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Abstract. We consider scheduling to minimize the weighted sum of completion
times on a single machine that may experience unexpected changes in process-
ing speed or even full breakdowns. We design a polynomial time deterministic
algorithm that finds a robust prefixed scheduling sequence with a solution value
within 4 times the value an optimal clairvoyant algorithm can achieve, knowing
the disruptions in advance and even being allowed to interrupt jobs at any mo-
ment. A randomized version of this algorithm attains in expectation a ratio of e
w.r.t. a clairvoyant optimum. We show that such a ratio can never be achieved by
any deterministic algorithm by proving that the price of robustness of any such
algorithm is at least 1+

√
3 ≈ 2.73205 > e.

As a direct consequence of our results, the question whether a constant approxima-
tion algorithm exists for the problem with given machine unavailability periods is
answered affirmatively. We complement this result by an FPTAS for the preemp-
tive and non-preemptive special case with a single non-available period.

1 Introduction

In general if one offers a set of jobs to a machine then the production process on that
machine is not usually influenced by the job owner. The machine may slow down due
to simultaneous utilization by other users, it may break down completely for some time,
or otherwise become unavailable for a particular user, etc. The only influence the job
owner has is on the order in which he offers his jobs to be processed. Thus the quest for
a schedule that is robust against machine calamities emerges. In this paper we study this
scheduling problem when the objective is to minimize the sum of weighted completion
times of the jobs. We aim to compute a robust scheduling sequence which performs well
regardless of unexpected machine breakdowns or fluctuations in speed when comparing
against an optimal clairvoyant algorithm.

More precisely, we are given a job set J with processing times p j ∈ R+ and weights
w j ∈ R+ for each job j ∈ J. Using a standard scaling argument, we can assume w.l.o.g.
that w j ≥ 1 for j ∈ J. The problem is to find a sequence of jobs π to be scheduled on
a single machine that minimizes the total sum of weighted completion times. The jobs
are processed in the prefixed order π no matter how, unexpectedly, the machine may be-
come unavailable or changes its processing speed. In case of a machine breakdown the
currently running job is preempted and will be resumed processing at any later moment
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when the machine becomes available again. We analyze the worst case performance by
comparing the solution value provided by an algorithm with that of an optimal clairvoy-
ant algorithm that knows the machine behavior in advance, and that is even allowed to
preempt jobs at any time.

Our main results are a deterministic and a randomized robust, prefixed, order of
the jobs, computable in polynomial time, such that scheduling the jobs in this order
will always yield a solution that remains within multiplicative factor 4 from clairvoyant
optimal for the deterministic order and within multiplicative factor e in expectation from
optimal for the randomized order. We can adapt our algorithm to solve more general
problem instances with certain types of precedence constraints without losing in the
performance. These results are presented in Section 2.

We notice that in any version of the problem in which a prefixed sequence of jobs
executed on machines with unknown behavior cannot guarantee to finish within the min-
imum makespan, an adversary would create an arbitrarily long breakdown at the moment
that an optimal schedule has completed all jobs. For any such variation of our problem
any (exponential time) algorithm will have an arbitrarily bad performance ratio. Exam-
ples of such variations are the problem with two or more machines instead of a single
machine, the problem in which preempting or resuming a job requires (even the slightest
amount of) extra work, or the problem in which jobs have individual release dates (even
if all weights are equal).

To derive our results, we view the objective function as to minimize the total weight
of uncompleted jobs at any time. A constant bound on the remaining weight when com-
pared with the remaining weight of an optimal clairvoyant algorithm over all points in
time gives a performance guarantee. We compute the job sequence iteratively from back-
wards: in each iteration we find a subset of jobs with largest total processing time such
that their total weight stays below a certain weight bound that we can relate to an opti-
mal value. We increase this bound in each iteration using the general idea of doubling
which has proven to be a very useful method for designing approximation algorithms. It
is not a precisely formulated technique but rather an idea that has been applied in various
problem setting; for a collection of such examples we refer to [4].

