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Abstract: Motivated by optimal investment problems in mathematical finance, we con-

sider a variational problem of Neyman-Pearson type for law-invariant robust utility func-

tionals and convex risk measures. Explicit solutions are found for quantile-based coherent

risk measures and related utility functionals. Typically, these solutions exhibit a critical

phenomenon: If the capital constraint is below some critical value, then the solution will

coincide with a classical solution; above this critical value, the solution is a superposition

of a classical solution and a less risky or even risk-free investment. For general risk mea-

sures and utility functionals, it is shown that there exists a solution that can be written

as a deterministic increasing function of the price density.
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1 Introduction

Suppose an economic agent wishes to raise the capital v ≥ 0 today by issuing a contin-

gent claim with a fixed maturity. Suppose furthermore that the (discounted) liability at

maturity shall be bounded by some constant K. There are many ways of constructing

such contingent claims; for instance, the agent could just take out a loan of size v, which

would lead to the certain liability −v at maturity. Here, our goal is to find a contingent

claim such that the risk of the terminal liability is minimal among all claims satisfying

the issuer’s capital constraints.

In a mathematical model, the payoff of a contingent claim is usually described as a

random variable X on a probability space (Ω,F , P ), and we assume that the price of X

is given by the expectation E[ ϕX ], where the price density ϕ is a P -a.s. strictly positive

random variable with E[ ϕ ] = 1; for the purpose of this introduction, we will also assume

that ϕ has a continuous distribution. The risk of the liability −X will be measured in

terms of a certain risk measure ρ. Thus, we are interested in the following problem:

minimize ρ(−X) under the constraints that 0 ≤ X ≤ K and E[ ϕX ] ≥ v. (1)
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Problems of this type arise in various contexts such as in statistical test theory for com-

posite alternatives or in the construction of Arrow-Debreu equilibria in mathematical

economics; see, e.g., [15] and Chapter 3 of [13]. Our original motivation stems from the

problem of finding risk-minimizing hedging strategies in dynamic financial markets. It is

well known that such an optimal strategy can be constructed by hedging a solution to

a static problem of type (1); see Cvitanić [3], Föllmer and Leukert [9], [10], Kirch [18],

Kulldorff [19], and Pham [22].

For the choice ρ(−X) = E[ X ], the solution to (1) is given by the classical Neyman-

Pearson lemma, and for this reason we will call our problem (1) the Neyman-Pearson

problem for the risk measure ρ. The case in which ρ(−X) = −E[ u(−X) ] for a strictly

concave utility function u is also standard. In this note, our main goal is to solve (1) for

cases in which the simple expectation E[ · ] in the two preceding examples is replaced by

a supremum (or infimum) of expectations, taken over a non-trivial set Q of absolutely

continuous probability measures. Thus, we are interested in risk measures of the form

ρ(−X) = sup
Q∈Q

EQ[ X ] (2)

or, for a utility function u,

ρ(−X) = − inf
Q∈Q

EQ[ u(−X) ] . (3)

The choice of (2) is motivated by the theory of coherent measures of risk as initiated by

Artzner et al. [1] and further developed by Delbaen [6], [7]. Robust utility functionals of

the form (3) arise as a robust Savage representation of preferences on payoff profiles and

were suggested by Gilboa and Schmeidler [14]. Both approaches can be brought together

by introducing the notion of a convex measure of risk [11], [12], an example being

ρ(−X) = inf
{

m ∈ R

∣∣∣ inf
Q∈Q

EQ[ u(m − X) ] ≥ u(0)
}

. (4)

We will also obtain results for risk measures of this type. We refer to [13] for surveys on

robust Savage representations and risk measures, as well as for standard facts on problems

like (1).

The study of general Neyman-Pearson problems for risk measures of the form (2) was

initiated by Huber and Strassen [16] and recently continued by Cvitanić and Karatzas

[4]. Kirch [17] extended the latter results to robust utility functionals. On the one

hand, these articles deal with very general settings, in particular with non-linear pricing

rules of the type X 7→ infP ∗∈P E∗[ X ], and they yield an interpretation of solutions as

classical solutions with respect to “least favorable pairs” Q̂, P̂ (which in [4] and [17] need

not be probability measures). On the other hand, these results rely on essentially non-

constructive methods and typically do not yield explicit solutions. Only a few special

cases were solved by Österreicher [21], Rieder [23], and Bednarski [2].

Here, our goal is to obtain explicit solutions to (1) and to point out certain critical

phenomena that arise as a consequence of taking suprema (or infima) of expectations in

(2) and (3). To this end, we consider a more specific setting with the linear pricing rule

X 7→ E[ ϕX ] and make the key assumption that the risk measure ρ is law-invariant in the
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sense that ρ(−X) = ρ(−Y ) whenever X and Y have the same law under P . While this

assumption might be somewhat restrictive from the point of view of theoretical economics,

it is satisfied for most risk measures used by practitioners and allows for some interesting

mathematical structure. It is satisfied, for instance, if the set Q in (2) and (3) is of the

form

Qλ =
{

Q ¿ P
∣∣∣
dQ

dP
≤ 1

λ

}
(5)

for some given λ ∈ (0, 1] (note that Q1 = {P}). In Section 3, we will solve the Neyman-

Pearson problem for

ρλ(−X) := − min
Q∈Qλ

EQ[ u(−X) ] , (6)

where u : [0, K] → R is a strictly concave and continuously differentiable utility function.

In particular, we will show that there exists a critical value vλ ∈ (0, K) such that the

solution X∗
v to the Neyman-Pearson problem for ρλ coincides with the classical solution

Y 0
v for ρ1 as long as v ≤ vλ. For v > vλ, however, a diversification effect occurs: X∗

v is

now a superposition of a risk-free loan of size β ∈ (0, v) and a classical solution Y β
v for ρ1

but with modified upper bound K − β and price v − β. Thus, the solution is of the form

X∗
v =

{
Y 0

v for v ≤ vλ,

β + Y β
v for v > vλ.

(7)

We will see that, intuitively, this effect is related to an “aversion” of the investor to accept

risky bets outside a region of the form {ϕ > y}, so that capital that cannot be raised by

issuing a risky bet on high-price scenarios ω ∈ {ϕ > y} must instead be obtained via a

risk-free loan. We also get a similar result for the translation invariant modification (4)

of ρλ.

In the case u(x) = x, the problem reduces to the Neyman-Pearson problem for the

coherent risk measure

AVaRλ(−X) = max
Q∈Qλ

EQ[ X ] , (8)

that will be called the Average Value at Risk. It is also known as “Conditional Value at

Risk” or “Expected Shortfall”, and coincides, for atomless probability spaces, with the

Worst Conditional Expectation

WCEλ(−X) = sup
{

E[ X |A ]
∣∣∣ P [ A ] > λ

}
.

WCEλ was suggested by Artzner et al. [1] as a coherent alternative to the practitioner’s

Value at Risk. The Neyman-Pearson problem for AVaRλ is relatively easy and closely

related to results in [2] and [23], as will be explained in Remark 4.7. The solution X∗
v is

of the same type as (7), with Y 0
v now denoting the optimal statistical test as provided

by the classical Neyman-Pearson lemma. Thus, we have Y 0
v = K · I

{ϕ>b}
, which can be

interpreted as a digital option that pays off in high-price scenarios. Moreover, the critical

value vλ can be characterized in terms of the distribution of ϕ, and it turns out that

Y β
v = (1 − β)Y 0

vλ
, thus determining β as (v − vλ)/(1 − vλ).
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This solution for AVaRλ will be obtained as a corollary to the more general Theo-

rem 4.1. It solves the Neyman-Pearson problem for the class of quantile-based coherent

measures of risk that was introduced by Kusuoka [20]. Such a risk measure is of the form

ρk(X) =

∫ 1

0

k(t)q−X(t) dt , (9)

where k : [0, 1) → [0,∞) is an increasing rightcontinuous function such that
∫ 1

0
k(t) dt = 1,

and where qX denotes a quantile function of the random variable X ∈ L∞. AVaRλ

corresponds to the choice k = 1
λ
I
[1−λ,1)

. Moreover, Kusuoka [20] showed that all law-

invariant coherent risk measures which admit a representation (2) can be constructed

from this class of quantile-based coherent risk measures. The maximal representing set

Q for ρk has been described by Dana and Carlier [5].

