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1 IntrodutionSteel is one of the most widely used materials. By alloying, heat- and ther-momehanial treatment a broad spetrum of properties an be obtained.The mirostruture and the distribution of di�erent phases suh as ferrite,austenite, martensite or pearlite are of great importane, due to the fat thatthey eah possess di�erent hardnesses and other mehanial properties, seee. g. [12℄.In this study, we examine the phase transition from austenite (γ-iron) toferrite (α-iron) as a preliminary stage to the modelling of the formation ofpearlite, whih is a lamellar mixture of ferrite and ementite � a metastableompound Fe3C.The phases austenite and ferrite are haraterised by di�erent rystalstrutures. Important for their onstitution is the so alled sublattie model.The iron atoms form a host lattie, whih has a body entred ubi (b)struture in the α-phase and a fae entred ubi (f) unit ell in the γ-phase. The arbon atoms are interstitially dissolved on a sublattie, whihis formed by the otahedral sites. The number of sublattie sites is di�erentin ferrite and austenite. In α-iron, there are three times as many sublattiesites as iron atoms, whereas in γ-iron both latties have an equal numberof lattie sites. Empty sublattie sites are a arrier of energy and entropyand have to be onsidered. These vaanies are introdued in the model asa massless onstituent.Two proesses that determine the γ/α-phase transition are the di�usionof arbon through the austenite and the lattie transformation of the iron. Ifone of these proesses dominates the other, speial ases an be onsidered.The transformation behaviour is alled di�usion-ontrolled, if the arbon dif-fusion is dominating. If the seond proess determines the growth rate of thenew phase, then one refers to the interfae-ontrolled mode and a homoge-neous arbon distribution an be assumed. Furthermore, mehanial stressesand strains a�et the phase transition. Beause of the di�erent rystal stru-ture, ferrite has a larger molar volume than austenite. In addition, the arbonatoms have a larger diameter than the sublattie sites o�er in spae. There-fore, dissolved arbon auses an expansion of the iron lattie. The hanges ofthe volume during the γ/α-phase transition due to these e�ets ause eigen-strains, whih aelerate or deelerate the growth of the ferrite phase. Themodel presented here aounts for the loal mehanial �elds aused by thevolumetri expansions.Probably one of the earliest studies onsidering the di�usion-ontrolledase has been done by Zener [13℄ as early as 1949. In a work by Wits et al. [11℄the in�uene of the overall arbon onentration to the mode of the phase2



transition is investigated. Simulations are done for a mixed-mode model,i. e. the lattie transformation and the arbon di�usion are inluded in thealulations. The harater of the transformation is identi�ed by evaluatingthe arbon onentration at the interfae. The in�uene of mehanial e�ets,espeially eigenstrains aused by the di�erent densities of the two phases, isnot onsidered there.Dreyer and Duderstadt [3℄ present a model for phase transitions in galliumarsenide wafers, where e�ets due to mehanial stresses and strains areinluded. A similar approah is adopted in this work. The model presentedhere is not restrited to steel. In fat, the basi ideas are appliable to a widerange of problems, for example the modelling of harging and dishargingproesses in lithium batteries [4℄. Similar to the ase of steel, a sublattiemodel is used there to desribe the onstitution of the phases. In a work byBöhme et al. [1℄, a thermodynamial model for a general mixture of multipleomponents is given, where the mehanial displaement �eld is inluded.The model is derived in a systematial framework, taking into aount theonservation laws for mass, momentum and energy as well as the seond lawof thermodynamis.We desribe the derivation of a sharp interfae model, based on theafore mentioned physial priniples. We onentrate on the modelling ofone austenite grain as a typial part of the mirostruture and neglet e�etslike grain oarsening or grain boundary di�usion. We restrit ourselves to theisothermal ase, sine on the sale of one iron grain heat ondutivity is sup-posed to be fast ompared to the di�usion of arbon and the migration of theinterfae. By means of numerial simulations for the interfae-ontrolled asethe in�uene of the mis�t strains on the kinetis of the phase transformationis investigated.The paper is organised as follows: in Setion 2, the thermodynamialmodel based on the onservation laws for mass and momentum is desribed.We derive onstitutive funtions that are in aordane with the seond lawof thermodynamis. The mehanial displaement �eld is investigated inSetion 3. Sine the free energy is important for the desription of phasetransitions, Setion 4 is devoted to the determination of this quantity. Theunderlying idea is a deomposition into a hemial part and a mehanialpart, whih aounts for the e�ets of the mis�t strains. In Setion 5, a speialase is treated, i. e. we onsider a spherial-symmetri iron grain and assumean interfae-ontrolled transformation behaviour. In doing so, a system ofequations is derived to ompute the temporal evolution of the homogeneousarbon onentrations in austenite and ferrite. The setion is onluded withthe presentation of numerial results.3



2 Thermodynami desription of the Fe-C sys-temIn this setion, we derive the thermodynamial model that desribes thephase transition from austenite to ferrite in steel. Throughout this paper anupper index is used for denoting vetors. Furthermore, we make use of thesum onvention, i. e. one has to sum if supersripts our twie.We onsider a domain Ω := Ωα ∪ Ωγ ⊂ R
3, whih is oupied by thetwo phases ferrite and austenite, denoted by the open domains Ωα and Ωγ ,respetively, with Ωα ∩ Ωγ = ∅. The phases are separated by an interfae

