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Abstract

In this article we study capacitated network design problems. We unify and extend poly-
hedral results for directed, bidirected and undirected link capacity models. Based on valid
inequalities for a network cut we show that regardless of the link capacity model, facets of the
polyhedra associated with such a cut translate to facets of the original network design polyhedra
if the two subgraphs defined by the network cut are (strongly) connected. Our investigation
of the facial structure of the cutset polyhedra allows to complement existing polyhedral results
for the three variants by presenting facet-defining flow-cutset inequalities in a unifying way. In
addition, we present a new class of facet-defining inequalities, showing as well that flow-cutset
inequalities alone do not suffice to give a complete description for single-commodity, single-
module cutset polyhedra in the bidirected and undirected case – in contrast to a known result
for the directed case. The practical importance of the theoretical investigations is highlighted in
an extensive computational study on 27 instances from the Survivable Network Design Library
(SNDlib).

Keywords: capacitated network design, cutset polyhedra, flow-cutset inequalities, cut residual
capacity inequalities, integer programming, mixed-integer rounding, SNDlib

1 Introduction

Capacitated network design problems arise in the strategic and tactical planning of telecommuni-
cation and public transport networks. Solving these problems is difficult as well as important for
the profitable business of the network operators. We address in this paper the following variants of
these problems: given point-to-point demands between locations and potential links of a network
connecting these locations, a minimum cost assignment of capacity to the links has to be identified
such that all demands can be realized by a network flow. A single capacity module can be installed
on the network links in integer multiples. Each demand can be routed from its source to its destina-
tion along several paths (bifurcated routing). We distinguish three different types of capacity usage.
The capacity of a link may be consumed by the flow in one direction only (Directed link capacity
model), of both directions independently (Bidirected link capacity model), or it is shared between
them (Undirected link capacity model).

In this paper, we analyze the facial structure of the underlying polyhedra and perform a compu-
tational study to investigate the practical importance of different classes of valid inequalities. Our
main contributions are:
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• We prove a general lifting theorem, showing that facets of cutset polyhedra defined by the
restriction of the problems to a cut of the network translate to facets of the original network
design polyhedra if the two (directed) subgraphs defining the cut are (strongly) connected.

• For the Directed link capacity model, flow-cutset inequalities with outflow and inflow-variables
are known to be facet-defining (Atamtürk [4], Chopra et al. [12]). We transfer this class to the
Bidirected and Undirected case and provide necessary and sufficient conditions under which
they define facets. This unifies the results for flow-cutset inequalities.

• We present the new class of facet-defining cut residual capacity inequalities for the Bidirected

and Undirected case. This class has no counterpart in the Directed link capacity model. This
is noticable because in the Directed case, flow-cutset inequalities together with the trivial
inequalities complete describe the single-commodity, single-module cutset polyhedron [4].

• We present an extensive computational study using 27 network design instances from SNDlib
[27]. In all 27 cases, separating flow-cutset inequalities and cut residual capacity inequalities
substantially improves the performance of Cplex. The computation times are drastically
reduced, and 14 instances can be solved to optimality within one hour, compared to 9 with
the default settings of Cplex. To our knowledge, this is the first study showing the practical
strength of these cutting planes for capacitated network design problems on a large set of
realistic instances.

This paper is structured as follows. After defining network design polyhedra and cutset polyhedra
in Section 2 and Section 3, respectively, we show how facets of these polyhedra are related to each
other, which is subsumed by the central Theorem 3.4. A detailed analysis of the facial structure of
cutset polyhedra for the three link capacity models is provided in Section 4. We study a general
class of flow-cutset inequalities in Section 4.1 and Section 4.2. The class of facet-defining cut residual
capacity inequalities is introduced in Section 4.3. In Section 5 we present a generic separation
procedure that can be used for all considered models and report on the effect of the generated
inequalities in reducing computation times and gaps for a large set of test instances taken from
SNDlib. Section 6 contains some concluding remarks.

2 Network design polyhedra

A network design instance is given by a directed graph G = (V, A) (Directed link model) or an
undirected graph H = (V, E) (Bidirected and Undirected link model), a capacity module with
capacity c ∈ Z+\{0} installable on the network links, and a set K of commodities. We assume G to
be strongly connected and H to be connected, and explicitly allow for parallel arcs and edges. For
notational convenience, we will nevertheless sometimes write e = {i, j} to denote the fact that edge
e is defined between nodes i and j; the precise meaning should be clear from the context.

For undirected graphs, in order to handle flow on edges, we define G = (V, A) to be the digraph
that is obtained by introducing a pair of antiparallel arcs e+ and e− for every edge e in E. Hence
A := {e+ = (i, j), e− = (j, i) : e = {i, j} ∈ E} for the Bidirected and Undirected link model. For
all models, δ+

G(v) and δ−G(v) denote the arcs in A that have v as their source and target node,
respectively.

With every commodity k ∈ K we associate a vector dk ∈ Z
V of demands such that

∑

v∈V dk
v = 0.

There are mainly two approaches related to the definition of commodities and demands. The first
is to consider an individual commodity for every point-to-point demand, resulting in |K| ∈ O(|V |2)
commodities. In our formulations, point-to-point traffic demands are assumed to be aggregated at
their source nodes. Thus, every commodity k ∈ K can be identified with a unique source node s
such that dk

s > 0 and dk
v ≤ 0 for all v ∈ V \{s}. There might be several target nodes with negative

demand value. This approach leads to a significantly reduced problem size with |K| ∈ O(|V |). The
flow of a commodity can be split among several paths and is allowed to be fractional. Let fk ∈ R

A
+

be the vector of flow variables corresponding to commodity k ∈ K. We define variables xa, xe to be
the number of installed capacity modules on arc a ∈ A or edge e ∈ E, respectively.
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Consider the following inequalities:

∑

a∈δ
+

G
(v)

fk
a −

∑

a∈δ
−

G
(v)

fk
a = dk

v ∀v ∈ V, k ∈ K (1)

∑

k∈K

fk
a ≤ cxa ∀a ∈ A (Directed) (2a)

max
{

∑

k∈K

fk
e+ ,

∑

k∈K

fk
e−

}

≤ cxe ∀e ∈ E (Bidirected) (2b)

∑

k∈K

(fk
e++fk

e−) ≤ cxe ∀e ∈ E (Undirected) (2c)

The flow conservation constraints (1) ensure a feasible flow. Inequalities (2a), (2b), and (2c) are the
capacity constraints for the three model types. The network design polyhedra for the link capacity
models Directed, Bidirected, and Undirected are given by

NDdi = conv
{

(f, x) ∈ R
A×K
+ × Z

A
+ : (f, x) satisfies (1) and (2a)

}

,

NDbi = conv
{

(f, x) ∈ R
A×K
+ × Z

E
+ : (f, x) satisfies (1) and (2b)

}

,

NDun = conv
{

(f, x) ∈ R
A×K
+ × Z

E
+ : (f, x) satisfies (1) and (2c)

}

.

The problem of optimizing a linear cost-function over one of these polyhedra is called a capacitated
network design problem. This problem is known to be NP-hard already for special cases, see for
instance Bienstock et al. [10] and Chopra et al. [12]. A valid inequality is called trivial if it is
equivalent to one of the capacity or non-negativity constraints defining NDdi, NDbi or NDun.
Notice that the capacity constraints (2b) for NDbi can be expressed by two linear inequalities for
each edge, that NDbi is a relaxation of NDun, and that the constraint matrices and right-hand side
vectors are integral. Since the capacity variables are not bounded and the underlying graphs are
(strongly) connected we can construct a feasible flow for every demand vector (e. g., by applying a
(min-cost) flow algorithm). Hence the given polyhedra are not empty. For special cases of these
network design polyhedra (e.g., specific link capacity models, limited number of capacity modules),
the following dimension result can be found in [4, 9, 23, 30]. There are no more implied equations
than those given by the |K|(|V | − 1) linearly independent constraints among (1).

Proposition 2.1. The dimension of NDdi is |A|(|K|+ 1)− |K|(|V | − 1). The dimension of NDbi

and NDun is |E|(2|K| + 1) − |K|(|V | − 1).

Literature overview The network design polyhedra considered in this paper have already been
studied for special cases by several authors. Magnanti and Mirchandani [21], Magnanti et al. [22,
23] consider Undirected link models and a modular capacity structure with up to three different
modules. The installable capacities are divisible, i.e., they are integer multiples of each other.
Magnanti et al. initiate the study of network design polyhedra and introduce cutset inequalities,
three-partition inequalities and arc residual capacity inequalities. Bienstock and Günlük [9] study
polyhedra based on Bidirected problems with two divisible base capacities. In addition to cutset
and partition inequalities they consider a generalization of cutset inequalities to simple flow-cutset
inequalities containing outflow variables. Chopra et al. [12] introduce general flow-cutset inequalities
for Directed models with a single module and show their validity. Atamtürk [4] gives a detailed
analysis for Directed cutset polyhedra. He studies the flow-cutset inequalities introduced in [12] and
proves that they induce a complete description in the single-commodity, single-module case. Further,
Atamtürk [4] generalizes Directed flow-cutset inequalities to an arbitrary number of modules via
lifting and states conditions under which these inequalities define facets.

Cutset polyhedra as introduced by Atamtürk [4] are based on network design problems for
networks with two nodes (allowing parallel links). Hence every cut of a larger network together with
the demands across the cut defines a cutset polyhedron. Most of the strong valid inequalities for
network design polyhedra given in the literature are based on simple substructures of the network
such as single arcs, cuts, three-partitions or, more general, k-partitions. These inequalities have
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been derived as facets of simple structured relaxations, such as single-arcset polyhedra or network
design polyhedra corresponding to simple k-node networks. Brockmüller et al. [11], van Hoesel et
al. [17], Magnanti et al. [22] and Rajan and Atamtürk [31] consider single-arc sets. Magnanti et al.
[22] and Bienstock et al. [10] study the capacity formulation that is obtained by projecting out
all flow-variables in the classical multi-commodity link-flow formulation, see [7, 19]. They present a
complete description of a three-node network design polyhedron. Agarwal [2] identifies facet-defining
inequalities for the capacity formulation of the four-node Undirected problem.

It is of interest to know under which conditions facets for polyhedra based on these substructures
translate to facets for the original network design polyhedra. For facets based on k-partitions of
the node-set this question was partially answered by Agarwal [2]. He considers the Undirected

capacity formulation with a single module and shows that every facet-defining inequality for the
k-node problem based on capacity variables is a facet of the original problem if the subgraph of each
component of the considered k-partition is connected. This result applies to inequalities in the space
of the capacity variables only.

Cutset polyhedra can be seen as single node flow sets with unbounded integer capacity variables.
The latter have been studied extensively in the literature initiated by Padberg et al. [28], Van Roy
and Wolsey [33]. They introduce a special case of so-called flow-cover inequalities. Important work
on strengthening flow-cover inequalities by superadditive lifting has been carried out by Gu et al.
[15]. Reverse flow-cover inequalities were studied by Stallaert [32] and Atamtürk [3]. Louveaux
and Wolsey [20] recently showed how strong valid flow-cover inequalities can be obtained by a MIR
procedure applied to single node flow sets that has been introduced by Marchand and Wolsey [24].
The same procedure applied to cutset polyhedra, without complementing capacity variables, leads
to the flow-cutset inequalities studied in the following sections.

