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Abstract. A discrete model of a biological regulatory network can be
represented as a discrete function f that contains all available informa-
tion on interactions between network components and the rules govern-
ing the evolution of the network in the discrete state space. Both the
information on the structure as well as the dynamics of the system can
be represented as directed graphs. Since the state space size grows ex-
ponentially with the number of network components, analysis of large
networks is a complex problem. In this paper, we introduce the notion of
symbolic steady state that allows us to identify subnetworks that govern
the dynamics of the original network in at least a subset of state space.
We then state rules to explicitly construct attractors of the system from
subnetwork attractors. A further application of the underlying concept
allows us to formulate sufficient conditions for the existence of multi-
ple attractors resp. a cyclic attractor based on the existence of positive
resp. negative feedback circuits in the structure graph. All results are
discussed for dynamics derived from f via the synchronous as well as the
asynchronous update rule.

1 Introduction

Discrete methods of modeling biological regulatory networks are often used if the
available data is rather qualitative in nature. Each component of the network is
associated with a finite number of activity levels representing e. g. a concentra-
tion interval of a substance, activity of a gene or presence or absence of a signal.
The state space of the system then consists of vectors of the component activity
levels, and the network dynamics is derived from a discrete function f captur-
ing the rules of component interactions in the system. Here, two fundamentally
different methods of calculating trajectories of the system are in use. The so-
called synchronous update renders a deterministic representation by defining the
successor of a given state as its image under f . In contrast, we obtain a non-
deterministic version if we require, motivated by the assumption of distinct time
delays associated with component value changes, that a state and its successor
differ in one component only, but consider all successor possibilities in agreement
with f . Both approaches have been used successfully, the synchronous method
having advantages in particular regarding the complexity of the analysis, the



asynchronous update often allowing for a more realistic representation of trajec-
tories of the system (see e. g. [5], [16], [6] and references therein).

When analyzing large and complex networks, one is often interested in iden-
tifying subnetworks that can be associated with definite biological functions and
play crucial roles in the dynamics of the system. Analysis of such networks in iso-
lation may then yield information on the dynamical behavior of the original net-
work. Clearly, the difficulty is that further components and interactions influence
such a network building block once it is again embedded in the network. Condi-
tions to identify suitable subnetworks that retain their behavior in the context
of the complex network are needed to derive useful information on the network
dynamics. In this paper we generalize and extend corresponding ideas developed
for Boolean functions and asynchronous dynamics in [14] to multi-valued dis-
crete functions, considering synchronous as well as asynchronous dynamics. We
identify subsets of state space where a number of network components remain
fixed in the dynamics independent of the values of the remaining components
by exploiting the properties of symbolic steady states. These are fixed points of
a adapted function fθ that coincides with f for the most part, but also allows
the consideration of a symbolic value θ for the network components. The value θ
can be identified with the whole activity level range of a given component, rep-
resenting uncertainty of the actual value of that component in a network state.
The regular components, i. e. those with a specified activity level, of a symbolic
steady state act as a boundary between dynamically active subnetworks simi-
lar to the notion of frozen core introduced in the context of random Boolean
networks (see [5]). We obtain a fine structural representation of the active sub-
networks by considering the local interaction graph associated with the symbolic
steady state. Assembly of attractors of the isolated subnetworks with respect to
the symbolic steady state then yields attractors of the original network. With
this fundamental property in mind, we are able to proof more general statements
concerning the relation between structure and dynamics of the network. Here,
we proof that the existence of a positive resp. a negative circuit under certain
conditions implies the existence of multiple attractors resp. a cyclic attractor in
the synchronous as well as the asynchronous dynamics.

The paper is organized as follows. In the next section we introduce the mod-
eling framework used in this paper. In Sect. 3 we establish the notion of symbolic
steady state as well as some important properties, followed by the main results
on compositional attractors of subnetworks derived from symbolic steady states
in Sect. 4. The results are then used to obtain statements linking the existence
of feedback circuits in the network to number and size of attractors in Sect.5.
We end the paper with concluding remarks and perspectives for future work.

2 Regulatory Networks

Throughout the text let us consider a network with n ∈ IN components α1, . . . , αn.
To simplify notation, we identify each component αi with its index i. We view
each component as a discrete variable the values of which signify the different
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activity levels of that component in the network. Activity levels may represent
different biological characteristics, e. g. substance concentration, gene activity,
absence or presence of a signal and so on. The number of activity levels of differ-
ent components may differ, depending on function of components and available
data. Thus, every component αi is associated with a range Xi := {0, 1, . . . , pi}
of activity levels, where pi ∈ IN denotes the maximal activity level of αi. The
set X := X1 × · · · × Xn comprises all possible vectors of activity levels of the
network and thus represents the state space of the system. Interaction of network
components and rules governing the network’s dynamics are then captured by a
discrete function f = (f1, . . . , fn) : X → X. Note that if for all maximal activity
levels pi = 1 holds, then f is a Boolean function.

