
A Model for the Austenite-Ferrite PhaseTransition in Steel In
luding Mis�t StressWolfgang Dreyer∗, Dietmar Hömberg∗, Thomas Petzold†Mar
h 25, 2008Abstra
tWe present a thermodynami
ally 
onsistent model to des
ribe theaustenite-ferrite phase transition in steel. We 
onsider the in�uen
e ofthe me
hani
al displa
ement �eld due to eigenstrains 
aused by volu-metri
 expansions. The model equations are derived in a systemati
alframework. They are based on the 
onservation laws for mass andmomentum and the se
ond law of thermodynami
s. By means of nu-meri
al 
omputations for a simpli�ed interfa
e-
ontrolled model, weexamine the in�uen
e of the me
hani
al 
ontributions to the transfor-mation kineti
s and the equilibrium states.
2000 Mathemati
s Subje
t Classi�
ation. 74-99, 74N05, 74N25.Key words and phrases. Steel, ferrite-austenite phase transition, elasti
-ity, di�usion, mis�t, free boundaries, kineti
 boundary 
onditions, di�usion-
ontrolled boundary 
onditions.

∗Weierstraÿ-Institut für Angewandte Analysis und Sto
hastik, Mohrenstraÿe 39,10117 Berlin, Germany, E-Mail: dreyer�wias-berlin.de, hoemberg�wias-berlin.de
†Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6,10099 Berlin, Germany, E-Mail: petzold�math.hu-berlin.deW. Dreyer and D. Hömberg were partially supported by the DFG Resear
h CenterMatheon �Mathemati
s for key te
hnologies�.1



1 Introdu
tionSteel is one of the most widely used materials. By alloying, heat- and ther-mome
hani
al treatment a broad spe
trum of properties 
an be obtained.The mi
rostru
ture and the distribution of di�erent phases su
h as ferrite,austenite, martensite or pearlite are of great importan
e, due to the fa
t thatthey ea
h possess di�erent hardnesses and other me
hani
al properties, seee. g. [12℄.In this study, we examine the phase transition from austenite (γ-iron) toferrite (α-iron) as a preliminary stage to the modelling of the formation ofpearlite, whi
h is a lamellar mixture of ferrite and 
ementite � a metastable
ompound Fe3C.The phases austenite and ferrite are 
hara
terised by di�erent 
rystalstru
tures. Important for their 
onstitution is the so 
alled sublatti
e model.The iron atoms form a host latti
e, whi
h has a body 
entred 
ubi
 (b

)stru
ture in the α-phase and a fa
e 
entred 
ubi
 (f

) unit 
ell in the γ-phase. The 
arbon atoms are interstitially dissolved on a sublatti
e, whi
his formed by the o
tahedral sites. The number of sublatti
e sites is di�erentin ferrite and austenite. In α-iron, there are three times as many sublatti
esites as iron atoms, whereas in γ-iron both latti
es have an equal numberof latti
e sites. Empty sublatti
e sites are a 
arrier of energy and entropyand have to be 
onsidered. These va
an
ies are introdu
ed in the model asa massless 
onstituent.Two pro
esses that determine the γ/α-phase transition are the di�usionof 
arbon through the austenite and the latti
e transformation of the iron. Ifone of these pro
esses dominates the other, spe
ial 
ases 
an be 
onsidered.The transformation behaviour is 
alled di�usion-
ontrolled, if the 
arbon dif-fusion is dominating. If the se
ond pro
ess determines the growth rate of thenew phase, then one refers to the interfa
e-
ontrolled mode and a homoge-neous 
arbon distribution 
an be assumed. Furthermore, me
hani
al stressesand strains a�e
t the phase transition. Be
ause of the di�erent 
rystal stru
-ture, ferrite has a larger molar volume than austenite. In addition, the 
arbonatoms have a larger diameter than the sublatti
e sites o�er in spa
e. There-fore, dissolved 
arbon 
auses an expansion of the iron latti
e. The 
hanges ofthe volume during the γ/α-phase transition due to these e�e
ts 
ause eigen-strains, whi
h a

elerate or de
elerate the growth of the ferrite phase. Themodel presented here a

ounts for the lo
al me
hani
al �elds 
aused by thevolumetri
 expansions.Probably one of the earliest studies 
onsidering the di�usion-
ontrolled
ase has been done by Zener [13℄ as early as 1949. In a work by Wits et al. [11℄the in�uen
e of the overall 
arbon 
on
entration to the mode of the phase2



transition is investigated. Simulations are done for a mixed-mode model,i. e. the latti
e transformation and the 
arbon di�usion are in
luded in the
al
ulations. The 
hara
ter of the transformation is identi�ed by evaluatingthe 
arbon 
on
entration at the interfa
e. The in�uen
e of me
hani
al e�e
ts,espe
ially eigenstrains 
aused by the di�erent densities of the two phases, isnot 
onsidered there.Dreyer and Duderstadt [3℄ present a model for phase transitions in galliumarsenide wafers, where e�e
ts due to me
hani
al stresses and strains arein
luded. A similar approa
h is adopted in this work. The model presentedhere is not restri
ted to steel. In fa
t, the basi
 ideas are appli
able to a widerange of problems, for example the modelling of 
harging and dis
hargingpro
esses in lithium batteries [4℄. Similar to the 
ase of steel, a sublatti
emodel is used there to des
ribe the 
onstitution of the phases. In a work byBöhme et al. [1℄, a thermodynami
al model for a general mixture of multiple
omponents is given, where the me
hani
al displa
ement �eld is in
luded.The model is derived in a systemati
al framework, taking into a

ount the
onservation laws for mass, momentum and energy as well as the se
ond lawof thermodynami
s.We des
ribe the derivation of a sharp interfa
e model, based on theafore mentioned physi
al prin
iples. We 
on
entrate on the modelling ofone austenite grain as a typi
al part of the mi
rostru
ture and negle
t e�e
tslike grain 
oarsening or grain boundary di�usion. We restri
t ourselves to theisothermal 
ase, sin
e on the s
ale of one iron grain heat 
ondu
tivity is sup-posed to be fast 
ompared to the di�usion of 
arbon and the migration of theinterfa
e. By means of numeri
al simulations for the interfa
e-
ontrolled 
asethe in�uen
e of the mis�t strains on the kineti
s of the phase transformationis investigated.The paper is organised as follows: in Se
tion 2, the thermodynami
almodel based on the 
onservation laws for mass and momentum is des
ribed.We derive 
onstitutive fun
tions that are in a

