is given by

AHuH = λHBHuH , (2.5)

where AH and BH are symmetric and positive definite matrices. The algebraic
generalized eigenvalue problem (2.5) has a finite set of eigenvalues

0 < λ1,H ≤ λ2,H ≤ . . . ≤ λnH ,H
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and corresponding eigenvectors

u1,H ,u2,H , . . . ,unH ,H .

It follows from the Courant-Fischer minmax theorem [19] that

λi ≤ λi,H for all i = 1, . . . , nH .

In subsequent sections we will use different notation. To distinguish continu-
ous, discrete and approximated eigenvalues with λi we denote an eigenvalue of
the problem (2.3), λi,H (or λi,h) will define the eigenvalues of the discretized
algebraic eigenvalue problem associated with the space VH (or Vh), while λ̃i,H

(or λ̃i,h) denote the approximation of λi,H (or λi,h) computed by an iterative
eigenvalue solver in finite precision arithmetic. In the following when no index
is given in λi, λi,H (or λi,h), λ̃i,H (or λ̃i,h) then we mean λ1, λ1,H (or λ1,h),
λ̃1,H (or λ̃1,h), respectively. The corresponding eigenfunctions, eigenvectors and
computed eigenvectors are denoted in a similar fashion.

3 The AFEMLA Algorithm

The standard AFEM approach for eigenvalue problems is based on discretizing
the variational formulation using the Ritz-Galerkin method on a given grid and
solving the resulting generalized algebraic eigenvalue problem by an iterative
solver. Based on this trial solution a posteriori error estimates are determined
and used to refine the grid. This typically assumes that the algebraic eigenvalue
problem is solved exactly. But often the computational costs for the algebraic
eigenvalue problems dominate the total computational cost, since one may have
to solve many algebraic eigenvalue problems related to finer and finer grids and
information from the previous steps of the adaptive procedure like approximated
eigenvalues is not used on the next level, which is a huge loss.

As an alternative one could think of the construction of iterative methods
(like Krylov subspace methods) for the PDE formulation of the eigenvalue prob-
lem and then using some local discretization techniques, but this would require
the solution of a PDE boundary value problem per iteration step.

We introduce a new adaptive finite element algorithm called AFEMLA which
combines the two mentioned ideas and incorporates the information obtained
during the iterative solution of the algebraic eigenvalues problems into the error
estimation and refinement process. Since the accuracy of the computed eigen-
value cannot be better than the quality of the discretization, there is no need to
solve the algebraic eigenvalue problem up to very high precision if the discretiza-
tion scheme guarantees only small precision. The goal of adaptive methods is
to achieve a desired accuracy with minimal computational effort. To achieve
this goal, in order to determine the error estimates, we only solve the algebraic
eigenvalue problem on the current coarse grid and use classical perturbation
results from finite dimensional eigenvalue problems to determine the errors on
the fine mesh.

As in the standard case of AFEM our adaptive finite element method consists
typically of the loop

Solve → Estimate → Mark → Refine
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After discretizing we solve the algebraic eigenvalue problem using a Krylov
subspace method on the coarse mesh but we do not solve this problems exactly
but stop the iteration early, when sufficient information is available. As stopping
criteria in the iterative procedure we can either use a maximal number k of
Arnoldi/Lanczos steps or a desired tolerance. This significantly reduces the
cost in the algebraic eigenvalue solvers.

For a given matrix M ∈ RnH×nH (which in our case corresponds to B−1
H AH ,

and a nonzero starting vector v1 ∈ RnH Krylov subspace methods generate the
Krylov subspace Km(M,v1) = span{v1, Mv1, M

2v1, . . . ,M
m−1v1} and deter-

mines an orthogonal basis for this subspace spanned by the columns of a matrix
Vj . In general this is called the Arnoldi method or the Lanczos method if M is
symmetric and an implementation via a three term recurrence is used.

The approximations to the eigenvalues of the matrix A are then determined
via the eigenvalues (called Ritz values) of the Hessenberg matrix Hj which rep-
resents an orthogonal projection Hj = V T

j MVj of the matrix M to Km(M,v1).
Lifting the eigenvectors u1, . . . ,uj associated to the eigenvalues µ1, . . . , µj of Hj

by setting uk,H = Vjuk, k = 1, 2, . . . , j then yields eigenvector approximations
for the given matrix M , i.e. for the generalized eigenvalue problem (2.5).

The Arnoldi process is usually terminated at step j, when Kj(M,v1) is ap-
proximately invariant under M or when a desired tolerance tol is reached. Then
we have determined an approximation λ̃H to an eigenvalue λH of the general-
ized eigenvalue problem (2.5). With an approximation ũH to the corresponding
eigenvector uH , it follows that the corresponding approximate eigenfunction is
given by

ũH =
nH∑
i=1

[ũH ]iϕH
i =

nH∑
i=1

ũH,iϕ
H
i .

We then want to check the quality of this solution and use to this information
for adaptation. From a geometric point of view, it is our goal to enrich the
space VH corresponding to the coarse mesh TH by further functions. Since VH

corresponding to TH is a subspace of Vh corresponding to Th, which is obtained
by a uniform refinement of TH , every function from the coarse space may be
expressed as a linear combination of functions from the fine space. A uniform
refinement of every single triangle, also called red refinement, is usually realized
by joining the midpoints of the edges [44].