2.1 Structure

In a next step, we want to derive the network structure from the function f . As
commonly done, we represent the structure as a signed directed (multi-)graph
with vertex set V := {α1, . . . , αn} and edges representing interactions between
components. The sign of an edge describes the character of the interaction, nega-
tive sign signifying an inhibiting, positive an activating effect. However, it is often
observed in biological systems that the influence of one component on another
depends on the current state of the network. For example, if two substances form
a complex that activates some target gene, then in general the presence of only
one of those substances is not sufficient to induce gene expression. So, one of the
substances can only effectively influence the gene when the other substance is
present. Another possibility is that the character of an interaction changes de-
pending on the state of the network. A well-known example is the DNA-binding
protein TCF which can repress as well as activate the same target genes. TCF
acts as activator in the presence of β-catenin, induced by WNT signaling, while
the co-expression of the protein TLE converts TCF into a repressor. Such refined
structural information is of great interest when linking structural and dynamical
aspects and thus we want to include it in the structural representation of the
network. This is done by considering local interaction graphs. This notion was
introduced for Boolean functions in [8] and is used for multi-value functions in
the form considered here in [10].

Definition 1. Let x ∈ X. By G(x) := G(f)(x) we denote the directed signed
(multi-)graph with vertex set {α1, . . . , αn} and edge set E(x) ⊆ V ×V ×{+,−}.
An edge (i, j, ε) belongs to E(x) iff there exists ci ∈ {−1,+1} such that xi + ci ∈
Xi and

sgn
fj((x1, . . . , xi−1, xi + ci, xi+1, . . . , xn))− fj(x)

ci
= ε .

We call G(x) the local interaction graph of f in x.

To obtain the local interaction graph we consider changes in the values of the
coordinate functions depending on small changes, i. e. changes by absolute value
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1, in one component. The local interaction graph in x is thus closely related
to the discrete Jacobian matrix, which was introduced in [13] in the Boolean
case. Note that in the multi-value other than in the Boolean case it is possible
that G(x) contains parallel edges. There are at most two parallel edges from one
vertex to another which then have opposite sign.

If we combine the structural information of the local interaction graphs for a
set of states M we obtain a graph that contains all interactions influencing the
network’s dynamics in M .

Definition 2. Let M ⊆ X. We denote by G(M) := G(f)(M) the union of the
graphs G(x), x ∈ M . For M = X we set G(f) := G(X) and call G(f) the global
interaction graph of f .

The global interaction graph contains all interactions influencing the network’s
dynamics in at least some part of state space.

When analyzing interaction graphs we are interested in certain structural
motives. We focus on so-called (feedback) circuits. Here, a circuit is a tuple
(e1, . . . , er) of edges ei = (ki, li, ε) ∈ E such that all ki, i ∈ {1, . . . , r}, are
pairwise distinct, and li = ki+1 for all i ∈ {1, . . . , r} modulo r. The sign of a
circuit is the product of the signs of its edges. Note that in a multigraph a circuit
is not uniquely determined by its vertices.

In Fig. 1 we see on the left interaction graphs of the function f = (f1, f2, f3) :
X → X, X := {0, 1}2×{0, 1, 2}, introduced in the caption of the figure. Here, f2

models the situation that α2 is influenced by α1 and α3 via an OR-gate as long
as the activity level of α3 is below 2. However, if α3 = 2, then α2 is repressed.
The way α3 influences α2 thus depends on the current state of the system. If the
system is in state (1, 0, 0), then a small change in the α3 value is not enough to
reach the value 2. Thus, f2 corresponds to a logical OR-function. Since α1 = 1,
we have f2((1, 0, x3)) = 1 for x3 ∈ {0, 1}. It follows that in the state (1, 0, 0)
small changes in α3 do not influence the component value α2. As a result, we see
in Fig. 1 (a) that there is no edge from α3 to α2 in G((1, 0, 0)). In comparison, if
we look at the state (0, 0, 0), we have f2((0, 0, 1))−f2((0, 0, 0)) = 1 and therefore
we get a positive edge from α3 to α2 in G((0, 0, 0)). Lastly, when looking at state
(0,0,1), α3 influences α2 via a positive edge, since the argument we just made is
still valid. However, if we increase the activity level of α3 to 2, then by definition
of f2 we have a negative influence of α3 on α2. Thus in the local interaction
graph G((0, 0, 1)) there is a negative as well as a positive edge from α3 to α1. By
definition all the local interaction graphs are subgraphs of the global interaction
graph of f , which is shown in Fig. 1(d).

Here, edges in an interaction graph are not labeled with additional informa-
tion pertaining the activity level values of the tail vertex which allow that edge
to have an effect on the dynamics. Thus, an edge (i, j, ε) may represent several
influences of sign ε from i on j, which may differ in strength and depend on the
current value of αi. Based on this observation we introduce the following notion.