Part of our performance ratio is inherent to measuring the value of a schedule com-
puted having only partial information against that of a clairvoyant schedule, in a similar
way as the competitive ratio of online algorithms [3]. Additionally we require a pre-
fixed solution which may not be changed after receiving more information on the ma-
chine behavior. As in competitive analysis, we use adversarial sequences in Section 3
to show that no deterministically computed prefixed order can remain within a mul-
tiplicative factor of 1 +

√
3 from optimal, regardless of the algorithm’s running time.

Since 1 +
√

3 ≈ 2.73205 > e, this shows that randomized algorithms may produce pre-
fixed orders that have essentially better expected performance ratios than their determin-
istic counterparts. We complement this result by a lower bound of 2 on the performance
ratio of any randomized algorithm. We notice that such lower bounds have been called
the price of robustness of the problem in [14].

Robust optimization has become a separate field of research in optimization and is
mostly concentrating on robust continuous optimization problems, see [2] for a survey.
The term robust scheduling in the literature refers mainly to robustness against uncertain
processing times; see e.g. [11, chap. 7]. Generally, the term robust is not used consistently
and recently many attempts have been made to weaken the notion of robustness to make
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it more applicable. We emphasize, that our results are robust in the most conservative,
classical notion of robustness originating by Soyster [18], which is also called strict
robustness [14].

It may seem rather surprising that for our robust problem it is possible to remain
within constant multiplicative factors from optimal. This is even more since our results
immediately answer a major open question in the area of scheduling with limited ma-
chine availability, a subfield of machine scheduling that has been studied for over twenty
years; see, e.g., the survey by Schmidt [16]. The question was if there exists a poly-
nomial time constant approximation algorithm for the offline version of our problem,
in which the breakdown periods are given in advance. Clearly, our results answer this
question affirmatively. In fact, this problem is known to be strongly NP-hard [19], and
it is weakly NP-hard [12] if there is only one such non-available period. However, if all
jobs have equal weights, a simple interchange argument shows that sequencing jobs in
non-increasing order of processing times is optimal as it is in the setting with continu-
ous machine availability [17]. Obviously, this result immediately transfers to the robust
setting in which machine breakdowns or changes in processing speeds are not known be-
forehand. In contrast, when job weights are arbitrary, natural greedy strategies perform
arbitrarily bad in both, the robust and the offline, problem setting.

Our last result in Section 4 is a fully polynomial time approximation scheme (FP-
TAS) for the special problem setting of scheduling on a machine with a single unavailable
period that is known a priori. It also solves the non-preemptive problem variant which
is also weakly NP-hard [1, 13]. Thereby we improve on the previously best known algo-
rithms for both, the preemptive and the non-preemptive problem, which yield approxi-
mation factors 1.618+ ε [15] and 2 [8], respectively.

We notice that for the offline versions of our problem in which preemption is not
allowed or causes extra work, a reduction from the 2-PARTITION problem shows that
the problem with two or more non-available periods is not approximable, unless P=NP,
even if all jobs have equal weight.

2 A robust sequencing algorithm

Given a single machine that runs on unit speed, the completion time Cπ
j of job j according

to sequence π is

Cπ
j := ∑

k:π(k)≤π( j)
pk. (1)

For some point in time t ≥ 0 let W π(t) denote the total weight of jobs that are not yet
completed by time t according to sequence π , i.e., W π(t) := ∑ j:Cπ

j >t w j. Then,

∑
j∈J

w jCπ
j =

∫
∞

0
W π(t)dt. (2)

If breaks or fluctuations in speed occur on the machine, (1) no longer describes the true
job completion times. The more general setting with breaks and/or speed fluctuations can
be described by a non-decreasing continuous function f : R+ → R+ where f (t) denotes
the aggregated amount of processing time available on the machine up to time t. We
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refer to f as the machine capacity function of the machine. If the derivative of f at time t
exists, it can be interpreted as the speed of the machine at that point in time.