The Neyman-Pearson problem for ρk of (9) admits a solution of the form

X∗ = β · I
[a,b)

(ϕ) + K · I
[b,∞)

(ϕ) ,

where the parameters 0 ≤ β < K and 0 ≤ a ≤ b ≤ ∞ can be obtained via a non-linear

variational problem, which involves only two real parameters and which can be solved in

a straightforward manner. In contrast to the case of AVaRλ, one may encounter the case

0 < a < b < ∞, which now corresponds to a diversification into the two digital options

(K − β) · I
[b,∞)

(ϕ) and β · I
[a,∞)

(ϕ), the latter being less risky than the former but no

longer risk-free.

Our method in obtaining these results is different from the ones used by Huber and

Strassen [16], Cvitanić and Karatzas [4], Kirch [17], and others. It is based on the key

observation that, for a large class of law-invariant risk measures ρ, there exists a deter-

ministic increasing function f ∗ : (0,∞) −→ [0, K] such that X∗ := f ∗(ϕ) solves (1).

Thus, we are able to reduce the original problem for risk measures such as (6) or (9)

to a semi-classical problem of Neyman-Pearson type, but with the additional constraint

that the solution must be an increasing function of the price density. If ρ involves the

set Qλ of (5), then this auxiliary problem can be solved directly. In the case of a general

quantile-based coherent risk measure, the auxiliary problem is first transformed into a

moment problem for sub-probability measures, which then can be solved by using general

integral representation results.

This paper is organized as follows. In Section 2, we will look at general properties

of solutions to the Neyman-Pearson problem (1), assuming only that our risk measure

satisfies certain “axioms”. We will comment on the existence and (non)-uniqueness of

solutions, and we will prove our key result on the existence of a deterministic increasing

function that yields a solution when applied to the price density ϕ. In Section 3, we will

solve the Neyman-Pearson problem for robust utility functionals (6) and their translation

invariant modification. In Section 4, we will consider quantile-based coherent risk mea-

sures of the form (9). In a first step, we will show that solving a simple moment problem

within a small class of two-step functions yields also solutions to our Neyman-Pearson

problem. In a second step, we further reduce the moment problem to a two-dimensional

variational problem. Section 5 contains the proof of the first reduction theorem in Section

4.
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2 The general structure of solutions

In this section we discuss the general structure of solutions to the Neyman-Pearson prob-

lem (1), where we take ρ as a real-valued functional on L∞ := L∞(Ω,F , P ) that satisfies

the following properties for all X, Y ∈ L∞:

Monotonicity: If X ≤ Y then ρ(−X) ≤ ρ(−Y ) . (10)

Convexity: ρ
(
λX + (1 − λ)Y

)
≤ λρ(X) + (1 − λ)ρ(Y ) for 0 ≤ λ ≤ 1. (11)

Law Invariance: If X and Y have the same law under P then ρ(X) = ρ(Y ) . (12)

For simplicity, we will also assume that

R 3 m 7−→ ρ(−m) is continuous and strictly increasing on [0, K]. (13)

Clearly, this property holds if ρ satisfies the additional axiom of

Translation Invariance: ρ(X + m) = ρ(X) − m for m ∈ R and X ∈ L∞, (14)

in which case ρ is a law-invariant convex measure of risk [1], [11], [13]. We also suppose

that ρ is continuous from above:

Xn ↘ X P -a.s. =⇒ ρ(Xn) ↗ ρ(X) . (15)

It is straightforward to check that, given the monotonicity of ρ, continuity from above is

equivalent to the so-called Fatou property:

ρ(X) ≤ lim inf
n↑∞

ρ(Xn) for all bounded (Xn)n∈N ⊂ L∞ with Xn −→ X P -a.s.; (16)

see, e.g., Lemma 4.16 in [13]. Standard arguments such as those in Remark 3.39 of [13]

then show:

Lemma 2.1 (Existence of solutions) Under the conditions (10), (11), and (15) there

exists a solution to the Neyman-Pearson problem (1).

We will also assume throughout this paper that the underlying probability space

(Ω,F , P ) is atomless. This condition guarantees that ρ is defined on a sufficiently large

domain, and it is equivalent to the existence of a random variable with a continuous

distribution.

Remark 2.2 (Non-uniqueness of solutions) The solution to the Neyman-Pearson prob-

lem need not be unique. Take, for example, ρ(−X) = E[ X ] and consider the solution

X∗ = K · I
{ϕ>c}

+ γ · I
{ϕ=c}

(17)

for certain constants c ≥ 0 and γ ∈ [0, K] as provided by the classical Neyman-Pearson

problem. If the distribution of ϕ is not continuous at c, one typically has γ ∈ (0, K),

and the usual randomization of X∗ yields another solution X̃ which takes only the values

0 and 1. More precisely, X̃ coincides with X∗ on {ϕ 6= c}; otherwise X̃ is either 0 or
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1, according to an independent Bernoulli experiment with success probability γ. If one

insists on σ(ϕ)-measurable solutions, then (17) is the only such solution. But uniqueness

may also fail in the class of σ(ϕ)-measurable solutions as will be shown in Remark 4.3. On

the other hand, uniqueness in the class of σ(ϕ)-measurable solutions implies uniqueness

in the class of F -measurable solutions, provided that the price density has a continuous

distribution; see Proposition 2.7.

We continue with the following general lemma that was suggested by Hans Föllmer

and that is of independent interest.

Lemma 2.3 Let G ⊂ F be a countably generated σ-algebra. Then

ρ(X) ≥ ρ
(
E[ X | G ]

)
for all X ∈ L∞.

In particular,

ρ(X) ≥ ρ
(
E[ X ]

)
. (18)

Proof: Lemma 4.45 in [13] states that

ρ(X) ≥ ρ
(
X · I

Ac + E[ X |A ] · I
A

)
(19)

for any set A ∈ F with P [ A ] > 0 (note that the proof of the cited lemma does not

use the translation invariance of ρ). Let B1, B2, . . . be a sequence of sets in F such

that G = σ(B1, B2, . . . ), and denote by A1, . . . , Am the atoms in Gn := σ(B1, . . . , Bn).

Applying (19) successively with A := A1, A2, . . . , Am yields

ρ(X) ≥ ρ
( m∑

i=1

E[ X |Ai ] · IAi

)
= ρ

(
E[ X | Gn ]

)
.

Thus, by the martingale convergence theorem and the Fatou property (16),

ρ
(
E[ X | G ]

)
≤ lim inf

n↑∞
ρ
(
E[ X | Gn ]

)
≤ ρ(X) .

Finally, (18) follows by taking G = {∅, Ω}.

The first consequence of the preceding lemma is that the price constraint in problem

(1) can be reduced to an equality:

Lemma 2.4 Any solution X∗ of the Neyman-Pearson problem with capital constraint

v ∈ [0, K] satisfies E[ ϕX∗ ] = v.

Proof: The case v ∈ {0, K} is trivial, and so it is enough to consider v ∈ (0, K). Note that

(18) implies that any solution X∗ satisfies ρ(−X∗) > ρ(0). Indeed, since E[ ϕX∗ ] ≥ v > 0

and X∗ ≥ 0, we must have E[ X∗ ] > 0, and (18) and (13) yield ρ(−X∗) > ρ(0). Now

suppose by way of contradiction that E[ ϕX∗ ] > v. Then we define X̃ := αX∗, where

α := v/E[ ϕX∗ ] < 1. The convexity of ρ implies that

ρ(−X̃) = ρ
(
− αX∗ − (1 − α)0

)
≤ αρ(−X∗) + (1 − α)ρ(0) < ρ(−X∗) ,

which, in view of E[ ϕX̃ ] = v, contradicts the optimality of X∗.
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Another immediate consequence of Lemma 2.3 is the following: If X∗ solves the

Neyman-Pearson problem (1), then so does X̃∗ := E[ X∗ |ϕ ]. In particular, there always

exists a σ(ϕ)-measurable solution. The following key proposition states a crucial property

of such solutions. Note that we always use the term “increasing function” synonymously

to “non-decreasing function”.