Definition 3. Let M ⊆ X and let e := (i, j, ε) be an edge in G(M). We call e
unique in M if there exists tij ∈ {0, . . . , pi−1} such that fj(x) = fj(x′) for all
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Fig. 1. In (a) to (c) local interaction graphs in states (1,0,0), (0,0,0) and (0,0,1), re-
spectively, of the function f = (f1, f2, f3) : {0, 1}2 × {0, 1, 2} → {0, 1}2 × {0, 1, 2}
with f1(x) = x1, f2(x) = 0 if x3 = 2 and f2(x) = x1 + x3 − x1 · x3 otherwise, and
f3(x) = x1 + x2 for x = (x1, x2, x3) ∈ {0, 1}2 × {0, 1, 2}. In (d) the global interaction
graph of f . In (e) and (f) the asynchronous and synchronous state transition graph,
respectively. Heavier gray edges indicate attractors.

x, x′ ∈ M satisfying xi, x
′
i ∈ {0, . . . , tij} or xi, x

′
i ∈ {tij +1, . . . , pi}, and xk = x′k

for all k 6= i.

Whether or not the edge e has an impact on the dynamical behavior may still be
dictated by the values of components other than αi. However, if all component
values xl, l 6= i, are fixed, the value of fj(x) solely depends on whether xi is
above or below the threshold tij .

2.2 Dynamics

The function f determines the behavior of the network. However, there are
different possibilities to derive the actual trajectories of the system. The entirety
of the dynamical behavior, in any case, is captured in a state transition graph
the paths of which represent all possible behaviors. The most straight forward
approach leads to the following definition.

Definition 4. With Ss := Ss(f) we denote the directed graph with vertex set X
and edge set {(x, f(x)) | x ∈ X}. We call Ss the synchronous state transition
graph of f .

Here, each state x has a unique successor, f(x), and trajectories are obtained by
applying f iteratively on an initial state. The underlying assumption concerning
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the evolution of the system is that all activity level changes indicated by f
are executed concurrently. This is a highly simplifying assumption. Changes
in activity level may represent very different biological processes and it is not
realistic to assume that these processes have the exact same duration. If we want
to incorporate this observation, we can make the assumption that a state differs
from its successor in at most one component. Since data on such time delays
is often lacking, we have no way to decide which of the components in a state
where multiple component activity level changes are indicated by f should be
executed. Therefore, we consider all possibilities and derive a non-deterministic
representation of the dynamical behavior. Furthermore, we take into account
that although f may indicate an activity level change of absolute value greater
than one, the system nevertheless will behave in some sense continuously. That
is, the activity levels of a state and its successor should differ by at most 1.

Definition 5. Let Sa := Sa(f) be a directed graph with vertex set X. For states
x = (x1, . . . , xn), x′ = (x′1, . . . , x

′
n) ∈ X there is an edge x → x′ if and only if

x′ = f(x) = x or x′i = xi + sgn(fi(x) − xi) for some i ∈ {1, . . . , n} satisfying
xi 6= fi(x), and x′j = xj for all j 6= i. We call Sa the asynchronous state
transition graph of f .

To analyze state transition graphs we use, in addition to standard terminology
from graph theory such as paths and cycles, the following concepts.

Definition 6. Let S ∈ {Ss, Sa}. An infinite path (x0, x1, . . . ) in S is called
trajectory. A nonempty set of states D is called trap set if every trajectory
starting in D never leaves D. A trap set A is called attractor if for all x1, x2 ∈ A
there is a path from x1 to x2 in S. Attractors of cardinality greater than one are
called cyclic attractors. A cycle C := (x1, . . . , xr, x1), r ≥ 2, is called a trap cycle
if every xj, j ∈ {1, . . . , r}, has only one outgoing edge in S, i. e., the trajectory
starting in x1 is unique. A state x is called steady state, if there exists an edge
x → x, i. e. if f(x) = x.

In other words, the attractors correspond to the terminal strongly connected
components of the graph. In a synchronous state transition graph the trajectory
starting from some initial state is unique. In consequence, every attractor is
either a fixed point of f or a trap cycle, i. e. a periodic point of f . Since the
state space is finite, every trajectory leads to an attractor. This is not true for
asynchronous state transition graphs. However, it is easy to see that for every
state x exists a trajectory starting in x leading to an attractor. Steady states
and trap cycles are attractors, but there may also be attractors of cardinality
greater than one which are not trap cycles. Since steady states are fixed points
of f , the steady states, other than attractors of cardinality greater than one, in
the synchronous and the asynchronous state transition graph coincide.

In Fig. 1 (e) and (f) we see the asynchronous and synchronous state transition
graph of the function f defined in the caption. The system has two steady states,
(0,1,1) and (0,0,0). The asynchronous state transition graph contains one cyclic
attractor, namely {(1, 0, 1), (1, 1, 1), (1, 1, 2), (1, 0, 2)}, which is also an attractor
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in Ss. In the synchronous state transition graph we find a further cyclic attractor,
{(0, 0, 1), (0, 1, 0)}.