Let S(π) denote the single machine schedule in which jobs are sequenced according
to permutation π . The completion time of job j in this schedule is then given by

CS(π)
j := min{t | f (t)≥Cπ

j }. (3)

For some point in time t ≥ 0 let W S(π)(t) denote the total weight of jobs that are not yet
completed by time t in schedule S(π). Notice that W S(π)(t) = W π( f (t)). Then,

∑
j∈J

w jC
S(π)
j =

∫
∞

0
W S(π)(t)dt =

∫
∞

0
W π( f (t))dt.

For t ≥ 0 let W ∗(t) := minπ W π(t).

Observation 1 For any given machine capacity function f ,∫
∞

0
W ∗( f (t))dt (4)

is a lower bound on the objective function of any schedule.

We will present how to find a robust sequence of jobs π such that, no matter how
the single machine behaves, the objective value of the corresponding schedule S(π) is
within a constant factor of the optimum.

Lemma 1. Let π be a sequence of jobs and c > 0. Then, the objective value ∑ j∈J w jC
S(π)
j

is at most c times the optimum for all machine capacity functions f if and only if

W π(t)≤ cW ∗(t) for all t ≥ 0.

Proof. The “if” part is clear, since by Observation 1

∑
j∈J

w jC
S(π)
j =

∫
∞

0
W π( f (t))dt ≤ c

∫
∞

0
W ∗( f (t))dt.

We prove the “only if” part by contradiction. Assume that W π(t0) > cW ∗(t0) for some t0.
For any t1 > t0 consider the following machine capacity function f :

f (t) =


t if t ≤ t0,
t0 if t0 < t ≤ t1,
t− t1 + t0 if t > t1 ,

which describes a breakdown of the machine in the time interval [t0, t1]. Then,

∑
j∈J

w jC
S(π)
j = ∑

j∈J
w jCπ

j +(t1− t0)W π(t0). (5)

On the other hand, let π∗ be a sequence of jobs with W π∗(t0) = W ∗(t0). Then,

∑
j∈J

w jC
S(π∗)
j = ∑

j∈J
w jCπ∗

j +(t1− t0)W ∗(t0). (6)

If t1 goes to infinity, the ratio of (5) and (6) goes to W π(t0)/W ∗(t0) > c. This is a contra-
diction and concludes the proof. ut
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In the sequel we use for a subset of jobs J′ ⊆ J the notation p(J′) := ∑ j∈J′ p j
and w(J′) := ∑ j∈J′ w j . Based on the lemma, we aim at approximating the minimum total
weight of uncompleted jobs at any point in time, i.e., approximating the value of W ∗(t)
for all values of t ≤ p(J). In our algorithm we do so by solving the problem to find the set
of jobs that has maximum total processing time and total weight within a given bound.
By sequentially doubling the weight bound a sequence of job sets is obtained. Jobs in
job sets corresponding to smaller weight bounds are to come later in the schedule.

Algorithm D: For i ∈ {0,1, . . . ,dlogw(J)e} let J∗i be a subset of jobs of total
weight w(J∗i )≤ 2i and maximum total processing time p(J∗i ). Notice that J∗dlogw(J)e = J.
Construct a permutation π as follows. Start with an empty sequence of jobs. For i =
dlogw(J)e down to 1, append the jobs in J∗i \

⋃i−1
k=0 J∗k in any order at the end of the se-

quence. Finally append the jobs in J∗0 in any order.

Theorem 1. For every scheduling instance, Algorithm D produces a permutation π such
that the objective value ∑ j∈J w jC

S(π)
j is less than 4 times the optimum for all machine

capacity functions f .

Proof. Using Lemma 1 it is sufficient to show that W π(t) < 4W ∗(t) for all t ≥ 0. Let t ≥
0 and let i be minimal such that p(J∗i ) ≥ p(J)− t. By construction of π , only jobs j
in

⋃i
k=0 J∗k have a completion time Cπ

j > t. Thus,

W π(t)≤
i

∑
k=0

w(J∗k )≤
i

∑
k=0

2k = 2i+1−1. (7)

In case i = 0, the claim is trivially true since w j ≥ 1 for any j ∈ J, and thus, W ∗(t) =
W π(t). Suppose i≥ 1, then by our choice of i, it holds that p(J∗i−1) < p(J)−t. Therefore,
in any sequence π ′, the total weight of jobs completing after time t is larger than 2i−1,
because otherwise we get a contradiction to the maximality of p(J∗i−1). That is, W ∗(t) >

2i−1. Together with (7) this concludes the proof. ut

Notice that the algorithm takes exponential time since finding the subsets of jobs J∗i is a
KNAPSACK problem and, thus, NP-hard [9]. However, we adapt the algorithm by, instead
of J∗i , computing a subset of jobs Ji of total weight w(Ji)≤ (1+ε)2i and processing time

p(Ji)≥ max{p(J′) | J′ ⊆ J and w(J′)≤ 2i}.