ordan
e with the se
ond lawof thermodynami
s. The me
hani
al displa
ement �eld is investigated inSe
tion 3. Sin
e the free energy is important for the des
ription of phasetransitions, Se
tion 4 is devoted to the determination of this quantity. Theunderlying idea is a de
omposition into a 
hemi
al part and a me
hani
alpart, whi
h a

ounts for the e�e
ts of the mis�t strains. In Se
tion 5, a spe
ial
ase is treated, i. e. we 
onsider a spheri
al-symmetri
 iron grain and assumean interfa
e-
ontrolled transformation behaviour. In doing so, a system ofequations is derived to 
ompute the temporal evolution of the homogeneous
arbon 
on
entrations in austenite and ferrite. The se
tion is 
on
luded withthe presentation of numeri
al results.3



2 Thermodynami
 des
ription of the Fe-C sys-temIn this se
tion, we derive the thermodynami
al model that des
ribes thephase transition from austenite to ferrite in steel. Throughout this paper anupper index is used for denoting ve
tors. Furthermore, we make use of thesum 
onvention, i. e. one has to sum if supers
ripts o

ur twi
e.We 
onsider a domain Ω := Ωα ∪ Ωγ ⊂ R
3, whi
h is o

upied by thetwo phases ferrite and austenite, denoted by the open domains Ωα and Ωγ ,respe
tively, with Ωα ∩ Ωγ = ∅. The phases are separated by an interfa
e

I := Ωα ∩ Ωγ . The state of the system at a given absolute temperature T isdes
ribed by the following variables
na(t, x

j), a ∈ {Fe,C,V}, the mole densities of iron, 
arbonand va
an
ies,
ui(t, xj) the displa
ement �eld, (1)whi
h 
an depend on time t and position x = (x1, x2, x3) ∈ Ω.2.1 The balan
es of the partial mole densitiesThe model is based on the following 
onservation laws of the partial moledensities

∂nFe
∂t

+
∂nFevkFe
∂xk

= 0,
∂nC
∂t

+
∂nCvkC
∂xk

= 0 and ∂nV
∂t

+
∂nVvkV
∂xk

= 0, (2)where vk
a , a ∈ {Fe,C,V}, are the partial velo
ities of iron, 
arbon and va-
an
ies. Due to the sublatti
e model there is a restri
tion on the three moledensities. In austenite the number of host and sublatti
e sites is equal, thatis nFe = nC + nV, whereas in ferrite the number of sublatti
e sites is threetimes the number of host latti
e sites: 3nFe = nC + nV. This side 
ondition
an be written as

η nFe = nC + nV with η =

{

3 in Ωα

1 in Ωγ ,
(3)where η is 
alled the site ratio. The three mole densities are not independentand therefore one of the balan
e laws (2) must be the 
onsequen
e of the twoothers. To guarantee this we de�ne

η nFevkFe = nCvkC + nVvkV (4)4



and in the following we 
an restri
t ourselves to the balan
es (2)
1
and (2)

2
.To des
ribe the state of the system, the mass density ρ and the bary
entri
velo
ity vk of the mixture need to be de�ned. These quantities are given by

ρ = ρFe + ρC and ρvk = ρFevkFe + ρCvkC, (5)where ρFe := mFenFe and ρC := mCnC are the partial mass densities of ironand 
arbon, mFe and mC denote the 
orresponding mole
ular weights. Sin
eva
an
ies have no mass, they do not 
ontribute to the mass density and thebary
entri
 velo
ity.Next, the di�usion �uxes with respe
t to vk are de�ned for ea
h 
on-stituent
jkFe := nFe(vkFe − vk), jkC := nC(vkC − vk) and jkV := nV(vkV − vk). (6)Expressions (4) and (5) lead to the identities

ηjkFe = jkC + jkV and mFejkFe +mCjkC = 0. (7)These relations 
an be used to eliminate jkFe and jkV, su
h that only thedi�usion �ux of 
arbon has to be 
onsidered. In the following this �uxis denoted by jk := jkC. Introdu
ing the di�usion �uxes into the balan
eequations (2) one obtains together with (7)
2
the following partial di�erentialequations

∂nFe
∂t

+
∂nFevk

∂xk
−
mC
mFe ∂jk

∂xk
= 0

∂nC
∂t

+
∂nCvk

∂xk
+
∂jk

∂xk
= 0















in Ω. (8)This is a system of di�usion equations for the mole densities of iron and
arbon. The di�usion �ux jk is related to the variables introdu
ed in (1) bya general version of Fi
k's law
jk = −MB ∂

∂xk

(

µ−
ηmC
mFe µV) (9)with µ := µC − µV and MB > 0 denoting the mobility of the 
arbon atoms.The quantities µC and µV represent the 
hemi
al potentials of 
arbon andva
an
ies, whi
h 
an be expressed in dependen
e on the mole densities andthe me
hani
al displa
ement. For a detailed derivation of the relation (9),by evaluating the se
ond law of thermodynami
s, we refer to Appendix A.1.The 
hemi
al potentials will be introdu
ed in Se
tion 4.5



On the outer boundary ∂Ω with the outward unit normal ve
tor νk, Neu-mann boundary 
onditions are imposed on the di�usion �ux
jkνk = 0 on ∂Ω.On the interfa
e I the mole densities are dis
ontinuous. These dis
on-tinuities 
an be expressed by jump 
onditions. Similar to the 
onservationlaws (2) in the bulk, one 
an de�ne 
onservation laws on I. The materialmole �ux a
ross the interfa
e is 
onserved, whi
h 
an be written as