Proposition 2.5 Every σ(ϕ)-measurable solution X∗ can be written as X∗ = f ∗(ϕ) for

some deterministic increasing function f ∗.

The proof of this proposition is based on the following version of the classical Hardy-

Littlewood inequalities, which we recall here for the convenience of the reader. See, e.g.,

Theorem 2.76 of [13] for a proof.

Theorem 2.6 (Hardy-Littlewood) Let X and Y be two non-negative random vari-

ables, and let qX and qY denote the quantile functions of X and Y . Then,

∫ 1

0

qX(1 − t)qY (t) dt ≤ E[ XY ] ≤
∫ 1

0

qX(t)qY (t) dt .

If X = f(Y ), then the lower (upper) bound is attained if and only if f can be chosen as

a decreasing (increasing) function.

We will also need the following property of quantile functions: If f is an increasing

function and Y is a non-negative random variable, then the quantile qf(Y ) of f(Y ) satisfies

qf(Y )(t) = f(qY (t)) for a.e. t ∈ (0, 1); (20)

see, e.g., Lemma 2.77 in [13].

Proof of Proposition 2.5: Since the underlying probability space is atomless, there

exists a random variable U with a uniform distribution on (0, 1) such that ϕ = qϕ(U).

Now let X∗ be any solution to the Neyman-Pearson problem (for further application of

this argument in Proposition 2.7, we do not yet assume that X∗ is σ(ϕ)-measurable).

Denote by Fϕ the distribution function of ϕ, and define

f(x) =





qX∗(Fϕ(x)) if Fϕ is continuous at x,

1

Fϕ(x) − Fϕ(x−)

∫ Fϕ(x)

Fϕ(x−)

qX∗(t) dt otherwise.

Then f is increasing, and X := f(ϕ) satisfies

X = E[ qX∗(U) | qϕ(U) ] = E[ qX∗(U) |ϕ ] , (21)

since Fϕ(qϕ(t)−) ≤ t ≤ Fϕ(qϕ(t)) for all t. Lemma 2.3 and the law-invariance of ρ imply

that

ρ(−X) ≤ ρ(−qX∗(U)) = ρ(−X∗) .
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Moreover, the upper Hardy-Littlewood inequality and (21) yield that

v ≤ E[ ϕX∗ ] ≤
∫ 1

0

qϕ(t) qX∗(t) dt = E[ qϕ(U) qX∗(U) ] = E[ ϕX ] , (22)

and so X solves the Neyman-Pearson problem, too. In view of Lemma 2.4, all inequalities

in (22) must be identities. Hence, if X∗ is σ(ϕ)-measurable, then the “only if” part of

Theorem 2.6 shows that X∗ = f ∗(ϕ) for some increasing function f ∗.

The argument in the preceding proof also yields the following uniqueness result for

price densities with a continuous distribution. Remark 2.2 shows that this condition

cannot be dropped.

Proposition 2.7 If ϕ has a continuous distribution, then uniqueness in the class of σ(ϕ)-

measurable solutions implies uniqueness in the class of F-measurable solutions.

Proof: Let X∗ be an arbitrary solution and define f := qX∗ ◦ Fϕ and X := f(ϕ). Then

X has the same distribution as X∗. As in the proof of Proposition 2.5, we get that X is

a σ(ϕ)-measurable solution. Moreover, E[ X∗ |ϕ ] is also a σ(ϕ)-measurable solution by

Lemma 2.3. Uniqueness gives X = E[ X∗ |ϕ ], and so X∗ has the same law as E[ X∗ |ϕ ].

Hence,

0 = E
[
(X∗)2

]
− E

[
E[ X∗ |ϕ ]2

]
= E

[
(X∗ − E[ X∗ |ϕ ])2

]
,

and we get that P -a.s. X∗ = E[ X∗ |ϕ ].

Finally, we will need some elementary properties of the minimal risk

Rϕ(v) := min
{

ρ(−X)
∣∣∣ 0 ≤ X ≤ K, E[ ϕX ] ≥ v

}
, 0 ≤ v ≤ K . (23)

Lemma 2.8 v 7→ Rϕ(v) is a continuous convex function that strictly increases from ρ(0)

to ρ(−K) as v increases from 0 to K.

Proof: Clearly, Rϕ(0) = ρ(0) and Rϕ(K) = ρ(−K), due to our assumption P [ ϕ > 0 ] =

1. It is also clear that Rϕ(v) is increasing in v. But if Rϕ(v) = Rϕ(v′) for some v′ > v,

then a solution for Neyman-Pearson problem with v′ would also be a solution for v, a

contradiction to Lemma 2.4. Therefore, the function v 7→ Rϕ(v) is strictly increasing.

Convexity easily follows from (11) and in turn implies continuity in the interior of
[
0, K

]
.

Using (13), rightcontinuity at v = 0 follows from Rϕ(v) ≤ ρ(−v), while leftcontinuity at

v = K follows from (18).

3 Robust utility functionals defined in terms of den-

sity bounds

For λ ∈ (0, 1], let

Qλ =
{

Q ¿ P
∣∣∣
dQ

dP
≤ 1

λ
P -a.s.

}
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and note that Q1 = {P}. In this section, we solve the Neyman-Pearson problem for risk

measures derived from robust utility functionals of the form

Uλ(X) = min
Q∈Qλ

EQ[ u(X) ] ,

where u is a utility function. Such utility functionals arise in a natural way from a robust

Savage representation of preferences on asset profiles; see [14] and Section 2.5 in [13]. We

will assume throughout this section that u is concave, strictly increasing, and continuously

differentiable on its domain, which shall contain [0, K]. When measuring risk rather than

utility, it is natural to switch signs and to introduce the convex increasing loss function

`(x) := −u(−x). Thus, we will consider the risk measure

ρλ(−X) := −Uλ(−X) = max
Q∈Qλ

EQ[ `(X) ] . (24)

If `(x) = x for all x, then ρλ reduces to the Average Value at Risk AVaRλ of (8). The

terminology “Average Value at Risk” stems from the crucial fact that AVaRλ can be

represented as an average of the upper values of the quantile function qX (the “Value at

Risk”) of X ∈ L∞:

AVaRλ(−X) = max
Q∈Qλ

EQ[ X ] =
1

λ

∫ 1

1−λ

qX(t) dt ; (25)

see, e.g., Theorem 4.39 in [13] and recall that we have assumed that (Ω,F , P ) is atomless.

Thus, both AVaRλ and ρλ are law-invariant and satisfy the general assumptions of Section

2.

We will first consider the Neyman-Pearson problem for the risk measure ρλ of (24) in

the case where the loss function ` is strictly convex on [0, K]; the Neyman-Pearson problem

for AVaRλ will be considered in the next section. For simplicity, we will assume that the

price density ϕ is unbounded from above. Under our assumptions on the loss function `,

its derivative `′ is a bijective function from its domain to some interval (a, b) ⊂ (0,∞).

We extend its inverse function to all of R by setting

I(x) =





+∞ for x ≥ b,

(`′)−1(x) for a < x < b,

−∞ for x ≤ a.