We close this section with the following observation. If some coordinate func-
tion fi is constant with value c, then xi = c for every state x in an attractor
Similarly, we know the values xj of every component j such that fj depends
only on values of components whose dynamics are described by constant coor-
dinate functions. That is, we can easily determine the dynamical behavior of
such components, which leads to the same fixed values of those components in
every attractor of the system. Throughout the remainder of the paper we assume
that no coordinate function of f is constant. We still allow the system to have
input values in the sense of components maintaining their current activity level
independent of the values of the other components. They can be modeled with
the coordinate function fi(x) = xi.

3 Symbolic Steady States

Analysis of complex network dynamics, in particular of asynchronous state tran-
sition graphs, is costly. However, complex networks are often composed of smaller
building blocks – modules and motifs (see e. g. [2, 1]). When analyzed in isolation
such building blocks reveal specific biological functions. The question of interest
is whether or not the behavior observed in isolation can be rediscovered in the
complex network. Here, the building blocks themselves interact and influence
each others behavior. One goal of this paper is to find conditions that allow to
infer behavioral properties of the complex system from the dynamics of suitable
subnetworks. The central notions in this endeavor are introduced in the following
two definitions. It has already been used for Boolean functions in [15, 14] and
uses notation first introduced in [12].

Definition 7. For all i ∈ {1, . . . , n} we set Xθ
i := {0, . . . , pi, θ} and Xθ :=

Xθ
1 ×· · ·×Xθ

n, where θ is a symbolic value. We call the elements of Xθ states. If
no component of a state has value θ, the state is called regular state, otherwise
it is called symbolic state. We denote J(x) := {i ∈ {1, . . . , n} | xi = θ} for all
x ∈ Xθ.

The value θ is used to describe uncertainty of a component value. Following
this idea, we define a so-called qualitative value |a, b| for a, b ∈ {0, . . . ,maxi pi},
a ≤ b by setting |a, a| := a and |a, b| := θ if a < b. Furthermore, we denote
[x] := {x′ ∈ X | x′j = xj for all j /∈ J(x)} for all x ∈ Xθ.

Definition 8. For all i ∈ {1, . . . , n} we define fmin
i : Xθ → Xθ

i , fmin
i (x) :=

min{fi(x′) | x′ ∈ [x]} and fmax
i : Xθ → Xθ

i , fmax
i (x) := max{fi(x′) | x′ ∈ [x]}.

Then we define

fθ : Xθ → Xθ by fθ
i (x) = |fmin

i (x), fmax
i (x)| , i ∈ {1, . . . , n}.

We call x ∈ Xθ a steady state if fθ(x) = x.
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(1, 1, 1, θ) {(1, 1, 1, 0), (1, 1, 1, 1)} {(1, 1, 1, 0), (1, 1, 1, 1)}
(2, 1, 1, 1) {(2, 1, 1, 1)} {(2, 1, 1, 1)}
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(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0, 1, 0) (0, 1, 1, 0)

(0, 0, 0, 0) (0, 1, 0, 0)

(0, 0, 1, 1) (0, 1, 1, 1)

(0, 0, 0, 1) (0, 1, 0, 1)

(d)

0

1

Z1 Z2

Fig. 2. In (a) the global interaction graph of f = (f1, f2, f3, f4) : X → X, X :=
{0, 1, 2} × {0, 1}3 with f1(x) = x1, f2(x) = 1 if x1 ≥ 1 or x3 = 0, and f2(x) = 0
otherwise, f3(x) = x2, and f4 = 1 if x1 = 2 and f4(x) = 0 otherwise. The graph
Gθ([(0, θ, θ, θ)]) is shown in (b). The corresponding state transition graphs, and the
derived compositional attractor in Sa of f in (c) and (d), respectively. In (e) a table of
attractors derived from subgraphs induced by steady states given in the left column.

By definition we have fθ|X = f , since regular states are mapped to regular
states. If fi(x) ∈ Xi for a symbolic state x, we can deduce that fi(x) = fi(y)
for all y ∈ [x]. That is, the information inherent in the regular components of
x is sufficient to determine the evolution of the i-th component. This can be
visualized by looking at the local interaction graph G([x]), which then does not
contain edges from any αj ∈ J(x) to αi.

Since we made the assumption that no coordinate function of f is constant,
we know that the state (θ, . . . , θ) is a steady state. In the following we are inter-
ested in symbolic steady states x with J(x) 6= {1, . . . , n}. The set of components
not belonging to J(s) remains dynamically stable regardless of value changes
in the symbolic components. This allows us to consider a reduced network for
analyzing the system’s behavior in the subset [x] of state space without loosing
information. The regular components of the symbolic steady state act as a sta-
ble or frozen core, as was described first by S. Kauffman for random Boolean
networks (see [5] for an overview).

To formalize the impact of a symbolic steady state on the dynamics and
relate certain structural characteristics, we introduce the following notation for
a symbolic steady state x. By Gθ([x]) we denote the (multi-)graph with vertex
set V θ[x] := J(x) and edge set Eθ[x] := {(i, j, ε) ∈ G([x]) | i, j ∈ J(x)}. We call
a graph Z = (VZ , EZ) component of Gθ([x]), if the undirected graph derived
from Z is a maximal connected subgraph of the undirected graph derived from
Gθ([x]). Figure 2 (b) shows the graph Gθ([x]) for the symbolic steady state
x := (0, θ, θ, θ) of the function f defined in the corresponding caption.
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Proposition 1. Let x ∈ Xθ be a symbolic steady state and let Z be a compo-
nent of Gθ([x]). Then every vertex of Z has at least one predecessor in Z. In
particular, Z contains a circuit.