If {ϕh
1 , . . . , ϕh

nh
} is a finite element basis for Vh then we have the identity

ũH =
nH∑
i=1

ũH,iϕ
H
i =

nh∑
i=1

ûh,iϕ
h
i ,

with an appropriate coefficient vector ûh.
Since every basis function {ϕH

i }
nH
i=1 can be expressed as a linear combination

of the basis functions {ϕh
i }

nh
i=1, the relationship between the coefficient vectors

ûh and ũH can be described by multiplication with a prolongation matrix Ph
H ,

that is easily constructed [10, 12]. In the following, for simplicity, we leave off
the dependency on the mesh sizes and write P instead of Ph

H when this is clear
from the context.

Using this, for the corresponding prolongated coordinate vector associated
with the computed eigenvector ũH in the fine space, we have

ûh = P ũH . (3.1)
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We can then compute the corresponding residual

r̂h = Ahûh − λ̂hBhûh.

This gives us a natural way of estimating the error in the computed eigenfunction
using the coarse grid solution combined with fine grid information, namely we
can prolongate an already computed approximation ũH from the coarse grid
to the fine grid. Then every entry in the residual vector r̂h corresponds to the
appropriate basis function from the fine space. Furthermore, we know that if
the i-th entry in the vector r̂h is large, then the i-th basis function has a huge
influence on the solution, namely its support should be further investigated [26].
All those basis functions with large entries in the vector r̂h together with all
basis functions from the coarse space form a basis for the new refined space.
The decision on whether an entry in residual vector is small or large is based
on different criteria, e.g. a prescribed tolerance or bulk strategy [20].

When we have identified the basis functions that should be added to enrich
our trial space, we simply mark all edges that contain the corresponding nodes.
In order to avoid hanging nodes or irregular triangulations, we mark some ad-
ditional edges using a closure algorithm, i.e. if edge E is marked and it is not
a reference edge (longest edge) of the element, we add the reference edge to
the set of marked edges. If an element T ∈ TH has one, two, or three edges
marked, we refine it by green-, blue-, or red-refinement, respectively, [2, 11, 44].
After finishing the refinement procedure we have a new mesh, which will be an
initial mesh for the next loop of our adaptive algorithm. Algorithm 1 presents a
pseudo-code of this algorithm. In this algorithm we use a fixed number of steps
k for the iterative method to solve the algebraic eigenvalue problem or we stop
the iterative procedure based on a tolerance that is related to the discretization
error. We will discuss this issue further in Section 4.

Having defined a basic refinement procedure, it is necessary to theoretically
analyze this procedure.

4 A priori and a posteriori error bounds

In this section we analyze the refinement procedure theoretically. We discuss
the question whether the residual vector provides sufficient information for the
refinement procedure. In order to answer this question we will first analyze
eigenvalue error bounds based on the backward error analysis for the algebraic
eigenvalue problem arose after discretizing the PDE-eigenvalue problem.

We begin by recalling some classical perturbation and backward error results
for eigenvalue problems.

Theorem 4.1 ([7, 45]). Consider a real n× n matrix M .
Let (λ̃, x̃) be a computed eigenpair of M with normalized x̃, i.e. ‖x̃‖2 = 1

and let r = Mx̃ − λ̃x̃. Then (λ̃, x̃) is an exact eigenpair of the matrix M + E,
where the backward error matrix E satisfies ‖E‖2 = ‖r‖2.

This theorem shows that the backward error is of the size of the residual
and thus it remains to analyze the conditioning of the eigenvalue which is char-
acterized in the following theorem.
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Algorithm 1 AFEMLA for elliptic Poisson eigenvalue problem
Input: An initial regular triangulation T i

H , a maximal number k of Arnoldi
steps or a tolerance tol and a desired accuracy ε.

Output: Approximation λ̃1 to the smallest eigenvalue λ1 (2.1) together with
the corresponding approximate eigenfunction u1.
Solve: Compute the smallest eigenvalue λ̃H and associated eigenvector ũH

for the algebraic eigenvalue problem (2.5) associated with the coarse mesh
T i

H , the Arnoldi method will be terminated after k steps or when desired a
tolerance tol is reached.
Express ũH using basis functions from the mesh T i

h that is obtained by uni-
formly refining T i

H . With the prolongation matrix P from the coarse mesh
T i

H to the fine mesh T i
h compute ûh = P · ũH .

Estimate: Determine the residual r̂h = Ahûh − λ̃hBhûh for the associated
eigenvector ûH and identify all large coefficients in r̂h and corresponding basis
functions (nodes).
if ‖r̂h‖ < ε then

return (λ̂h, ûh)
else

Mark: Mark all edges that contain identified nodes and apply a closure
algorithm.
Refine: Refine the coarse mesh T i

H using RedGreenBlue refinement to get
T i+1

H .
Start Algorithm 1 with T i+1

H .
end if
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Remark 4.2. When we have the computed eigenvalue and eigenfunction then
it is possible, at least in the interior of the elements, to compute the analytic
residual for (2.3)

r̃H = ∆ũH − λ̃H ũH .