[[nFevνFe]] − [[nFe]]wν = 0 and [[nCvνC]] − [[nC]]wν = 0 on I, (10)where νk and wν := wiνi denote the unit normal ve
tor pointing from Ωγto Ωα and the normal interfa
ial velo
ity. The double bra
ket indi
ates thejump of a quantity a
ross the interfa
e: [[ψ]] = ψα −ψγ. As an abbreviationthe interfa
ial mole �uxes are de�ned as
ṄFe := nFe(vνFe − wν) and ṄC := nC(vνC − wν). (11)We 
on
lude by (10) that they are 
ontinuous a
ross the interfa
e

Ṅ αFe = Ṅ γFe and Ṅ αC = Ṅ γC on I. (12)In analogy to the 
onstitutive fun
tion (9) for the di�usion �ux jk one 
anderive the following relations for the interfa
ial mole �uxes de�ned in (11)
ṄFe = −M IFe[[ηµV −

mFe
ρ
σ〈ij〉νiνj ]] and ṄC = −M IC[[µ−

mC
ρ
σ〈ij〉νiνj ]].(13)The quantities M IFe > 0 and M IC > 0 are the interfa
e mobilities of ironand 
arbon. The newly introdu
ed expression σ〈ij〉 denotes the tra
e-freeor deviatori
 part of the Cau
hy stress tensor σij , see Se
tion 2.2, whi
h isobtained by the de
omposition σij = 1

3
σkkδij+σ〈ij〉. The kinemati
 
onditions(13) spe
ify the interfa
e migration in terms of the interfa
e velo
ity wν.They 
an be derived by evaluating the se
ond law of thermodynami
s on theinterfa
e, see Appendix A.2.Instead of the mole density nC, the 
arbon 
ontent is often expressed interms of the site fra
tion of 
arbon, y, de�ned as the ratio of sublatti
e siteso

upied by 
arbon and overall density of sublatti
e sites, i. e.

y :=
nC

nC + nV =
nC
ηnFe . (14)6



2.2 The quasistati
 balan
e of momentumIn order to determine the deformation of the iron latti
e in terms of thedispla
ement �eld ui, the balan
e of momentum is examined. Sin
e me
han-i
al equilibrium is attained mu
h faster than 
hemi
al equilibrium, one 
an
onsider the quasistati
 
ase, whi
h reads
∂σij

∂xj
= 0 in Ω. (15)The quantity σij denotes the Cau
hy stress tensor, whi
h is related to thedispla
ement �eld ui by a 
onstitutive law. A detailed des
ription of thestress, strain and the displa
ement, in
luding the 
onstitutive relation, isgiven in the next se
tion.As boundary 
onditions we impose

σijνj = −p0ν
i on ∂Ω, (16)where p0 is a 
onstant outer pressure. This boundary 
ondition refers tothe pressure-
ontrolled 
ase. Due to the fa
t that the pressure is �xed, thevolume of the body 
an 
hange. Another possibility is the volume-
ontrolled
ase, where a pres
ribed volume V0 of the body is 
onsidered, i. e. one wouldimpose Diri
hlet boundary 
onditions on the displa
ement ui.The interfa
ial 
ondition for σij is the following

[[σij]]νj = −2γkMν
i on I. (17)The quantities γ > 0 and kM denote the isotropi
 surfa
e tension and themean 
urvature of the interfa
e. For the derivation of this jump 
onditionsee e. g. [2℄.3 Des
ription of the motion, stress and strainIn this se
tion we des
ribe the deformation of a body and we relate thedispla
ement �eld to the stresses and strains. For that purpose, a referen
estate is introdu
ed, where the body o

upies the domain ΩR. The positionof a material point in the referen
e state is given by the 
oordinates X =

(X1, X2, X3) ∈ ΩR. At time t the body is deformed and 
overs the domain
Ω(t). The position of a point in this 
on�guration is given by the 
oordinates
x ∈ Ω(t). There exists a bije
tive mapping

xi = χi(t, Xj), (18)7



whi
h maps ΩR onto Ω(t). This mapping is 
alled motion or deformation.With the help of this fun
tion, the displa
ement �eld ûi and the bary
entri
velo
ity v̂i are de�ned as
ûi(t, Xj) := χi(t, Xj) −X i and v̂i(t, Xj) :=

∂χi(t, Xj)

∂t
=
∂ûi(t, Xj)

∂t
.(19)Furthermore, we introdu
e the displa
ement gradient and the deformationgradient

H ij :=
∂ûi

∂Xj
and F ij :=

∂χi

∂Xj
with J := detF ij > 0. (20)The quantities above are expressed with respe
t to the referen
e 
on�gura-tion. This des
ription is 
alled the Lagrangian or material des
ription. Thepositivity of J guarantees invertibility of χi(t, Xj) and one 
an write

X i = (χ−1)i(t, xj). (21)The inverse of the motion is used to give a representation of the displa
ementand the bary
entri
 velo
ity with respe
t to the 
on�guration at time t, whi
his known as the Eulerian or spatial des
ription,
ui(t, xj) := ûi(t, χ−1(t, xj)) and vi(t, xj) := v̂i(t, χ−1(t, xj)). (22)Analogously to (20) one de�nes the displa
ement- and deformation gradientin Eulerian 
oordinates as

hij :=
∂ui

∂xj
and (F−1)ij :=

∂(χ−1)i

∂xj
. (23)Measures for the strains 
aused by the deformation are e. g. the right Cau
hy-Green tensor Cij and its unimodular part cij , de�ned as

Cij := F kiF kj and cij := J− 2

3Cij. (24)Note that there holds det(cij) = 1, thus, Cij is split into a part J−2/3, whi
hdes
ribes pure 
hanges of the volume, whereas cij indi
ates 
hanges of theshape of a body.To des
ribe the stress-strain relation, we take into 
onsideration thatdeformations of the iron latti
e result from two independent e�e
ts. The �rstone are inelasti
 deformations, whi
h are 
aused by 
hanges of the volume dueto variations of the 
arbon fra
tion y and the lower density of the developingferrite phase. The se
ond e�e
t are elasti
 deformations 
aused for exampleby external loadings. 8