3 Cutset polyhedra

Cutset polyhedra arise from the aggregation of flow conservation constraints for all nodes in a non-
empty node-set S ⊂ V . The network design problems are restricted to the two artificial nodes
S and V \S and the corresponding network cut. Since a significant part of the characteristics of
cutset polyhedra carries over to the related network design polyhedra, their polyhedral structure is
important. After introducing the cutset polyhedra CSdi

S , CSbi
S and CSun

S , we show that facet-defining
inequalities for these cutset polyhedra also define facets of NDdi, NDbi or NDun, provided that
rather mild conditions on the structure of the underlying graphs are satisfied. The results of this
section, in particular Theorem 3.4, can be generalized to multi-module versions of network design
polyhedra, see Appendix A and [30].

Let the network cut AS ⊆ A in G be the set of arcs with one end-node in S and one end-node in
V \S, where A+

S ⊆ AS is the set of arcs with source in S and A−
S := AS\A

+
S . Similarly, ES denotes

the undirected cut in H , containing all edges with one end-node in S and one end-node in V \S. For
the Bidirected and Undirected link model, every edge e in the cut ES is represented by the two
arcs e+ and e− in AS such that e+ ∈ A+

S and e− ∈ A−
S . Notice that the sets A+

S , A−
S and ES are all

non-empty since G is strongly connected and H is connected.
Let dk

S :=
∑

v∈S dk
v be the total demand over the cut given by S with respect to commodity

k ∈ K and define

K+
S :=

{

k ∈ K : dk
S > 0

}

, K−
S :=

{

k ∈ K : dk
S < 0

}

, K0
S :=

{

k ∈ K : dk
S = 0

}

With the Undirected link capacity model, we may reverse the direction of every demand and
exchange the corresponding flow variables without changing the problem. Hence, without loss of
generality, we assume that K−

S = ∅ for Undirected models.

Definition 3.1. Given S ⊂ V , the cutset polyhedron CSdi
S (CSbi

S , CSun
S ) is the network de-

sign polyhedron NDdi (NDbi, NDun) with respect to the graph GS := ({S, V \S}, AS) (HS :=
({S, V \S}, ES)) defined by the two artificial nodes S and V \S, the cut arcs AS (cut edges ES), and
the aggregated demand vector (dk

S , dk
V \S) for every k ∈ K.
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Throughout we assume that there is demand across the considered cut, i. e., K+
S 6= ∅ w. l. o. g..

Note that the cutset polyhedra of S and V \S are identical with dk
S = −dk

V \S
for all k ∈ K.

Corollary 3.2. Let S ⊂ V . The dimension of CSdi
S is |AS |(|K| + 1)− |K|. The dimension of CSbi

S

and CSun
S is |ES |(2|K| + 1) − |K|.

In the following we will work out the relation of cutset polyhedra to network design polyhedra.
First note that valid inequalities for cutset polyhedra are also valid for network design polyhedra.
This is true for all models and follows from the fact that for every point p̂ in a network design
polyhedron, the subvector p̂S , obtained by restricting p̂ to the cut defined by S, is feasible for the
corresponding cutset polyhedron. The following lemma provides a sufficient condition for the reverse
statement and is one of the key arguments in the proof of Theorem 3.4. Let G[S], H [S] and G[V \S],
H [V \S] be the subgraphs of G, H induced by S and V \S, respectively.

Lemma 3.3. Let S ⊂ V . If G[S] and G[V \S] are both stronly connected, then for every point p
in CSdi

S there is a point p̂ in NDdi such that p̂S = p. If H [S] and H [V \S] are connected, then for
every point p in CSbi

S (CSun
S ) there is a point p̂ in NDbi (NDun) such that p̂S = p.

The point p̂ can be constructed by assigning sufficient capacity to all arcs (edges) in G[S] and
G[V \S] (H [S] and H [V \S]) and by solving flow problems for S and V \S individually. Flow and
capacity on the cut need not be changed, see [30]. It follows that if a valid inequality for a network
design polyhedron is cut-based, i. e., it has nonzero coefficients for variables on some cut only, it is
also valid for the corresponding cutset polyhedron, provided that the subgraphs defined by the cut
are (strongly) connected.

We are now ready to prove the central lifting result of this section, stating that valid inequalities
describing facets of cutset polyhedra also describe facets of the corresponding network design poly-
hedra if the mentioned condition on the structure of S and V \S holds. For variants of the network
design polyhedra considered here and special sub-classes of flow-cutset inequalities, this result has
been proven, for instance, in [9, 23] (using similar techniques); in contrast, in the form presented
here, it applies to all cut-based facet-defining inequalities and thus motivates investigations on the
facial structure of two-node problems.

Theorem 3.4 (Cutset lifting theorem). Let S ⊂ V and

∑

a∈AS

(
∑

k∈K

γk
afk

a + βaxa ) ≥ π

be a facet-defining inequality of CSdi
S . Then it also defines a facet of NDdi if both G[S] and G[V \S]

are strongly connected. Similarly, let S ⊂ V and

∑

e∈ES

(
∑

k∈K

γk
e+fk

e+ +
∑

k∈K

γk
e−fk

e− + βexe ) ≥ π (3)

be a facet-defining inequality of CSbi
S (CSun

S ). Then it also defines a facet of NDbi (NDun) if both
H [S] and H [V \S] are connected.

Proof. We provide a proof for the Bidirected case. The proof for the Undirected model is identical
and a similar proof for the Directed case can be found in Raack et al. [30]. We will first show that
the induced face

F :=
{

(f, x) ∈ NDbi : (f, x) satisfies (3) at equality
}

is non-trivial, i. e., it is not empty and it does not equal NDbi. Then we will show that it is
inclusion-wise maximal. Let

FS :=
{

(f, x) ∈ CSbi
S : (f, x) satisfies (3) at equality

}

be the facet of CSbi
S defined by (3). Choose a point p ∈ FS . By Lemma 3.3, there exists a point

p̂ ∈ NDbi with p̂S = p. It follows that p̂ fulfills (3) at equality and hence p̂ ∈ F . Since FS is a
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facet of CSbi
S , there is a point q ∈ CSbi

S with q /∈ FS . Again by Lemma 3.3, there exists q̂ ∈ NDbi

with q̂S = q. This point is not on the face F . We conclude that F is a non-trivial face of NDbi. It
remains to show that F is inclusion-wise maximal. Choose a facet F̃ of NDbi with F ⊆ F̃ and let
F̃ be defined by

∑

e∈E

(
∑

k∈K

γ̃k
e+fk

e+ +
∑

k∈K

γ̃k
e−fk

e− + β̃exe) ≥ π̃. (4)

Every point in F satisfies (4) at equality. We will show that (4) equals (3) up to a linear combination
of flow conservation constraints. First, for all e ∈ E\ES , we can construct a new point in F from p̂
by increasing the capacity of e, which implies β̃e = 0 for all e ∈ E\ES . In the following we assume
w.l.o.g. that the capacity on edges in E\ES is large enough. By sending an epsilon flow on e+

and back on e− for every edge e in E\ES , we conclude that γ̃k
e+ = −γ̃k

e−
for all e ∈ E\ES and

k ∈ K. Next we choose a spanning tree T in H [S] (H [V \S]) which exists because H [S] (H [V \S])
is connected. By adding a linear combination of the flow conservation constraints (1) to (4) we may
assume that γ̃k

e+ = 0 for all edges e in the tree. From γ̃k
e+ = −γ̃k

e−
we conclude γ̃k

e+ = γ̃k
e−

= 0 for
all e ∈ T and k ∈ K. Now let e be an edge in H [S] (H [V \S]) that is not in the tree. There is a
unique cycle formed by e and edges in T . Sending circulation flows on that cycle eventually gives
γ̃k

e+ = γ̃k
e−

= 0 for all e ∈ E\ES and k ∈ K.
The coeffcients of inequality (4) are nonzero only for edges on the cut. By Lemma 3.3, inequality

(4) is thus valid for CSbi
S . Let F̃S be the corresponding face of CSbi

S . By construction every point
in FS also fulfills (4) at equality. Since FS is a facet, it follows F̃S = FS . Hence, (4) is (3) up to
a scalar multiple and a linear combination of flow conservation constraints. We conclude that also
F = F̃ , and hence F defines a facet of NDbi.

4 Facets of cutset polyhedra

Theorem 3.4 from the previous section motivates the analysis of the facial structure of cutset poly-
hedra, which will be done in more detail in this section. We will start by reviewing results for the
class of so-called flow-cutset inequalities for CSdi

S in Section 4.1. In the following section Section 4.2
we unify the existing results for the three link models by deriving flow-cutset inequalities for the
Bidirected and Undirected case. The presented class generalizes the well known cutset inequali-
ties and simple flow-cutset inequalities for these models. We further present results on the strength
of these inequalities. Eventually, Section 4.3 presents the new class of facet-defining cut residual
capacity inequalities for the Bidirected and Undirected case, which has no Directed counterpart.
This new class reflects the special structure of the polyhedra CSbi

S and CSun
S .

We start by introducing the necessary notation. Let dQ
S :=

∑

k∈Q dk
S be the total demand over

the cut defined by S ⊂ V with respect to a non-empty commodity subset Q ⊆ K. We define

r(a, c) := a − c(
⌈

a
c

⌉

− 1) > 0 (5)

to be the remainder of the division of a ∈ R by c ∈ R+\{0} if a
c

/∈ Z, and c otherwise. For fixed
S ⊂ V and for every commodity subset Q let

rQ := r(dQ
S , c), ηQ :=

⌈

d
Q

S

c

⌉

, rQ
− := r(−dQ

S , c) and ηQ
− :=

⌈

−d
Q

S

c

⌉

.

If
d

Q

S

c
/∈ Z then the relations ηQ

− = 1 − ηQ and rQ
− = c − rQ hold.

4.1 Flow-cutset inequalities for CSdi

S

Flow-cutset inequalities for Directed problems have been introduced by Chopra et al. [12] and
studied in detail by Atamtürk [4]. We consider two subsets A+

1 ⊆ A+
S and A−

2 ⊆ A−
S of the cut arcs

AS (see Figure 1). Define Ā+
1 := A+

S \A
+
1 . For any subset A∗ of arcs we denote by x(A∗) :=

∑

a∈A∗ xa

the total number of installed modules. The total flow with respect to Q ⊆ K on A∗ is denoted by
fQ(A∗) :=

∑

k∈Q

∑

a∈A∗ fk
a .
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A−
S

A+
1

S V \S

d
Q
S

A+
S

A−
2

Figure 1: A directed cutset with selected cut arcs

Lemma 4.1 (Atamtürk [4], Chopra et al. [12]). The following flow-cutset inequality is valid for
CSdi

S :
fQ(Ā+

1 ) − fQ(A−
2 ) + rQx(A+

1 ) + (c − rQ)x(A−
2 ) ≥ rQηQ. (6)

Inequality (6) is obtained by applying a 1
c
-MIR function (see [25, §II.1.7]) to the valid base

inequality
fQ(Ā+

1 ) + f̄Q(A−
2 ) + c

(

x(A+
1 ) − x(A−

2 )
)

≥ dQ
S (7)

with f̄Q(A−
2 ) = cx(A−

2 )− fQ(A−
2 ). We call inequality (6) a simple flow-cutset inequality if A−

2 = ∅.
A simple flow-cutset inequality will be called a cutset inequality if additionally A+

1 = A+
S . Cutset

inequalities are defined on the capacity variables only and have the form

x(AS) ≥ ηQ.

Notice that if dQ
S is an integer multiple of c, then rQ = c and (6) is a trivial aggregation of flow

conservation, capacity and non-negativity constraints (see [4, 29, 30]). Unless otherwise stated, we

assume rQ < c, which means that c does not divide dQ
S .