Theorem 4.3 ([19], p. 149). Consider an n×n matrix M and let λ be a simple
eigenvalue of M with right eigenvector x and left eigenvector y, normalized so
that ‖x‖2 = ‖y‖2 = 1. Let λ̃ = λ + δλ be the corresponding eigenvalue of a
perturbed matrix M + E. Then

λ̃− λ =
y∗Ex

y∗x
+ O(‖E‖2),

and

|λ̃− λ| = |δλ| ≤ ‖E‖
|y∗x|

+ O(‖E‖2),

where y∗ = ȳT is the conjugate transpose of y.

The quantity 1
|y∗x| is called the condition number of the simple eigenvalue λ

of A.
From Theorems 4.1, 4.3 we see that if a simple eigenvalue λ is well-conditioned

and if the backward error E has small norm, then the computed eigenpair (λ̃, x̃)
is a good approximation of the exact eigenpair (λ, x). In the symmetric case,
where 1

|y∗x| = 1
|x∗x| = 1, it thus follows that a small residual ‖r‖2 implies a good

eigenvalue approximation. A theorem of Weyl shows that in the symmetric case
this is true for each eigenvalue individually.

Theorem 4.4 (Weyl, [19] p. 201.). Let M and E be n×n symmetric matrices.
Let λ1 ≤ . . . ≤ λn, be the eigenvalues of M and λ̃1 ≤ . . . ≤ λ̃n be the eigenvalues
of M + E. Then

|λ̃i − λi| ≤ ‖E‖2.

These classical results are easily extended to generalized eigenvalue problems
see [40]. We derive the necessary results for completeness.

Theorem 4.5. Let A, B be n × n matrices and let B be invertible. Let λ̃ be
a computed eigenvalue for the matrix pair (A, B) and let x̃ be an associated
normalized eigenvector, i.e. ‖x̃‖2 = 1. Let r = Ax̃− λ̃Bx̃. Then λ̃ is an exact
eigenvalue with associated eigenvector x̃ of a pair (A + E,B), where ‖E‖2 =
‖r‖2.

Proof. For the computed eigenpair (λ̃, x̃) of Ax = λBx and the residual vector
r = Ax̃− λ̃Bx̃ we have

r = rx̃∗x̃,

since ‖x̃‖2 = 1. Thus, we obtain

Ax̃− r = Ax̃− rx̃∗x̃ = (A− rx̃∗)x̃ = λ̃Bx̃,

and hence (λ̃, x̃) is an exact eigenpair of (A + E,B), where E is given by

E = −rx̃∗. (4.1)

This completes the first part of the proof.
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It follows from (4.1) that

‖E‖2 = ‖ − rx̃∗‖2 ≤ ‖r‖2‖x̃∗‖2 = ‖r‖2, (4.2)

but on the other hand we have that

‖r‖2 = ‖ − r‖2 = ‖ − rx̃∗x̃‖ = ‖Ex̃‖2 ≤ ‖E‖2‖x̃‖2 ≤ ‖E‖2. (4.3)

Inequalities (4.2) and (4.3) together give that ‖E‖2 = ‖r‖2.
The associated condition number is obtained as follows.

Theorem 4.6. Consider a pair (A, B) of real n× n matrices and assume that
B is invertible. Let λ be a simple eigenvalue of the pair (A, B) with right eigen-
vector x and left eigenvector y, normalized so that ‖x‖2 = ‖y‖2 = 1. Let
λ̃ = λ + δλ be the corresponding eigenvalue of the pair (A + E,B) with eigen-
vector x̃ = x + δx. Then

λ̃− λ =
y∗Ex

y∗Bx
+ O(‖E‖2),

and

|λ̃− λ| ≤ ‖E‖
|y∗Bx|

+ O(‖E‖2).

Proof. Following the proof in [[19] p. 149], from Theorem 4.5 we see that (λ̃, x̃)
is an exact eigenpair of a matrix pair (A + E,B), i.e. we have

(A + E)x̃ = λ̃Bx̃

and
(A + E)(x + δx) = (λ + δλ)B(x + δx). (4.4)

Subtracting Ax = λBx from (4.4) we get

Aδx + Ex + Eδx = λBδx + δλBx + δλBδx.

Neglecting the second-order terms Eδx and δλBδx, we get as first order ap-
proximation

Aδx + Ex = λBδx + δλBx. (4.5)

Multiplying (4.5) with y∗ from the left, we get (up to higher order terms)

y∗Aδx + y∗Ex = λy∗Bδx + δλy∗Bx. (4.6)

Since y∗Aδx = λy∗Bδx, it follows that (4.6) is equivalent to

y∗Ex = δλy∗Bx.

Then, finally, from (4.7) we obtain

λ̃− λ = δλ =
y∗Ex

y∗Bx
+ O(‖E‖2),

|λ̃− λ| = |δλ| = ‖y∗Ex‖2
‖y∗Bx‖2

≤ ‖E‖2
|y∗Bx|

+ O(‖E‖2).
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The quantity 1
|y∗Bx| is again called the condition number of the simple eigen-

value λ. Since ‖E‖2 = ‖r‖2, for a small residual vector, good accuracy of the
eigenvalue depends on this condition number.