One 
an a

ount for these e�e
ts by introdu
ing three states that are
hara
terised by y and F ij, 
ompare also to Böhme et al. [1℄. The �rst one isan undeformed referen
e state S at referen
e pressure p with the 
oordinates
(X1, X2, X3). It 
onsists of a single phase and is 
hara
terised by the 
arbonfra
tion y = 0 and the deformation gradient F ij

= δij.The se
ond state, denoted by S∗ with the 
oordinates (X1

∗ , X
2

∗ , X
3

∗ ), isrea
hed from the referen
e state at 
onstant referen
e pressure p by raisingthe 
arbon fra
tion to y∗ = y. Furthermore, we allow for a massive phasetransition in this state. The 
orresponding deformation gradient is given by
F ij
∗ . The transition from S to S∗ des
ribes the inelasti
 deformation.The third state S is the a
tual state with the 
oordinates (x1, x2, x3) andthe deformation gradient F ij (with respe
t to the referen
e 
on�guration).It is rea
hed from the state S∗ by a purely elasti
 deformation F ij

e with nofurther 
hange in y.For the states S, S∗ and S we introdu
e the iron mole densities nFe, n∗Feand nFe, the mass densities
ρ = mFenFe, ρ∗ = m(y)n∗Fe and ρ = m(y)nFe, (25)where m(y) = mFe + mCηy denotes the mean mole
ular weight, and thedeterminants

J∗ = det(F ij
∗ ) =

ρ

ρ∗
, J = det(F ij) =

ρ

ρ
and Je = det(F ij

e ) =
ρ∗

ρ
. (26)For the deformation gradients holds F ij = F ik

e F
kj
∗ . This is a 
onsequen
e ofthe 
hain rule applied to

xi = χi(t, Xj) = χi
e(t, χ

k
∗(t, X

j)). (27)The deformation gradient F ij
∗ for the state S∗ is established as follows.The referen
e state S is known. The deformation from the state S to S∗ isa pure 
hange of the volume. Therefore, it holds
nFe
n∗Fe =

V∗(y)

V
, (28)where V is the volume of the referen
e state and V∗(y) is the volume of thebody at the state S∗. This volume is obtained by measurements of the latti
e
onstant in dependen
e on the 
arbon fra
tion y, see for example [9℄. With(25), (26) and a linear interpolation of the data given in [9℄ there results

F ij
∗ = J∗(y)

1

3 δij with J∗(y) =
mFe
m(y)

V ℓ
m

V
(1 + δℓy) in Ωℓ, ℓ = α, γ, (29)9



where V ℓ
m and δℓ, ℓ = α, γ, denote the molar volume and the linear expansion
oe�
ient for the respe
tive phase.The 
onstitutive equation relating the stress to the strain is given in termsof the St. Venant-Kir
hho� law, whi
h is formulated for the se
ond Piola-Kir
hho� stress tensor. We denote this tensor with respe
t to the state S by

tij and with respe
t to the state S∗ by zij . The Cau
hy stress tensor σij isthe same for both des
riptions and it holds
σij = J−1F ikF jltkl and σij = J−1

e F ik
e F

jl
e z

kl. (30)Elimination of σij together with F ij = F ik
e F

kj
∗ leads to

tij = J∗F
−ik
∗ F−jl

∗ zkl. (31)Now, the 
onstitutive relation is formulated in terms of the St. Venant-Kir
hho� law for zij as a purely elasti
 deformation
zij = −pJeC

−ij
e +

1

2
K̃ijkl(Ckl

e − δkl). (32)The tensor K̃ijkl denotes the sti�ness tensor. The data for α- and γ-iron aregiven e. g. by Inal et al. [8℄. There is only a small di�eren
e in the elasti

oe�
ients given in literature for di�erent kinds of steel (with di�erent 
arbon
ontent) and pure iron. Therefore, we assume that K̃ijkl is independent ofthe 
arbon fra
tion y.To 
al
ulate the 
hemi
al potentials, as it is des
ribed in Se
tion 4, aformulation for tij is ne
essary. Applying the transformation rule (31), weobtain the following 
onstitutive law for the 2nd Piola-Kir
hho� tensor
tij = −pJC−ij +

1

2
Kijkl(y)(Ckl − Ckl

∗ (y)), (33)where
Kijkl(y) := J∗F

−im
∗ F−jn

∗ F−ko
∗ F−lp

∗ K̃mnop = J∗(y)
− 1

3 K̃ijkl (34)is a modi�ed sti�ness tensor and Ckl
∗ = Fmk

∗ Fml
∗ des
ribes the mis�t strain.4 Determination of the free energyIn order to study the γ/α-phase transition in steel, knowledge of the freeenergy density ρψ is ne
essary to obtain expli
it expressions for the 
hem-i
al potentials. The determination of these quantities is the subje
t of this10



se
tion. For that purpose, we assume that the fun
tion ψ has the followingrepresentations
ψ = ψ(T, nC, nV, cij) = ψ̂(T, y, ρ, cij) = ψ̃(T, y, Cij). (35)The di�erent fun
tions represent the dependen
e of the free energy on di�er-ent sets of variables, whi
h 
an be 
onverted by the relations (5), (14), (24)and (26). The strategy to determine ψ is the following. Starting from theequation

tij = 2ρ
∂ψ̃

∂Cij
, (36)whi
h is a 
onsequen
e of the se
ond law of thermodynami
s, see AppendixA.1 or [1℄, we determine the fun
tion ψ̃(T, y, Cij) by integration of (33). Thisyields

ψ̃(T, y, Cij) = −
p

ρ
J+

1

8ρ

(

Cij − Cij
∗ (y)

)

Kijkl
(

Ckl − Ckl
∗ (y)

)