I := Ωα ∩ Ωγ . The state of the system at a given absolute temperature T isdesribed by the following variables
na(t, x

j), a ∈ {Fe,C,V}, the mole densities of iron, arbonand vaanies,
ui(t, xj) the displaement �eld, (1)whih an depend on time t and position x = (x1, x2, x3) ∈ Ω.2.1 The balanes of the partial mole densitiesThe model is based on the following onservation laws of the partial moledensities

∂nFe
∂t

+
∂nFevkFe
∂xk

= 0,
∂nC
∂t

+
∂nCvkC
∂xk

= 0 and ∂nV
∂t

+
∂nVvkV
∂xk

= 0, (2)where vk
a , a ∈ {Fe,C,V}, are the partial veloities of iron, arbon and va-anies. Due to the sublattie model there is a restrition on the three moledensities. In austenite the number of host and sublattie sites is equal, thatis nFe = nC + nV, whereas in ferrite the number of sublattie sites is threetimes the number of host lattie sites: 3nFe = nC + nV. This side onditionan be written as

η nFe = nC + nV with η =

{

3 in Ωα

1 in Ωγ ,
(3)where η is alled the site ratio. The three mole densities are not independentand therefore one of the balane laws (2) must be the onsequene of the twoothers. To guarantee this we de�ne

η nFevkFe = nCvkC + nVvkV (4)4



and in the following we an restrit ourselves to the balanes (2)
1
and (2)

2
.To desribe the state of the system, the mass density ρ and the baryentriveloity vk of the mixture need to be de�ned. These quantities are given by

ρ = ρFe + ρC and ρvk = ρFevkFe + ρCvkC, (5)where ρFe := mFenFe and ρC := mCnC are the partial mass densities of ironand arbon, mFe and mC denote the orresponding moleular weights. Sinevaanies have no mass, they do not ontribute to the mass density and thebaryentri veloity.Next, the di�usion �uxes with respet to vk are de�ned for eah on-stituent
jkFe := nFe(vkFe − vk), jkC := nC(vkC − vk) and jkV := nV(vkV − vk). (6)Expressions (4) and (5) lead to the identities

ηjkFe = jkC + jkV and mFejkFe +mCjkC = 0. (7)These relations an be used to eliminate jkFe and jkV, suh that only thedi�usion �ux of arbon has to be onsidered. In the following this �uxis denoted by jk := jkC. Introduing the di�usion �uxes into the balaneequations (2) one obtains together with (7)
2
the following partial di�erentialequations
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∂t

+
∂nCvk
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∂jk
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in Ω. (8)This is a system of di�usion equations for the mole densities of iron andarbon. The di�usion �ux jk is related to the variables introdued in (1) bya general version of Fik's law
jk = −MB ∂

∂xk

(

µ−
ηmC
mFe µV) (9)with µ := µC − µV and MB > 0 denoting the mobility of the arbon atoms.The quantities µC and µV represent the hemial potentials of arbon andvaanies, whih an be expressed in dependene on the mole densities andthe mehanial displaement. For a detailed derivation of the relation (9),by evaluating the seond law of thermodynamis, we refer to Appendix A.1.The hemial potentials will be introdued in Setion 4.5



On the outer boundary ∂Ω with the outward unit normal vetor νk, Neu-mann boundary onditions are imposed on the di�usion �ux
jkνk = 0 on ∂Ω.On the interfae I the mole densities are disontinuous. These dison-tinuities an be expressed by jump onditions. Similar to the onservationlaws (2) in the bulk, one an de�ne onservation laws on I. The materialmole �ux aross the interfae is onserved, whih an be written as

[[nFevνFe]] − [[nFe]]wν = 0 and [[nCvνC]] − [[nC]]wν = 0 on I, (10)where νk and wν := wiνi denote the unit normal vetor pointing from Ωγto Ωα and the normal interfaial veloity. The double braket indiates thejump of a quantity aross the interfae: [[ψ]] = ψα −ψγ. As an abbreviationthe interfaial mole �uxes are de�ned as
ṄFe := nFe(vνFe − wν) and ṄC := nC(vνC − wν). (11)We onlude by (10) that they are ontinuous aross the interfae

Ṅ αFe = Ṅ γFe and Ṅ αC = Ṅ γC on I. (12)In analogy to the onstitutive funtion (9) for the di�usion �ux jk one anderive the following relations for the interfaial mole �uxes de�ned in (11)
ṄFe = −M IFe[[ηµV −

mFe
ρ
σ〈ij〉νiνj ]] and ṄC = −M IC[[µ−

mC
ρ
σ〈ij〉νiνj ]].(13)The quantities M IFe > 0 and M IC > 0 are the interfae mobilities of ironand arbon. The newly introdued expression σ〈ij〉 denotes the trae-freeor deviatori part of the Cauhy stress tensor σij , see Setion 2.2, whih isobtained by the deomposition σij = 1