In our special case of a symmetric generalized eigenvalue problem with pos-
itive definite B, we thus obtain the following result.

Corollary 4.7. Let (λ, x) with ‖x‖2 = 1 be an exact eigenpair for a real sym-
metric matrix pair (A, B) with positive definite matrix B and let (λ̃, x̃) be a
corresponding computed eigenpair. Then

|λ̃− λ| ≤ ‖r‖2‖B−1‖2.

Proof. By Theorem 4.6 we have

|λ̃− λ| = ‖y∗Ex‖2
|y∗Bx|

, ‖E‖2 = ‖r‖2.

Since in our case the left eigenvector is real and satisfies y = x, we obtain

1
|y∗Bx|

≤ 1
λmin(B)

= λmax(B−1) = ‖B−1‖2,

where λmin(B) is the minimal eigenvalue of B and λmax(B−1) is the maximal
eigenvalue of B−1.

Hence with

|λ̃− λ| = ‖xT Ex‖2
|xT Bx|

≤ ‖r‖2
|xT Bx|

≤ ‖r‖2‖B−1‖2

the proof is complete.
Using the previous theorems we will now prove some error bounds for the

discrete and continuous eigenvalues. We will denote by (λ, u) the exact pair of
eigenvalue and eigenfunction of (2.3), for diam = h, H, by (λdiam ,udiam ) the
exact and by (λ̃diam , ũdiam ) computed eigenpairs for the discrete formulation
with respect to the finite space Vdiam . We denote by (λ̂h, ûh) the eigenpair
obtained from the prolongation of the eigenvector ũH to the finite space Vh.
The corresponding residual vectors will be denoted by

rH = AH ũH − λ̃HBH ũH , (4.7)
rh = Ahũh − λ̃hBhũh, (4.8)

r̂h = Ahûh − λ̂hBhûh. (4.9)

We then have the following error bounds.

Theorem 4.8. Let (λH ,uH), (λh,uh) be the exact eigenvalues and associ-
ated eigenvectors of the matrix pairs (AH , BH), (Ah, Bh), respectively, and let
(λ̃H , ũH), (λ̃h, ũh) be corresponding computed eigenpairs. Let the eigenvector
uH , uh be normalized, i.e. ‖uH‖2 = ‖uh‖2 = 1. Then the following estimates
hold.

|λ̃H − λH | ≤ ‖rH‖2‖B−1
H ‖2, (4.10)

|λ̃h − λh| ≤ ‖rh‖2‖B−1
h ‖2, (4.11)

|λ̂h − λh| ≤ ‖r̂h‖2‖B−1
h ‖2. (4.12)

12



Proof. With rH = AH ũH − λ̃HBH ũH , by Theorem 4.7 we get

|λ̃H − λH | ≤ ‖rH‖2‖B−1
H ‖2.

Analogously, for rh = AH ũh − λ̃hBhũh we get

|λ̃h − λh| ≤ ‖rh‖2‖B−1
h ‖2.

The last inequality then follows from (3.1) and the definition of r̂h = Ahûh −
λ̂hBhûh.

It should be noted that in our algorithm we do not compute the fine grid
eigenpair (λ̃h, ũh). For this reason, the fine grid residual ‖rh‖2 is not available.
Instead we use (λ̂h, ûh) as its approximation and have the following bounds.

Theorem 4.9. Let (λ̃H , ũH) be a computed eigenpair of the matrix pair (AH , BH)
and let (λ̂h, ûh) be the computed eigenpair obtained by the prolongation (with the
prolongation matrix P ) of ũH to the fine space Vh as defined in (3.1). Assume
that these vectors are normalized, i.e. ‖ũH‖2 = ‖ûh‖2 = 1. Then

|λ̃H − λ̂h| ≤
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
. (4.13)

Proof. Following Theorem 4.5, the eigenpairs (λ̃H , ũh), (λ̂h, ûh) are exact eigen-
pairs of the eigenvalue problems

(AH + EH)ũH = λ̃HBH ũH , (4.14)

(Ah + Êh)ûh = λ̂hBhûh, (4.15)

respectively.
Using the relation between the coarse and the fine mesh, i.e. that

PT AhP = AH , PT BhP = BH ,

it follows that (4.14) is equivalent to

(PT AhP + EH)ũH = λ̃H(PT BhP )ũH . (4.16)

Multiplying (4.15) from the left by PT gives

PT Ahûh + PT Êhûh = λ̂hPT Bhûh. (4.17)

Using the fact that P ũH = ûh, we can rewrite (4.16) as

PT AhP ũH + EH ũH = λ̃HPT BhP ũH . (4.18)

Subtracting (4.17) from (4.18) we then get

(λ̃H − λ̂h)(PT Bhûh) = PT Ahûh + EH ũH − PT Ahûh − PT Êhûh

and, applying the triangle inequality, finally

|λ̃H − λ̂h| =
‖EH ũH − PT Êhûh‖2

‖PT Bhûh‖2
≤ ‖EH ũH‖2 + ‖PT Êhûh‖2

‖PT Bhûh‖2

≤ ‖EH‖2‖ũH‖2 + ‖PT Êh‖2‖ûh‖2
‖PT Bhûh‖2

=
‖EH‖2 + ‖PT Êh‖2

‖PT Bhûh‖2

≤ ‖EH‖2 + ‖PT ‖2‖Êh‖2
‖PT Bhûh‖2

=
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
.
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Having obtained an estimate between the computed eigenvalue on the coarse
grid and the prolongated eigenvalue on the fine mesh we next obtain a com-
parison between the exact eigenvalue on the coarse grid and the prolongated
eigenvalue.