+K(T, y), (37)where K(T, y) is an integration 
onstant. This 
onstant is obtained by ade
omposition of the free energy into a me
hani
al part ψ̃me
h(T, y, Cij) anda 
hemi
al part ψ̃
hem(T, y), whi
h does not depend on the deformation ofthe body, see also [3℄,
ψ̃(T, y, Cij) = ψ̃
hem(T, y) + ψ̃me
h(T, y, Cij). (38)Su
h a de
omposition is motivated by the fa
t that the 
hemi
al and the me-
hani
al part of the free energy are determined in di�erent ways. The 
om-putation of the me
hani
al part is based on a 
onstitutive relation, whereasthe 
hemi
al part is obtained by thermodynami
al measurements.We de�ne that at the state S∗ the me
hani
al part of the free energy

ψ̃me
h(T, y, Cij
∗ ) vanishes, so that ψ̃(T, y, Cij

∗ ) = ψ̃
hem(T, y). Hen
e, the inte-gration 
onstant is given by K(T, y) = ψ̃
hem(T, y)+J∗(y)p/ρ and one obtains
ρψ̃me
h(T, y, Cij) = p

(

J∗
J

− 1

)

+
1

8J

(

Cij − Cij
∗ (y)

)

Kijkl(y)
(

Ckl − Ckl
∗ (y)

)(39)with J = det(F ij) = det(Cij)1/2.The determination of the 
hemi
al part of the free energy is based onthermodynami
al measurements. The evaluation of the iron-
arbon system
an be found for example in [6℄ or [10℄. There, ρψ
hem is given as
ρψ
hem(T, nC, nV) = nFe[GFeC(T )y +GFeV(T )(1 − y) − L(T )y(1 − y)

+ ηRT (y ln y + (1 − y) ln(1 − y)) +Gα
m(T )

]

=: nFef(y) (40)11



with R denoting the universal gas 
onstant. The quantities nFe and y arerelated to nC and nV by (3) and (14). The 
oe�
ients GFeC, GFeV and L aretemperature dependent fun
tions. The part Gα
m is a magneti
 
ontributionwhi
h only o

urs in the α-phase. These parameters are taken from [6℄. Thefun
tion f is introdu
ed as an abbreviation for the term in bra
kets, whi
honly depends on y when the temperature T is �xed.Now, we 
an 
al
ulate the 
hemi
al potentials, de�ned as

µC :=
∂ρψ(T, nC, nV, cij)

∂nC and µV :=
∂ρψ(T, nC, nV, cij)

∂nV . (41)Carrying (38), (39) and (40) into (41) one �nally obtains
µC =

1

η
(f(y) + (1 − y)f ′(y))

+
1

ηρ

[

(ηmC +mFe)(

pJ∗(y) −
1

8
(
1

3
Cij + Cij

∗ (y))Kijkl(y)(Ckl − Ckl
∗ (y))

)

+ (1 − y)m(y)

(

pJ ′
∗(y) +

1

8
(Cij − Cij

∗ (y))(K ′)ijkl(y)(Ckl − Ckl
∗ (y))

−
1

4
(C ′

∗)
ij(y)Kijkl(y)(Ckl − Ckl

∗ (y))

)] (42)and for the 
hemi
al potential of the va
an
ies
µV =

1

η
(f(y) − yf ′(y))

+
1

ηρ

[

mFe (

pJ∗(y) −
1

8
(
1

3
Cij + Cij

∗ (y))Kijkl(y)(Ckl − Ckl
∗ (y))

)

− y m(y)

(

pJ ′
∗(y) +

1

8
(Cij − Cij

∗ (y))(K ′)ijkl(y)(Ckl − Ckl
∗ (y))

−
1

4
(C ′

∗)
ij(y)Kijkl(y)(Ckl − Ckl

∗ (y))

)]

, (43)where the prime denotes di�erentiation with respe
t to the site fra
tion y.5 A simpli�ed model with spheri
al symmetryPerforming numeri
al simulations for the presented free boundary problemis quite 
omplex. It involves suitable algorithms to 
al
ulate the position ofthe free boundary. In order to obtain numeri
al results for the simulation12



of the austenite-ferrite phase transition, we make some assumptions to get asimpli�ed model. First of all, we 
onsider a spheri
al-symmetri
 geometry.The iron grain is modelled as a sphere with radius r0. The γ-phase forms theinner 
ore with time dependent radius rI and the α-phase is an outer shell,i. e. Ωγ = (0, rI) and Ωα = (rI , r0). This is motivated by the fa
t that ferriteusually nu
leates at grain boundaries and grows into the austenite matrix.The radius r0 is time dependent, too. The two phases have di�erent densitiesand due to the �xed outer pressure the overall volume 
hanges.Furthermore, we restri
t ourselves to the interfa
e-
ontrolled 
ase, i. e.the bulk mobility of 
arbon MB is in�nitely large 
ompared to the interfa
emobilities M IFe and M IC. Sin
e the di�usion �ux must be �nite, we get fromequation (9) that the gradient of the 
hemi
al potentials must be equal tozero and therefore the mole densities nFe and nC are homogeneous in regularpoints. For a low mean 
arbon 
on
entration this is a well a

epted assump-tion. If the overall 
arbon 
on
entration is higher, a di�usion-
ontrolledtransformation behaviour, where the di�usion of 
arbon in the bulk be
omesthe rate determining pro
ess, is a more realisti
 des
ription, see e. g. [11℄.Nevertheless, we 
onsider the interfa
e-
ontrolled 
ase in this study.Con
erning the me
hani
al equations we make the following simpli�
a-tions. To be in a

ordan
e with the spheri
al symmetry, we negle
t the
ubi
al anisotropy of the iron latti
e and 
onsider an isotropi
 sti�ness ten-sor with Lamé 
onstants λ and µ, whi
h are obtained from the 
oe�
ientsgiven in [8℄ by taking an average. Moreover, we assume that the deformationsare small so that we 
an repla
e the 
onstitutive law (33), relating the stresstensor to the displa
ement, by its linearisation in the displa
ement gradient
hij .The variables for this simpli�ed interfa
e-
ontrolled model are the homo-geneous 
arbon fra
tions and iron mole densities yα, yγ, nαFe and nγFe, whi
hdo not depend on the spa
e variable r, but di�er in the two phases, and theradii rI and r0. In the following a set of equations to 
ompute the temporalevolution of these variables is derived and numeri
al results are presented.5.1 The balan
es of the mole densitiesThe balan
e laws for the mole densities in the spheri
al-symmetri
 
ase arethe following

∂nFe
∂t

+
1

r2

∂r2nFevFe
∂r

= 0 and ∂nC
∂t

+
1

r2

∂r2nCvC
∂r

= 0. (44)On the interfa
e I, whi
h is given by the radius rI , we have by (10)
nαFe(vαFe − ṙI) = nγFe(vγFe − ṙI) and nαC(vαC − ṙI) = nγC(vγC − ṙI). (45)13