In the classical case λ = 1, we have Q1 = {P}, and it is well known that the unique

solution of the Neyman-Pearson problem for ρ1 takes the form

X∗
1 = 0 ∨ I(c1ϕ) ∧ K =

(
I(c1(ϕ ∨ y1)) − I(c1y1)

)
∧ K ,

where c1 is the unique constant such that E[ ϕX∗
1 ] = v; see, e.g., Section 3.3 of [13]. The

parameter y1 = `′(0)/c1 can be interpreted as that level of prices at which the investor

starts taking risky bets since the solution X∗
1 is supported on {ϕ ≥ y1}. Clearly, c1 = c1(v)

increases continuously from 0 to +∞ and y1 = y1(v) decreases continuously from +∞ to

0 as v increases from 0 to K.
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For 0 < λ < 1, we will see in the following theorem that X∗
1 also solves the Neyman-

Pearson problem for ρλ, but only as long as the capital constraint v does not exceed

a certain critical value vλ. For v > vλ, a diversification effect will occur: the optimal

solution will be a combination of a constant β ∈ (0, v) and a classical solution X̃ with

upper bound K−β and capital constraint v−β. Moreover, for all values of v, the classical

part X̃ will be concentrated on a subset of {ϕ ≥ q}, where

q := qϕ(1 − λ) .

Viewing the constant β as a risk-free loan and X̃ as a risky bet, we see that this effect is

related to an “aversion” of the investor to accept risky bets on scenarios ω corresponding

to prices ϕ(ω) which are not high enough. Hence, capital that cannot be raised by issuing

a risky bet on high-price scenarios must instead be obtained via a risk-free loan. Note

our shorthand notation of writing E[ X; ϕ ∈ A ] for E[ X I
{ϕ∈A}

].

Theorem 3.1 Suppose that the distribution function of ϕ is continuous and strictly in-

creasing on (0,∞). Then:

(a) The Neyman-Pearson problem for ρλ of (24) has a unique solution X∗ which is

P -a.s. of the form

X∗ = β +
(
I(c(ϕ ∨ y)) − I(cy)

)
∧ (K − β) , (26)

where β, y, and c are constants such that β ≥ 0, y ≥ q, and c = `′(β)/y.

(b) For every λ ∈ (0, 1), there exists a critical value vλ ∈ (0, KE[ ϕ; ϕ ≥ q ]) such that

β = 0 if v ≤ vλ and 0 < β < v for v > vλ.

(c) The parameters β, c, and y are increasing functions of v.

Proof: (a) By Proposition 2.5, we may concentrate on random variables X that are of

the form X = f(ϕ) for an increasing function f . Then (20) and (25) imply that

λ max
Q∈Qλ

EQ

[
`(X)

]
=

∫ 1

1−λ

q`(f(ϕ))(t) dt =

∫ 1

1−λ

`
(
f
(
qϕ(t)

))
dt (27)

=

∫ 1

0

`
(
f
(
qϕ(t)

))
I
{qϕ(t)≥q}

dt = E
[
`
(
f(ϕ)

)
; ϕ ≥ q

]
,

where, in third identity, we have used our assumptions on ϕ. Hence X∗ = f ∗(ϕ) will solve

the Neyman-Pearson problem provided that f ∗ solves

minimize E
[
`
(
f(ϕ)

)
; ϕ ≥ q

]
among all increasing functions f

with 0 ≤ f ≤ K and E
[
ϕ f(ϕ)

]
= v, (28)

and vice versa. In particular, (28) admits a solution. It is clear that any such solution f ∗

must satisfy f ∗(x) = f ∗(q+) for all x ≤ q. Taking β := f ∗(q) as given, the restriction of

f ∗ to [q,∞) is the unique solution to the following problem:

minimize E
[
`
(
f(ϕ)

)
; ϕ ≥ q

]
among all increasing functions f on [q,∞)

with β ≤ f ≤ K and E
[
ϕ f(ϕ); ϕ ≥ q

]
= v − βE[ ϕ; ϕ ≤ q ] =: vβ. (29)
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If we drop the condition that f in (29) is increasing, then it is well-known (see, e.g.,

Section 3.3 of [13]) that (29) is solved by the function

f ∗
β(x) = β ∨ I(cx) ∧ K , x ≥ q , (30)

where c is such that E
[
ϕ f ∗

β(ϕ); ϕ ≥ q
]

= vβ. But f ∗
β is increasing and hence solves

(29). Since β = f ∗(q) = f ∗(q+), we get f ∗(x) = β ∨ I(cx) ∧ K for all x ≥ 0. Moreover,

there must be some y ≥ q such that β = I(cy). Thus, f ∗ can be written as f ∗(x) =

β +
(
I(c(x ∨ y)) − I(cy)

)
∧ (K − β).

As for the uniqueness of solutions, we have just shown that all σ(ϕ)-measurable so-

lutions are of the form (30) and can be parameterized via β. But a different β needs a

different c, so that two σ(ϕ)-measurable solutions must differ almost everywhere. The

strict convexity of ` hence implies uniqueness of (28) and in turn uniqueness of the σ(ϕ)-

measurable solution of the Neyman-Pearson problem. General uniqueness follows from

Proposition 2.7.

Part (b) is obtained by combining Lemmas 3.2, 3.3, and 3.4 below. Part (c) follows

from Lemma 3.2 and the fact that β < v as proved in Lemma 3.4.

Lemma 3.2 The solutions in (26) are pointwise increasing in v.

Proof: Let v and v′ be such that 0 ≤ v < v′ ≤ K, and consider the corresponding

solutions X∗(v) and X∗(v′). We want to show that P -a.s. X∗(v′) ≥ X∗(v). To this

end, define X := X∗(v) ∧ X∗(v′), Y := X∗(v) − X, and Z := X∗(v′) − X. Then

v0 := E[ ϕX ] ≤ v, and there exists α ∈ (0, 1] such that (1−α)E[ ϕZ ] = E[ ϕY ] = v− v0.

Clearly, we have Y = 0 on {Z > 0} and hence, by the convexity of `, P -a.s.

`(X + (1 − α)Z + αZ) − `(X + Y + αZ) ≥ `(X + (1 − α)Z) − `(X + Y ) . (31)

Both X∗(v) and X∗(v′) are increasing functions of the price density ϕ, and one easily

checks that the same is true of X + Y + αZ and of X + (1 − α)Z. Hence, multiplying

(31) with I
{ϕ≥q}

, taking expectations with respect to P , and using (27) yields

max
Q∈Qλ

EQ

[
`(X∗(v′))

]
− max

Q∈Qλ

EQ

[
`(X∗(v) + αZ)

]

≥ max
Q∈Qλ

EQ

[
`(X + (1 − α)Z)

]
− max

Q∈Qλ

EQ

[
`(X∗(v))

]
(32)

≥ 0 ,

where the latter inequality follows from the fact that E
[
ϕ(X +(1−α)Z)

]
= v. Moreover,

E
[
ϕ(X∗(v) + αZ)

]
= v′, which in view of (32) and the uniqueness of solutions implies

that P -a.s. X∗(v′) = X∗(v) + αZ ≥ X∗(v).

Lemma 3.3 For every λ ∈ (0, 1), there exists ε > 0 such that β = 0 for v ≤ ε.
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Proof: Fix v ∈ (0, K) for the first step. For γ ∈ [0, v) let fγ(x) := γ ∨ I(cγx)∧K, where

cγ ∈ (0,∞) is such that E[ ϕfγ(ϕ) ] = v. We denote by yγ := `′(γ)/cγ the point at which

fγ starts being larger than γ. Suppose that γ′ > γ. Then y1 := yγ ∧ yγ′

> 0 and

E[ ϕ ·
(
γ′ ∨ I(cγ′ϕ) ∧ K

)
; ϕ > y1 ] = v − γ′E[ ϕ; ϕ ≤ y1 ]

< E[ ϕfγ(ϕ); ϕ > y1 ]

≤ E[ ϕ ·
(
γ′ ∨ I(cγϕ) ∧ K

)
; ϕ > y1 ]

It follows that γ 7→ cγ = cγ(v) is strictly decreasing and that γ 7→ yγ = yγ(v) is strictly

increasing as long as v is fixed.