Proof. Let αi be a vertex in Z. Since fi(x) = xi = θ, we have fmin
i (x) 6= fmax

i (x).
Thus, according to the definition, fi depends on some αj ∈ J(x) and we find an
edge (j, i, ε) in Z for some ε ∈ {+,−}. Since the vertex set of Z is finite, there
has to be a circuit in Z. ut

In the next lemma we show that the regular components of a symbolic steady
state x stay fixed regardless of value changes in J(x), and that the components
of Gθ([x]) act dynamically independent from each other in the state set [x].
This has already been shown for Boolean functions in [14] and the proof can be
adapted easily.

Lemma 1. Let x ∈ Xθ be a symbolic steady state, and let Z1, . . . , Zm be the
components of Gθ([x]). Consider a union Z of arbitrary components Zj. Let
x̃ ∈ Xθ such that x̃i = xi for all i /∈ Z. Then fθ

i (x̃) = fθ
i (x) = xi = x̃i for all

i /∈ Z.

Proof. First, let us consider i /∈ J(x). Since xj = θ for all j ∈ Z, we have
J(x̃) ⊆ J(x). Therefore, [x̃] ⊆ [x]. It follows that fmin

i (x) ≤ fmin
i (x̃) ≤ fmax

i (x̃) ≤
fmax

i (x). Since fθ
i (x) = xi is regular, we know fmin

i (x) = fmax
i (x) = xi. Thus,

fmin
i (x̃) = fmax

i (x̃) = xi and fθ
i (x̃) = xi = x̃i.

Now, let us consider i ∈ J(x) \ Z. We need to show that fθ
i (x̃) = θ. Assume

fθ
i (x̃) = c ∈ Xi, i. e. fmin

i (x̃) = fmax
i (x̃) = c. Since fθ

i (x) = θ there exist
y, y′ ∈ [x] and a, b ∈ Xi such that fi(y) = a < b = fi(y′). We may assume that
a 6= c, since a 6= c or b 6= c. It follows that y /∈ [x̃] ⊆ [x]. Since x and x̃ only
differ in Z-components, there exists ỹ ∈ [x̃] with yj = ỹj for all j /∈ Z. Then we
find regular states y =: y1, y2, . . . , yk := ỹ in [x] such that for each l < k exists
jl ∈ Z with |yl

jl − yl+1
jl | = 1 and yl

m = yl+1
m for m 6= jl, and yl /∈ [x̃] for all l < k.

Since fi(yk) = c 6= a, we find yl such that fi(xl) = a 6= fi(yl+1). According to
the definition of the local interaction graph, we then find an edge from jl to i
in G(yl), and thus also in G([x]). This is a contradition to Z being a union of
components of Gθ([x]), since jl ∈ J(x) \ Z. ut

This lemma allows us to focus on the dynamics of the subnetworks represented by
the components of Gθ([x]) and to derive the dynamical behavior of the original
network in [x] by a simple reassembly, as we will see in the next section.

4 Compositional Attractors

Symbolic steady states allow us to identify subnetworks that govern the behavior
of the original network at least in some part of state space. We focus in this
section on finding attractors of f by looking at the dynamics restricted to the
components of the local interaction graph of a symbolic steady state.

9



We need the following notation. Let x ∈ Xθ be a symbolic steady state,
and let Z be a component of Gθ([x]). Let k := cardVZ be the cardinality of
VZ . We may assume that VZ = {αl+1, . . . , αl+k} for some l ∈ {0, . . . , n − 1}.
Set XZ := Xl+1 × · · · × Xl+k. We define fZ : XZ → XZ , fZ := πZ ◦ fθ ◦
ρZ , where ρZ : XZ → Xθ with ρZ

i (z) = xi for i /∈ Z and ρZ
i (z) = zi−l for

i ∈ Z, and πZ : Xθ → XZ is the projection on the components of Z. The
function fZ maps regular states to regular states, since Z is disjoint from all other
components αj ∈ J(x) in Gθ([x]) and thus fθ

i (ρ(z)) ∈ Xi for i ∈ Z. Proposition 1
ensures that no coordinate function of fZ is constant. Furthermore, it is easy to
see that the global interaction graph G(fz) is isomorphic to Z. We denote the
synchronous and asynchronous state transition graph derived from fZ by Ss

Z

and Sa
Z , respectively.

In the remainder of the section let x be a symbolic steady state of f , and
let Z1, . . . , Zm be the components of Gθ([x]). W. l. o. g. we may assume that
Z1 contains the vertices α1, . . . , αcard Z1 , VZ2 = {αcard Z1+1, . . . , αcard Z1+card Z2},
etc., and k, . . . , n are the components of {1, . . . , n}\J(x) for some k ∈ {1, . . . , n}.
To simplify notation we identify subsets of XZ1 × · · · × XZm × {(xk, . . . , xn)}
with subsets of X.