Derivatives with respe
t to time t are denoted by a dot. The boundary
onditions for the partial velo
ities of iron and 
arbon are
lim
r→0

r2va = 0 and va = ṙ0 at r = r0, a ∈ {Fe,C}. (46)Sin
e the mole densities are homogeneous in Ωα and Ωγ , the partial velo
ities
an be expli
itly determined using the 
onservation laws (44). One obtainsfor the domain Ωγ by applying the boundary 
ondition (46)
1
for both 
on-stituents

vγ
a = −

ṅγ
a

3nγ
a
r, a ∈ {Fe,C}, (47)whereas in Ωα we have with (46)

2

vα
a = −

ṅα
a

3nα
a

r3 − r3

0

r2
+ ṙ0

r2

0

r2
, a ∈ {Fe,C}. (48)In the homogeneous 
ase the jump 
onditions (45) together with the equa-tions for the partial velo
ities 
an be integrated with respe
t to time. Oneobtains global 
onservation laws for the mole densities of iron and 
arbon

nγFer3

I + nαFe(r3

0
− r3

I) = c1 and yγnγFer3

I + 3yαnαFe(r3

0
− r3

I ) = c2, (49)where the site fra
tions y, de�ned in (14), are used instead of nC. The
onstants c1 and c2 
an be determined by the initial data at time t0. Under
onsideration of (49)
1
, equation (49)

2

an be simpli�ed as follows

(yγ − 3yα)nγFer3

I + 3yαc1 = c2. (50)Regarding the kinemati
 
onditions (13), a further simpli�
ation is in-trodu
ed. We assume that the motion of the interfa
e is only determinedby the transformation of the iron latti
e from the f

 to the b

 stru
ture.The rearrangement of 
arbon atoms at the interfa
e is supposed to o

urinstantaneously, i. e. M IC ≫ M IFe. Thus, we set M IC = ∞. Sin
e the �ux of
arbon atoms through the interfa
e ṄC is �nite, the se
ond fa
tor in (13)
2must be zero. The kinemati
 
onditions redu
e to

1

3
ṅγFerI+n

γFeṙI = M IFe[[ηµV−mFe
ρ
σ〈rr〉]] and [[µ−

mC
ρ
σ〈rr〉]] = 0, (51)i. e. the 
hemi
al potential µ is always in equilibrium and the interfa
e mi-gration is solely determined by (51)

1
.Sin
e there is no di�usion of iron atoms, the mole density nFe is dire
tlyrelated to the me
hani
al displa
ement �eld. The 
omputation of the dis-pla
ement for the simpli�ed model is 
onsidered in the next se
tion.14



5.2 The linearised me
hani
al subproblem in spheri
al
oordinatesBefore we analyse the balan
e of momentum in spheri
al 
oordinates, thestress-strain relation is linearised with respe
t to the displa
ement gradient
hij . It is assumed that the deformations are small su
h that higher orderterms in the displa
ement gradient 
an be negle
ted. By equations (19), (22)and (23) there holds

(F−1)ij = δij − hij and (C−1)ij = δij − hij − hji + hkihkj. (52)The inverse matri
es up to linear order are given by
F ij = δij+hij +O(

∥

∥hij
∥

∥

2

) and Cij = δij+hij +hji+O(
∥

∥hij
∥

∥

2

). (53)For the Ja
obian we have J−1 = 1 − hkk + O(‖hij‖
2
). Furthermore, for theintermediate state S∗ a fun
tion h∗(y), whi
h is supposed to be of the sameorder as the deformation gradient, is introdu
ed su
h that

(F−1

∗ )ij = (1 − h∗)δij and J−1

∗ = (1 − h∗)3. (54)Now we obtain from
σij = J−1F imF jntmn and tij = −pJ(C−1)ij +

1

2
Kijkl(Ckl − Ckl

∗ ) (55)the following representation for the stress tensor within the linear order ofapproximation
σij = −p +

1

2
K̃ijkl(hkl + hlk − 2h∗δkl). (56)This 
an be interpreted in the sense of the 
lassi
al Hooke law with a mis�tstrain, represented by h∗(y). Negle
ting the 
ubi
al anisotropy of the ironlatti
e, the sti�ness tensor K̃ijkl is given by

K̃ijkl = λδijδkl + µ(δikδjl + δilδjk), (57)where λ and µ are the Lamé 
onstants. Then, the stress tensor 
an be writtenas
σij = −p+ λhkkδij + µ(hij + hji) − (3λ+ 2µ)h∗δij. (58)Now we rewrite the balan
e of momentum in spheri
al 
oordinates (r, φ, θ).Due to the assumed spheri
al symmetry, the displa
ement �eld 
an be sim-pli�ed to (ur, uφ, uθ) = (u(r), 0, 0) and for the displa
ement gradient we have

hrr =
∂u

∂r
, hφφ = hθθ =

u

r
and hij = 0 otherwise. (59)15



From (58) one obtains that σφφ = σθθ and σrφ = σrθ = σφθ = 0. The nonzero
omponents of the stress tensor are
σrr = −p+ λ(hrr + 2hφφ) + 2µhrr − (3λ+ 2µ)h∗,

σφφ = −p+ λ(hrr + 2hφφ) + 2µhφφ − (3λ+ 2µ)h∗.
(60)The balan
e of momentum (15) redu
es to the following equation, seee. g. [5℄,

