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Abstract

The goal of this paper is to show how the heatrtreat of steel can be modelled in terms of a matiieai optimal
control problem. The approach is applied to lasgfase hardening and the cooling of a steel slatuding
mechanical effects. Finally, it is shown how theults can be utilized in industrial practice byaumling with
machine-based control.
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1 Introduction

The aim of this paper is to show that the natuhematical description of the heat treatment of
steel is given in terms of an optimal control pevbl The desired goal is described by a cost
functional. A typical choice would be

Izu) =% [ 1200t0) - 2(%) £ dx. (1)

Q
For a vectorz=(f, p,b,m) of phase fractions of ferrite, pearlite, bainitel anartensite,J(z,u )
measures the distance between the actual phasbufish at end-timegtand the desired one,
Z,in the workpieceQ. The goal of the heat treatment then is to find @inwl controlu’,i.e., an

optimal cooling strategy, such that is the solution to the following control problem:

minJ(z u)
(CP) subject to equality constraints for temperaflire
and phase fraction

In the simplest case, the equality constraintgyasen by the heat equation and a system of rate
laws for the phase fractions. The control paramete&uld be the temperature of the coolant, the

heat transfer coefficient or the power of a laserce.
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In the next section, we describe a mathematicaleffod laser and electron beam hardening. In
Section 3, we show how these planning of the beaatnhents can be assisted by the solution of
a corresponding control problem. The last sect®oddvoted to some concluding remarks on

future research.

2 A Model of Laser Surface Hardening

Figure 1 depicts the laser hardening process. Ar lasam moves along the surface of a
workpiece. The absorbed energy leads to a heafitheoboundary layer followed by the
formation of austenite. Typical penetration degHess than one millimeter. Hence by self-
cooling the desired martensite layer is produced.
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Figure 1: Sketch of laser hardening process.

The basic assumption for our phase transition mixdtiat all the necessary information are
constrained in the respective TTT, CCT, and austation diagrams. In particular, we do not
strive for a model in which all parameters can iverga precise physical interpretation. Our aim
is to develop a phenomenological model with sugfitly rich parameter structure, such that all

the transformation diagrams can be reproduced well.

To be more precise, we define a temperature figkit with)temporal derivativel and a the

phase fraction of austenite. The expressipnF max {Ou} describes the positive part of a
function u. The principal building block to describe the growtha phaseis given by the

following rate law:

2(t) = 7 V[2,(T) - 2" g(Mh(T).



Here, z,,(T) denotes the equilibrium fraction for the phageat will be attained asymptotically
at fixed temperaturd In the casez, =1r=0,s=1h= dnd g=c with a positive constant

c,one obtains a typical Avrami-Kolmogorov kinetics.j z(t) =1- (1-z)e ™. In the case

r =1,s=0,s=1andh = Jone obtains the Leblond & Devaux model [Leblondy&e 1984].
Figure 2 depicts the phase transitions during laaedening. The heating leads to a growth of
austenite in a boundary layer. Upon cooling, inisstly transformed to martensite. Depending

on the workpiece geometry also smaller amountgmité, pearlite, and bainite can be formed.

We call these quantitiefs p,b,m, relative volume fractions, which grow at the emxge of the

austenite formed during heating.
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Figure 2: Temporal evolution of temperature andspheactions
in a fixed point in the workpiece.

A straightforward generalization of the previousi&ipn yields the following model for the

phase transitions during a complete heat treatoyetd:

a(0)=m@0) =0, f(0)="f,

p(©) = py, b(0) =h, (2a)
| ~

() =~ yfaa (-2l (2b)
fo)y ="M= 17 Vg, (Mh,(T) (20)



pt) = p" [P (M) - P17 g, (TN, (T) (2d)

b(t) = b [io, (T) ~ b] ™ g, (T)h,(T) (2e)
AN R
m(t)—rm(T)[m(T) m, (2f)

(2a) is the Leblond & Devaux model for the growftaostenite. The equilibrium fractioa,, is
zero below and 1 abovA, inpetween it grows monotonically. Hence, the grouftlaustenite

starts when the temperature has reacedDue to the projection on the positive part, [.]
a(t) =0 for decreasing temperature. Altogethaft is)a non-decreasing function, although in
reality, a(t) is diminished by the growth of the product phasep,b, m.