3
σkkδij+σ〈ij〉. The kinemati onditions(13) speify the interfae migration in terms of the interfae veloity wν.They an be derived by evaluating the seond law of thermodynamis on theinterfae, see Appendix A.2.Instead of the mole density nC, the arbon ontent is often expressed interms of the site fration of arbon, y, de�ned as the ratio of sublattie sitesoupied by arbon and overall density of sublattie sites, i. e.

y :=
nC

nC + nV =
nC
ηnFe . (14)6



2.2 The quasistati balane of momentumIn order to determine the deformation of the iron lattie in terms of thedisplaement �eld ui, the balane of momentum is examined. Sine mehan-ial equilibrium is attained muh faster than hemial equilibrium, one anonsider the quasistati ase, whih reads
∂σij

∂xj
= 0 in Ω. (15)The quantity σij denotes the Cauhy stress tensor, whih is related to thedisplaement �eld ui by a onstitutive law. A detailed desription of thestress, strain and the displaement, inluding the onstitutive relation, isgiven in the next setion.As boundary onditions we impose

σijνj = −p0ν
i on ∂Ω, (16)where p0 is a onstant outer pressure. This boundary ondition refers tothe pressure-ontrolled ase. Due to the fat that the pressure is �xed, thevolume of the body an hange. Another possibility is the volume-ontrolledase, where a presribed volume V0 of the body is onsidered, i. e. one wouldimpose Dirihlet boundary onditions on the displaement ui.The interfaial ondition for σij is the following

[[σij]]νj = −2γkMν
i on I. (17)The quantities γ > 0 and kM denote the isotropi surfae tension and themean urvature of the interfae. For the derivation of this jump onditionsee e. g. [2℄.3 Desription of the motion, stress and strainIn this setion we desribe the deformation of a body and we relate thedisplaement �eld to the stresses and strains. For that purpose, a referenestate is introdued, where the body oupies the domain ΩR. The positionof a material point in the referene state is given by the oordinates X =

(X1, X2, X3) ∈ ΩR. At time t the body is deformed and overs the domain
Ω(t). The position of a point in this on�guration is given by the oordinates
x ∈ Ω(t). There exists a bijetive mapping

xi = χi(t, Xj), (18)7



whih maps ΩR onto Ω(t). This mapping is alled motion or deformation.With the help of this funtion, the displaement �eld ûi and the baryentriveloity v̂i are de�ned as
ûi(t, Xj) := χi(t, Xj) −X i and v̂i(t, Xj) :=

∂χi(t, Xj)

∂t
=
∂ûi(t, Xj)

∂t
.(19)Furthermore, we introdue the displaement gradient and the deformationgradient

H ij :=
∂ûi

∂Xj
and F ij :=

∂χi

∂Xj
with J := detF ij > 0. (20)The quantities above are expressed with respet to the referene on�gura-tion. This desription is alled the Lagrangian or material desription. Thepositivity of J guarantees invertibility of χi(t, Xj) and one an write

X i = (χ−1)i(t, xj). (21)The inverse of the motion is used to give a representation of the displaementand the baryentri veloity with respet to the on�guration at time t, whihis known as the Eulerian or spatial desription,
ui(t, xj) := ûi(t, χ−1(t, xj)) and vi(t, xj) := v̂i(t, χ−1(t, xj)). (22)Analogously to (20) one de�nes the displaement- and deformation gradientin Eulerian oordinates as

hij :=
∂ui

∂xj
and (F−1)ij :=

∂(χ−1)i

∂xj
. (23)Measures for the strains aused by the deformation are e. g. the right Cauhy-Green tensor Cij and its unimodular part cij , de�ned as

Cij := F kiF kj and cij := J− 2

3Cij. (24)Note that there holds det(cij) = 1, thus, Cij is split into a part J−2/3, whihdesribes pure hanges of the volume, whereas cij indiates hanges of theshape of a body.To desribe the stress-strain relation, we take into onsideration thatdeformations of the iron lattie result from two independent e�ets. The �rstone are inelasti deformations, whih are aused by hanges of the volume dueto variations of the arbon fration y and the lower density of the developingferrite phase. The seond e�et are elasti deformations aused for exampleby external loadings. 8



One an aount for these e�ets by introduing three states that areharaterised by y and F ij, ompare also to Böhme et al. [1℄. The �rst one isan undeformed referene state S at referene pressure p with the oordinates
(X1, X2, X3). It onsists of a single phase and is haraterised by the arbonfration y = 0 and the deformation gradient F ij

= δij.The seond state, denoted by S∗ with the oordinates (X1

∗ , X
2

∗ , X
3

∗ ), isreahed from the referene state at onstant referene pressure p by raisingthe arbon fration to y∗ = y. Furthermore, we allow for a massive phasetransition in this state. The orresponding deformation gradient is given by
F ij
∗ . The transition from S to S∗ desribes the inelasti deformation.The third state S is the atual state with the oordinates (x1, x2, x3) andthe deformation gradient F ij (with respet to the referene on�guration).It is reahed from the state S∗ by a purely elasti deformation F ij

e with nofurther hange in y.For the states S, S∗ and S we introdue the iron mole densities nFe, n∗Feand nFe, the mass densities
ρ = mFenFe, ρ∗ = m(y)n∗Fe and ρ = m(y)nFe, (25)where m(y) = mFe + mCηy denotes the mean moleular weight, and thedeterminants