This can be done in time polynomial in the input size and 1/ε adapting, e.g., the FPTAS
in [6] for KNAPSACK. The subsets Ji obtained in this way are turned into a sequence π ′

as in Algorithm D.

Theorem 2. Let 0 < ε ≤ 1/(2dlogw(J)e+1. For every scheduling instance, we can con-
struct a permutation π in time polynomial in the input size and 1/ε such that the objective
value ∑ j∈J w jC

S(π)
j is at most 4 times the optimum for all machine capacity functions f .
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Proof. Again, by Lemma 1 it is sufficient to prove that W π(t) < 4W ∗(t) for all t ≥ 0.
Instead of inequality (7) we get the slightly weaker bound

W π ′(t)≤
i

∑
k=0

w(Jk)≤
i

∑
k=0

(1+ ε)2k = (1+ ε)(2i+1−1) = 2i+1−1+ ε(2i+1−1)≤ 42i−1.

Moreover, the lower bound W ∗(t) > 2i−1 still holds. ut

The following example and Lemma 1 show that there are instances for which our
algorithm yields a solution of value arbitrarily close to 3 times the optimal value. Since
in the proof of the two theorems job weights are counted twice in case of overlapping
job sets, it is not unlikely that the correct price of robustness is strictly less than 4.

Example 1. For a given set of n jobs with w j = p j = 2 j for j = 1, . . . ,n− 1 and wn =
2n−1 +2 and pn = 2n, our algorithm computes the sequence π = n,n−1, . . . ,1. Let t = 2n.
Observe that

W π(t) =
n

∑
j=1

w j =
n−1

∑
j=1

2 j +2n−1 +2 = 3 ·2n−1.

Any other sequence π ′ with final job n has left at time t only n because ∑
n−1
j=1 pi = 2n−2 <

t. Thus, W π ′ = wn = 2n−1 +2. If n goes to infinity, the ratio W π(t)/W π ′(t) tends to 3.

We can improve Theorem 1 by adding randomization to our algorithm in a quite
standard fashion. Instead of the fixed bound of 2i on the total weight of job set J∗i in
iteration i ∈ {0,1, . . . ,dlogw(J)e} we use the randomly chosen bound Xei where X = eY

and Y is picked uniformly at random from [0,1] before the first iteration.
Notice first, that the same arguments as in Lemma 1 hold for randomized algorithms

and their expected values of remaining weight and total weighted completion time.

Corollary 1 Let π be a random sequence of jobs and c > 0. Then, the expected objec-
tive value E

[
∑ j∈J w jC

S(π)
j

]
is at most c times the optimum for all machine capacity

functions f if and only if E [W π(t) ]≤ cW ∗(t) for all t ≥ 0.

Theorem 3. For every scheduling instance, the randomized algorithm produces a ran-
dom permutation π(X) such that E

[
W π(X)(t)

]
< eW ∗(t)−1 for all t ≥ 0.

Proof. Given X and t, let i ∈ N be minimal such that p(J∗i ) ≥ p(J)− t. For i = 0 the
claim is trivially true. Consider the case i ≥ 1. By the same arguments as in the proof of
Theorem 1, we have W ∗(t) > Xei−1, and therefore i < dln(W ∗(t)/X)e. Similar to (7) we
can bound the expected total remaining weight of sequence π(X) at time t by

E
[

W π(X)(t)
]
≤ E

[
i

∑
k=0

Xei

]
= E

[
X

ei+1−1
e−1

]
< E

[
X

edln(W ∗(t)/X)e+1−1
e−1

]
=

e
e−1

W ∗(t)E
[

edln(W ∗(t)/X)e−ln(W ∗(t)/X)
]
−1 .