We will now review sufficient conditions for flow-cutset inequalities of type (6) to be facet-defining
for CSdi

S . We start with an important result for cutset inequalities. These inequalities are crucial
for the performance of cutting-plane-based algorithms for network design problems, see Barahona
[8], Bienstock et al. [10], Bienstock and Günlük [9]. In Section 5 we show that cutset inequalities
outperform other types of flow-cutset inequalities within branch-and-cut algorithms.

Theorem 4.2. The cutset inequality x(A+
S ) ≥ ηK

+

S defines a facet of CSdi
S if and only if rK

+

S < c.

For a simple proof of Theorem 4.2 we refer to Raack et al. [30]. Related results can be found
for instance in [9, 10, 23]. The following two theorems by Atamtürk [4] introduce more classes of
facet-defining flow-cutset inequalities for CSdi

S . Theorem 4.4 is crucial for the theory of strong valid
inequalities for Directed network design polyhedra stating that in the single-commodity, single-
module case, the trivial inequalities and all flow-cutset inequalities (6) completely describe CSdi

S .
In Section 4.3 we will show that this does not hold for CSbi

S and CSun
S .

Theorem 4.3 (Atamtürk [4]). Let ∅ 6= Q ⊆ K+
S and rQ < c. The flow-cutset inequality (6) defines

a facet of CSdi
S if ∅ 6= A+

1 ⊂ A+
S and ∅ 6= A−

2 ⊂ A−
S .

Theorem 4.4 (Atamtürk [4]). Let |Q| = |K+
S | = 1. The flow-cutset inequality (6) defines a facet

of CSdi
S if and only if rK

+

S < c and A+
1 6= ∅. The inequalities (1), (2a), (6), and the non-negativity

constraints completely describe CSdi
S .

In this paper we solely consider strongly connected digraphs, which implies A−
S 6= ∅. If however

A−
S = ∅, then Theorem 4.2 and Theorem 4.4 do not hold. It can be shown that if x(A+

S ) ≥ ηK
+

S

defines a facet of CSdi
S and |A+

S | ≥ 2, then either ηK
+

S ≥ 2 or A−
S 6= ∅. In particular if A−

S = ∅,

K−
S = K0

S = ∅, |A+
S | ≥ 2, and ηK

+

S = 1 then the inequality x(A+
S ) ≥ 1 is not a facet of CSdi

S . Taking
A+

1 ⊂ A+
S , it is the sum of the flow-cutset inequalities

fK
+

S (A+
1 ) + rK

+

S x(Ā+
1 ) ≥ rK

+

S ηK
+

S and fK
+

S (Ā+
1 ) + rK

+

S x(A+
1 ) ≥ rK

+

S ηK
+

S

because rK
+

S = d
K

+

S

S and fK
+

S (A+
S ) = d

K
+

S

S . The condition ηK
+

S ≥ 2 is missing and implicitly assumed
in Atamtürk [4, Theorem 1] and the corresponding proof.
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4.2 Flow-cutset inequalities for CSbi

S
and CSun

S

For the Bidirected and Undirected case, cutset inequalities and simple flow-cutset inequalities
have been studied in the literature as well. In this section, we will generalize these inequalities to
the class of flow-cutset inequalities analogously to the Directed case, and extend the facet results of
Magnanti and Mirchandani [21] and Bienstock and Günlük [9]. Additionally, we introduce a second
class of facet-defining inequalities for CSbi

S and CSun
S without a Directed counterpart. For the sake

of compactness the (rather technical) proofs of the main results can be found in the Appendix.
We consider two subsets E1, E2 of the undirected cut edges ES (see Figure 2). Edge e ∈ ES of

the cut corresponds to e+ ∈ A+
S and e− ∈ A−

S . Let A+
1 and A−

1 denote all forward and backward arcs
with respect to E1 (similar A+

2 and A−
2 with respect to E2), while Ā+

1 := A+
S \A

+
1 and Ā−

1 := A−
S \A

−
1 .

E2

d
Q
S

E1 ES

S V \S

Figure 2: An undirected cutset with selected cut edges

Lemma 4.5. The following flow-cutset inequality is valid for CSbi
S and CSun

S :

fQ(Ā+
1 ) − fQ(A−

2 ) + rQx(E1) + (c − rQ)x(E2) ≥ rQηQ. (8)

Proof. The flow-cutset inequality (8) is the 1
c
-MIR inequality (see [25, §II.1.7]) for the base inequality

fQ(Ā+
1 ) + f̄Q(A−

2 ) + c
(

x(E1) − x(E2)
)

≥ dQ
S . (9)

with f̄Q(A−
2 ) = cx(E2) − fQ(A−

2 ). Inequality (9) is the sum of all flow conservation constraints
for node S and commodities in Q , the (Bidirected) capacity constraints for flow on A+

1 , and the
nonnegativity constraints for flow variables corresponding to A−

S \A
−
2 .

A simple flow-cutset inequality is a flow-cutset inequality (8) with E2 = ∅ and a cutset inequality
is a simple flow-cutset inequality with E1 = ES , i. e., cutset inequalities reduce to

x(ES) ≥ ηQ.

Flow-cutset inequalities in the general form (8) have the nice property to be symmetric in S and
V \S in the sense that for every flow-cutset inequality of CSbi

S (CSun
S ) there exists a unique flow-cutset

inequality for CSbi
V \S (CSun

V \S). Adding the flow conservation constraint fQ(A−
S ) − fQ(A+

S ) = −dQ
S

to (8) gives

fQ(Ā−
2 ) − fQ(A+

1 ) + (c − rQ
−)x(E1) + rQ

−x(E2) ≥ rQηQ − dQ
S = rQηQ − cηQ + c − rQ

= rQ(ηQ − 1) − c(ηQ − 1)

= rQ
−ηQ

− .

It turns out that if dQ
S < 0, then (8) is equivalent to a flow-cutset inequality for CSbi

V \S (CSun
V \S) with

positive right-hand side. By interchanging S and V \S, we can assume w. l. o. g. that dQ
S > 0. Notice

that the Directed inequalities inequalities (6) are symmetric in the same way. Clearly not every
combination of E1 and E2 can result in a facet. The following lemma provides necessary conditions
for flow-cutset inequalities to define facets for CSbi

S and CSun
S .

Lemma 4.6. If (8) is facet-defining for CSbi
S or CSun

S then

i) rQ < c and E1\E2 6= ∅.

8



ii) If (8) is a simple flow-cutset inequality with E1 6= ES then either ηQ ≥ 2 or |Q| = 1.

iii) If (8) is a cutset inequality then ηQ = ηK
+

S ≥ η
K

−

S

− . If additionally |ES | > 1 then ηK
+

S ≥ 2.

If (8) is facet-defining for CSun
S , then E1 ∩ E2 = ∅.

Proof.

i) If rQ = c then inequality (8) reduces to (9) which is a sum of model constraints (see Lemma 4.5).
If rQ < c but E1\E2 = ∅ then inequality (8) can be written as

fQ(Ā+
1 ) − fQ(A−

2 ) + cx(E1) + (c − rQ)x(E2\E1) ≥ rQηQ = dQ
S − (ηQ − 1)(c − rQ),

which is dominated by fQ(A+
S ) − fQ(A−

2 ) ≥ dQ
S since cx(E1) ≥ fQ(A+

1 ), ηQ ≥ 1, and c > rQ.

ii) Suppose E2 = ∅, E1 ⊂ ES , ηQ = 1, and Q = {q1, . . . , ql} with l ≥ 2. It follows dqi

S ≤ c for all

i ∈ {1, . . . , l}, dQ
S = rQ =

∑l

i=1 dqi

S =
∑l

i=1 rqi and ηQ = ηqi = 1. Hence (8) is the sum of the
following l valid simple flow-cutset inequalities:

f qi(Ā+
1 ) + rqix(E1) ≥ rqiηqi .

iii) Consider the cutset inequality x(ES) ≥ ηQ. The largest right-hand side is obtained if ηQ =

ηK
+

S . Also x(ES) ≥ η
K

−

S

− is a valid cutset inequality for CSbi
S and CSun

S and hence ηK
+

S ≥ η
K

−

S

− .

Suppose |ES | > 1 and ηK
+

S = 1. It follows that d
K

+

S

S = rK
+

S . In this case, (8) is the sum of
two non-trivial cut residual capacity inequalities of type (10) to be introduced in Section 4.3.
Choose E∗ ⊂ ES such that E∗, Ē∗ 6= ∅. Anticipating Lemma 4.13,

cx(E∗) + (c − rK
+

S )x(Ē∗) + fQ(A−
∗ ) − fQ(A+

∗ ) ≥ c − rK
+

S and

cx(Ē∗) + (c − rK
+

S )x(E∗) + fQ(Ā−
∗ ) − fQ(Ā+

∗ ) ≥ c − rK
+

S

are both valid inequalities for CSbi
S (and CSun

S ) of the form (10) different from flow conservation
constraints. Adding them up gives

(2c − rK
+

S )x(ES) + fQ(A−
S ) − fQ(A+

S ) ≥ 2c− 2rK
+

S ⇐⇒ (2c − rK
+

S )x(ES) − d
K

+

S

S ≥ 2c − 2rK
+

S

⇐⇒ x(ES) ≥ 1 = ηK
+

S .

It turns out that the cutset inequality x(ES) ≥ 1 is the sum of non-trivial valid inequalities
when |ES | > 1.

To prove the last statement, we show that (8) is the sum of valid inequalities for CSun
S if E1∩E2 6= ∅.

Aggregating the Undirected capacity constraints for E1 ∩ E2 gives cx(E1 ∩ E2) − fQ(A+
1 ∩ A+

2 ) −
fQ(A−

1 ∩ A−
2 ) ≥ 0. Adding the flow-cutset inequality

fQ(Ā+
1 ) + fQ(A+

1 ∩ A+
2 ) − fQ(A−

2 \A
−
1 ) + rQx(E1\E2) + (c − rQ)x(E2\E1) ≥ rQηQ,

for the two edge-sets E1\E2 and E2\E1 results in

fQ(Ā+
1 ) − fQ(A−

2 \A
−
1 ) − fQ(A−

1 ∩ A−
2 ) + rQx(E1\E2) + cx(E1 ∩ E2) + (c − rQ)x(E2\E1)

≥ rQηQ,

which is (8).

Remark 4.7. The flow-cutset inequality (8) provides an analogon of (6) for Bidirected and Undi-

rected models and generalizes the cutset inequalities and simple flow-cutset inequalities studied in
[8, 9, 21, 22, 23]. In contrast to the Directed flow-cutset inequality (6), the two sets E1 and E2

are not necessarily disjoint. Lemma 4.6 implies that (8) cannot be strong if E2 is a (nonempty)
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subset of E1; in the Undirected case both subsets cannot even intersect in a facet-defining inequal-
ity. But there are still many facet-defining flow-cutset inequalities that are not simple, i. e., E2 6= ∅
(see Theorem 4.9 and 4.10). In the following we assume that Q is a subset of K+

S . As mentioned,
by reversing demands, we may assume that K−

S = ∅ in the Undirected case. When generating
flow-cutset inequalities in practice this transfomation can be carried out by implicitly exchanging
forward and backward flow variables on a cut edge (a backward variable of a negative commodity
can be handled as a forward variable for a positive commodity), which is not feasible for Bidirected

formulations.