At any timet, the fraction of ferrite, which can be attained m@ly, is given as the sum of the
fraction produced so far, f(t ), and the remaining fraction of austenite,

a(t) - f (t) - p(t) —b(t) —-m(t). The same holds true for the other product phddesce, we

define the functiongeq, I5€q,56q , rﬁeq as

f,(T) =min{ f,(T),a- p-b-m} (3a)
Peq(T) =min{ p,,(T),a~ f —b—m} (3b)
by, (T) =min{b,,(T),a- f - p-m} (3c)

(T) =min{m,,, (T),a- f - p-b}. (3d)

One should remark that non-zero initial conditidos f, p, andb are necessary to ensure
unique solvability of the system (2a—f). The eduilim fractionsa,,, f,, Ps,bs, can be derived

from the respective TTT and austenitization diagrafme functionm,,, desribes the fraction of

martensite according to the Koistinen-Marburgemigla [Koistinen, Marburger, 1959], i.e.,
m(M zl_e_cm(Ms_T)

wherec,, and M again can be drawn from the TTT diagram. The remgidata functions can

also be identified from the TTT and CCT diagramtloé respective steel using parameter

identification tools [Buchwalder et al., 2002].

The temperature field is governed by the heat exuat

pe(T)T - O Hk(T)OT) =g, + 0. (4)
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The first heat source is due to recalescence sftéthe phase transitions and can be written as
o =l

wherez=(a, f,p,b,m)andL =(-L,,L;,L,, L, L, ),andL,,...,L are the positive latent heats

of the different phases. Sintgis positive anda is positive during the growth of austenite, we

can infer—L,a< Q i.e., latent heat is consumed during the formatgbaustenite, while it is

released during the growth of the product phases.

The second heat sourcg describes the absorption of laser energy. For &gsesentation, we

restricted ourselves here to the case of a flakpwece boundary lying in the plane= sich

that the rest of the boundary is in the half spaseé. Then, we can define

G, = P(O7F (x= K1),y =~ p,(1)e” (5)
as a volumetric laser heat source, decaying expiaiignwith growing distance from the
impinged surface, since is a positive constant. In the sequel, the laserep P(t ) will serve as
a control parameter; is the absorption coefficient, arfél(x, y a)normalized radiation profile

(cf. Figure 3). The path of the laser on the waekpiis parameterized kyt) = ();(t), y,(1)).

Figure 3: Radiation profiles for gas (left) and XAG laser (right).

The complete model of laser surface hardening stnsif the coupled system (2)—(5). A

particular mathematical difficulty lies in the nowarities inT .However, in [Homberg, 1997] it

has already been shown that a system with a sistiiacture admits a unique solution.

For the numerical solution of this system the safevWIAS-SHarP has been developed. To
cope with the difficulty that the phase transitimetur only in a boundary layer which is small
compared to the workpiece dimension, the heat moué solved on an adaptive grid. This
allows a refinement of the grid around the laseu$y whereas the grid is coarser where the
temperature has already decreased. The phasditramsire solved on different grid which is



homogeneously refined along the trace of the I&gure 4 depicts the temperature distribution
and the corresponding grid for two different sintiolatimes.
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Figure 4: Temperature distribution and adaptive gtitwo different times.

Figure 5 depicts a screenshot of WIAS-SHarP. It3 &ldbles a comfortable input of treatment
parameters and allows for an efficient online gregdhvisualization.
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Figure 5: Screenshot of WIAS-SHarP.



3 Optimal Control of Heat Treatments

3.1 Temperature control

Figure 6 shows the results of laser hardening wathstant laser power and constant feeding
velocity. As one can see, over-heating at edgesbade cavities leads to the undesired effect of
surface melting. To simplify the exposition, we tres ourselves for a moment to the
temperature field. From mathematical point of vi¢he task is to find an optimal laser power

P’(t) such that\T(x,t)—'T(x)\ is small in a neighbourhoo8()(t)) of the laser focus on the

surface. T(x) is the desired temperature and the cup® describes the laser track on the

surface. In other words, we want to minimize thst éonctional
1 tE =\2 at 2
J(P)== T-T)dxdt+— | P“dt,

where the weightu(x,T) =1, if (x,t) is in B(/{(t)) and «.(x,t) =0, else. The second term is a
regularization term penalizing high costs. The wdnproblem then is to minimize this cost

functional whileT(x,t) satisfies the heat equation with heat source dogpto (5).