Let Z := dlnW ∗(t)−Ye−(lnW ∗(t)−Y ) which is 1 minus the fractional part of Z. Then Z
is a random variable distributed like Y uniformly in [0,1]. Thus, E

[
eZ

]
= E [X ] = e−1,

which concludes the proof by Corollary 1. ut
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The algorithm can be adapted in the same way as the deterministic algorithm to run
in polynomial time, see the proof of Theorem 2.

Corollary 2 Let 0 < ε ≤ 1/edlogw(J)e+1. For every scheduling instance, the adapted ran-
domized algorithm constructs a permutation π in time that is polynomial in the input size
and 1/ε such that the objective value ∑ j∈J w jC

S(π)
j is in expectation at most e times the

optimum for all machine capacity functions f .

A natural generalization of the robust sequencing problem requires that jobs must be
sequenced in compliance with given precedence constraints. These constraints define a
partial order (J,≺) on the set of jobs J. To generalize our robust algorithm to scheduling
instances with precedence constraints we need to find a way of adapting the knapsack
related subroutine of our algorithm to the problem with a given partial order of jobs.
This subproblem coincides with the partially ordered knapsack problem (POK) which is
strongly NP-hard [7] and even hard to approximate [5]. On the positive side, several POK
problems with underlying partial orders that have a special structure can be approximated
arbitrarily well. Such special cases are, e.g., directed outtrees, two dimensional orders,
and the complement of chordal bipartite orders for which FPTASes are known [7, 10].

Theorem 4. Let ε > 0. Consider the robust sequencing problem with precedence con-
straints (J,≺). If there is an FPTAS for the partially ordered knapsack problem for
partial orders of the same type, then we can choose an appropriate ε and construct a
permutation π respecting (J,≺) in time polynomial in the input size and 1/ε such that
the objective value is at most 4 times the optimum for all machine capacity functions f .
A randomized algorithm finds a sequence with expected objective value bounded by e
times the optimum value in the same running time.

Proof. We make use of the following trivial observation: Let (N,≺) be a partial order
and (N,≺′) be the reverse partial order. Then, given a linear extension of (N,≺), the
reverse of this ordering is a feasible linear extension of (N,≺′).

Now consider the robust sequencing problem with a given partial order (J,≺) and
its reverse order (J,≺′). We apply a slightly modified version of Algorithm D. To com-
pute subsets J∗i with bounded total weight and maximal processing time, we use the
FPTAS for the corresponding special case of POK for (J,≺′). Obviously, the sequence
of sets 0,1,2 . . . respects the given partial order (J,≺′). The algorithm appends the sets
in the reverse order and therefore the final sequence is a linear extension of (J,≺) if the
jobs of each set are appended accordingly. ut

3 Lower bounds on the price of robustness

We construct a lower bound on the price of robustness of 1 +
√

3 ≈ 2.73 > e for any
deterministic sequence of jobs. That is, independent of the sequencing of the jobs there
exists an adversarial breakdown strategy such that the order yields an objective value
which is at least 1 +

√
3 times that of an order chosen optimally with respect to the

breakdown strategy. This result, together with Corollary 2 implies that randomization
yields intrinsically better performance ratios than deterministic algorithms.

Theorem 5. No deterministic algorithm can produce a sequence of jobs paying a price
of robustness less than 1+

√
3.
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Proof. Consider a sequence of 9 jobs with processing times p j = 2 j−1, j = 1, . . . ,9, and
weights w1, . . . ,w9 given by the sequence

1, 1+
√

3, 3+2
√

3, 7+4
√

3, 14+8
√

3, 26+15
√

3, 45+26
√

3, 71+41
√

3, 97+56
√

3 .