∂σrr

∂r
+ 2

σrr − σφφ

r
= 0 for r ∈ Ω (61)with the jump and boundary 
onditions

[[σrr(rI)]] = −
2γ

rI

and σrr(r0) = −p0. (62)Furthermore, we impose the following 
onditions on the displa
ement u(r)(regularity at r = 0 and 
ontinuity at the interfa
e)
lim
r→0

u(r) = 0 and [[u(rI)]] = 0. (63)Inserting the representation for the stress tensor (60) into equation (61),one obtains with hrr = u′(r) and hθθ = u(r)/r an ordinary di�erential equa-tion for the displa
ement u(r) that is given by
u′′ +

2

r

(

u′ −
u

r

)

= 0. (64)Note that due to the assumed homogeneity of the 
arbon fra
tions yα and
yγ the fun
tion h∗ does not depend on r. With the 
onditions (63) on u(r),the solution to this ODE is the following

u(r) =

{

(a+ b)r for r ∈ [0, rI)

ar + b
r3

I

r2 for r ∈ [rI , r0].
(65)The 
onstants a and b, whi
h 
an depend on rI , r0 as well as on the homo-geneous 
arbon fra
tions yα and yγ, are de�ned via the boundary 
onditions(62). One obtains expli
itly

a =
p− p0

3Kα

+ h∗α(yα) +
4µα

3Kα

r3

I

r3

0

b,

b = c−1

0

(

2γ

rI
− 3Kγ(h

∗
α(yα) − h∗γ(y

γ)) + κ(p− p0)

)

.

(66)16



As an abbreviation we introdu
ed the bulk moduliKℓ = λℓ+2/3µℓ, ℓ = α, γ,for the respe
tive phases, κ = 1−Kγ/Kα and c0 = 3Kγ +4µα(1−κ(rI/r0)
3).Finally, we have an expli
it representation for the displa
ement in depen-den
e on yα, yγ, rI and r0. To relate the displa
ement to the mole density ofiron, re
all relation (26)

2
. Within the linear order of approximation holds

J−1 = 1 − hkk, where J−1 =
ρ

ρ
=
m(y)nFe
mFenFe , (67)su
h that we obtain

nFe
nFe =

mFe
m(y)

(1 − hkk). (68)The 
hemi
al potentials (41) and (42) 
an be written within the sameorder of approximation as
µC =

1

η
(f + (1 − y)f ′) +

1

ηρ

[

(ηmC +mFe) (

pJ∗ −K(hkk − 3h∗)
)

+ (1 − y)m(y)J ′
∗

(

p−K(hkk − 3h∗)
)

] (69)and
µV =

1

η
(f − yf ′) +

1

ηρ

[

mFe (

pJ∗ −K(hkk − 3h∗)
)

− y m(y)J ′
∗

(

p−K(hkk − 3h∗)
)

]

. (70)For the spheri
al symmetri
 problem presented here, we obtain for the tra
eof the displa
ement gradient hkk and for the 
omponent σ〈rr〉 of the deviatori
stress, whi
h is needed in (51),
hkk =

{

3(a+ b) in Ωγ

3a in Ωα

and σ〈rr〉 =

{

0 in Ωγ

−4µα b in Ωα

(71)with the 
onstants a, b de�ned in (66) and µα denoting the shear modulusof α-iron. Thus, the mole densities of iron, nαFe and nγFe, and the 
hemi
alpotentials 
an be expressed as fun
tions depending on yα, yγ, rI and r0. To-gether with (49)
1
, (50) and (51) we have derived a system of equations todetermine the temporal evolution of these variables.

17



5.3 A numeri
al exampleIn this se
tion, simulation results for the simpli�ed interfa
e-
ontrolled modelare presented. For the numeri
al treatment dimensionless quantities are in-trodu
ed, whi
h are given by the following relations
t̂ :=

t

τ
, r̂ :=

r

r0

, n̂Fe :=
nFe
nFe , p̂ :=

p− p

p
and µ̂ :=

nFe
p
µ. (72)The time s
ale is 
hosen as τ = 35 s, for the length s
ale we use a typi
alaustenite grain size of r0 = 25µm. As referen
e state we 
hoose a system
onsisting of pure γ-iron, 
ontaining no 
arbon. Therefore, we set nFe =

(V γ
m)−1, where V γ

m is the molar volume of austenite. The values for thephysi
al quantities used in the simulation are given in Table 1.ferrite (α-iron) austenite (γ-iron) unitbulk modulus K 168.9 148.8 109 Pashear modulus µ 83.9 75.3 109 Pamolar volume Vm 7.31 7.24 10−6 m3mol−1expansion 
oe�
ient δ 2.637 0.588molar masses mFe 55.847 g mol−1

mC 12.011 g mol−1surfa
e tension γ 0.5 N m−1pressures p0, p 105 Pagas 
onstant R 8.3144 J mol−1K−1Table 1: Physi
al parameters used for the simulationsData for the interfa
e mobility M IFe 
an be found e. g. in [7℄. There, theauthors review di�erent values for the mobility of α-γ interfa
es in Fe-Calloys. We take the following value, whi
h, a

ording to the authors, is usedsu

essfully in other studies
MHH = 0.058 exp

(

−
140 kJ mol−1

RT

)

m mol

J s
. (73)To mat
h the interfa
e mobility M IFe to the model used in [7℄, we 
hoose

M IFe = nFeMHH. Introdu
ing the s
ales (72), one obtains a nondimensionalinterfa
e mobility given by
M̂ I =