J∗ = det(F ij
∗ ) =

ρ

ρ∗
, J = det(F ij) =

ρ

ρ
and Je = det(F ij

e ) =
ρ∗

ρ
. (26)For the deformation gradients holds F ij = F ik

e F
kj
∗ . This is a onsequene ofthe hain rule applied to

xi = χi(t, Xj) = χi
e(t, χ

k
∗(t, X

j)). (27)The deformation gradient F ij
∗ for the state S∗ is established as follows.The referene state S is known. The deformation from the state S to S∗ isa pure hange of the volume. Therefore, it holds
nFe
n∗Fe =

V∗(y)

V
, (28)where V is the volume of the referene state and V∗(y) is the volume of thebody at the state S∗. This volume is obtained by measurements of the lattieonstant in dependene on the arbon fration y, see for example [9℄. With(25), (26) and a linear interpolation of the data given in [9℄ there results

F ij
∗ = J∗(y)

1

3 δij with J∗(y) =
mFe
m(y)

V ℓ
m

V
(1 + δℓy) in Ωℓ, ℓ = α, γ, (29)9



where V ℓ
m and δℓ, ℓ = α, γ, denote the molar volume and the linear expansionoe�ient for the respetive phase.The onstitutive equation relating the stress to the strain is given in termsof the St. Venant-Kirhho� law, whih is formulated for the seond Piola-Kirhho� stress tensor. We denote this tensor with respet to the state S by

tij and with respet to the state S∗ by zij . The Cauhy stress tensor σij isthe same for both desriptions and it holds
σij = J−1F ikF jltkl and σij = J−1

e F ik
e F

jl
e z

kl. (30)Elimination of σij together with F ij = F ik
e F

kj
∗ leads to

tij = J∗F
−ik
∗ F−jl

∗ zkl. (31)Now, the onstitutive relation is formulated in terms of the St. Venant-Kirhho� law for zij as a purely elasti deformation
zij = −pJeC

−ij
e +

1

2
K̃ijkl(Ckl

e − δkl). (32)The tensor K̃ijkl denotes the sti�ness tensor. The data for α- and γ-iron aregiven e. g. by Inal et al. [8℄. There is only a small di�erene in the elastioe�ients given in literature for di�erent kinds of steel (with di�erent arbonontent) and pure iron. Therefore, we assume that K̃ijkl is independent ofthe arbon fration y.To alulate the hemial potentials, as it is desribed in Setion 4, aformulation for tij is neessary. Applying the transformation rule (31), weobtain the following onstitutive law for the 2nd Piola-Kirhho� tensor
tij = −pJC−ij +

1

2
Kijkl(y)(Ckl − Ckl

∗ (y)), (33)where
Kijkl(y) := J∗F

−im
∗ F−jn

∗ F−ko
∗ F−lp

∗ K̃mnop = J∗(y)
− 1

3 K̃ijkl (34)is a modi�ed sti�ness tensor and Ckl
∗ = Fmk

∗ Fml
∗ desribes the mis�t strain.4 Determination of the free energyIn order to study the γ/α-phase transition in steel, knowledge of the freeenergy density ρψ is neessary to obtain expliit expressions for the hem-ial potentials. The determination of these quantities is the subjet of this10



setion. For that purpose, we assume that the funtion ψ has the followingrepresentations
ψ = ψ(T, nC, nV, cij) = ψ̂(T, y, ρ, cij) = ψ̃(T, y, Cij). (35)The di�erent funtions represent the dependene of the free energy on di�er-ent sets of variables, whih an be onverted by the relations (5), (14), (24)and (26). The strategy to determine ψ is the following. Starting from theequation

tij = 2ρ
∂ψ̃

∂Cij
, (36)whih is a onsequene of the seond law of thermodynamis, see AppendixA.1 or [1℄, we determine the funtion ψ̃(T, y, Cij) by integration of (33). Thisyields

ψ̃(T, y, Cij) = −
p

ρ
J+

1

8ρ

(

Cij − Cij
∗ (y)

)

Kijkl
(

Ckl − Ckl
∗ (y)

)

+K(T, y), (37)where K(T, y) is an integration onstant. This onstant is obtained by adeomposition of the free energy into a mehanial part ψ̃meh(T, y, Cij) anda hemial part ψ̃hem(T, y), whih does not depend on the deformation ofthe body, see also [3℄,
ψ̃(T, y, Cij) = ψ̃hem(T, y) + ψ̃meh(T, y, Cij). (38)Suh a deomposition is motivated by the fat that the hemial and the me-hanial part of the free energy are determined in di�erent ways. The om-putation of the mehanial part is based on a onstitutive relation, whereasthe hemial part is obtained by thermodynamial measurements.We de�ne that at the state S∗ the mehanial part of the free energy

ψ̃meh(T, y, Cij
∗ ) vanishes, so that ψ̃(T, y, Cij

∗ ) = ψ̃hem(T, y). Hene, the inte-gration onstant is given by K(T, y) = ψ̃hem(T, y)+J∗(y)p/ρ and one obtains
ρψ̃meh(T, y, Cij) = p