The processing times are chosen such that ∑
k−1
j=1 p j < pk, for k = 1, . . . ,9. Any algo-

rithm that chooses job i, i = 1, . . . ,8, to be the first job that is not selected to be amongst
the i jobs to be scheduled last, will at time ∑

9
j=1 p j − pi face an adversarial breakdown

of the machine and has at least a total weight of ∑
i−1
j=1 w j + wi+1 of jobs to be com-

pleted, whereas the adversary has left only job i. It is a matter of simple calculations
to verify that, for each i = 1, . . . ,8 the ratio (∑i−1

j=1 w j + wi+1)/wi ≥ 1 +
√

3. If the al-
gorithm decides otherwise, it schedules the jobs in sequence 9,8, . . . ,2,1 and will face
an adversarial machine breakdown at time ∑

9
j=1 p j − p9 having a total weight of jobs to

be completed of ∑
9
j=1 w j against w9 for the adversary. Again simple calculations show

that (∑9
j=1 w j)/w9 ≥ 1+

√
3. ut

We also design a first lower bound on the price of robustness for randomized algorithms.

Theorem 6. No randomized algorithm can find a job sequence at a price of robustness
less than 2.

Proof. We use Yao’s principle [20] to derive the lower bound. Our randomized instance
consists of n jobs J = {1, . . . ,n} with p j = w j = 2 j, for j ∈ J. There is a single huge
breakdown of the machine occurring at a random point in time. With probability pr j =
1/2 j the breakdown happens at time p(J)− p j, for any j = 1, . . . ,n−1 (scenario j), and
at time p(J)− pn with probability prn = 1/2n−1 (scenario n). Obviously ∑

n
j=1 pr j = 1.

We assume that the machine breakdown lasts for a huge amount of time such that
the objective function value for any sequence of jobs is completely dominated by the
length of the breakdown times the total weight of jobs completed after the breakdown
(see Lemma 1 and its proof). Thus, in the following we refer to the (expected) total
remaining weight of a sequence at the time of the random machine breakdown simply as
the (expected) value of that sequence.

If the breakdown starts at time p(J)− p j, then in an optimal sequence for this sce-
nario, job j is the final job with a total remaining weight w j at that time. Thus, the
expected value of an optimal (scenario-dependent) sequence is

n−1

∑
j=1

1
2 j 2 j +

1
2n−1 2n = n+1 .

We claim that the sequence n,n− 1, . . . ,2,1 gives the minimum expected value for any
prefixed deterministic sequence. Suppose this was true. Then the remaining weight at
time p(J)− p j is ∑k≤ j pk for any j = 1, . . . ,n which gives an expected value of

n−1

∑
j=1

1
2 j

j

∑
k=1

2k +
1

2n−1

n

∑
k=1

2k =
n−1

∑
j=1

2 j+1−2
2 j +

2n+1−2
2n−1 = 2n .

This gives the claimed lower bound since the ratio between the expected values of the
best deterministic algorithm and an optimal offline solution tends to 2 when n goes to
infinity.

8



It remains to prove the claim. We use a simple exchange argument. Assume there is
an optimal sequence π which differs from sequence n,n− 1, . . . ,2,1. Let k < n be the
job with smallest index that is not at the (n− k + 1)-th position in π . Thus, the final
subsequence of π is given by jobs `,k−1,k−2, . . . ,2,1 for some ` > k. We remove job k
from its current position and insert it between ` and k−1 and show that this change does
not increase the expected objective value of the sequence. Denote the modified sequence
by π ′.

The change in the expected value of the sequence depends only on the possible break-
downs that have their start times t j := p(J)− p j, for j = 1, . . . ,n, within the time inter-
val [ t, t ′ ) with t := Cπ

k and t ′ := Cπ
` . We express the change in the expected value via

the remaining weight at times t j ∈ [t, t ′). Notice that t j 6∈ [t, t ′) for j = 1, . . . ,k− 1. The
insertion of job k adds wk to the remaining weight at any t j ∈ [t, t ′); on the other hand,
the contribution of job ` with weight w` ≥ 2wk at tk is removed. Thus the change in the
expected value is

∑
j:t j∈[t,t ′)

pr j

(
W π ′(t j)−W π(t j)

)
= ∑

j:t j∈[t,t ′)
pr j wk −prk w` ≤ ∑

j:t j∈[t,t ′)
pr j wk − prk 2wk

≤ wk

( n

∑
j=k

pr j − 2prk

)
= 0 .