After stating necessary conditions, the following results provide sufficient conditions for flow-
cutset inequalities to be facet-defining for CSbi

S and CSun
S . We start with the well-known cutset

inequalities [8, 9, 21, 22, 23] in Theorem 4.8. Theorem 4.9 can be seen as the analogon of Theorem 4.3
and generalizes the results of Bienstock and Günlük [9] and Magnanti et al. [23] for simple flow-cutset
inequalities. Theorem 4.10 extends Theorem 4.9 further to the case E1 ∪ E2 = ES with E1, E2 6= ∅
and E1 6= E2. Corollary 4.11 summarizes these results for the single-commodity case. Notice that

for CSun
S the conditions ηK

+

S ≥ η
K

−

S

− and d
K

+

S

S ≥ |d
K

−

S

S | are trivially fulfilled.

Theorem 4.8. The cutset inequality x(ES) ≥ ηK
+

S defines a facet of CSbi
S (CSun

S ) if and only if

rK
+

S < c, ηK
+

S ≥ η
K

−

S

− and if either ηK
+

S ≥ 2 or |ES | = 1.

Proof. Necessity was shown in Lemma 4.6 iii). Related sufficiency-results were proven by Bienstock
and Günlük [9] for CSbi

S and Magnanti et al. [23] for CSun
S .

Theorem 4.9. Let ∅ 6= Q ⊆ K+
S and rQ < c. The flow-cutset inequality (8) is facet-defining for

CSbi
S if E1\E2 6= ∅, Ē1\E2 6= ∅, and one of the following conditions holds:

i) E2 = ∅ and either ηQ ≥ 2 or |Q| = 1

ii) E2 6= ∅

The same holds for CSun
S if additionally E1 ∩ E2 = ∅.

Proof. See Appendix B.1.

Theorem 4.10. Let ∅ 6= Q = K+
S with d

K
+

S

S ≥ |d
K

−

S

S | and rK
+

S < c.

The flow-cutset inequality (8) is facet-defining for CSbi
S if E1\E2 6= ∅, Ē1 ⊆ E2 6= ∅, and one of the

following conditions holds

i) E1 ∩ E2 = ∅

ii) E1 ∩ E2 6= ∅, K0
S = ∅ and either K−

S = ∅ or d
K

+

S

S > max(|d
K

−

S

S |, c)

The flow-cutset inequality (8) is facet-defining for CSun
S if K = K+

S , E1, E2 6= ∅ and Ē1 = E2.

Proof. See Appendix B.2.

Corollary 4.11. Let |K| = |K+
S | = 1. The flow-cutset inequality (8) is facet-defining for CSbi

S if

and only if rK
+

S < c, E1\E2 6= ∅ and one of the following conditions holds:

i) E2 = ∅, Ē1 = ∅ and either ηK
+

S ≥ 2 or |ES | = 1

ii) E2 6= ∅ or Ē1 6= ∅

The same holds for CSun
S if additionally E1 ∩ E2 = ∅.
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4.3 Cut residual capacity inequalities for CSbi

S
and CSun

S

For Bidirected and Undirected models we consider a second class of strong valid inequalities that
turns out to have no analogon in the Directed case. Example 4.12 shows that in contrast to the
directed case (see Theorem 4.4), flow-cutset inequalities of type (8) do not completely describe CSbi

S

and CSun
S if |K| = 1.

Example 4.12. We define a cutset polyhedron with |K| = 1, |ES | = 2 for the Bidirected link
model:

P = conv
{

x ∈ Z
2
+, f ∈ R

4
+ : f1+ f2 − f3 − f4 = 7,

0 ≤ fi ≤ 3x1 ∀i ∈ {1, 3},

0 ≤ fi ≤ 3x2 ∀i ∈ {2, 4}
}

When adding all flow-cutset inequalities (8) to the LP-relaxation of P , the resulting polyhedron still
has the two fractional vertices (1

2 , 15
2 , 1, 0, 1

2 , 5
2 ) and (15

2 , 1
2 , 0, 1, 5

2 , 1
2 ), (computed with PORTA [13]).

But we can formulate two valid inequalities cutting off these points, namely:

3x1 + 2x2 + f3 − f1 ≥ 2 and 3x2 + 2x1 + f4 − f2 ≥ 2.

The inequalities of the last example can be generalized to a large new class of valid inequalities for
CSbi

S and CSun
S . In the following let E∗ be a subset of the cut ES and Ē∗ := ES\E∗ its complement.

We denote by A+
∗ , A−

∗ and Ā+
∗ , Ā−

∗ all forward, backward arcs with respect to E∗ and Ē∗, respectively
and consider a commodity subset Q.

Lemma 4.13. The following cut residual capacity inequality is valid for CSbi
S and CSun

S :

cx(E∗) +
(

c − rQ
)

x(Ē∗) + fQ(A−
∗ ) − fQ(A+

∗ ) ≥ c − rQ. (10)

Proof. If rQ = c then inequality (10) reduces to cx(E∗) − fQ(A+
∗ ) + fQ(A−

∗ ) ≥ 0, which is valid
because of cx(E∗) ≥ fQ(A+

∗ ) and fQ(A−
∗ ) ≥ 0. Now consider rQ < c. First assume that x(Ē∗) = 0.

All flow has to be routed through E∗. It follows that

fQ(A+
∗ ) − fQ(A−

∗ ) = dQ
S and x(E∗) ≥

⌈

|dQ

S
|

c

⌉

≥ ηQ.

Hence
cx(E∗) − (fQ(A+

∗ ) − fQ(A−
∗ )) ≥ cηQ − dQ

S = c − rQ.

If, on the other hand, x(Ē∗) ≥ 1 then from cx(E∗) − fQ(A+
∗ ) + fQ(A−

∗ ) ≥ 0 we conclude that

cx(E∗) + (c − rQ)x(Ē∗) + fQ(A−
∗ ) − fQ(A+

∗ ) ≥ c − rQ.

In contrast to flow-cutset inequalities, cut residual capacity inequalities are not symmetric in
the sense described above, but for dQ

S < 0 they turn out to be weak. In this case inequality (10) is
dominated by the sum of the capacity constraint cx(E∗) − fQ(A+

∗ ) ≥ 0 and the simple flow-cutset

inequality rQ
−x(Ē∗) + fQ(A−

∗ ) ≥ rQ
−ηQ

− . Hence we may assume dQ
S > 0 also for (10).

Theorem 4.14. Let ∅ 6= Q = K+
S with d

K
+

S

S ≥ |d
K

−

S

S |.

The cut residual capacity inequality (10) defines a facet of CSbi
S if and only if rK

+

S < c and one of
the following conditions holds:

i) E∗, Ē∗ 6= ∅

ii) E∗ = ∅ and ηK
+

S = 1 and |ES | = 1

iii) Ē∗ = ∅ and either ηK
+

S ≥ 2 or |ES | = 1

Given that K = K+
S the same holds for CSun

S .
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Proof. We prove necessity of the conditions i)–iii) here and refer to Appendix B.3 for sufficiency. If

rK
+

S = c then inequality (10) reduces to cx(E∗) − (fK
+

S (A+
∗ ) − fK

+

S (A−
∗ )) ≥ 0, which is the sum of

capacity constraints and non-negativity constraints. Assume rK
+

S < c. If E∗ = ∅, then inequality

(10) reduces to x(ES) ≥ 1, which is dominated by the cutset inequality x(ES) ≥ ηK
+

S if ηK
+

S ≥ 2. If

on the other hand ηK
+

S = 1 and |ES | > 1, then by Lemma 4.6 it cannot define a facet. Now suppose
that Ē∗ = ∅. We can write (10) as

cx(ES) + fK
+

S (A−
S ) − fK

+

S (A+
S ) ≥ c − rK

+

S ⇐⇒ cx(ES) ≥ d
K

+

S

S + c − rK
+

S = cηK
+

S

Hence (10) reduces to the cutset inequality, which by Lemma 4.6 needs ηK
+

S ≥ 2 or |ES | = 1 to be
facet-defining.

For the Bidirected cutset polyhedron of Example 4.12, all flow-cutset inequalities (8) and the
two cut residual capacity inequalities give the convex hull. It remains an open question if the same
holds for CSbi

S and CSun
S in general if |K| = 1.

5 Computational results

In this section, we introduce a generic separation framework to find flow-cutset inequalities and
cut residual capacity inequalities, and assess the added value of these classes of inequalities. With
minor modifications, the separation procedure can be applied to all capacity models. We will first
consider the complexity of separation and present our separation strategies in Section 5.1. The test
settings and some implementational details are provided in Section 5.2. In an initial study presented
in Section 5.3, we investigate the effect of the new facet-defining cut residual capacity inequalities
for Bidirected and Undirected models when generated in addition to flow-cutset inequalities. The
main computational study in Section 5.4 reveals the joint strength of the cut-based inequalities
within a branch-and-cut algorithm for all three link models with an emphasis on Bidirected and
Undirected models.

5.1 Separation

Given any of the network design polyhedra NDdi, NDbi and NDun and a (fractional) point (f̂ , x̂),
the separation problem for the presented cut-based inequalities reduces to the problem of simulta-
neously determining a node-set S ⊂ V , a commodity subset Q ⊆ K and arc or edge subsets of the
cut AS or ES leading to a violated inequality.

Atamtürk [4] shows that in the special case of a single point-to-point commodity separating
Directed flow-cutset inequalities (6) is equivalent to the max-cut problem (which is NP-hard, [14]).
The same holds for the Bidirected and Undirected versions of the problem. Using the cost values

κe := min{rx̂e, (c − r)x̂e + f̂e+ − f̂e− , cx̂e − f̂e− , f̂e+} (11)

for all e ∈ E, a most violated flow-cutset inequality (8) is found by solving a min-cut problem in
H = (V, E) with respect to the endpoints of the commodity. Depending on where the minimum in
(11) is attained, an edge e in the cut either belongs to E1\E2, E2\E1, E1 ∩ E2, or ES\(E1 ∪ E2).

Note that κe can be negative if the minimum is given by (c−r)x̂e+ f̂e+− f̂e− . For general commodity
sets, finding a most violated cutset inequality is known to be NP-hard (see Bienstock et al. [10]). For
a fixed node-set S, the complexity of simultaneously determining Q and A+

1 , A−
2 (E1, E2) to obtain

most violated flow-cutset inequalities is not known. For fixed S and Q, however, suitable subsets
of the cut edges can obviously be identified in linear time, see below. If a single point-to-point
commodity is considered, the general separation problem for cut residual capacity inequalities can
also be formulated as a min-cut problem with potentially negative costs. In this case a most violated
inequality (10) is defined by a minimal cut with respect to the edge costs

κe := min{cx̂e + f̂e− − f̂e+ , (c − r)x̂e},
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where e ∈ E∗ (see (10)) if and only if κe = cx̂e + f̂e− − f̂e+ . For fixed S and Q, a subset E∗ giving
a most violated cut residual capacity inequality can be identified in linear time, see below.

For our computational tests we compared three different algorithms, Algorithms A, B, and C, all
of which decompose the separation problem. Algorithm A uses the following heuristical separation
scheme. In a first step, cutsets are determined using a fast shrinking procedure proposed by Bienstock
et al. [10] and Günlük [16] which is adapted to the three link capacity models. Given the slacks
sa(se) and the dual values πa(πe) of the capacity constraints in the current LP-solution, the arc a
(edge e) with the largest weight wa (we) is shrunken, where

Directed link model: wa :=sa + πa a ∈ A ,

Bidirected link model: we :=min(se+ , se−) + min(πe+ , πe−) e ∈ E ,

Undirected link model: we :=se + πe e ∈ E.