Theorem 4.10. Let (λH ,uH) be the exact eigenpair of the matrix pair (AH , BH)
and let (λ̂h, ûh) be the eigenpair obtained by the prolongation (3.1) of ũH to the
fine space Vh. Then the following bound holds.

|λH − λ̂h| ≤ ‖rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

.

Proof. Using the triangle inequality we get

|λH − λ̂h| = |λH − λ̃H + λ̃H − λ̂h| ≤ |λH − λ̃H |+ |λ̃H − λ̂h|.

Inserting the bounds (4.10) and (4.13) we get

|λH − λ̂h| ≤ ‖rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

.

Applying again the triangle inequality

|λH − λh| = |λH − λ̂h + λ̂h − λh| ≤ |λH − λ̂h|+ |λ̂h − λh|

we get an error estimate between the exact fine and course grid eigenvalue

|λH − λh| ≤ |rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

+ ‖r̂h‖2‖B−1
h ‖2 (4.19)

and between the exact fine grid and computed coarse grid eigenvalues.

|λh − λ̃H | = |λh − λ̂h + λ̂h = λ̃H | ≤ |λh − λ̂h|+ |λ̂h − λ̃H |,

|λh − λ̃H | ≤ ‖r̂h‖2‖B−1
h ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

.

Combining these bounds and using the triangle inequality in different ways
we obtain the following further bounds.

Theorem 4.11. Let (λH ,uH), (λh,uh) be the exact and let (λ̃H , ũH), (λ̃h, ũh)
be the computed eigenpairs of the matrix pair (AH , BH), (Ah, Bh), respectively.
Let furthermore (λ̂h, ûh) be the eigenpair obtained by the prolongation of ũH to
the fine space Vh defined in (3.1). Then the following bound holds.

|λ̃h − λ̂h| ≤ ‖rh‖2‖B−1
h ‖2 + ‖r̂h‖2‖B−1

h ‖2,

|λ̃H − λ̃h| ≤ ‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

+ ‖rh‖2‖B−1
h ‖2 + ‖r̂h‖2‖B−1

h ‖2,

|λH − λ̃h| ≤ ‖rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

+ ‖rh‖2‖B−1
h ‖2

+ ‖r̂h‖2‖B−1
h ‖2.

14



Proof. The proof follows by combing the previous bounds and using the triangle
inequality.

Theorems 4.8 - 4.11 present error bounds with respect to the exact and
computed eigenvalues for the discretized algebraic problems. Some of these
bounds are computable but some have only theoretical meaning. Since in fact
we are interested in errors between the eigenvalues of the continuous problem
and those of the discrete problem, we would like to find computable bounds
based on residual vectors. Since we were able to transform residual errors to
backward errors it follows that for well-conditioned eigenvalues we can expect
that small residuals will imply good accuracy of its approximations obtained by
iterative solvers.

In order to relate the continuous and discrete eigenvalues we will use the
so called saturation assumption, namely we will assume that the approximation
of the eigenvalue computed on the fine space Vh is better than the approxima-
tion on the coarse space VH . In practice this assumption is equivalent to the
convergence of the AFEM procedure.

Theorem 4.12 ([37]). Let λ be an exact eigenvalue of (2.3). Let λH , λh be the
corresponding exact eigenvalues of the discretized problems on spaces VH , Vh,
respectively. Then the saturation assumption

λh − λ ≤ β(λH − λ), (4.20)

with a positive β < 1, is equivalent to

λH − λ ≤ 1
1− β

(λH − λh). (4.21)

Remark 4.13. Since for the symmetric eigenvalue problem the Courant-Fischer
minmax theorem holds, the exact eigenvalue λ of the PDE eigenvalue problem
and the eigenvalues λH , λh of the discretized problems satisfy the inequality

λ ≤ λh ≤ λH .

Thus, the inequalities (4.20) and (4.21) are equivalent to |λh − λ| ≤ β(λH − λ)
and |λH − λ| ≤ 1

1−β (λH − λh), respectively.

Based on the saturation assumption and the estimates between the different
and computed eigenvalues for the discretized eigenvalue problems we then obtain
the following bounds.

Theorem 4.14. Let λ be an exact eigenvalue of (2.3) and let u be the cor-
responding eigenfunction. Let λH be the corresponding exact eigenvalue of the
discretized generalized eigenvalue problem (AH , BH), and let ûH be defined as
in (3.1). Then with residuals rH , r̂h as defined in (4.7), (4.9) we have

|λH − λ| ≤ 1
1− β

(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

.

Proof. Under the saturation assumption it follows from Theorem 4.12 that

|λH − λ| ≤ 1
1− β

(λH − λh).
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From (4.19) it follows that

|λH − λh| ≤ ‖rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

+ ‖r̂h‖2‖B−1
h ‖2

and thus

|λH − λ| ≤ 1
1− β

(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

.