Applying this argument iteratively proves the claim and the theorem. ut

4 The offline problem

Clearly, the approximation results in Section 2 hold in the offline version of our problem
in which machine breakdowns and changes in speed are known in advance. Thus, we pro-
vide the first constant factor approximation algorithms for preemptive scheduling with
fixed non-availability periods as a byproduct. In this section we consider the special case
of the offline problem in which the machine has a single non-availability interval [s, t]
for 1 ≤ s < t. We derive a fully polynomial time approximation scheme (FPTAS) for
the preemptive and non-preemptive problem variant which improve on the currently best
known approximation results 1.618+ε [15] and 2 [8]. Due to space restrictions we focus
on the non-preemptive case in this extended abstract.

Non-preemptive dynamic program (DP). Given a non-available time interval [s, t] we
compute an optimal non-preemptive schedule for a given set of n jobs. The jobs must be
partitioned into jobs that complete before s and jobs that complete after t. Clearly, the
jobs in each individual set are scheduled in WSPT order, that is, in non-increasing order
of ratios w j/p j. This order is known to be optimal [17] on a continuously processing
machine. Let the jobs be indexed in WSPT order, and assume that the total processing
time exceeds the length of the available period before the break, i.e., ∑

n
j=1 p j > s.

The dynamic program generates a state [k,v,y] if there is a feasible schedule of jobs
1, . . . ,k with total value v := ∑

k
j=1 w jC j and in which the amount of processing time

used in the interval before the break, [0,s], is y. The dynamic program starts with the
state [0,0,0] and computes all states by moving from any state [ j−1,v,y] to one or two
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new states [ j,v′,y′]. The first possibility is to schedule job j before the break, that is,

v′ = v+(y+ p j)w j and y′ = y+ p j , (8)

provided that y′ ≤ s. The second possibility is to schedule j after the break [s, t], that is,

v′ = v+(t +
j

∑
i=1

pi− y)w j and y′ = y . (9)

An optimal schedule can be obtained by finding a state [n,v,y] with minimum v and back-
tracking from that state. Since the v-values are bounded by V := ∑

n
j=1 w j(t + ∑

j
k=1 pk)

and the y-values are bounded by s, the running time of this dynamic programming algo-
rithm is O(nV s).

Non-preemptive FPTAS. In a fully polynomial time algorithm, we can neither afford
to consider all possible objective values v, nor can we consider all possible total pro-
cessing times before the break, y. Using standard rounding techniques, the number of
occurring v-values can be reduced to a number which is polynomially bounded in the in-
put size and 1/ε , at the cost of increasing the v-values occurring in the dynamic program
by a factor at most (1 + ε). (For a given parameter ε > 0, round up objective values to
the nearest multiple of εZLB/n for some reasonable lower bound ZLB; we skip further
details.)

The main challenge here is to discretize the range of values y in an appropriate way.
Notice that we cannot afford to round y-values since they contain critical information on
how much processing time remains before the break. Perturbing this information causes
a considerable change in the set of feasible schedules. In this way one might lose optimal
schedules or introduce infeasible schedules with too much processing before the break.
Both effects cannot be controlled easily, and thus, must be avoided.

The intuition behind the following algorithm is to reduce the number of states by
removing those with the same (rounded) objective value and nearly the same total pro-
cessing time before the break. Among them, we want to store those with smallest amount
of processing before the break in order to make sure that enough space remains for fur-
ther jobs that need to be scheduled there.

Algorithm F:
1. For an arbitrary given ε > 0 let δ := ε/n.
2. Partition the interval [0,s] into sub-intervals Ii of length sδ for i = 1, . . . ,n/ε; the last

interval may be smaller.
3. Run the dynamic program DP with the following modification. Among the states for

the same job set and the same (rounded) objective value v, we store at most one for
each interval Ii, namely the one with currently minimum y-value within Ii.