(

J∗
J

− 1

)

+
1

8J

(

Cij − Cij
∗ (y)

)

Kijkl(y)
(

Ckl − Ckl
∗ (y)

)(39)with J = det(F ij) = det(Cij)1/2.The determination of the hemial part of the free energy is based onthermodynamial measurements. The evaluation of the iron-arbon systeman be found for example in [6℄ or [10℄. There, ρψhem is given as
ρψhem(T, nC, nV) = nFe[GFeC(T )y +GFeV(T )(1 − y) − L(T )y(1 − y)

+ ηRT (y ln y + (1 − y) ln(1 − y)) +Gα
m(T )

]

=: nFef(y) (40)11



with R denoting the universal gas onstant. The quantities nFe and y arerelated to nC and nV by (3) and (14). The oe�ients GFeC, GFeV and L aretemperature dependent funtions. The part Gα
m is a magneti ontributionwhih only ours in the α-phase. These parameters are taken from [6℄. Thefuntion f is introdued as an abbreviation for the term in brakets, whihonly depends on y when the temperature T is �xed.Now, we an alulate the hemial potentials, de�ned as

µC :=
∂ρψ(T, nC, nV, cij)

∂nC and µV :=
∂ρψ(T, nC, nV, cij)

∂nV . (41)Carrying (38), (39) and (40) into (41) one �nally obtains
µC =

1

η
(f(y) + (1 − y)f ′(y))

+
1

ηρ

[

(ηmC +mFe)(

pJ∗(y) −
1

8
(
1

3
Cij + Cij

∗ (y))Kijkl(y)(Ckl − Ckl
∗ (y))

)

+ (1 − y)m(y)

(

pJ ′
∗(y) +

1

8
(Cij − Cij

∗ (y))(K ′)ijkl(y)(Ckl − Ckl
∗ (y))

−
1

4
(C ′

∗)
ij(y)Kijkl(y)(Ckl − Ckl

∗ (y))

)] (42)and for the hemial potential of the vaanies
µV =

1

η
(f(y) − yf ′(y))

+
1

ηρ

[

mFe (

pJ∗(y) −
1

8
(
1

3
Cij + Cij

∗ (y))Kijkl(y)(Ckl − Ckl
∗ (y))

)

− y m(y)

(

pJ ′
∗(y) +

1

8
(Cij − Cij

∗ (y))(K ′)ijkl(y)(Ckl − Ckl
∗ (y))

−
1

4
(C ′

∗)
ij(y)Kijkl(y)(Ckl − Ckl

∗ (y))

)]

, (43)where the prime denotes di�erentiation with respet to the site fration y.5 A simpli�ed model with spherial symmetryPerforming numerial simulations for the presented free boundary problemis quite omplex. It involves suitable algorithms to alulate the position ofthe free boundary. In order to obtain numerial results for the simulation12



of the austenite-ferrite phase transition, we make some assumptions to get asimpli�ed model. First of all, we onsider a spherial-symmetri geometry.The iron grain is modelled as a sphere with radius r0. The γ-phase forms theinner ore with time dependent radius rI and the α-phase is an outer shell,i. e. Ωγ = (0, rI) and Ωα = (rI , r0). This is motivated by the fat that ferriteusually nuleates at grain boundaries and grows into the austenite matrix.The radius r0 is time dependent, too. The two phases have di�erent densitiesand due to the �xed outer pressure the overall volume hanges.Furthermore, we restrit ourselves to the interfae-ontrolled ase, i. e.the bulk mobility of arbon MB is in�nitely large ompared to the interfaemobilities M IFe and M IC. Sine the di�usion �ux must be �nite, we get fromequation (9) that the gradient of the hemial potentials must be equal tozero and therefore the mole densities nFe and nC are homogeneous in regularpoints. For a low mean arbon onentration this is a well aepted assump-tion. If the overall arbon onentration is higher, a di�usion-ontrolledtransformation behaviour, where the di�usion of arbon in the bulk beomesthe rate determining proess, is a more realisti desription, see e. g. [11℄.Nevertheless, we onsider the interfae-ontrolled ase in this study.Conerning the mehanial equations we make the following simpli�a-tions. To be in aordane with the spherial symmetry, we neglet theubial anisotropy of the iron lattie and onsider an isotropi sti�ness ten-sor with Lamé onstants λ and µ, whih are obtained from the oe�ientsgiven in [8℄ by taking an average. Moreover, we assume that the deformationsare small so that we an replae the onstitutive law (33), relating the stresstensor to the displaement, by its linearisation in the displaement gradient
hij .The variables for this simpli�ed interfae-ontrolled model are the homo-geneous arbon frations and iron mole densities yα, yγ, nαFe and nγFe, whihdo not depend on the spae variable r, but di�er in the two phases, and theradii rI and r0. In the following a set of equations to ompute the temporalevolution of these variables is derived and numerial results are presented.5.1 The balanes of the mole densitiesThe balane laws for the mole densities in the spherial-symmetri ase arethe following

∂nFe
∂t

+
1

r2

∂r2nFevFe
∂r

= 0 and ∂nC
∂t

+
1

r2

∂r2nCvC
∂r

= 0. (44)On the interfae I, whih is given by the radius rI , we have by (10)
nαFe(vαFe − ṙI) = nγFe(vγFe − ṙI) and nαC(vαC − ṙI) = nγC(vγC − ṙI). (45)13