Now let L(γ) := E
[
`(fγ(ϕ)); ϕ ≥ q

]
. It follows from the proof of Theorem 3.1 that

β = 0 or β = v if

L(γ) − L(0) > 0 for all γ ∈ (0, v). (33)

But (33) also implies that L(v) := `(v)P [ ϕ ≥ q ] = limγ↑v L(γ) > L(0), for the case

L(v) = L(0) is excluded by the uniqueness of the solution (26). Hence, (33) is equivalent

to β = 0.

In addition to yγ, we will also need the point yγ := `′(γ)/c0 < yγ at which f0 leaves

the level γ. Letting ∆ := `(fγ(ϕ)) − `(f0(ϕ)), we have

L(γ) − L(0) = E[ ∆; ϕ ≥ yγ ] + E[ ∆; y0 ≤ ϕ < yγ ] + E[ ∆; q ≤ ϕ < y0 ] .

On {ϕ ≥ yγ}, we get from the first step that fγ(ϕ) ≤ f0(ϕ) and in turn

∆ ≥ `′(f0(ϕ))
[
fγ(ϕ) − f0(ϕ)

]
≥ c0ϕ

[
fγ(ϕ) − f0(ϕ)

]
.

Moreover, ∆ ≥ 0 on {y0 ≤ ϕ < yγ}, and on {q ≤ ϕ < y0} we have γ = fγ(ϕ) ≥ f0(ϕ) = 0.

Therefore,

L(γ) − L(0) ≥ c0E
[
ϕ ·

(
fγ(ϕ) − f0(ϕ)

)
; ϕ ≥ yγ

]
+

(
`(γ) − `(0)

)
P [ q ≤ ϕ < y0 ]

≥ c0

(
v − γP [ ϕ < yγ ] − v

)
+ γ`′(0)P [ q ≤ ϕ < y0 ]

≥ γ
(
`′(0)P [ q ≤ ϕ < `′(0)/c0 ] − c0

)
.

By our assumption that ϕ has a continuous and strictly increasing distribution function,

the factor c0 = c0(v) tends continuously from 0 to +∞ as v increases from 0 to K, and so

the righthand side will be strictly positive as soon as v is small enough and γ is between

0 and v.

Lemma 3.4 We have β < v for all v ∈ (0, K) and β > 0 for v > KE[ ϕ; ϕ ≥ q ].

Proof: As to the first part of the assertion, it follows from Lemma 3.3 that X ≡ v is

not optimal for small enough v > 0. That is, Rϕ(v) < ρ(−X) = v, where Rϕ(v) is as in

(23). The convexity of v 7→ Rϕ(v)− v, which follows from Lemma 2.8, hence implies that

v = 0 and v = K are the only two points in [0, K] with Rϕ(v) = v. Thus, X ≡ v cannot

be optimal for any v ∈ (0, K).

The second part of the assertion follows immediately from the fact that the parameter

y in Theorem 3.1 has been shown to be larger than or equal to q.
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Let us now briefly comment on the translation invariant modification

ρ̂λ(−X) = inf
{

m ∈ R

∣∣∣ max
Q∈Qλ

EQ

[
`(X − m)

]
≤ x0

}

of ρλ, which is a convex measure of risk in the sense of [11]. In addition to the assumptions

made at the beginning of this section, we assume that ` is defined on all of R, and x0 is

a fixed interior point of `(R). Clearly, ρ̂λ is law-invariant and satisfies the properties (10)

through (16). We denote by R(v) := Rϕ(v) the minimal risk for ρ̂λ, as defined in (23).

Recall that q denotes the (1 − λ)-quantile of ϕ.

Corollary 3.5 Suppose that the distribution function of ϕ is continuous and strictly in-

creasing on (0,∞). Then the Neyman-Pearson problem for ρ̂λ has a unique solution X∗

that is P -a.s. of the form

X∗ = α +
(
I(γ(ϕ ∨ z)) − I(γz)

)
∧ (K − α) ,

where α, z, and γ are constants such that 0 ≤ α < v, z ≥ q, and γ = `′(α − R(v))/z.

Moreover, for every λ ∈ (0, 1), there exists a critical value v̂λ ∈ (0, K) such that α = 0 if

v ≤ v̂λ.

Proof: Take a solution X∗ at level v and let `R(v)(x) := `(x − R(v)). Then we see that

maxQ∈Qλ
E[ `R(v)(X

∗) ] = x0. On the other hand, if 0 ≤ X ≤ K and E[ ϕX ] ≥ v but X is

not a solution, then we must have ρ̂λ(−X) > R(v) and hence maxQ∈Qλ
E[ `R(v)(X) ] > x0.

So X∗ solves the Neyman-Pearson problem for ρ̂λ at level v if and only if X∗ minimizes

maxQ∈Qλ
E[ `R(v)(X) ] among all X with 0 ≤ X ≤ K and E[ ϕX ] ≥ v. For fixed v, this

problem is of the same type as the one of Theorem 3.1, and so we get a representation

of solutions in terms of the inverse IR(v) of `′R(v). But IR(v)(x) = I(x) + R(v), and we

obtain the first part of the assertion. The existence of the critical value v̂λ follows by the

same arguments as in Lemma 3.3 when one replaces ` by `′R(v) and I by IR(v); only minor

modifications are needed.

From the proof it is clear that, for given v > 0, the parameters α, γ, and z will

generally be different from the corresponding parameters β, c, and y in Theorem 3.1,

because the problem now involves the loss function `R(v)(x) := `(x − R(v)) rather than `

itself. Also, in the case in which α = 0 but λ < 1, the solution X∗
λ := X∗ typically does

not coincide with the solution X∗
1 to the Neyman-Pearson problem for the “classical” risk

measure

ρ̂1(−X) = inf
{

m ∈ R

∣∣∣ E[ `(X − m) ] ≤ x0

}

(with the exception of an exponential loss function `(x) = eαx). To see this, note first

that

max
Q∈Qλ

EQ[ `(X − m) ] > E[ `(X − m) ]

unless X is constant. This in turn implies that R(v) = ρ̂λ(−X∗
λ) > ρ̂1(−X∗

1 ) =: R1(v) for

otherwise ρ̂1(−X∗
λ) would be strictly less than ρ̂1(−X∗

1 ). But X∗
λ is of the form

X∗
λ = 0 ∨

(
I(γλϕ) + R(v)

)
∧ K ,

while

X∗
1 = 0 ∨

(
I(γ1ϕ) + R1(v)

)
∧ K ,

which shows that γλ < γ1.
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4 Quantile-based coherent risk measures

A quantile-based coherent risk measure is of the form

ρk(−X) :=

∫ 1

0

k(t)qX(t) dt , X ∈ L∞ ,

where k : [0, 1) → [0,∞) is an increasing rightcontinuous function such that
∫ 1

0
k(t) dt = 1,

and where qY denotes a quantile function of a random variable Y . The Average Value

at Risk AVaRλ of (25) is thus the particular quantile-based coherent risk measure with

k = 1
λ
I
[1−λ,1)

. For general k, let µ̃ be the positive Radon measure on [0, 1) such that

k(t) = µ̃([0, t]). Then µ(dλ) = (1 − λ) µ̃(dλ) is a probability measure on [0, 1) such that

ρk(−X) =

∫

[0,1)

AVaR1−λ(−X) µ(dλ) .

Since AVaRλ is a coherent measure of risk which is continuous from below and, hence,

from above (see, e.g., [20] or Theorem 4.39 in [13]), the same is true of the quantile-based

risk measure ρk. In particular, ρk satisfies the properties (10) through (16) and can be

represented in the form

ρk(−X) = max
Q∈Qk

EQ[ X ] ,

where Qk is a set of probability measures, which has been described by Dana and Carlier

[5].

Let us now turn to the Neyman-Pearson problem for ρk. By the positive homogeneity

of ρk, there is no loss in generality if we assume that K = 1. Our first result in this section

will show that the Neyman-Pearson problem for ρk can be reduced to the minimization

of an ordinary expectation over a very limited class J of functions. This class J consists

of all increasing step functions f : (0,∞) → [0, 1] that take at most one value in (0, 1).