This procedure is applied until the shrunken graph has a predefined number of nodes. Then, all cuts
in the remaining graph are enumerated. In this way, cuts are preferred that have many arcs (edges)
with small slack. Since usually many capacity constraints have zero slack w. r. t. the current LP
solution, the dual values are considered as a second sorting criterion. This shrinking procedure has
the nice property that the shores of the resulting cuts are very often (strongly) connected, which is
crucial for the strength of the separated inequalities, see Section 3. In addition to the cuts obtained
by shrinking, all single node cuts are considered, i. e., all node-sets S = {v} with v ∈ V , in every
separation round. For every cut, all singleton commodity subsets, some commodity subsets Q with
|Q| = 2, and the whole set K+

S (K−
S ) are considered. Eventually, given a cut, a commodity subset,

and a fractional point p̂ = (f̂ , x̂), arc- and edge-sets leading to most violated flow-cutset inequalities
and cut residual capacity inequalities are calculated in linear time using the following definitions:

(1) flow-cutset inequality, Directed link model:

A+
1 :=

{

a ∈ A+
S : rQx̂a ≤ f̂Q

a

}

, A−
2 :=

{

a ∈ A−
S : (c − rQ)x̂a < f̂Q

a

}

(2) flow-cutset inequality, Bidirected and Undirected link:

E1 :=
{

e ∈ ES : rQx̂e ≤ f̂Q

e+

}

, E2 :=
{

e ∈ ES : (c − rQ)x̂e < f̂Q

e−

}

(3) cut residual capacity inequality, Bidirected and Undirected link model:

E∗ :=
{

e ∈ ES : rQ ≥ f̂Q

e+ − f̂Q

e−

}

.

Algorithms B and C are variations of the general framework provided by Algorithm A. Algorithm B
exclusively generates all cutset inequalities corresponding to the chosen cuts. General flow-cutset
inequalities and cut residual capacity inequalities are not considered. Algorithm C follows a hier-
archical approach favoring cutset inequalities. If no violated cutset inequalities can be found after
several separation rounds also general flow-cutset inequalities and cut residual capacity inequalities
are checked for violation using the commodity, arc, and edge-sets describes above. Recall that cutset
inequalities form a subclass of both flow-cutset inequalities and cut residual capacity inequalities.

5.2 Setting

Our testbed consists of all Directed, Bidirected, and Undirected instances of the Survivable
Network Design Library (SNDlib) [27] corresponding to the network design problems defined in
Section 2. We consider both single-module and multi-module instances. These are 27 problem
instances in total, 3 of which are Directed, 12 Bidirected, and 12 Undirected. The number of
nodes of the underlying networks ranges from 10 to 65, the number of links from 18 to 172, and the
number of demands from 22 to 1869. The objective is to minimize either capacity cost or capacity
and flow cost, depending on the instance. We used the cost-values as provided in SNDlib and
described in [27]. Only for Bidirected models we calculated the total routing cost of a link as the
given cost parameter times the sum of the flows in both directions, which differs from the definition
in [27] where only the cost for the maximum of the two flow values is incurred.
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Most of the Modular instances in SNDlib are multi-module versions of the network design
problems we considered so far. The maximum number of different modules installable on the network
links is 11. Since flow-cutset inequalities are based on MIR they can easily be generalized to the
multi-module case, see Appendix A. For the cut residual capacity inequalities such a generalization
is not known. We generate them only for single-module instances.

The separation algorithms are implemented as callbacks using the callable library of Cplex

10.0 [18]. Notice that the default parameter settings of Cplex have not been changed, hence all
default separators are switched on. The number of violated inequalities identified by our separation
scheme is enormous for most of the instances. Adding them all leads to unacceptable computation
times since user-added cutting planes are never deleted in Cplex. We used several techniques to
select a small number of the most promising cuts following Achterberg [1], Raack et al. [29]. All
computations were performed on a 3GHz x86 Linux machine with 2GB of memory and a time limit
of one hour.

For the statistics we distinguish between easy and hard instances. An instance is easy if it can
be solved to optimality within the time limit of one hour by any of the considered algorithms. All
other instances are referred to as being hard. These can be solved within the time limit neither
by default Cplex nor by adding cutting planes using Algorithms A, B, or C. With respect to this
definition, 14 instances turned out to be easy, compared to 13 hard instances.

5.3 Added value of cut residual capacity inequalities

In a first study we show, for single-module instances, how cut residual capacity inequalities (10)
add to the Bidirected and Undirected formulations compared to the flow-cutset inequalities (8).
The only Modular single-module instances in SNDlib for the Bidirected and Undirected case are
france-B and france-U, respectively.

The results are reported in Table 1. The first two columns (problem) and (sep) state the problem
and the applied separation algorithm. In the following three columns we report on the integrality
gap at the end of the root node (rootgap), the total CPU time (time) elapsed in seconds and
the final optimality gap (endgap). The rootgap is calculated as (best -root)/best, where best is the
value of the best known SNDlib solution and root the value of the LP relaxation at the root node
before branching. The endgap is given by (upper -lower)/upper, where upper and lower are the
best primal and dual bounds at termination, respectively. The last three columns of Table 1 report
the total number of nodes explored in the search tree, the number of flow-cutset inequalities (8)
and cut residual capacity inequalities (10) added to the initial formulations. The two problems were

problem sep rootgap time endgap nodes #(8) #(10)

france-B none 8.6% 3600 4.1% 408573
(8) 7.6% 160 0.0% 3609 715
(8), (10) 6.8% 33 0.0% 817 578 53

france-U none 4.2% 3600 1.9% 1102696
(8) 3.4% 4 0.0% 401 150
(8), (10) 3.4% 3 0.0% 319 140 14

Table 1: Performance of the cut-based inequalities (8) and (10) as cutting planes

solved with default Cplex without additional separators (none), Cplex augmented by Algorithm A
only generating flow-cutset inequalities (8), and Cplex calling Algorithm A to generate flow-cutset
inequalities (8) as well as cut residual capacity inequalities (10).

The effect of the separation routine Algorithm A is remarkable. Cplex in the default mode
cannot solve the france instances within the time limit of one hour, whereas these problems are solved
to optimality within only seconds when the considered cut-based inequalities are generated. The
integrality gap at the root node and the total number of nodes evaluated is decreased significantly.
It can also be observed that the new cut residual capacity inequalities (10) capture additional
structure of Undirected and Bidirected network design problems. When adding cut residual
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capacity inequalities in addition to flow-cutset inequalities the number of nodes to solve the france
problems is decreased from 3609 to 817 and from 401 to 319, respectively.

Based on these results, our conclusion is that flow-cutset inequalities compared to cut residual
capacity inequalities are more important in strengthening the LP relaxations and improving the per-
formance for Undirected and Bidirected network design problems. However, cut residual capacity
inequalities are still very useful in reducing computation times and gaps when generated in addtion
to flow-cutset inequalities.

5.4 Joint strength of cut-based inequalities

We proceed with a detailed presentation of the results for all considered cut-based inequalities and
the different Algorithms A, B, and C. Figure 3 reports on the acceleration of the computations when
adding cut-based inequalities compared to default Cplex for easy instances. The bars represent the
change in the absolute CPU time. A value of -80% means that the solution time of default Cplex

could be reduced by 80% using the respective algorithm. The black markers refer to the second y-
axis, which displays the absolute solving times of default Cplex in seconds (on a logarithmic scale),
according to which the instances are sorted. Those instances reaching the time limit with default
Cplex are ordered according to the endgap. For those instances, the acceleration is computed with
the time limit as an underestimation of the real computation time of default Cplex. All instances
are labeled with the name of the underlying network and the link model, where the letters U, B and
D denote the Undirected, Bidirected and Directed model, respectively.

Figure 3: Easy instances: Relative change in solving time compared to default Cplex [bars], as well
as absolute solving time of default Cplex [line with markers]. For instances unsolved within the
time limit, the remaining endgap is reported.

Algorithms B and C solve all easy instances to optimality within the time limit. In contrast,
Cplex fails to solve five of these instances in the default settings, and two of these five are not
solved by using Algorithm A. The remaining endgaps of Cplex and Algorithm A are reported in
the upper part of Figure 3. For nearly all of the easy instances the computation time is drastically
reduced, in particular with Algorithms B and C. Even for the instances that cannot be solved by
Cplex in one hour, the solution time is less than 10 minutes. Comparing Algorithms B and C, it
turns out that for most of the instances it suffices to add cutset inequalities to the initial formulation,
but an additional speed-up can be obtained in particular cases by adding other types of cut-based
inequalities using Algorithm C.

For those instances which are hard to solve, Figure 4 shows the relative change in the final lower
and upper bounds. A value of 20% means that the corresponding final bound is 20% larger than
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Figure 4: Hard instances: Relative change in lower and upper bound compared to default Cplex

[bars], remaining endgap of default Cplex [line with markers]

the one obtained by default Cplex after one hour of computation. The instances are sorted by
the endgap of default Cplex, displayed on the second y-axis. Both lower and upper bounds are
improved by the generated cutting planes.

Again, Algorithms B and C outperform Algorithm A, and Algorithm C is slightly better than
Algorithm B. It turns out that the improvement in the primal and dual bound is correlated to the
endgap of default Cplex. For the instance with the largest endgap, ta1-U, the lower bound can be
increased by almost 40% and the upper bound is decreased by more than 10%. Whenever Cplex

has problems in finding cutting planes to increase the lower bound or in finding solutions to decrease
the upper bound, the effect of adding flow-cutset inequalities and cut residual capacity inequalities
is significant. On the other hand, the performance of Cplex is not deteriorated by the cutting
planes for those instances that have small gaps already in the default settings. The changes of the
resulting endgaps are reported in Figure 5. Again the percentages are given with respect to the
values obtained by Cplex in the default settings. It can be seen that the cutting planes most often
significantly reduce the gaps, sometimes by more than 90%.

Figure 6 summarizes the relative changes of several performance indicators when cut-based in-
equalities are added, compared to Cplex in the default settings. For this statistic we calculated
the ratio of the considered measure with and without the respective separation routine and aver-
aged these ratios over all instances using the geometric mean. A percentage decrease in Figure 6
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Figure 5: Hard instances: Relative change in the endgap compared to default Cplex [bars], as well
as the absolute endgap of default Cplex [line with markers]

(a) Easy test instances (b) Hard test instances

Figure 6: Relative changes of key measures compared to default Cplex, geometric means

corresponds to a smaller mean ratio compared to default Cplex. The figure shows the change in
the remaining integrality gap at the root node before branching (rootgap), the solution time (time),
the number of visited branch-and-bound nodes (nodes), the final lower and upper bounds (lower,
upper), and the gap between lower and upper at termination (endgap).

For easy instances the saved computation time correlates with the number of visited nodes and
the improved lower bound at the root node. The computation time is reduced by 90% on average,
and the number of nodes is even reduced by almost 97%. For hard instances, adding cut-based
inequalities leads to a decrease in the number of branch-and-bound nodes that can be visited within
one hour of computation time. But since the cutting planes have a very positive effect on both the
lower and upper bound, the endgap is reduced by 66% on average.

Among all tested separation algorithms, the hierarchical approach (Algorithm C) performed
best. To understand the different behavior of the three algorithms we examined the distribution
of the generated inequalities. Figure 7 shows the percentage of cutset inequalities (cis), of simple
flow-cutset inequalities (sfcis) and of all other types of cut-based inequalities (others). With the
integrated approach of Algorithm A, only 32.67% of all generated flow-cutset inequalities are cutset
inequalities, whereas 100% and 55.21% are cutset inequalities with Algorithms B and C, respectively.
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(a) Algorithm A (b) Algorithm B (c) Algorithm C

Figure 7: Average distribution of cut-based inequalities added by Algorithms A, B, and C

Given that Algorithm C only slightly increases the performance compared to Algorithm B, this
means that cutset inequalities are responsible for most of the progress. All other types of flow-cutset
inequalities should carefully be generated and only if no violated cutset inequalities are found. As
already mentioned in Section 5.2, we restricted the total number of added flow-cutset inequalities to
the number of rows in the initial formulation. With this restriction, the number of inequalities added
amounted to 62%, 44% and 48% of the size of the initial formulation for Algorithms A, B, and C,
respectively, averaged over all instances.