Derivatives with respet to time t are denoted by a dot. The boundaryonditions for the partial veloities of iron and arbon are
lim
r→0

r2va = 0 and va = ṙ0 at r = r0, a ∈ {Fe,C}. (46)Sine the mole densities are homogeneous in Ωα and Ωγ , the partial veloitiesan be expliitly determined using the onservation laws (44). One obtainsfor the domain Ωγ by applying the boundary ondition (46)
1
for both on-stituents

vγ
a = −

ṅγ
a

3nγ
a
r, a ∈ {Fe,C}, (47)whereas in Ωα we have with (46)

2

vα
a = −

ṅα
a

3nα
a

r3 − r3

0

r2
+ ṙ0

r2

0

r2
, a ∈ {Fe,C}. (48)In the homogeneous ase the jump onditions (45) together with the equa-tions for the partial veloities an be integrated with respet to time. Oneobtains global onservation laws for the mole densities of iron and arbon

nγFer3

I + nαFe(r3

0
− r3

I) = c1 and yγnγFer3

I + 3yαnαFe(r3

0
− r3

I ) = c2, (49)where the site frations y, de�ned in (14), are used instead of nC. Theonstants c1 and c2 an be determined by the initial data at time t0. Underonsideration of (49)
1
, equation (49)

2
an be simpli�ed as follows

(yγ − 3yα)nγFer3

I + 3yαc1 = c2. (50)Regarding the kinemati onditions (13), a further simpli�ation is in-trodued. We assume that the motion of the interfae is only determinedby the transformation of the iron lattie from the f to the b struture.The rearrangement of arbon atoms at the interfae is supposed to ourinstantaneously, i. e. M IC ≫ M IFe. Thus, we set M IC = ∞. Sine the �ux ofarbon atoms through the interfae ṄC is �nite, the seond fator in (13)
2must be zero. The kinemati onditions redue to

1

3
ṅγFerI+n

γFeṙI = M IFe[[ηµV−mFe
ρ
σ〈rr〉]] and [[µ−

mC
ρ
σ〈rr〉]] = 0, (51)i. e. the hemial potential µ is always in equilibrium and the interfae mi-gration is solely determined by (51)

1
.Sine there is no di�usion of iron atoms, the mole density nFe is diretlyrelated to the mehanial displaement �eld. The omputation of the dis-plaement for the simpli�ed model is onsidered in the next setion.14



5.2 The linearised mehanial subproblem in spherialoordinatesBefore we analyse the balane of momentum in spherial oordinates, thestress-strain relation is linearised with respet to the displaement gradient
hij . It is assumed that the deformations are small suh that higher orderterms in the displaement gradient an be negleted. By equations (19), (22)and (23) there holds

(F−1)ij = δij − hij and (C−1)ij = δij − hij − hji + hkihkj. (52)The inverse matries up to linear order are given by
F ij = δij+hij +O(

∥

∥hij
∥

∥

2

) and Cij = δij+hij +hji+O(
∥

∥hij
∥

∥

2

). (53)For the Jaobian we have J−1 = 1 − hkk + O(‖hij‖
2
). Furthermore, for theintermediate state S∗ a funtion h∗(y), whih is supposed to be of the sameorder as the deformation gradient, is introdued suh that

(F−1

∗ )ij = (1 − h∗)δij and J−1

∗ = (1 − h∗)3. (54)Now we obtain from
σij = J−1F imF jntmn and tij = −pJ(C−1)ij +

1

2
Kijkl(Ckl − Ckl

∗ ) (55)the following representation for the stress tensor within the linear order ofapproximation
σij = −p +

1

2
K̃ijkl(hkl + hlk − 2h∗δkl). (56)This an be interpreted in the sense of the lassial Hooke law with a mis�tstrain, represented by h∗(y). Negleting the ubial anisotropy of the ironlattie, the sti�ness tensor K̃ijkl is given by

K̃ijkl = λδijδkl + µ(δikδjl + δilδjk), (57)where λ and µ are the Lamé onstants. Then, the stress tensor an be writtenas
σij = −p+ λhkkδij + µ(hij + hji) − (3λ+ 2µ)h∗δij. (58)Now we rewrite the balane of momentum in spherial oordinates (r, φ, θ).Due to the assumed spherial symmetry, the displaement �eld an be sim-pli�ed to (ur, uφ, uθ) = (u(r), 0, 0) and for the displaement gradient we have

hrr =
∂u

∂r
, hφφ = hθθ =

u

r
and hij = 0 otherwise. (59)15



From (58) one obtains that σφφ = σθθ and σrφ = σrθ = σφθ = 0. The nonzeroomponents of the stress tensor are
σrr = −p+ λ(hrr + 2hφφ) + 2µhrr − (3λ+ 2µ)h∗,

σφφ = −p+ λ(hrr + 2hφφ) + 2µhφφ − (3λ+ 2µ)h∗.
(60)The balane of momentum (15) redues to the following equation, seee. g. [5℄,