Lemma 2. Suppose the algorithm DP on an instance with n jobs finds a chain of states5

[0,0,0], [1,v∗1,y
∗
1], . . . , [n,v∗n,y

∗
n]. Then Algorithm F finds for each j = 1, . . . ,n a state

[ j,v j,y j] with

y∗j − jsδ ≤ y j ≤ y∗j and v j ≤ (1+( j−1)δ )v∗j . (10)

5 Chain of states means that, for j = 0, . . . ,n−1, state [ j+1,v∗j+1,y
∗
j+1] is obtained from [ j,v∗j ,y

∗
j ]

by adding job j +1 according to (8) or (9).
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In (10) we state an upper and a lower bound on y j in terms of y∗j . This will turn out
to be important when proving the bound on v j in terms of v∗j in the following analysis.

Proof. We give a proof by induction. For j = 1 we store at most two states which obvi-
ously fulfill both conditions in (10).

Suppose the lemma is true for j = i. Consider state [i+1,v∗i+1,y
∗
i+1] that was obtained

from [i,v∗i ,y
∗
i ] according to (8) or (9). We distinguish the two cases.

First case: If state [i + 1,v∗i+1,y
∗
i+1] was obtained from [i,v∗i ,y

∗
i ] by adding job i +

1 before the break, then Algorithm F when doing the same while processing [i,vi,yi]
yields y = yi + pi+1 and vi+1 = vi +(yi + pi+1)wi+1. However, we cannot guarantee that
this state will survive, because we might find a partial solution with the same objective
value vi+1 but smaller yi+1 within the same subinterval Ik that contains y. But in this case
y− yi+1 is bounded from above by the length of interval Ik and thus by sδ . Thus,

yi+1 ≥ yi + pi+1− sδ ≥ y∗i − isδ + pi+1− sδ = y∗i+1− (i+1)sδ .

Moreover,

vi+1 = vi +(yi + pi+1)wi+1 ≤ (1+(i−1)δ )v∗i +(y∗i + pi+1)wi+1 ≤ (1+ iδ )v∗i+1 .

Second case: If state [i + 1,v∗i+1,y
∗
i+1] was obtained from [i,v∗i ,y

∗
i ] by adding i + 1

after the break, then y∗i+1 = y∗i and Algorithm F finds a state [i+1,y,v] such that y = yi. If
this state is later replaced by state [i + 1,yi+1,vi+1], where yi+1 < y belongs to the same
interval Ik as y, we still get

y∗i+1 ≥ yi+1 ≥ yi− sδ ≥ y∗i+1− (i+1)sδ .

Moreover,

vi+1 = vi +(t +
i+1

∑
j=1

p j − yi)wi+1 ≤ (1+(i−1)δ )v∗i +(t +
i+1

∑
j=1

p j − (y∗i − isδ ))wi+1

≤ (1+(i−1)δ )v∗i +(t +
i+1

∑
j=1

p j − y∗i + itδ )wi+1

≤ (1+(i−1)δ )v∗i +(1+ iδ )(t +
i+1

∑
j=1

p j − y∗i )wi+1 ≤ (1+ iδ )v∗i+1 .

The last inequality holds since v∗i+1 = v∗i +(t +∑
i+1
j=1 p j − y∗i )wi+1. ut

As a consequence of Lemma 2, we can now state the main result of this section.

Theorem 7. There exists an FPTAS for non-preemptive scheduling to minimize ∑w jC j
on a single machine that is not available during a given time interval [s, t].

11



The algorithm can be extended to an FPTAS for the preemptive problem. W.l.o.g. we can
assume that in an optimal solution there is at most one job interrupted by the break [s, t]
and it resumes processing as soon as the machine is available again. Denote this job
as the split job. Generally speaking, we extend the Algorithm F in such a way that the
dynamic program in Step 3 is started for each potential split job k = 1 . . . ,n and any of its
possible positions. That is for any completion time Ck ∈ (t, t + pk) which defines a new
non-available period [s′, t ′] with s′ = Ck − (t− s)− pk and t ′ = Ck. Standard rounding of
possible completion times to the nearest power of 1+ ε ′ gives the desired new FPTAS.
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