The numerical solution of such a problem requiesegal iterations in which the time-dependent
heat equation, as well as a so-called adjoint emudtave to be solved. Figure 7 shows the

results of the numerical solution of the problem.
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Figure 6: Melting at edges and above cavities.
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Figure 7: Initial and optimal temperature distribntabove the cavity.

On the left one can see the initial solution attthe when the laser crosses the cavity, on the
right the solution after 16 iterations is depicteBoth simulations look similar, however, the
scale reveals that the temperature above the $i4/200 K in the initial iteration while it is just
1340 K in the final iteration.

3.2 Control of microstructure

The simplest model to describe the effect of distns due to heat treatments is a coupling
between the phase system (2.a-f) and the equatfogsasi-static linearized thermoelasticity,
where the coupling is realized by a temperaturesdégnt thermal expansion. We consider a
cooling process from the austenite. As a contrcrpater we can choose the thermal exchange
coefficienta in the Newton cooling law

T
k- =a(T-T,,).

Here, T, is the temperature of the coolant. To demonstihatelistortion due to phase transitions
we consider a two-dimensional simulation of theliogoof a steel slab from below (cf. Figure
8). At t =0s, the specimen is homogeneously austenitic, afied@e to cooling at the lower
boundary one can observe a downward bending. Firafler 108 the specimen has nearly
reached room temperature and one can observe aiegnapward bending due to the creation
of martensite in the bottom layer of the specimen.
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Figure 8: Distortion due to cooling.

Now we consider the corresponding control problée. take a cost functional similar to (1),
but using now the heat exchange coefficieras a control. Figure 9 depicts the initial (Ieftd
the desired microstructure (right), which is usedéfine the desired phase distributionn the

cost functional.

re—

martensite nearlite martensite pearlite

Figure 9: Initial (left) and desired microstructyright).

Figure 10 shows 5 iterations of the gradient metfuydthe solution of the optimal control
problem. Note that each picture is the result obmplete solution of the state system and the
adjoint system. One can see how by a cooling attbegcomplete lower boundary of the
specimen first the initial phase distribution i®ated and then the desired phase profile is

approximate more and more closely in the courskeoiterations.
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Figure 10: Five iterations of the gradient method.

3.3 Interplay with machine-based control

The question that arises now is, how one can @tilie results of such an optimization process in
industrial practice. Very often, not all the neegggparameters are known, in laser hardening for
instance, it is nearly impossible to predict th&ualcabsorption coefficient for the laser light,

which impinges the surface. In [Homberg,Weiss, 2d@éder, Homberg, Weiss, 2006] we have

shown how the results can be used in combinatitimavmachine based process control. To this
end the optimal laser power is first used to comphé optimal temperature in the laser beam
focus. The latter then serves as a set-point ®mtachine based control. Figure 11 illustrates
this procedure for the surface hardening aboveviycalhe goal is to achieve a constant

hardening depth. Figure 11 (left) depicts the cammbwptimal temperature in the laser focus.
Then this temperature is used as the set-pointh&machine based control. The picture on the

right shows that this strategy indeed yields therdd constant hardening depth.
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Figure 11: Optimal temperature in the laser foawsrasulting simulated martensite depth (left),
experimentally achieved hardening depth (right).
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4 Conclusions

The goal of this contribution was to demonstrate bite heat treatment of steel can be described
mathematically in terms of an optimal control peshl Its numerical simulation requires several
iterations of the solution of the field equationsl aadjoint equations. However, this effort is
mitigated by the development of new model reducstrategies allowing for the efficient

computation of a solution within reasonable timértberg, Volkwein, 2003].

A challenging direction of research is to treat thek of distortion engineering as an optimal
control problem. Here, investigations branch into tdirections. The first is optimal control of
phase transitions to compensate distortion, eogminimize the out-of-roundness of roller
bearing rings [Homberg, Kern, 2008]. This topic S8bject of actual investigations in a
cooperation between IWT and WIAS. The second dords to find an appropriate initial shape
of the workpiece in order to compensate distortioassed by subsequent heat treatments.
Mathematically, this requires the solution of antimpl shape design problem and is a
challenging task for future research.
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