6 Concluding remarks

In this paper we have studied theoretical and computational aspects of capacitated network design
polyhedra with Directed, Bidirected, and Undirected link capacity structure. We have shown that
given a network cut, any facet of the corresponding cutset polyhedron translates to a facet of the
network design polyhedron if both network components are (strongly) connected. We have amended
the class of flow-cutset inequalities for the Directed case to the Bidirected and Undirected cases
and introduced the new class of cut residual capacity inequalities for these cases. In contrast to
the Directed case, this class is necessary for a complete description of the single commodity single-
module Bidirected/Undirected cutset polyhedron. Its sufficiency could not be proven yet and is
a direction for future research. Another direction for future research is the generalization of the
cut residual capacity inequalities to the multi-module case. Whereas the flow-cutset inequalities
can be generalized with mixed-integer rounding, it remains unclear how the cut residual capacity
inequalities look like for multiple modules.

Our computational study shows that a state-of-the-art solver like CPLEX can be outperformed by
adding flow-cutset inequalities. The best results were obtained by using a hierarchical approach that
favors cutset inequalities over other types of flow-cutset inequalities. It turns out that this subclass
of cutting planes, which contains only capacity variables but no flow variables, is responsible for
most of the progress. The performance is only slightly better and varies over the instances when the
larger class of flow-cutset inequalities is considered. The latter ones should be added carefully and
only if no violated cutset inequalities can be found. We believe that a more elaborate selection of
cuts and in particular of commodity subsets might even increase the impact of these inequalities. For
almost all of the instances we had no difficulties in finding violated flow-cutset inequalities, but the
challenge is to find the best ones. It turned out that the violation of flow-cutset inequalities is not
a good measure to estimate their efficiency. Very often cutset inequalities are less violated (hence
ignored by Algorithm A) but more effective in terms of reducing computation times and gaps.
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[9] D. Bienstock and O. Günlük. Capacitated network design – polyhedral structure and compu-
tation. INFORMS Journal on Computing, 8:243–259, 1996.

[10] D. Bienstock, S. Chopra, O. Günlük, and C. Y. Tsai. Minimum cost capacity installation for
multicommodity network flows. Mathematical Programming, 81:177–199, 1998.
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A Flow-cutset inequalities in the multi-module case

In the sequel, we generalize flow-cutset inequalities (6) and (8) to the multi-module case. Consider
a set of capacity modules M installable on every network arc a or edge e. A module m has a
base capacity cm ∈ Z+\{0} and is counted using the variables xm

a or xm
e . Two and three-module

versions of cutset inequalities and flow-cutset inequalities have been studied already by Bienstock
and Günlük [9], Magnanti and Mirchandani [21], Magnanti et al. [23] for the special case that
the base capacities are divisible. Atamtürk [4] introduces Directed flow-cutset inequalities for the
general multi-module case by studying the lifting problem. We want to emphasize here that the
lifting functions developed by Atamtürk are based on mixed-integer rounding [25, 26]. Valid lifting
of the flow-cutset inequalities to the multi-module case can be done using the same subadditive MIR
function for all models. Fixing node-, commodity- and arc-sets (resp. edge-sets) we obtain |M |
potentially different multi-module flow-cutset inequalities, one for every available capacity module.
For details we refer to Atamtürk [4], Raack et al. [29, 30], and references therein.

Let S ⊂ V and Q ⊆ K be fixed and let dQ
S > 0 be the corresponding cut demand as defined

in Section 4.1. In a first step we generalize the base inequalities (7) and (9) to the multi-module
case. By aggregating model inequalities and substituting f̄Q(A−

2 ) :=
∑

m∈M cmxm(A−
2 ) − fQ(A−

2 )

or f̄Q(A−
2 ) :=

∑

m∈M cmxm(E2) − fQ(A−
2 ) the base inequalities

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

m∈M

cm
(

xm(A+
1 ) − xm(A−

2 )
)

≥dQ
S , (12)

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

m∈M

cm
(

xm(E1) − xm(E2)
)

≥dQ
S . (13)

are valid for CSdi
S and CSbi

S , CSun
S , respectively. In a second step, a MIR-function is applied to the

coefficients of (12) and (13). Given a, c, d ∈ R with c > 0 and d
c

/∈ Z, define a+ := max(0, a) and
consider the MIR function Fd,c : R → R defined by

Fd,c(a) :=
⌈

a
c

⌉

r(d, c) − (r(d, c) − r(a, c))+.

Fd,c is nondecreasing and subadditive, i. e., F (a)+ F (b) ≥ F (a + b) for all a, b ∈ R [25, 29]. It holds

that Fd,c(0) = 0 and F̄d,c(1) = limtց0
F (t)

t
= 1.

The function Fd,c can be seen as the 1
c
-MIR function for ≥-base-inequalities with right-hand side

d, scaled by the factor r(d, c). Similar subadditive and superadditive functions based on MIR have
been considered for instance by Atamtürk [5, 6] and Louveaux and Wolsey [20].

We set d := dQ
S and c := cs for some module s ∈ M and consider the function

Fs := F
d

Q

S
,cs .

Applying Theorem 7.4 of Chapter II.1 of Nemhauser and Wolsey [25] and resubstituting f̄Q(A−
2 ),

gives the multi-module flow-cutset inequalities

fQ(Ā+
1 ) − fQ(A−

2 ) +
∑

m∈M

Fs(c
m)xm(A+

1 ) +
∑

m∈M

(cm + Fs(−cm))xm(A−
2 ) ≥Fs(d

Q
S ), (14)

fQ(Ā+
1 ) − fQ(A−

2 ) +
∑

m∈M

Fs(c
m)xm(E1) +

∑

m∈M

(cm + Fs(−cm))xm(E2) ≥Fs(d
Q
S ) (15)

valid for CSdi
S and CSbi

S , CSun
S , respectively. These inequalities generalize (6) and (8) since Fs(c

s) =

r(dQ
S , cs) and Fs(−cs) = −r(dQ

S , cs). If dQ
S is an integer multiple of cs, then (14) and (15) reduce to

the base inequalities (12) and (13) because in this case Fs(a) = a for all a ∈ R.
Notice that Fd,c(a), F̄d,c(a) are integral if a, c, and d are integral. Moreover, |Fd,c(a)| ≤ |a| holds

for all a ∈ R, see Raack et al. [29]. This means that the considered inequalities have small integral
coefficients as long as capacities and demands are small and integral. From a numerical point of
view, this property is desirable in a cutting plane or in a branch-and-cut algorithm.

In case that there are no inflow-variables, i. e., A−
2 = ∅ or E2 = ∅, the left-hand sides of (14)

respectively (15) contain only non-negative coefficients which trivially can be strengthened to the
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value of the right-hand side. Since Fs is non-decreasing, applying the strengthening and MIR can
be exchanged, resulting in the same inequality. In particular, defining the function Fs : R+ → R+

by
Fs(a) := Fs(min(a, dQ

S )) = min(Fs(a), Fs(d
Q
S )),

the coefficient Fs(c
m) can be reduced to Fs(c

m). The resulting strengthened simple flow-cutset
inequalities

fQ(Ā+
1 ) +

∑

m∈M

Fs(c
m)xm(A+

1 ) ≥Fs(d
Q
S ), (16)

fQ(Ā+
1 ) +

∑

m∈M

Fs(c
m)xm(E1) ≥Fs(d

Q
S ) (17)

are valid for CSdi
S respectively CSbi

S and CSun
S . Notice that the function Fs is nondecreasing and

subadditive on R+ with Fs(0) = 0 and F̄s(1) = limtց0
Fs(t)

t
= 1 [30]. In the single-module case the

strengthening has no effect since Fs(c
s) = r(dQ

S , cs) ≤ dQ
S .

Inequalities (14) - (17) generalize all flow-cutset inequalities considered in the literature. We
conclude this section with the observation that the lifting functions φ+

s , φ−
s , and φ̃+

s obtained by
Atamtürk [4] to lift Directed single-module flow-cutset inequalities to the multi-module case are
related to the MIR-functions above in the way that φ+

s (a) = Fs(a), φ−
s (a) = a + Fs(−a), and

φ̃+
s (a) = Fs(a), see Raack et al. [30]. It turns out that the multi-module flow-cutset inequalities

(14) - (17) can be seen as being obtained by simultaneously lifting the flow-cutset inequalities (6)
and (8) using the subadditive MIR-functions Fs and Fs. In this context, flow-cutset inequalities
are closely related to the concept of complemented-MIR inequalities introduced by Marchand and
Wolsey [24] and to the MIR-lifting procedure for flow-cover inequalities presented by Louveaux and
Wolsey [20]. The MIR procedure to obtain flow-cutset inequalities is identical to the one presented in
[20] for flow-cover inequalities. The only difference is that capacity variables are not complemented
since they are not bounded.

B Omitted proofs

B.1 Proof of Theorem 4.9

Proof. We will show that the related face

F =:
{

(f, x) ∈ CSbi
S (CSun

S ) : (f, x) satisfies (8) with equality
}

is non-trivial and then by contradiction, we will show that it defines a facet. This will be done for
CSbi

S and CSun
S simultaneously. In the following we will construct points on the face F . Whenever

we can ensure that E1 ∩ E2 6= ∅ these points may only be valid for CSbi
S but not for CSun

S . Given
e ∈ ES , let be denote the unit vector in R

|ES|+2|K||ES| for the integer design variable of e and let
gk

e+ , gk
e−

be the unit vectors for the two continuous flow variables of e for commodity k ∈ K. We set

d := dQ
S , η := ηQ, r := rQ < c, ǫ > 0 small enough and M a large integral number. Let Q̄ := K+

S \Q.
Choose l ∈ E1\E2 and l̄ ∈ Ē1\E2. We construct a point on the face F by sending all flow for Q on
l and the flow for all other commodities on l̄:

p := ηbl + Mbl̄ +
∑

k∈Q

dk
Sgk

l+ +
∑

k∈Q̄

dk
Sgk

l̄+
+

∑

k∈K
−

S

dk
Sgk

l̄−
.

The point p is on the face F by construction. Hence F is not empty. p + bl is a point that is in CSbi
S

(CSun
S ) but not on the face F .
It remains to show that F is inclusion-wise maximal. Choose a facet F̃ of CSbi

S (CSun
S ) with

F ⊆ F̃ and let F̃ be defined by

∑

e∈ES

(βexe +
∑

k∈K

γk
e+fk

e+ +
∑

k∈K

γk
e−fk

e−) = π (18)
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where βe, γ
k
e+ , γk

e−
, π ∈ R. We will show that (18) is (8) up to a scalar multiple and a linear

combination of flow conservation constraints, proving that F = F̃ .
Adding multiples of the |K| flow conservation constraints to (18) we can assume γk

l+
= 0 for all

k ∈ Q, γk
l̄+

= 0 for all k ∈ Q̄ and γk
l̄−

= 0 for all k ∈ K−
S ∪ K0

S . Set β := βl and β̄ := β
l̄
. Since p

lies on the hyperplane, we conclude that βη + β̄M = π. Now we modify p by installing a capacity
of M + 1 on l̄. This is another point on the face and thus β̄ = 0. It follows that

βη = π (19)

The capacity on l is not saturated since d < cη. Modifying p by simultaneously increasing flow on
l+ and l− by ǫ for k ∈ Q gives new points on the face and thus

γk
l+ , γk

l− = 0 ∀k ∈ Q

The same can be done on l̄+, l̄− for k ∈ K−
S ∪ K0

S ∪ Q̄, hence

γk
l̄+

, γk
l̄−

= 0 ∀k ∈ K−
S ∪ K0

S ∪ Q̄.