More precisely, each f ∈ J can be written as

f = β I
J0

+ I
J1

for some β ∈ (0, 1) and two disjoint intervals J0, J1 ⊂ (0,∞) such that J0 is either empty

or satisfies P [ ϕ ∈ J0 ] > 0. Here and in the sequel, we use the term interval in a broad

sense: an interval may also be empty or consisting of a single element. Since f must

be increasing, J1 must either be empty or unbounded to the right. If both J0 and J1

are non-empty, then the the righthand endpoint of J0 must coincide with the lefthand

endpoint of J1.

Recall that Fϕ denotes the distribution function of ϕ under P and let us introduce the

function

gk(x) =





k(Fϕ(x)) if Fϕ is continuous at x,

1

Fϕ(x) − Fϕ(x−)

∫ Fϕ(x)

Fϕ(x−)

k(t) dt otherwise.
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Consider the following variational problem:

minimize E
[
gk(ϕ) f(ϕ)

]
among all increasing functions f

with 0 ≤ f ≤ 1 and E
[
ϕ f(ϕ)

]
= v. (34)

It would be tempting to apply the classical Neyman-Pearson lemma to solving (34), but

this approach would only work if the function gk(x)/x were decreasing in x, because

otherwise we might not obtain an increasing solution f .

Theorem 4.1

(a) If f ∗ solves (34), then X∗ := f ∗(ϕ) solves the Neyman-Pearson problem for ρk.

(b) There exists a function f ∗ ∈ J that solves (34).

(c) If f ∗ is such that f ∗(ϕ) solves the Neyman-Pearson problem for ρk, then f ∗ solves

(34).

(d) If the solution f ∗ ∈ J of part (b) is unique within J up to P ◦ ϕ−1-nullsets, then

X∗ = f ∗(ϕ) is the P -a.s. unique σ(ϕ)-measurable solution to the Neyman-Pearson

problem for ρk.

The proof of Theorem 4.1 is deferred to Section 5 below. Here we will first illustrate

how this result leads to explicit solutions of the Neyman-Pearson problem for quantile-

based coherent risk measures. In order not to complicate the presentation, we assume

for the rest of this section that the distribution function Fϕ is continuous and strictly

increasing on {x > 0 |Fϕ(x) < 1 }. Then the corresponding quantile function qϕ will also

be continuous and strictly increasing. We let qϕ(0) := 0 and qϕ(1) := ‖ϕ‖L∞ ≤ ∞, and

we define two functions Φ and Γ by

Φ(x) :=

∫ x

0

qϕ(t) dt and Γ(x) :=

∫ x

0

k(t) dt , 0 ≤ x ≤ 1 .

Then we take the unique zv such that

Φ(zv) = 1 − v ,

and define two functions β and R on ∆v := { (x, y) | 0 ≤ x < zv < y ≤ 1 } ∪ {(zv, zv)} by

β(x, y) :=





0 if x = zv = y,
v − 1 + Φ(y)

Φ(y) − Φ(x)
otherwise,

R(x, y) := β(x, y)
[
Γ(y) − Γ(x)

]
+ 1 − Γ(y) .

Corollary 4.2 Suppose that the pair (x∗, y∗) minimizes the function R over the domain

∆v, and let β∗ := β(x∗, y∗), a := qϕ(x∗) and b := qϕ(y∗). Then X∗ := f ∗(ϕ) solves the

Neyman-Pearson problem for ρk, where

f ∗ := β∗I
[a,b)

+ I
[b,∞)

. (35)

Conversely, suppose that f ∈ J is a.e. of the form (35) and solves (34). Then the

pair (x∗, y∗) := (Fϕ(a), Fϕ(b)) minimizes R on ∆v. In particular, the Neyman-Pearson

problem for ρk has a unique solution if and only if R has a unique minimizer on ∆v.
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Proof: It is straightforward to verify that a function f = βI
[a,b)

+ I
[b,∞)

∈ J satisfies

the constraints in (34) if and only if (x, y) := (Fϕ(a), Fϕ(b)) ∈ ∆v and β = β(x, y). An

analogous computation shows that E[ gk(ϕ) f(ϕ) ] = R(x, y), so that the assertion follows

from Theorem 4.1 and Proposition 2.7.

The preceding corollary implies that σ(ϕ)-measurable solutions to the Neyman-Pearson

problem need not be unique, even for genuinely non-additive risk measures and for price

densities with a continuous distribution:

Remark 4.3 In the case k ≡ qϕ we have R(x, y) = v for all (x, y) ∈ ∆v. Hence, each

function

f = β(x, y)I
[a,b)

+ I
[b,∞)

, for a = qϕ(x), b = qϕ(y) ,

solves the Neyman-Pearson problem for ρk, and so does every convex combination of these

functions.

Below, we will use Corollary 4.2 to obtain an explicit solution for the Neyman-Pearson

problem for AVaRλ. As one may guess from Theorem 3.1, we will find the dichotomy

x∗ = y∗ = zv or x∗ = 0 and y∗ > zv. But before doing so, let us show in the following

example that the case 0 < x∗ < y∗ < 1 can also occur.

Example 4.4 Let us the consider case in which ϕ has a uniform distribution on (0, 2),

so that qϕ(t) = 2t, Φ(x) = x2, and zv =
√

1 − v. We take

k =
1

2
I
[0,ξ)

+ λI
[ξ,1)

,

where ξ ∈ (1
2
, 1) and λ is such that k integrates to 1. With this choice, Γ(x) < x2 = Φ(x)

for all x ∈ (1
2
, ξ]. Consequently, R(zv, zv) = 1−Γ(zv) > v = R(0, 1) for all 1−ξ2 ≤ v < 3/4.

It follows that (zv, zv) does not minimize R for those values of v. Let (x∗, y∗) be a minimizer

of R on ∆v. Then the righthand derivative of x 7→ R(x, y∗) is equal to

β(x, y∗)
(
2x

Γ(y∗) − Γ(x)

(y∗)2 − x2
− k(x)

)
.

Since this expression is strictly negative for small enough x, the optimal x∗ must be larger

than 0.

Let us now show that the case y∗ = 1 cannot occur if the parameter ξ is sufficiently

close to 1/2 and 1 − ξ2 ≤ v < 3/4. To this end, one verifies first that the lefthand

derivative of y 7→ R(x∗, y) at y = 1 is given by

(1 − β(x∗, 1))
(
2
1 − Γ(x∗)

1 − (x∗)2
− λ

)
. (36)

For 0 ≤ x ≤ zv and zv ≤ ξ, the function (1 − Γ(x))/(1 − x2) has a global minimum at

x = 1/4, where it takes the value 14/15. On the other hand, λ tends to 3/2 when ξ goes

to 1/2. Thus, (36) must be strictly positive if ξ is not too large, and we conclude that

y = 1 cannot be optimal.
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Let us now turn to the Neyman-Pearson problem for AVaRλ. There are various ways

of handling this special case. For instance, one can use the arguments of the proof of

Theorem 3.1 to reduce the problem to the variational problem (29) for `(x) = x, which

can then be solved via the classical Neyman-Pearson lemma. Here we will use instead a

computation based on Corollary 4.2.

As in Theorem 3.1, we will find a critical value vλ such that the solution reduces to

the solution for ρ(−X) = E[ X ] as long as v ≤ vλ. That is, the solution provided by the

classical Neyman-Pearson lemma is optimal for capital levels v ≤ vλ. For v > vλ, the

solution will be a non-trivial convex combination of the classical solution at level vλ and

of a risk-free unit investment. This critical value will be of the form

vλ = 1 − Φ(yλ) ,

where yλ ∈ (1 − λ, 1] is defined as the unique maximizer of the function

(0, 1] 3 y 7−→ y + λ − 1

Φ(y)
.

Thus, if qϕ(1) = ‖ϕ‖L∞ > λ−1 then yλ ∈ (1 − λ, 1) is the unique solution to the equation

qϕ(yλ)(yλ + λ − 1) = Φ(yλ) .