Theorem 4.15. Let λ be an exact eigenvalue of (2.3), let λh be the correspond-
ing exact fine grid eigenvalue and let ûH be defined as in (3.1). Then with
residuals rH , r̂h defined as in (4.7), (4.9) we have

|λh−λ| ≤ (1− 1
1− β

)
(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

.

Proof. Under the saturation assumption it follows from Theorem 4.12 that

|λh − λ| ≤ λh − λH +
1

1− β
(λH − λh) = (1− 1

1− β
)(λh − λH).

From (4.19) we have that

|λH − λh| ≤ ‖rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

+ ‖r̂h‖2‖B−1
h ‖2

and hence

|λh−λ| ≤ (1− 1
1− β

)
(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

.

Using the previous estimates we can also obtain a bound between the com-
puted eigenvalue on the coarse mesh and the corresponding eigenvalues of the
original PDE eigenvalue problem.

Theorem 4.16. Let λ be an exact eigenvalue of (2.3) and let λ̃H be the com-
puted coarse grid eigenvalue and let ûh be defined as in (3.1). Then with resid-
uals rH , r̂h defined as in (4.7), (4.9), we have

|λ̃H − λ| ≤ 1
1− β

(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

+ ‖rH‖2‖B−1
H ‖2.

Proof. From (4.7) we know that

|λ̃H − λH | ≤ ‖rH‖2‖B−1
H ‖2

and from Theorem 4.14 we have that

|λH − λ| ≤ 1
1− β

(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

.
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Hence,

|λ̃H − λ| ≤ 1
1− β

(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

+ ‖rH‖2‖B−1
H ‖2.

Theorem 4.17. Let λ be an exact eigenvalue of (2.3) and let ũH be the com-
puted coarse grid eigenvector. Furthermore, let (λ̂h, ûh) be the corresponding
eigenpair obtained by the prolongation of ũH to the fine space Vh defined as in
(3.1). Then with residuals rH , r̂h as defined in (4.7), (4.9) we have

|λ̂h − λ| ≤ ‖rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

+
1

1− β

(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

.

Proof. From Theorem 4.10 it follows that

|λH − λ̂h| ≤ ‖rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

and from Theorem 4.14 we have that

|λH − λ| ≤ 1
1− β

(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

and hence,

|λ̂h − λ| ≤ ‖rH‖2‖B−1
H ‖2 +

‖rH‖2 + ‖PT ‖2‖r̂h‖2
‖PT Bhûh‖2

+
1

1− β

(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

.

Theorem 4.18. Let λ be an exact eigenvalue of (2.3), λ̃h the computed fine
grid eigenvalue. Then with residuals rH , rh, r̂h as defined in (4.7), (4.8), (4.9)
we have

|λ̃h − λ| ≤ (1− 1
1− β

)
(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

+ ‖rh‖2‖B−1
h ‖2

Proof. From Theorem 4.8 it follows that

|λ̃h − λh| ≤ ‖rh‖2‖B−1
h ‖2

and from Theorem 4.15 we have that

|λh−λ| ≤ (1− 1
1− β

)
(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

17



and hence

|λ̃h − λ| ≤ (1− 1
1− β

)
(
‖rH‖2‖B−1

H ‖2 +
‖rH‖2 + ‖PT ‖2‖r̂h‖2

‖PT Bhûh‖2
+ ‖r̂h‖2‖B−1

h ‖2
)

+ ‖rh‖2‖B−1
h ‖2.

In summary, we have obtained bounds between the exact eigenvalues and
eigenvalue approximations. We can immediately notice, that all bounds except
for the last bound in Theorem 4.18 are fully computable. As a matter of fact the
last bound has only theoretical value because we do not want to compute the
residual rh on the fine mesh. But it follows from all these bounds, that under
the saturation assumption, and if we consider problems with well-conditioned
eigenvalues, then the information about a small residual vector is equivalent to
the good accuracy of the computed eigenvalues.

5 Numerical experiments

In this section, we present some numerical results that illustrate our algorithm.
The numerical tests where partially realized with help of the finite element
program openFFW [13] published under GNU General Public License v.3. We
consider the eigenvalue problem

∆u = λu in Ω, (5.1)
u = 0 on ∂Ω.

on different domains Ω.

5.1 L-shape domain

Let us consider the eigenvalue problem (5.1) with L-shape domain Ω = [−1, 1]×
[0, 1] ∪ [−1, 0]× [−1, 0]. An approximation of the smallest eigenvalue was given
in [43], where the authors obtained that

λ1 ≈ 9.639723844.