Now consider the disjoint partition ES = (E1 ∩ E2) ∪ (E1\E2) ∪ (Ē1 ∩ E2) ∪ (Ē1\E2). We will
compute the coefficients βe, γ

k
e+ , γk

e−
for e in each of the four sets by constructing new points on

the face F . They will obviously fulfill the flow conservation constraint and satisfy inequality (8)
with equality. To see that they meet the (Bidirected) capacity constraints just use that r < c and
remember the relation cη = d + c − r. For edges in Ē1 ∩ E2, E1\E2 and Ē1\E2 we construct the
points such that they additionally satisfy the Undirected capacity constraints given that K−

S = ∅.
Hence with E1 ∩ E2 = ∅ and K−

S = ∅ the theorem holds for CSun
S .

i) Ē1 ∩ E2 : For e ∈ Ē1 ∩ E2 and k ∈ Q define the following three points on F :

p + be + (c − r)gk
l+ + (c − r)gk

e− =⇒ βη + βe + (c − r)γk
e− = π (20)

p + bl + cgk
l+ + be + cgk

e− =⇒ βη + β + βe + cγk
e− = π (21)

p + (c − r)gk
l+ + be + r

2gk
e+ + (c − r

2 )gk
e− =⇒ βη + βe + r

2γk
e+ + (c − r

2 )γk
e− = π (22)

Comparison of (20) and (21) shows that −rγk
e−

= β for all e ∈ Ē1 ∩ E2, for all k ∈ Q. From

(20) it follows then that βe = β

r
(c − r) ∀e ∈ Ē1 ∩ E2. From (22) we find that β

r
(c − r) − (c −

r
2 )β

r
+ r

2γk
e+ = 0, which implies that rγk

e+ = β for all e ∈ Ē1 ∩ E2, for all k ∈ Q.

To conclude that γk
e−

= 0 for all k ∈ K−
S ∪K0

S ∪ Q̄ just modify the point in (20) by increasing
flow on l̄+ by some ǫ and routing this ǫ-flow back on e−. Simultaneously increasing flow on
e+, e− gives γk

e+ = 0 for all k ∈ K−
S ∪ K0

S ∪ Q̄.

ii) E1 ∩ E2 : For e ∈ E1 ∩ E2 and k ∈ Q define:

vk
e := p + be + cgk

e+ + cgk
e− =⇒ βη + βe + cγk

e+ + cγk
e− = π (23)

We can still increase flow on l+ by a small amount for commodity k. Decreasing flow on e+ at
the same time gives another point on the face and thus γk

e+ = 0 for all k ∈ Q. When having
changed vk

e this way, some flow for a commodity in K−
S ∪ K0

S ∪ Q̄ can be routed on e+ while
the same amount of flow increases on l̄−. Hence γk

e+ = 0 for all k ∈ K−
S ∪ K0

S ∪ Q̄.

For k1, k2 ∈ Q, e ∈ E1 ∩ E2 consider the point

vk1

e − ǫgk1

l+
+ ǫgk2

l+
− ǫgk1

e−
+ ǫgk2

e−

It is well defined and feasible because flow on l+ is positive for every k ∈ Q and flow on e+ is
positive for k1. It follows that γe− := γk1

e−
= γk2

e−
for all k1, k2 ∈ Q.

To construct another point pe on the face F we modify p by deleting one unit of capacity on
l and installing one unit of capacity on e ∈ E1 ∩E2. A total flow of r has to be rerouted since
c(η − 1) = d − r. We do so by decreasing flow of Q on l+ by a total of r and increasing it on
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e+, e− by a total of c and (c − r) respectively. This can be done in such a way that flow is
positive on e+, e− for all k ∈ Q. If ϕk

l+
, ϕk

e+ , ϕk
e−

> 0 denote the rerouted flows on l+, e+, e−,
then pe can be written as

pe := p − bl + be −
∑

k∈Q

ϕk
l+gk

l+ +
∑

k∈Q

ϕk
e+gk

e+ +
∑

k∈Q

ϕk
e−gk

e−

with
∑

k∈Q ϕk
l+

= r,
∑

k∈Q ϕk
e+ = c and

∑

k∈Q ϕk
e−

= c − r. From pe ∈ F and the fact that

γk
l+

= γk
e+ = 0 and γk

e−
= γe− for all k ∈ Q we conclude that

βη − β + βe + (c − r)γe− = π (24)

Now comparing (23) and (24) gives

−rγe− = −rγk
e− = β ∀k ∈ Q.

From (23) and (19) follows then

βe = cβ
r

∀e ∈ E1 ∩ E2.

Again considering the point pe, the total flow on e− is c − r, thus the capacity on e− is not
saturated. Increasing flow on l̄+ and e− gives γk

e−
= 0 for all k ∈ K−

S ∪ K0
S ∪ Q̄.

iii) Ē1\E2 : For e ∈ Ē1\E2 consider the following point on F :

p + be =⇒ βη + βe = π (25)

The point can be modified by simultaneously increasing flow on l+ and e−. This can be done
for every commodity in Q, thus γk

e−
= 0 for all k ∈ Q. Comparing (25) with (19) gives βe = 0

for all e ∈ Ē1\E2.

To construct a new point qe on the face F we modify p by deleting one unit of capacity on
l and installing one unit of capacity on e ∈ Ē1\E2. We decrease flow of Q on l+ by a total
of r and increase it by the same amount on e+. This can be done in such a way that flow is
positive on e+ for all k ∈ Q. If ϕk > 0 denotes the rerouted flow with respect to k ∈ Q, then
qe can be written as

qe := p − bl + be −
∑

k∈Q

ϕkgk
l+ +

∑

k∈Q

ϕkgk
e+ =⇒ βη − β +

∑

k∈Q

ϕkγk
e+ = π (26)

with
∑

k∈Q ϕk = r. Modifying qe by simultaneously increasing flow on e+, l̄− and e+, e− gives

γk
e+ = γk

e−
= 0 for all k ∈ K−

S ∪ K0
S ∪ Q̄. It remains to show that γk

e+ = β
r

for k in Q. We
make use of the conditions i) and ii) of Theorem 4.9.

Assume first that E2 = ∅. If |Q| = 1, it follows that βη − β + rγk
e+ = π and rγk

e+ = β. If
|Q| > 1 and η ≥ 2, then d > c > r and qe can be constructed such that flows are positive both
on l+ and e+ for every commodity in Q. We choose k1, k2 ∈ Q and modify qe by adding the
flow ǫgk2

l+
− ǫgk1

l+
+ ǫgk1

e+ − ǫgk2

e+ . This way we conclude that γk1

e+ = γk2

e+ . From (26) follows then
rγk

e+ = β for all k ∈ Q. Now let us assume that there is an edge ē in E1 ∩ E2. Modify qe

by installing one unit of capacity on ē and sending a flow of c on ē+ and ē− for a commodity
k1 ∈ Q. Now adding ǫgk2

ē+ − ǫgk1

ē+ + ǫgk1

e+ − ǫgk2

e+ gives γk1

e+ = γk2

e+ and rγk
e+ = β for all k ∈ Q

again since γk1

ē+ = γk2

ē+ = 0, as shown above. Finally assume that there is ē in Ē1 ∩ E2. For a
commodity k ∈ Q consider the following vector:

p + (c − r)gk
l+ + bē + be + cgk

ē− + rgk
e+ =⇒ βη + βē + βe + cγk

ē− + rγk
e+ = π

=⇒ βη + (c − r)β

r
− cβ

r
+ rγk

e+ = π

=⇒ β = rγk
e+ ∀k ∈ Q
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iv) E1\E2 : We construct the vector qe again but for e ∈ E1\E2.

qe := p − bl + be −
∑

k∈Q

ϕkgk
l+ +

∑

k∈Q

ϕkgk
e+ =⇒ βη − β + βe +

∑

k∈Q

ϕkγk
e+ = π (27)

with
∑

k∈Q ϕk = r. For k ∈ K add an ǫ-flow to e+ and e− to conclude that γk
e+ = −γk

e−
for

all k ∈ K. Now we modify the point qe by simultaneously increasing flow on e+ and l̄− for
a k in K. Hence γk

e+ = −γk
l̄−

= 0. It follows that γk
e−

= 0 for all k ∈ K and βe = β for all
e ∈ E1\E2.

Plugging in all coefficients in (18) we arrive at:

βx(E1\E2) + β

r
fQ(Ā+

1 \A
+
2 )

+ β

r
(c − r)x(Ē1 ∩ E2) + β

r
fQ(Ā+

1 ∩ A+
2 ) − β

r
fQ(Ā−

1 ∩ A−
2 )

+ cβ

r
x(E1 ∩ E2) −

β

r
fQ(A−

1 ∩ A−
2 ) = βη

which is equivalent to

fQ(Ā+
1 ) − fQ(A−

2 ) + rx(E1) + (c − r)x(E2) = rη

We have shown that the hyperplane (18) is a multiple of (8) plus a linear combination of flow
conservation constraints. It follows that F = F̃ . This concludes the proof.

B.2 Proof of Theorem 4.10

Proof. We proceed as in the proof of Theorem 4.9 and apply the definitions of the faces F , F̃ with

F ⊆ F̃ and the vectors be, gk
e+ , gk

e−
. We set d := d

K
+

S

S , d− := |d
K

−

S

S |, η := ηK
+

S , r := rK
+

S < c, ǫ > 0
small enough and M a large integral number.

In contrast to the proof of Theorem 4.9 the point p to start from is defined as follows. Choose
l ∈ E1\E2. All demand is routed on l with capacity exactly cη, more precisely all flow for positive
commodities is routed on l+ and all flow for negative commodities is routed on l−. Notice that we
assume d ≥ d− and r < c. The point p can be written as:

p := ηbl +
∑

k∈K
+

S

dk
Sgk

l+ +
∑

k∈K
−

S

dk
Sgk

l− .

By considering p and p + bl we conclude that ∅ 6= F 6= CSbi
S . It is missing to prove that F = F̃ .

We will show that (18) is (8) up to a scalar multiple and a linear combination of flow conservation
constraints. We can assume that γk

l+
= 0 ∀k ∈ K+

S and γk
l−

= 0 ∀k ∈ K−
S ∪ K0

S w. l. o. g. by adding
multiples of the flow conservation constraints to (18).

Set β := βl. Since p lies on the hyperplane, we conclude that

βη = π (28)

Modifying p by simultaneously increasing flow on l+ and l− by ǫ for every commodity gives new
points on the face and thus γk

l+
, γk

l−
= 0 ∀k ∈ K.

Now consider the disjoint partition ES = (Ē1∩E2)∪(E1∩E2)∪(E1\E2). (Note that Ē1\E2 = ∅).
We calculate the coefficients βe, γ

k
e+ , γk

e−
for e in each of the three sets by constructing new points on

the face F . Note that all the points to be defined for edges in Ē1∩E2 and E1\E2 additionally satisfy
the Undirected capacity constraints when K = K+

S . Hence with E1 ∩ E2 = ∅ and K−
S ∪ K0

S = ∅
the theorem holds for CSun

S .

i) Ē1 ∩ E2 : For e ∈ Ē1 ∩E2 and k ∈ K+
S we define the points (20), (21) and (22) as in the proof

of Theorem 4.9 and conclude that

−rγk
e− = β, rγk

e+ = β and βe = β

r
(c − r) ∀e ∈ Ē1 ∩ E2, k ∈ K+

S .