Theorem 1. For all i ∈ {1, . . . ,m} let Ai be an attractor in Sa
Zi

. Then A :=
A1×· · ·×Am×{(xk, . . . , xn)} is an attractor of the asynchronous state transition
graph Sa of f . Moreover, every attractor in Sa with all its vertices in [x] can
be represented in this manner as Cartesian product of attractors in Sa

Zi
, i ∈

{1, . . . ,m}, and {(xk, . . . , xn)}.

Proof. We observe that πZj (f(x′)) = πZj (fθ(x′)) = πZj (fθ(ρZj (πZj (x′)))) =
fZj (πZj (x′)) for all x′ ∈ [x] and all j ∈ {1, . . . ,m} according to the definition of
ρZj , πZj and Lemma 1.

By definition we have A ⊆ [x]. We show that A is a trap set in Sa which is
strongly connected. Let a ∈ A. If f(a) = a then A is an attractor. Otherwise
choose i ∈ {1, . . . , n} such that fi(a) 6= ai. Consider a′ ∈ X with a′i = ai +
sgn(fi(a) − ai) and a′j = aj for j 6= i. Since a ∈ [x] we have fj(a) = aj for all
j ∈ {k, . . . , n}. Thus there is l ∈ {1, . . . ,m} with i ∈ Zl. Then we choose kl such
that i = jl + kl with jl :=

∑l−1
j=1 cardZj . We have ai 6= fi(a) = fZl

kl (πZl

(a)). It
follows that ai + sgn(fi(a) − ai) = (πZl(a))kl + sgn(fZl

kl (πZl(a)) − (πZl(a))kl).
Since Al is a trap set in Sa

Zl
, it follows that πZl(a′) ∈ Al, and thus a′ ∈ A.

To obtain a path from a, a′ ∈ A in Sa we construct the path componentwise
in the attractors Ai. More precisely, we exploit the fact that if γ is path in Sa

Zi

from z to z′ for z, z′ ∈ XZi , then we find a path γ′ in Sa from y to y′ with yj = y′j
for all j /∈ Zi which is projected on γ by πZi . This is possible since the dynamics
in Z1, . . . , Zm do not influence each other according to Lemma 1 and since in the
asynchronous state transition graph state changes indicated by f are executed
componentwise. For a detailed elaboration of this argument in the Boolean case
see [14], proof of Theor. 5.6. It follows, that A is strongly connected.

The same reasoning ensures that the projection πZj (A), j ∈ {1, . . . ,m}, of
an arbitrary attractor A of Sa is an attractor of Sa

Zj
. Edges leaving πZj (A) in
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Sa
Zj

would generate edges leaving A in Sa, and paths in A are projected on
sequences of states in XZj that constitute a path in Sa

Zj
, if we eliminate all but

one consecutive identical states (due to non-injectivity of πZl) in the sequence.
ut

From the proof we get an idea that the compositional properties inherent in
x are not restricted to the construction of attractors. We have shown in [14]
in the Boolean case that in fact the subgraph of Sa with vertex set [x] is the
composition of the graphs Sa

Zi
, i ∈ {1, . . . ,m}, and {xk, . . . , xn}. The reasoning

can be adopted for multi-valued functions.
In Fig. 2 (e) we see in the second column of the table attractors derived

from the corresponding symbolic steady state in the first column. For the state
(0, θ, θ, θ) we obtain two components of Gθ([x]) as shown in Fig. 2 (b). In (c) the
corresponding graphs Sa

Z1
and Sa

Z2
are shown, and in (d) we see the compositional

attractor in the state transition graph Sa of f .
In [4, 3] the authors consider the case that G(f) is not connected and show

how to derive attractors of the synchronous state transition graph from the
subnetwork dynamics corresponding to the graph components. Lemma 1 allows
us to apply their results to the components Z1, . . . , Zm and obtain the following
statement concerning the synchronous state transition graph of f .

Theorem 2. For all i ∈ {1, . . . ,m} let Ai be an attractor in Ss
Zi

. Then the
set A := A1 × · · · × Am × {(xk, . . . , xn)} is a union of attractors in Ss such
that the cardinality of each attractor A ∈ A is the least common multiple of
the cardinalities of the attractors Ai, i ∈ {1, . . . ,m}, and, as a consequence, the
number of attractors in A is

∏m
j=2((cardA1 •cardA2)•· · ·•cardAj−1)?cardAj,

where • denotes the least common multiple and ? the greatest common divisor
operation. Moreover, for every attractor A ⊆ [x] in Ss and every j ∈ {1, . . . ,m}
is πZj (A) an attractor in Ss

Zj
.