Corollary 4.5 The Neyman-Pearson problem for AVaRλ has a unique solution X∗. If

v ≤ vλ, then

X∗ = I
[b0,∞)

(ϕ) ,

where b0 := qϕ(zv). If v > vλ, then the solution is given by

X∗ = β∗ + (1 − β∗) I
[b1,∞)

(ϕ) ,

where β∗ = β(0, yλ) and b1 = qϕ(yλ). Moreover, with Cλ := (yλ + λ − 1)/Φ(yλ), the

minimal risk (23) is given by

Rϕ(v) =

{
(1 − zv)/λ if v ≤ vλ,

1 − Cλ(1 − v)/λ if v > vλ.

Proof: It suffices to consider the case 0 < v < 1. For k = 1
λ
I
[1−λ,1)

, we have

λR(x, y) = β(x, y)
[
(y + λ − 1) ∨ 0 − (x + λ − 1) ∨ 0

]
+ λ − (y + λ − 1) ∨ 0 .

Let (x∗, y∗) be a minimizer of R on ∆v, and suppose first that (x∗, y∗) 6= (zv, zv). Then

y∗ > zv and
∂

∂x
β(x, y∗) = β(x, y∗) · qϕ(x)

Φ(y∗) − Φ(x)
> 0 .

Thus, we see that β(x, y∗) and, hence, R(x, y∗) are strictly increasing in x as long as

x < 1 − λ. If, on the other hand, x > 1 − λ then

λ
∂

∂x
R(x, y∗) = β(x, y∗)

(qϕ(x)(y∗ − x)

Φ(y∗) − Φ(x)
− 1

)
< 0 .
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So x∗ must be equal to either 0 or zv.

Let us now look for the optimal y∗, given the fact that x∗ = 0. We have

λR(0, y) = λ − (1 − v)
(y + λ − 1) ∨ 0

Φ(y)
.

For y ≤ 1− λ, this yields R(0, y) = 1, which according to Lemma 2.4 cannot be optimal.

For y > 1−λ, the choice (x∗, y∗) = (0, yλ) will be optimal—but only if yλ > zv and unless

the alternative choice (x∗, y∗) = (zv, zv) gives a better result.

If yλ ≤ zv then y 7→ R(0, y) has no minimizer on (zv, 1], and it follows that (x∗, y∗) =

(zv, zv) must be the optimal choice. Note that yλ > zv if and only if v > vλ.

Finally, let us compare R(0, yλ) against R(zv, zv) in case that yλ > zv. Since yλ > 1−λ,

we have

λR(0, yλ) = λ − (1 − v)
yλ + λ − 1

Φ(yλ)
= λ − Φ(zv)

yλ + λ − 1

Φ(yλ)

and

λR(zv, zv) = λ − (zv + λ − 1) ∨ 0 .

Since yλ is the unique maximizer of the function x 7→ (x + λ − 1)/Φ(x), we thus see that

R(0, yλ) is strictly better than R(zv, zv) and hence (x∗, y∗) = (0, yλ) as long as yλ > zv.

An application of Corollary 4.2 concludes the proof.

Remark 4.6 (Comparison with Value at Risk) Consider the Value at Risk at level

λ ∈ (0, 1),

VaRλ(−X) = inf
{

m ∈ R |P [ X > m ] ≤ λ
}

,

which is a quantile-based risk measure that satisfies all the assumptions of Section 2 except

for convexity (11). Denoting Rϕ(v) the corresponding minimak risk (23), we see that X∗

solves the Neyman-Pearson problem for VaRλ if P [ X∗ > Rϕ(v) ] ≤ λ and E[ ϕX∗ ] ≥ v.

Thus, for v with zv > q := qϕ(1−λ), any X that is concentrated on {ϕ > q} and satisfies

0 ≤ X ≤ 1 and E[ ϕX ] ≥ v solves our problem and has risk Rϕ(v) = VaRλ(−X) = 0. For

zv ≤ q, there is a unique solution of the form X∗ = rI
[0,q)

(ϕ) + I
[q,∞)

(ϕ), where r = Rϕ(v)

is determined by the budget constraint E[ ϕX∗ ] = v. This solution is similar to the one

for AVaRλ, but involves different parameters.

Remark 4.7 Recall that a pair (X, Y ) of random variables is called comonotonic if

(
X(ω) − X(ω′)

)(
Y (ω) − Y (ω′)

)
≥ 0 for P ⊗ P -a.e. (ω, ω′) ∈ Ω × Ω.

Since qX+Y = qX + qY for all pairs (X, Y ) of comonotonic random variables (Corollary

4.6 in [8]), all quantile-based coherent risk measures ρk are comonotone in the sense that

ρk(X + Y ) = ρk(X) + ρk(Y ) for all comonotonic pairs (X, Y ).

In fact, it follows from the results of Kusuoka [20] and Delbaen [7] that the class of

quantile-based coherent risk measures is precisely the class of all law-invariant coherent

risk measures that are comonotone and continuous from below. Continuity from below
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implies that the set function vk(A) := ρk(−I
A
) is a Choquet capacity, while it follows

from comonotonicity that vk is 2-alternating, i.e.,

vk(A ∪ B) + vk(A ∩ B) ≤ vk(A) + vk(B) .

Therefore, the Neyman-Pearson problem for ρk falls within the range of the Neyman-

Pearson lemma for capacities as proved by Huber and Strassen [16], and our results can

be interpreted in term of formulas for the Radon-Nikodym derivative π of the measure

dP ∗ := ϕdP with respect to the capacity vk. In the case of AVaRλ, we get for ‖ϕ‖L∞ > λ−1

that π = c · ϕ ∨ qϕ(yλ) for some constant c > 0. It is shown in [16] that π = dP̂ /dQ0 for

some Q0 ∈ Qλ, and we get c · ϕ ∨ qϕ(yλ) = ϕ · dP/dQ0. Using our formulae for yλ, one

easily obtains c = λ, i.e.,

π = λ(ϕ ∨ qϕ(yλ)) .

5 Proof of Theorem 4.1

Proof of parts (a) and (c): As in the proof of Proposition 2.5, we see that gk(qϕ) =

Eλ[ k | qϕ ], where λ denotes the Lebesgue measure on (0, 1). Hence, for any increasing

function f : [0,∞) → [0, 1],

ρ
(
−f(ϕ)

)
=

∫ 1

0

k(t) qf(ϕ)(t) dt =

∫ 1

0

gk(qϕ(t)) f(qϕ(t)) dt = E
[
gk(ϕ) f(ϕ)

]
,

where we have used (20) in the second step. Applying Lemma 2.4 and Proposition 2.5

yields (a) and (c).

The proof of parts (b) and (d) requires some preparation. To illustrate our idea of

solving (34), suppose first that the price density has a continuous distribution. Then

we may, without loss of generality, restrict our attention to rightcontinuous increasing

functions f : [0,∞) → [0, 1] in (34). Via f(x) = ν([0, x]), any such function f can be

identified with a unique sub-probability measure ν on [0,∞) and vice versa. Fubini’s

theorem implies that

E
[
gk(ϕ) f(ϕ)

]
=

∫
Gk(x) ν(dx) and E

[
ϕ f(ϕ)

]
=

∫
Gϕ(x) ν(dx) ,

where Gk(x) = E
[
gk(ϕ); ϕ ≥ x

]
and Gϕ(x) = E

[
ϕ; ϕ ≥ x

]
. Thus, (34) is equivalent

to minimizing the integral
∫

Gk(x) ν(dx) over the convex set C̃ of all sub-probability

measures ν on [0,∞) that satisfy the constraint
∫

Gϕ(x) ν(dx) = v. Our strategy of

solving this moment problem is to identify the extreme points of C̃ as those sub-probability

measures that correspond to functions in C ∩ J and to show that it suffices to minimize∫
Gk(x) ν(dx) among such extreme measures ν.