∂σrr

∂r
+ 2

σrr − σφφ

r
= 0 for r ∈ Ω (61)with the jump and boundary onditions

[[σrr(rI)]] = −
2γ

rI

and σrr(r0) = −p0. (62)Furthermore, we impose the following onditions on the displaement u(r)(regularity at r = 0 and ontinuity at the interfae)
lim
r→0

u(r) = 0 and [[u(rI)]] = 0. (63)Inserting the representation for the stress tensor (60) into equation (61),one obtains with hrr = u′(r) and hθθ = u(r)/r an ordinary di�erential equa-tion for the displaement u(r) that is given by
u′′ +

2

r

(

u′ −
u

r

)

= 0. (64)Note that due to the assumed homogeneity of the arbon frations yα and
yγ the funtion h∗ does not depend on r. With the onditions (63) on u(r),the solution to this ODE is the following

u(r) =

{

(a+ b)r for r ∈ [0, rI)

ar + b
r3

I

r2 for r ∈ [rI , r0].
(65)The onstants a and b, whih an depend on rI , r0 as well as on the homo-geneous arbon frations yα and yγ, are de�ned via the boundary onditions(62). One obtains expliitly
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3Kα
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4µα

3Kα
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I

r3

0

b,
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0

(

2γ

rI
− 3Kγ(h

∗
α(yα) − h∗γ(y

γ)) + κ(p− p0)

)

.

(66)16



As an abbreviation we introdued the bulk moduliKℓ = λℓ+2/3µℓ, ℓ = α, γ,for the respetive phases, κ = 1−Kγ/Kα and c0 = 3Kγ +4µα(1−κ(rI/r0)
3).Finally, we have an expliit representation for the displaement in depen-dene on yα, yγ, rI and r0. To relate the displaement to the mole density ofiron, reall relation (26)

2
. Within the linear order of approximation holds

J−1 = 1 − hkk, where J−1 =
ρ

ρ
=
m(y)nFe
mFenFe , (67)suh that we obtain

nFe
nFe =

mFe
m(y)

(1 − hkk). (68)The hemial potentials (41) and (42) an be written within the sameorder of approximation as
µC =

1

η
(f + (1 − y)f ′) +

1

ηρ

[

(ηmC +mFe) (

pJ∗ −K(hkk − 3h∗)
)
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∗

(

p−K(hkk − 3h∗)
)

] (69)and
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1
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1

ηρ

[

mFe (

pJ∗ −K(hkk − 3h∗)
)

− y m(y)J ′
∗

(

p−K(hkk − 3h∗)
)

]

. (70)For the spherial symmetri problem presented here, we obtain for the traeof the displaement gradient hkk and for the omponent σ〈rr〉 of the deviatoristress, whih is needed in (51),
hkk =

{

3(a+ b) in Ωγ

3a in Ωα

and σ〈rr〉 =

{

0 in Ωγ

−4µα b in Ωα

(71)with the onstants a, b de�ned in (66) and µα denoting the shear modulusof α-iron. Thus, the mole densities of iron, nαFe and nγFe, and the hemialpotentials an be expressed as funtions depending on yα, yγ, rI and r0. To-gether with (49)
1
, (50) and (51) we have derived a system of equations todetermine the temporal evolution of these variables.
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5.3 A numerial exampleIn this setion, simulation results for the simpli�ed interfae-ontrolled modelare presented. For the numerial treatment dimensionless quantities are in-trodued, whih are given by the following relations
t̂ :=

t

τ
, r̂ :=

r

r0

, n̂Fe :=
nFe
nFe , p̂ :=

p− p

p
and µ̂ :=

nFe
p
µ. (72)The time sale is hosen as τ = 35 s, for the length sale we use a typialaustenite grain size of r0 = 25µm. As referene state we hoose a systemonsisting of pure γ-iron, ontaining no arbon. Therefore, we set nFe =

(V γ
m)−1, where V γ

m is the molar volume of austenite. The values for thephysial quantities used in the simulation are given in Table 1.ferrite (α-iron) austenite (γ-iron) unitbulk modulus K 168.9 148.8 109 Pashear modulus µ 83.9 75.3 109 Pamolar volume Vm 7.31 7.24 10−6 m3mol−1expansion oe�ient δ 2.637 0.588molar masses mFe 55.847 g mol−1

mC 12.011 g mol−1surfae tension γ 0.5 N m−1pressures p0, p 105 Pagas onstant R 8.3144 J mol−1K−1Table 1: Physial parameters used for the simulationsData for the interfae mobility M IFe an be found e. g. in [7℄. There, theauthors review di�erent values for the mobility of α-γ interfaes in Fe-Calloys. We take the following value, whih, aording to the authors, is usedsuessfully in other studies
MHH = 0.058 exp

(

−
140 kJ mol−1

RT

)

m mol

J s
. (73)To math the interfae mobility M IFe to the model used in [7℄, we hoose

M IFe = nFeMHH. Introduing the sales (72), one obtains a nondimensionalinterfae mobility given by
M̂ I =