Figure 1 shows the adaptively refined mesh on the 8-th level of refinement.
We note that the mesh constructed by our algorithm contains more elements
around the singularity. Additionally the convergence history is given in Figure 2,
namely the log-log plot of the approximation error versus the number of degrees
of freedom. This error is |λ − λ̃|, where the discrete eigenvalue problem is
solved using the Arnoldi/Lanczos method, namely the MATLAB function eigs
[36]. The squares show the approximation error based on the computation
on the uniformly refined grid, while the triangles illustrate the approximation
for our residual based refined grid. This shows that with our algorithm we
may reach the same accuracy of the computed eigenvalue with fewer degrees of
freedom. Tables 1 and 2 present the convergence history data for both strategies.
Comparing the last columns of both tables, where we present the MATLAB CPU
times of running the iterative algebraic eigenvalue solver for both algorithms,
we notice that to reach the accuracy 10−2 for the first algorithm we have to
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Figure 1: AFEMLA mesh on 8th refinement level of the L-shape domain.

ref. level #DOF A λ̃1 A |λ1 − λ̃1| CPU time (s)
1 5 13.1992 3.5595 0.01
2 33 10.5740 0.9342 0.03
3 161 9.9165 0.2768 0.04
4 705 9.7284 0.0886 0.16
5 2945 9.6698 0.0301 0.90
6 12033 9.6504 0.0107 7.60

Table 1: Approximation of the smallest eigenvalue of (5.1) on uniformly refined L-
shape domain.

work with 12033 degrees of freedom and spend 7.6 s in solving the algebraic
eigenvalue problem, while we need only 2745 degrees of freedom and 0.7 s in the
case of our algorithm.

The second goal of our algorithm is to reduce the huge computational costs
of solving the algebraic eigenvalue problem up to final accuracy, to get the
best possible approximation of the eigenvalue. At this point one may try to
reduce the size of the corresponding Krylov spaces generated in each run of
the Arnoldi/Lanczos method. By setting the parameter p for the MATLAB
function eigs [36], we restrict the number of Lanczos basis vectors used in the
iterative solver. Figures 4 and 5 present numerical examples in this direction.

Table 3 presents the results for our algorithm for p = 2 Lanczos basis vectors.
The number of degrees of freedom is slightly increased, moreover we observe
slower decrease of the error, the convergence history for this case in presented
on the Figure 5. However, if we run the standard algorithm with uniformly
refined mesh we do not get any reasonable approximation of the eigenvalue, we
get 0 in each level. Of course, also in our approach at some point, we have to
perform some additional steps to achieve a good final accuracy.
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Figure 2: Convergence history for uniform refinement and AFEMLA for (5.1) on the
L-shape domain.

ref. level #DOF A λ̃1 A |λ1 − λ̃1| CPU time (s)
1 5 13.1992 3.5595 0.02
2 27 10.8173 1.1775 0.02
3 99 9.9982 0.3584 0.03
4 306 9.7721 0.1323 0.07
5 641 9.6982 0.0585 0.14
6 1461 9.6652 0.0255 0.33
7 2745 9.6528 0.0131 0.70
8 5961 9.6455 0.0058 2.14

Table 2: Approximation of the smallest eigenvalue determined by AFEMLA for (5.1)
on the L-shape domain.

ref. level #DOF A λ̃1 A |λ1 − λ̃1| CPU time (s)
1 5 13.2156 3.5758 0.01
2 27 10.8390 1.1993 0.01
3 98 10.0582 0.4184 0.02
4 305 9.8166 0.1769 0.06
5 712 9.7346 0.0949 0.14
6 1491 9.7221 0.0824 0.33
7 3186 9.7055 0.0657 0.82
8 6167 9.6991 0.0593 2.14

Table 3: Approximation of the smallest eigenvalue of (5.1) determined by AFEMLA
on the L-shape domain with p = 2 Lanczos basis vectors.

20



Figure 3: The eigenfunction corresponding to the eigenvalue λ̃ = 9.6455 on the L-shape
domain.

ref. level 1 2 3 4 5 6
#DOF 5 33 161 705 2945 12033
mesh T1 13.1992 10.5740 9.9165 9.7284 9.6698 9.6504
mesh T2 13.1992 10.5930 9.9261 9.7315 9.6707 9.6507

Table 4: Approximation of the smallest eigenvalue of (5.1) on the uniformly refined
grids with initial mesh T1 and T2.

5.2 Dependence on the layout of the initial grid

In Figure 6 and 7 we present two very similar initial meshes, however running
the standard algorithm with uniform refinement on these meshes at each step
provides interesting results. Analyzing results summarized in Table 4 we observe
a faster convergence of the algorithm with initial mesh T1, with the same number
of grid points generated in each point. After some steps we get the errors of the
same order but we observe slightly better behavior for the initial mesh T1. This
result shows, that not only the number of degrees of freedom plays a role in the
convergence of the AFEM, but also the distribution over the domain.

5.3 More complicated domains

Let us consider the eigenvalue problem (5.1) with domain Ω as in Figure 8. Since
in this case we do not know a priori any good approximation of the smallest
eigenvalue, for comparison we will use the values obtained by exact procedure
run on the uniformly refined grid in each step.

Comparing the values listed in Table 5 and 6 we notice that to obtain the
approximation λ̃ ≈ 11.97 using uniformly refined grids we need around 69825
degrees of freedom while in our algorithm we work with 9584 degrees of freedom.
Moreover, when we look at the run time for the iterative procedure, for the
uniform algorithm we need around 788 s, while in our case we only need 4.6 s.
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Figure 4: AFEMLA mesh on 8th refinement level of the L-shape domain with p = 2
Lanczos basis vectors.

The adaptively refined grid in Figure 8 constructed by our algorithm fully
recognizes the critical regions of the domain, refining the mesh more around
singularities.