To see that γk
e+ = γk

e−
= 0 ∀k ∈ K−

S ∪K0
S modify the point in (20) by first increasing flows on

l−, e+ and then increasing flows on e+, e−. (This is not possible in the Undirected model.)
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ii) E1 ∩ E2 : We can assume that K0
S = ∅. Let e ∈ E1 ∩ E2 and k ∈ K+

S . By defining vk
e as in

(23) and with the same arguments it can be shown that

γk
e+ = 0 ∀k ∈ K+

S , K−
S and γe− := γk1

e−
= γk2

e−
∀k1, k2 ∈ K+

S .

Modifying p by deleting one unit of capacity on l and installing one unit of capacity on
e ∈ E1 ∩ E2 gives a point pe on the face F as in the proof of Theorem 4.9. If K−

S = ∅ we can

conclude −rγk
e−

= β ∀k ∈ K+
S . and βe = cβ

r
∀e ∈ E1 ∩ E2 in a similar way. Else if K−

S 6= ∅

we also have to reroute flow on l− and e− for commodities in K−
S . We can assume d > d−

and d > c by assumption. It follows that a rerouting can be done in such a way that flow for
k ∈ K−

S is still positive on l− and that the capacity for e− is not saturated. If in this case
ϕk

l+
, ϕk

l−
, ϕk

e+ , ϕk
e−

> 0 denote the rerouted flows on l+, l−, e+, e− for k ∈ K, then pe can be
written as

pe := p − bl + be −
∑

k∈K
+

S

ϕk
l+gk

l+ −
∑

k∈K
−

S

ϕk
l−gk

l− +
∑

k∈K
+

S

ϕk
e+gk

e+ +
∑

k∈K
+

S

ϕk
e−gk

e− +
∑

k∈K
−

S

ϕk
e−gk

e−

with

∑

k∈K
+

S

ϕk
l+ = r,

∑

k∈K
+

S

ϕk
e+ = c,

∑

k∈K
+

S

ϕk
e− = c − r and

∑

k∈K
−

S

ϕk
e− =

∑

k∈K
−

S

ϕk
l− < r

implying

βη − β + βe + (c − r)γe− +
∑

k∈K
−

S

ϕk
e−γk

e− = π

We can decrease flow on l− and increase it on e− which gives γk
e−

= 0 ∀k ∈ K−
S and thus

−rγk
e−

= β ∀k ∈ K+
S and βe = cβ

r
∀e ∈ E1 ∩ E2 as above.

iii) E1\E2 : For e ∈ E1\E2 we construct the point qe as in the proof Theorem 4.9 but we also
have to reroute flow for K−

S :

qe := p − bl + be −
∑

k∈K
+

S

ϕkgk
l+ −

∑

k∈K
−

S

ϕkgk
l− +

∑

k∈K
+

S

ϕkgk
e+ +

∑

k∈K
−

S

ϕkgk
e−

with
∑

k∈K
+

S
ϕk = r and

∑

k∈K
−

S
ϕk ≤ r. We conclude

βη − β + βe +
∑

k∈K
+

S

ϕkγk
e+ +

∑

k∈K
−

S

ϕkγk
e− = π (29)

For k ∈ K add an ǫ-flow to e+ and e− to conclude that γk
e+ = −γk

e−
∀k ∈ K. If for all k ∈ K

we can either show γk
e+ = 0 or γk

e−
= 0 we conclude βe = β ∀e ∈ E1\E2 by using (29).

By assumption E2 6= ∅. First suppose that there is ē in E1 ∩ E2. Modify qe by installing
one unit of capacity on ē and sending a flow of c on ē+ and ē− for a commodity k ∈ K+

S ,
which again gives a point on F . Now decrease flow on ē+ and increase it on e+ by ǫ. Hence
γk

e+ = 0 ∀k ∈ K+
S . Having done so simultaneously increasing flow on ē+ and e− gives

γk
e−

= 0 ∀k ∈ K−
S ∪ K0

S . Finally suppose that there is ē in Ē1 ∩ E2. For k ∈ K+
S consider the

vector

p + (c − r)gk
l+ + bē + be + cgk

ē− + rgk
e+

Simultaneously increasing flow on l− and on e+ for any commodity gives γk
e+ = 0 ∀k ∈ K.

Plugging in all coefficients in (18) gives a multiple of (8) as in the proof of Theorem 4.9.
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B.3 Proof of Theorem 4.14

Proof. We show sufficiency here. If E∗ = ∅ and d
K

+

S

S < c, then (10) reduces to the cutset inequality

x(ES) ≥ 1 which is facet-defining for CSbi
S (CSun

S ) if |ES | = 1 (see Theorem 4.8). If Ē∗ = ∅, then

(10) reduces to x(ES) ≥ ηK
+

S , which is facet-defining if |ES | = 1 or d
K

+

S

S > c (see Theorem 4.8). For
the rest of the proof we can assume that E∗, Ē∗ 6= ∅. For Q = K+

S we define the face

F :=
{

(f, x) ∈ CSbi
S (CSun

S ) : (f, x) satisfies (10) with equality
}

Given e ∈ ES let be denote the incidence vector of the design variable of e and let gk
e+ , gk

e−
be the

unit vectors for the flow variables for commodity k ∈ K of e in both directions. Suppose rK
+

S < c

and set d := d
K

+

S

S , η := ηK
+

S , r := rK
+

S and ǫ > 0 small enough. Choose l ∈ E∗ and l̄ ∈ Ē∗. We
construct a point p on the face F by installing η capacity units on the link l and by using this link
to satisfy all demands. The point p is given by

p := ηbl +
∑

k∈K
+

S

dk
Sgk

l+ +
∑

k∈K
−

S

dk
Sgk

l− .

Use cη − d = c − r to verify that p is on the face. Considering p + bl we conclude ∅ 6= F 6= CSbi
S . It

remains to show that F is inclusion-wise maximal. Choose a facet F̃ of CSbi
S with F ⊆ F̃ and let F̃

be defined by (18). We may add multiples of the |K| flow conservation constraint to (18). Therefore
we assume that γk

l̄−
= 0 for all k ∈ K w. l. o. g.. Set β := βl and β̄ := βl̄. The point p lies on F ⊆ F̃ ,

hence
βη +

∑

k∈K
+

S

dk
Sγk

l+ +
∑

k∈K
−

S

dk
Sγk

l− = π (30)

Now we define a point pe for all e ∈ ES the following way. We modify p by deleting one unit of
capacity on l and installing one unit of capacity on e ∈ ES . We decrease flow for K+

S on l+ by a
total of r and increase it by the same amount on e+. Some flow for K−

S is also rerouted now using
e−. This can be done in such a way that flow is positive on e+ for all k ∈ K+

S , that flow is positive
on e− for all k ∈ K−

S , and that the capacity on e is not saturated. Note that pe ∈ F for e ∈ E∗ and
also for e ∈ Ē∗. If ϕk > 0 denotes the rerouted flow for commodity k, then pe can be written as

pe := p − bl + be −
∑

k∈K
+

S

ϕkgk
l+ −

∑

k∈K
−

S

ϕkgk
l− +

∑

k∈K
+

S

ϕkgk
e+ +

∑

k∈K
−

S

ϕkgk
e− ,

with
∑

k∈K
+

S
ϕkgk

l+
=

∑

k∈K
+

S
ϕkgk

e+ = r and
∑

k∈K
−

S
ϕkgk

l−
=

∑

k∈K
−

S
ϕkgk

e−
≤ r. From pe ∈ F ⊆ F̃

follows

βη − β + βe +
∑

k∈K
+

S

(dk
S − ϕk)γk

l+ +
∑

k∈K
−

S

(dk
S − ϕk)γk

l− +
∑

k∈K
+

S

ϕkγk
e+ +

∑

k∈K
−

S

ϕkγk
e− = π. (31)

Modifying pe by simultaneously increasing flow on e+ and e− by ǫ for every commodity gives

γk
e+ = −γk

e− ∀e ∈ ES , k ∈ K.

Now consider the disjoint partition ES := E∗ ∪ Ē∗. We calculate the coefficients βe, γ
k
e+ , γk

e−
for e

in each of the two sets by constructing new points from p. All these points are on the face F for
CSbi

S . If K = K+
S , then all the points additionally satisfy Undirected capacity constraints. Thus

with K−
S ∪ K0

S = ∅ the theorem holds for CSun
S .

i) E∗ : For e ∈ E∗ and k ∈ K+
S consider the point

vk
e := pe + bl̄ + (c − r)gk

e+ + (c − r)gk
l̄−

.

Since vk
e as well as pe satisfy (18) and because γk

l̄−
= 0 we conclude β̄ + (c − r)γk

e+ = 0, and
thus

γk
e− = −γk

e+ =
β̄

c − r
∀e ∈ E∗, k ∈ K+

S . (32)
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We modify vk
e by increasing flow on e− and l̄+ for commodities in K−

S ∪ K0
S . (This is not

possible in the Undirected model.)

γk
e−

= −γk
e+ = 0 ∀e ∈ E∗, k ∈ K−

S ∪ K0
S . The equations (30) and (31) (with e ∈ E∗) now

reduce to

βη − d
β̄

c − r
= π and βη − β − d

β̄

c − r
+ βe = π

which implies βe = β ∀e ∈ E∗.

ii) Ē∗ : For e ∈ Ē∗ and k ∈ K+
S define the point

wk
e := p + be + (c − r)gk

l+ + (c − r)gk
e−

on the face F . Since wk
e satisfies (18) and because of (32), we get

βη + βe − (d + c − r)
β̄

c − r
− (c − r)γk

e+ = π (33)

For commodities in K−
S ∪ K0

S increasing flow on l− and e+ gives

γk
e− = −γk

e+ = γk
l− = 0 ∀e ∈ Ē∗, k ∈ K−

S ∪ K0
S .

For a fixed commodity k ∈ K+
S modify wk

e by decreasing flow for k on l+, e− and simultaneously
increasing flow on l+, e− for an arbitrary commodity k∗ ∈ K+

S . Hence

γe := γk∗

e− = γk
e− = −γk∗

e+ = −γk
e+ ∀e ∈ Ē∗, k ∈ K.

The equation (31) with e ∈ Ē∗ now reduces to

βη − β − (d − r)
β̄

c − r
+ βe − rγe = π (34)

Evaluating (34) for e = l̄ and comparing with (30) gives

β =
cβ̄

c − r

since β
l̄

= β̄ and −γ
l̄+

= γk
l̄+

= 0 for all k ∈ K. Then from (33) and (34) follows that
rγe = (r − c)γe But c > r > 0 and thus

γe = γk
e− = −γk

e+ = 0 ∀e ∈ Ē∗, k ∈ K.

Now comparing (33) with (30) results in

βe = β̄ ∀e ∈ Ē∗.

Plugging in all coefficients in (18) we arrive at:

cβ̄

c − r
x(E∗) + β̄x(Ē∗) +

β̄

c − r
fK

+

S (A−
∗ ) −

β̄

c − r
fK

+

S (A+
∗ ) = β̄

which by multiplying with c−r

β̄
reduces to (10) (with Q = K+

S ). We have shown that the hyperplane

(18) is a multiple of (10) plus a linear combination of flow conservation constraints. It follows that
F = F̃ . This concludes the proof.
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