τp

n2Fer0

M IFe. (74)18



The results presented in this setion are obtained using the softwarepakage Mathematia. The simulations are done for a �xed temperatureof T = 1050 K. The initial onditions for the arbon frations yα and yγ arehosen suh that a mean arbon onentration of 0.2 mass-% results. As theinitial ondition for the nondimensional outer radius we use r0 = 1. Sinenuleation of a new phase is not onsidered, we have to start with a positiveferrite fration and therefore the initial interfaial radius is set to rI = 0.99.Figure 1 shows the evolution of the site frations of arbon saled withthe site ratio, ηy, in the γ- and α-phase. The interfaial radius is depited
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Figure 1: Site fration ηy in austenite (left) and ferrite (right).in Figure 2.
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1 and 2 depend on the mean arbon onentration and the geometri as-sumptions for the iron grain made in this setion. These properties stronglyin�uene the displaement �eld, that the hemial potentials depend on andtherefore a�et the equilibrium states.The evolution of the outer radius r0 and of the mass densities ρα and
ργ is shown in Figure 3. The evolution of these variables results from theeigenstrains aused by the volumetri expansions. In the model negletingmehanial e�ets the volume and therefore the radius r0 is onstant.
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ργ .A Evaluation of the 2nd law of thermodynam-isA.1 The entropy priniple in the bulkThe seond law of thermodynamis is a basi physial priniple. In this workit is used to derive onstitutive funtions. It states the existene of a pairof quantities: the entropy density ρs and the entropy �ux φk. They have tosatisfy the following balane equation

∂ρs

∂t
+

∂

∂xk
(ρsvk + φk) = ξ and ξ ≥ 0, (75)where ξ is alled the entropy prodution. The non-negativity of ξ representsthe seond law of thermodynamis and must hold for every thermodynamiproess desribed by the governing PDE system. The equilibrium is de�nedby ξ = 0. A detailed desription of the entropy priniple an be found e. g.in [1℄ or [2℄. From [1℄ we take the following representation for the entropy20



prodution
ξ =

∂

∂xk

(

φk −
qk

T
+

1

T
(jkCµC + jkVµV)

)

−

(

jkC∂µC/T∂xk
+ jkV∂µV/T∂xk

)

+qk∂1/T

∂xk
+
∂vm

∂xk

1

T

[
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∂ρψ
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+δmk

(

−ρψ + nCµC + nVµV +
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3
J−2/3Cij ∂ρψ

∂cij

)

]

≥ 0,

(76)
where qk denotes the heat �ux. The remaining quantities are as introdued inthe previous setions. The onstitutive funtions, relating e. g. the di�usion�ux to the variables, need to be onstruted in suh a way that the 2nd lawof thermodynamis in terms of the inequality (76) holds for any solution ofthe PDE system.The entropy �ux in the ase of a multi omponent mixture is de�ned as

φk :=
qk

T
−

1

T
(jkCµC + jkVµV) (77)and therefore the �rst term vanishes. The whole braket in the last term of(76) must vanish, too. Otherwise it is possible to violate the inequality. Thisgives the relations

ρψ + p = nCµC + nVµV, p := −
1

3
σkk = ρ2

∂ψ̂

∂ρ
and tij = 2ρ

∂ψ̃

∂Cij
. (78)Equation (78)

1
is known as the Gibbs-Duhem equation. Again, we referto [1℄ for a derivation of (78). The remaining terms in (76) have the form�ux × driving fore. To ensure that the entropy prodution is nonnegativeone an use the following ansatz for the di�usion �ux

jkC = −MB ∂

∂xk

(

µC −
ηmC +mFe

mFe µV)

, (79)where the identities (7) are used. The onstant MB > 0 denotes the bulkmobility of arbon. Sine we restrit ourselves to the isothermal ase, thetemperature gradients in (76) vanish and the inequality ξ ≥ 0 holds for everythermodynami proess.
21



A.2 The entropy priniple on the interfaeThe entropy inequality must be satis�ed on the interfae I, too. The inter-faial entropy prodution ξS is given for example in [2℄ as
TξS = −ρ(vν −wν)[[ψ+

1

2
(v−w)2]]+ [[σij(vi−wi)]]νj − [[µCjνC+µVjνV]] ≥ 0.(80)The term (v − w)2/2 refers to the kineti energy of the interfae, whih issupposed to be small and an be negleted. We use the inequality (80) toformulate onstitutive relations for the material mole �uxes ṄFe and ṄCsimilar to (79) for the di�usion �ux. To this end, we apply the Gibbs-Duhemequation (78)

1
, introdue the deomposition σij = σ〈ij〉 − pδij, the de�nitionof the di�usion �uxes (6) and of the material mole �uxes (11), the sideondition (3) and the relation mFeṄFe + mCṄC = ρ(vν − wν), whih is aonsequene of (5) and (11), and obtain

− ṄFe[[ηµV −
mFe
ρ
σ〈ij〉νiνj ]] − ṄC[[µC − µV −

mC
ρ
σ〈ij〉νiνj ]] ≥ 0. (81)Similar to the entropy priniple in the bulk, this inequality has the form of asum of terms, whih an be identi�ed by �ux×driving fore. The inequalityan be satis�ed if we set

ṄFe = −M IFe[[ηµV −
mFe
ρ
σ〈ij〉νiνj ]] and ṄC = −M IC[[µ−

mC
ρ
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