5.4 Slit

Here we investigate the behavior of the AFEMLA on a slit domain (see Figure 9).
The mesh generated on level 8 is shown in Figure 10. Because an exact value of
the smallest eigenvalue of (5.1) for the slit domain is not known, as a reference
value we use eigenvalue approximations from Table 7 obtained by solving the
problem on a very fine grid. Table 8 contains approximations computed by
AFEMLA. The first eigenfunction is shown in Figure 11. We notice again that
AFEMLA saves CPU time and significantly reduces the number of degrees of

ref. level #DOF A λ̃1 A CPU time (s)
1 44 13.6075 0.26
2 225 12.5102 0.07
3 1001 12.1579 0.23
4 4209 12.0352 1.43
5 17249 11.9905 15.45
6 69825 11.9737 788.02

Table 5: Approximation of the smallest eigenvalue of (5.1) obtained by the standard
FEM on a uniformly refined grid.
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Figure 5: Convergence history of AFEMLA for (5.1) on the L-shape domain with
p = 2 Lanczos vectors.

freedom.

5.5 More eigenvalues - refinement based on all residual
vectors

Since often one is interested in determining all the eigenvalues in a certain area,
it is important to compute more than one eigenvalue at once. The marking
strategy used in AFEMLA based on the entries of a residual vector can be ex-
tended to use several residual vectors corresponding to the desired eigenvalues.
The marking procedure will identify the large entries in all the residual vectors
and take the union of the corresponding basis functions. Table 9 contains the

ref. level #DOF A λ̃1 A CPU time (s)
1 44 13.6075 0.03
2 110 12.6818 0.04
3 262 12.2930 0.06
4 552 12.1340 0.12
5 1112 12.0474 0.25
6 2348 12.0037 0.59
7 4622 11.9834 1.49
8 9584 11.9728 4.60

Table 6: Approximation of the smallest eigenvalue of (5.1) obtained by the AFEMLA.
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ref. level #DOF A λ̃1 A CPU time (s)
1 2 5.1429 0.29
2 19 3.8704 0.04
3 101 3.5444 0.04
4 457 3.4538 0.11
5 1937 3.4253 0.52
6 7969 3.4150 3.99
7 32321 3.4109 120.53

Table 7: Approximation of the smallest eigenvalue of (5.1) obtained by the standard
FEM on a uniformly refined slit domain.

ref. level #DOF A λ̃1 A CPU time (s)
1 2 5.1429 0.02
2 12 3.9949 0.01
3 46 3.6020 0.02
4 148 3.4895 0.04
5 354 3.4462 0.09
6 723 3.4271 0.15
7 1496 3.4173 0.34
8 3030 3.4125 0.81

Table 8: Approximation of the smallest eigenvalue of (5.1) obtained by the AFEMLA
on the slit domain.
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Figure 6: The initial mesh T1. Figure 7: The initial mesh T2.

Figure 8: AFEMLA mesh on 8th refinement level.

approximations of the three smallest eigenvalues of the problem (5.1) obtained
by AFEMLA, additionally in Table 10 the errors |λi − λ̃i|, i = 1, 2, 3 are pre-
sented. The corresponding adaptively refined grid is depicted in Figure 12, while
all three eigenfunctions are presented in Figure 13. An approximations of the
three smallest eigenvalues of (5.1) was given in [43], where the authors obtained
that

λ1 ≈ 9.639723844, λ2 ≈ 15.197252, λ3 ≈ 19.739209.

6 Conclusions

In this paper we have introduced a new adaptive algorithm (AFEMLA) for el-
liptic PDE-eigenvalue problems. We have concentrated on problems with sym-
metric and positive definite matrix pencils. The algorithm based on the residual
values is able to indicate the important behavior of the solution and to construct
a series of meshes. As we have shown, our algorithm reduces the computational
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Figure 9: Slit domain.

Figure 10: The AFEMLA mesh on 8th refinement level.

effort and the number of degrees of freedom considered in each step together
with keeping the overall accuracy.

But it reduces not only the number of degrees of freedom which already sim-
plifies the work load on the side of the iterative solver, but additionally saves
much work also by reducing the sizes of Krylov subspaces generated in each step
of the iterative procedure for the solution of the algebraic eigenvalue problem.
Further work is geared towards restarting our algorithm with previously com-
puted eigenvectors as a good initial guess for the iterative solver and creating
its block version.
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Figure 11: The eigenfunction corresponding to the eigenvalue λ̃ = 3.4125 of (5.1) on
the slit domain.

ref. level 1 2 3 4 5 6 7 8
#DOF 5 33 133 465 1306 2770 4997 11499

A λ̃1 A 13.1992 10.5542 9.9192 9.7376 9.6817 9.6591 9.6496 9.6440

A λ̃2 A 22.0215 16.9097 15.6315 15.3211 15.2421 15.2184 15.2085 15.2024

A λ̃3 A 32.0000 22.9075 20.5262 19.9515 19.8089 19.7760 19.7569 19.7482

Table 9: Approximation of the three smallest eigenvalues of (5.1) on the L-shape
domain obtained by the AFEMLA.
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Zürich, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, 2007.
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