If the distribution of ϕ is not continuous, the problem becomes slightly more involved.

This is mainly due to the fact that we may no longer pass to a rightcontinuous (or
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leftcontinuous) version of f . We may only suppose that f is rightcontinuous on the set

[0,∞)\D, where D denotes the set of discontinuity points of Fϕ. Nevertheless, it will be

possible to identify f with a certain measure ν living on a larger space S ⊃ [0,∞), in which

each point in D occurs twice. Our problem (34) will then turn out to be equivalent to a

certain moment problem for these measures ν. Once this identification has been achieved,

the extreme points of the set defined by the moment constraint on ν can be identified by

using general results like those proved by Winkler [25]. In our simple situation, however,

we will avoid using the general theory. Instead, we will give a short and straightforward

argument in identifying the extreme points.

Define a probability measure µ on [0,∞) by

µ(A) := E[ ϕ; ϕ ∈ A ] ,

and denote by C the convex set of all increasing functions f : [0,∞) → [0, 1] that are

rightcontinuous on Dc and satisfy the constraint
∫

f dµ = v.

Lemma 5.1 The set of extreme points of C is given by

ext C = C ∩ J . (37)

Proof: First we show the inclusion ⊃ in (37). So suppose that f ∈ C ∩Jµ is of the form

f = β I
J0

+I
J1

and can be written as f = λf1 +(1−λ)f2 for certain fi ∈ C and λ ∈ (0, 1).

Since 0 ≤ fi ≤ 1, we get immediately that fi = 0 on (J0 ∪ J1)
c and fi = 1 on J1. This

proves that f is an extreme point if J0 is empty. Now suppose that J0 is non-empty.

Then µ(J0) > 0 by the definition of J . Since both f1 and f2 are increasing, each fi must

be equal to some constant βi ∈ [0, 1] on J0. But then the conditions
∫

fi dµ = v and

µ(J0) > 0 imply β1 = β2 = β and in turn f1 = f2 = f .

For the proof of the inclusion ⊂ in (37), it will be convenient to identify a function

f ∈ C with a suitable sub-probability measure ν. To this end, we first define a sub-

probability measure νD on D by

νD :=
∑

x∈D

(
f(x+) − f(x)

)
δx .

Then we let

fD(x) := νD

(
[0, x)

)
and fc(x) := f(x) − fD(x) , x ≥ 0 .

Note that fc is rightcontinuous and increasing. Hence, there exists a sub-probability

measure νc on [0,∞) such that fc(x) = νc

(
[0, x]

)
.

Now think of the set D as being separate from [0,∞), and consider the set S :=

[0,∞) ∪ D, on which every discontinuity point of µ is represented twice. Our function f

gives rise to a sub-probability measure ν on S defined for Borel sets A ⊂ S by

ν(A) := νc

(
A ∩ [0,∞)

)
+ νD(A ∩ D) .

Conversely, any sub-probability measure ν̃ on the Borel field of S gives rise to an increasing

function f̃ on [0,∞) that is rightcontinuous except possibly at discontinuity points of µ:
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simply let f̃(x) := ν̃(Ax), where Ax := [0, x] ∪ { y ∈ D | y < x }. Note also that f = f̃ if

and only if ν = ν̃.

By means of Fubini’s theorem, we find that
∫

f dµ =
∫

G dν, where G is the function

on S defined by

G(x) =

{
µ
(
[x,∞)

)
for x ∈ [0,∞),

µ
(
(x,∞)

)
for x ∈ D.

(38)

Hence, C can be identified with the set of all sub-probability measures ν on S such that∫
G dν = v.

Let us now consider the case in which supx f(x) = 1, corresponding to ν(S) = 1.

Suppose f takes more than one value in (0, 1). Then S can be decomposed into three

disjoint sets A1, A2, A3 such that ai := ν(Ai) > 0. Let also bi :=
∫

Ai
G dν, and denote by

ν|Ai
the measure ν|Ai

(A) := ν(A ∩ Ai). For coefficients αi ≥ 0, the measure

ν1 := α1ν|A1
+ α2ν|A2

+ α3ν|A3

will correspond to an element of C provided that αi ≥ 0 and

α1a1 + α2a2 + α3a3 = 1 ,

α1b1 + α2b2 + α3b3 = v .

Clearly, this system of linear equations is solved by the vector (1, 1, 1) but admits also

another, different solution (α1, α2, α3) with 0 ≤ αi ≤ 2. But then γi := 2 − αi defines yet

another solution. Letting

ν2 := γ1ν|A1
+ γ2ν|A2

+ γ3ν|A3
,

we have found two measures ν1, ν2 corresponding to two functions f1, f2 in C such that

ν = 1
2
(ν1 + ν2) and, hence, f = 1

2
(f1 + f2). Thus, f cannot be an extreme point of C.

Next, we turn to the case in which f ∈ C satisfies supx f(x) < 1. Then the corre-

sponding measure ν is a true sub-probability measure: ν(S) < 1. If f takes more than

one value in (0, 1), then ν puts positive charge on two disjoint sets A1, A2, of which we

may assume that A1 ∪ A2 = S. Letting again ai := ν(Ai) > 0 and bi :=
∫

Ai
G dν, we see

that ν1 := α1ν|A1
+ α2ν|A2

will correspond to some function f1 ∈ C provided that αi ≥ 0

and

α1a1 + α2a2 = m , (39)

α1b1 + α2b2 = v ,

where m may be any number between 0 and 1. The vector (1, 1) solves (39) for m =

ν(S) < 1. If (39) admits also other non-negative solutions, then we can argue as in the

case ν(S) = 1 that f is not an extreme point of C. If the solution to (39) is unique,

we take ε > 0 such that the numbers m± := ν(S) ± ε belong to [0, 1] and such that

the solutions (α±
1 , α±

2 ) corresponding to m± have non-negative components. Then the

measures ν± := α±
1 ν|A1

+α±
2 ν|A2

correspond to functions f± ∈ C such that f = 1
2
(f++f−),

and so f is not an extreme point of C.

Finally, consider a function f ∈ C of the form f = β I
J0

+ I
J1

where β ∈ (0, 1) but the

interval J0 is a µ-nullset. In this case, β can be changed arbitrarily without violating the

condition
∫

f dµ = v, and so f cannot be an extreme point of C.
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Lemma 5.2 The set C admits an integral representation with respect to its extreme

points: For every function f0 ∈ C, there exists a probability measure η on C ∩J , defined

on the σ-algebra generated by the maps f 7→ f(x), x ∈ (0,∞), such that

f0 =

∫

C∩J

f η(df) .

Proof: Consider the affine coding of a function f ∈ C by a sub-probability measure ν

on S as introduced in the proof of Lemma 5.1. By adding an additional point ∂ to S, we

can uniquely extend ν to a probability measure on S := S ∪ {∂}. The function G defined

in (38) will be extended to S by letting G(∂) := 0. Then C can be identified with the

set H of all Borel probability measures ν on S such that
∫

G dν = v. Corollary 3 of [24]

states that H enjoys an integral representation, which then carries over to C by means of

Fubini’s theorem.

Proof of parts (b) and (d) of Theorem 4.1: In proving (b), our task is to minimize

E[ gk(ϕ)f(ϕ) ] =
∫

gf dµ over the set C, where g(x) = gk(x)/x. Let f0 be a minimizer in

C (which must exist, e.g., by Proposition 2.5 and part (c) of Theorem 4.1) and consider

the integral representation f0 =
∫

C∩J
f η(df) of Lemma 5.2. Then, according to Fubini’s

theorem, ∫
gf0 dµ ≥ inf

f∈supp η

∫
gf dµ ,

so that there must also be a minimizer in C ∩ J .

(d) According to the argument in the proof of part (b), uniqueness of solutions in

C ∩ J implies uniqueness in C. Moreover, by Proposition 2.5, every σ(ϕ)-measurable

solution X∗ is of the form X∗ = f ∗(ϕ) for some function f ∗ ∈ C.
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