It is easy, if tedious, to describe the states of a compositional attractor in Ss. It
is basically a concatenation of the steady states resp. cycles of the components.
Since we update all components at once in every step, cycles in Ss

Zi
can generate

more than one cycle in Ss. This is illustrated by the example in Fig. 2. The last
column of the table in (e) shows attractors in Ss derived from different symbolic
steady states. The composition of the two attractors shown in (c) yield two cycles
in the synchronous dynamics.

When comparing the synchronous and the asynchronous case the differences
become apparent when looking at the attractors derived from component at-
tractors of cardinality greater than one. In the synchronous case composition of
component attractors may result in a greater number of attractors, while in the
asynchronous case only the attractor size increases. A more detailed description
of the relation between cyclic attractors in synchronous and asynchronous dy-
namics necessarily would include observations on the way edges are generated
during composition of attractors in the asynchronous case as well as on effects
of the gradual activity level change of the asynchronous update.
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We close this section with a simple corollary from the two preceding theorems,
which for the synchronous case was already formulated in [3].

Corollary 1. For i ∈ {1, . . . ,m} let Sδ
Zi

, δ ∈ {a, s}, contain Ni attractors with
cardinalities Lij, j ∈ {1, . . . , Ni}. Set I := I1 × · · · × Im with Il := {1, . . . , Nl}.

– In the asynchronous state transition graph of f , the number of attractors
with vertices in [x] is

∏m
j=1 Nj and the maximal attractor cardinality in [x]

is max(k1,...,km)∈I

∏m
j=1 Ljkj

.
– In the synchronous state transition graph of f , the number of attractors with

vertices in [x] is
∑

(k1,...,km)∈I

∏m
j=2((L1k1 •L2k2)• · · ·•Lj−1kj−1)?Ljkj

, and
max(k1,...,km)∈I((L1k1 •L2k2)•· · ·•Lmkm) is the maximal attractor cardinality
in [x].

5 Circuits and Attractors

In the preceding section we constructed attractors in the dynamics of f from
attractors of functions fZi associated with certain subnetworks. The same rea-
soning allows us to formulate more general relations between structural charac-
teristics of the subnetworks and the dynamics of f . We focus in this section on
the impact of feedback circuits in the structure on number and size of attractors
of f .

For multi-valued discrete functions it was shown in [11] that the existence
of a positive circuit in the global interaction graph (and even in certain local
interaction graphs) is a necessary condition for the existence of two attractors
in the asynchronous state transition graph. Complementary, the existence of
a negative circuit in the global interaction graph is necessary for f to have a
cyclic attractor (see [9]). Obviously, the result on positive circuits also holds in
the synchronous case if we specify the attractors to be steady states. However,
simple examples show that the second result is false in the synchronous case.

We now focus on functions the global interaction graph of which basically
consist of a circuit.

Lemma 2. Assume the global interaction graph G(f) contains only one circuit
C, and let VC be the set of vertices visited by C. Then fi(x) = fi(x′) for all
i ∈ VC and x, x′ ∈ X with xj = x′j for all j ∈ VC .

Proof. Assume we find i ∈ VC and x, x′ ∈ X such that xj = x′j for all j ∈ VC

and fi(x) 6= fi(x′). Then there exist y, y′ ∈ X and k /∈ VC such that yj = y′j
for all j 6= k, |yk − y′k| = 1 and fi(y) 6= fi(y′k) (see proof of Lemma 1). It
follows that G(f) contains an edge from k to i. Since we always assume that no
coordinate function is constant, every vertex in G(f) has a predecessor. Since
the set of vertices is finite, we then find a circuit other than C in G(f) which is
a contradiction. ut
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In [7] it is shown that Boolean functions associated with isolated circuits al-
ways display a characteristic behavior depending on their sign, both in the syn-
chronous and the asynchronous case. We use this result to prove the following
lemma.

Lemma 3. Assume the global interaction graph G(f) contains only one circuit
C and that all edges of C are unique in X. Then there are at least two attractors
in Ss as well as Sa, if C is a positive circuit. If C is negative, there exists a
cyclic attractor in Ss and in Sa.

Proof. Let us assume C corresponds to the vertex sequence (α1, . . . , αr). Set
XC := X1×· · ·×Xr and let zi ∈ Xi for i ∈ {r+1, . . . , n}. We set fC : XC → XC

by fC := πC ◦ f ◦ ρC , where ρC : XC → X, y 7→ (y1, . . . , yr, zr+1, . . . , zn) and
πC is the projection on the components of C. According to Lemma 2, we have
fC

i (πC(x)) = πC(f(x)). It follows that G(fC) = C, i. e., values of coordinate
function fC

i depend only on the value of the predecessor in C. Since furthermore
all edges of C are unique (see Def. 3), we find for all i ∈ {1, . . . , r} values
ti,i+1 ∈ {0, . . . , pi − 1} such that fi+1(y) = fi+1(y′) for all y, y′ ∈ XC with
either yi, y