τp

n2Fer0

M IFe. (74)18



The results presented in this se
tion are obtained using the softwarepa
kage Mathemati
a. The simulations are done for a �xed temperatureof T = 1050 K. The initial 
onditions for the 
arbon fra
tions yα and yγ are
hosen su
h that a mean 
arbon 
on
entration of 0.2 mass-% results. As theinitial 
ondition for the nondimensional outer radius we use r0 = 1. Sin
enu
leation of a new phase is not 
onsidered, we have to start with a positiveferrite fra
tion and therefore the initial interfa
ial radius is set to rI = 0.99.Figure 1 shows the evolution of the site fra
tions of 
arbon s
aled withthe site ratio, ηy, in the γ- and α-phase. The interfa
ial radius is depi
ted
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Figure 1: Site fra
tion ηy in austenite (left) and ferrite (right).in Figure 2.
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Figure 2: Interfa
ial radius rI .The dashed lines refer to the 
ase where me
hani
al e�e
ts are negle
ted.One 
an see a di�eren
e in the equilibrium states, whi
h results from theadditional me
hani
al 
ontributions to the 
hemi
al potentials µC and µV.Furthermore, one re
ognises an in�uen
e on the temporal evolution.In the 
ase where me
hani
al e�e
ts are negle
ted, the equilibrium 
on-
entrations are independent of the geometry of the grain and the overall 
ar-bon 
ontent. In 
ontrast to that, the attained equilibria depi
ted in Figure19



1 and 2 depend on the mean 
arbon 
on
entration and the geometri
 as-sumptions for the iron grain made in this se
tion. These properties stronglyin�uen
e the displa
ement �eld, that the 
hemi
al potentials depend on andtherefore a�e
t the equilibrium states.The evolution of the outer radius r0 and of the mass densities ρα and
ργ is shown in Figure 3. The evolution of these variables results from theeigenstrains 
aused by the volumetri
 expansions. In the model negle
tingme
hani
al e�e
ts the volume and therefore the radius r0 is 
onstant.
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ργ .A Evaluation of the 2nd law of thermodynam-i
sA.1 The entropy prin
iple in the bulkThe se
ond law of thermodynami
s is a basi
 physi
al prin
iple. In this workit is used to derive 
onstitutive fun
tions. It states the existen
e of a pairof quantities: the entropy density ρs and the entropy �ux φk. They have tosatisfy the following balan
e equation

∂ρs

∂t
+

∂

∂xk
(ρsvk + φk) = ξ and ξ ≥ 0, (75)where ξ is 
alled the entropy produ
tion. The non-negativity of ξ representsthe se
ond law of thermodynami
s and must hold for every thermodynami
pro
ess des
ribed by the governing PDE system. The equilibrium is de�nedby ξ = 0. A detailed des
ription of the entropy prin
iple 
an be found e. g.in [1℄ or [2℄. From [1℄ we take the following representation for the entropy20



produ
tion
ξ =

∂

∂xk

(

φk −
qk

T
+

1

T
(jkCµC + jkVµV)

)

−

(

jkC∂µC/T∂xk
+ jkV∂µV/T∂xk

)

+qk∂1/T

∂xk
+
∂vm

∂xk

1

T

[

σkm − J−2/3(FmiF kj + F kiFmj)
∂ρψ

∂cij

+δmk

(

−ρψ + nCµC + nVµV +
2

3
J−2/3Cij ∂ρψ

∂cij

)

]

≥ 0,

(76)
where qk denotes the heat �ux. The remaining quantities are as introdu
ed inthe previous se
tions. The 
onstitutive fun
tions, relating e. g. the di�usion�ux to the variables, need to be 
onstru
ted in su
h a way that the 2nd lawof thermodynami
s in terms of the inequality (76) holds for any solution ofthe PDE system.The entropy �ux in the 
ase of a multi 
omponent mixture is de�ned as

φk :=
qk

T
−

1

T
(jkCµC + jkVµV) (77)and therefore the �rst term vanishes. The whole bra
ket in the last term of(76) must vanish, too. Otherwise it is possible to violate the inequality. Thisgives the relations

ρψ + p = nCµC + nVµV, p := −
1

3
σkk = ρ2

∂ψ̂

∂ρ
and tij = 2ρ

∂ψ̃

∂Cij
. (78)Equation (78)

1
is known as the Gibbs-Duhem equation. Again, we referto [1℄ for a derivation of (78). The remaining terms in (76) have the form�ux × driving for
e. To ensure that the entropy produ
tion is nonnegativeone 
an use the following ansatz for the di�usion �ux

jkC = −MB ∂

∂xk

(

µC −
ηmC +mFe

mFe µV)

, (79)where the identities (7) are used. The 
onstant MB > 0 denotes the bulkmobility of 
arbon. Sin
e we restri
t ourselves to the isothermal 
ase, thetemperature gradients in (76) vanish and the inequality ξ ≥ 0 holds for everythermodynami
 pro
ess.
21



A.2 The entropy prin
iple on the interfa
eThe entropy inequality must be satis�ed on the interfa
e I, too. The inter-fa
ial entropy produ
tion ξS is given for example in [2℄ as
TξS = −ρ(vν −wν)[[ψ+

1

2
(v−w)2]]+ [[σij(vi−wi)]]νj − [[µCjνC+µVjνV]] ≥ 0.(80)The term (v − w)2/2 refers to the kineti
 energy of the interfa
e, whi
h issupposed to be small and 
an be negle
ted. We use the inequality (80) toformulate 
onstitutive relations for the material mole �uxes ṄFe and ṄCsimilar to (79) for the di�usion �ux. To this end, we apply the Gibbs-Duhemequation (78)

1
, introdu
e the de
omposition σij = σ〈ij〉 − pδij, the de�nitionof the di�usion �uxes (6) and of the material mole �uxes (11), the side
ondition (3) and the relation mFeṄFe + mCṄC = ρ(vν − wν), whi
h is a
onsequen
e of (5) and (11), and obtain

− ṄFe[[ηµV −
mFe
ρ
σ〈ij〉νiνj ]] − ṄC[[µC − µV −

mC
ρ
σ〈ij〉νiνj ]] ≥ 0. (81)Similar to the entropy prin
iple in the bulk, this inequality has the form of asum of terms, whi
h 
an be identi�ed by �ux×driving for
e. The inequality
an be satis�ed if we set

ṄFe = −M IFe[[ηµV −
mFe
ρ
σ〈ij〉νiνj ]] and ṄC = −M IC[[µ−

mC
ρ
σ〈ij〉νiνj ]](82)with positive interfa
e mobilitiesM IFe,M IC for iron and 
arbon and the 
hem-i
al potential µ := µC − µV.A
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