′
i ≤ ti,i+1 or yi, y

′
i > ti,i+1, indices taken modulo r. This allows us to

define a Boolean function fB : {0, 1}r → {0, 1}r by fB := πt ◦ fC ◦ ρt with ρt :
{0, 1}r → XC , ρt

j(0) = cj , ρt
j(1) = c′j for arbitrary but fixed cj ∈ {0, . . . , tj,j+1},

c′j ∈ {tj,j+1 + 1, . . . , pj}, and πt : XC → {0, 1}r, πt
j(y) = 0 if yj ≤ tj,j+1 and

πt
j(y) = 1 if yj > tj,j+1. Note that fB does not depend on the choice of cj , c′j . It

is easy to see that G(fB) coincides with C.
In [7] was shown that fB has at least two fixed points, if C is positive. Let

b be a fixed point of fB. Choose y′ ∈ (πt)−1(b) and set yi := fC
i (y′) for all

i ∈ {1, . . . , r}. Since b is a fixed point, we can deduce that y = (y1, . . . , yr) =
fC(y′) ∈ (πt)−1(b). It follows from the definition of πt that for all i ∈ {1, . . . , r}
either yi, y

′
i ≤ ti,i+1 or yi, y

′
i > ti,i+1. The uniqueness condition then yields

fC
i (y) = fC

i (y′) = yi. Thus y is a fixed point of fC .
We then find a trajectory in Sδ, δ ∈ {a, s}, starting in y and leading to an

attractor A. According to Lemma 2 we then have fi(a) = yi for all i ∈ {1, . . . , r}
and every a ∈ A. Since we have two different fixed points of fC , if C is positive,
we also find two different attractors in Sδ.

If C is negative, then fB does not have a fixed point (see again [7]). It follows
from the definition of fB, in particular from its independence of the choice of
cj and c′j , that fC does not have a fixed point either. Thus, the synchronous as
well as the asynchronous state transition graph of fC contain a cyclic attractor.
Lemma 2 then again yields the existence of a cyclic attractor in the asynchronous
and synchronous state transition graph of f . ut

The uniqueness of edges is exploited in the proof to obtain a suitable projection
on the Boolean case. However, it seems likely that the statement remains true
when dropping the condition. A finer partition of the range of a component
corresponding to multiple thresholds could clarify the situation.

By applying the above lemma and Theorems 1 and 2 or Cor. 1 we immediately
obtain the following theorem.
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Theorem 3. Let x be a symbolic steady state. Assume a component Z of Gθ([x])
contains only one circuit C and that all edges of C are unique. If C is positive,
then there exist at least two attractors in Sa as well as in Ss. If C is negative,
then there is a cyclic attractor in both Sa and Ss.

The theorem basically states that circuits embedded in complex networks imprint
some of the characteristics they show in isolation on the whole network, if we can
in some sense recover isolation in at least a part of state space. The statement
does not hold, if the circuit C is not the only circuit in Z (see Boolean examples
in [15, 14]) Furthermore, the hypothesis given in the last theorem is a sufficient
but not a necessary condition for the existence of multiple resp. cyclic attractors.
This is illustrated by an example given in [15], Fig. 4.

6 Conclusion

Analyzing complex networks is a difficult task. Even if the number of compo-
nents of a discrete regulatory network is in some sense manageable, we have to
deal with the problem of analyzing the dynamics in an exponentially large state
space. A well known idea to approach this difficulty is to identify smaller building
blocks of the system the study of which in isolation still renders information on
the dynamics of the whole network. In this paper, we introduce the notion of sym-
bolic steady state which allows us to identify such building blocks, systematically
extending ideas developed for Boolean functions and asynchronous dynamics in
[15] and [14]. We state explicit rules how to derive attractors of the network from
subnetwork attractors valid for synchronous as well as asynchronous dynamics.
Illustrating those rules, we derive general conditions for circuits embedded in
the network to transfer their behavioral characteristics pertaining number and
size of attractors observed in isolation to the complex network.

Several aspects can be addressed in future work. Stronger results are cer-
tainly possible if we refine the representation of component values via the sym-
bolic value. Instead of merging the whole range of a component to one symbolic
value we could partition it into several symbolic values, which would allow for
a more precise localization in phase space. On the structural side, an even more
accurate understanding of the interactions governing asymptotic behavior in the
area of state space associated with a symbolic steady state x would be possible
when considering the local interaction graph G(M) for a set M ⊆ [x] derived
from [x] by eliminating in some sense dynamically irrelevant states. Here a com-
parison of [x] with its forward orbit under f may be helpful. Besides refining the
results derived from the existence of symbolic steady states, we would also like
to provide criteria that guarantee the existence and allow explicit calculation of
symbolic steady states. In [14] we have provided some results in this direction
for a certain class of Boolean networks. Further results seem possible when fo-
cussing on (nested) canalyzing functions, which are known for generating frozen
cores in Kauffman networks. A related question of interest is whether we can
link existence and properties of symbolic steady states to general characteristics
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of the function f . Lastly, a very important step is to apply the methods to es-
tablished biological network models. This would allow not only for testing the
suitability of the approach to the dynamical analysis, but also for a comparison
of the subnetworks derived from symbolic steady states with network modules
of known biological importance.
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