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Abstract. We study a mathematical model for laser-induced thermotherapy, a minimally invasive cancer
treatment. The model consists of a diffusion approximation of the radiation transport equation coupled to a
bio-heat equation and a model to describe the evolution of the coagulated zone. Special emphasis is laid on a
refined model of the applicator device, accounting for the effect of coolant flow inside. Comparisons between
experiment and simulations show that the model is able to predict the experimentally achieved temperatures
reasonably well.
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1. Introduction

Laser-induced thermotherapy (LITT) is a minimally invasive alternative to conventional cancer treatments.
It is especially used for patients with liver metastases from colorectal primal tumours or breast cancer. A
recent study suggests that LITT may offer greater benefit than surgery for patients with liver metastases [11],
see also [1].

As depicted in Figure 1, a catheter is used to place an applicator device into the tumour. It consists of a
glass fiber with a diffusing tip surrounded by a coolant. The applicator is connected to a laser source. The
fraction of the laser light which is absorbed by the tissue leads to a rise in temperature. The laser power and
treatment time are adjusted such that a temperature of around 60 oC is reached in a neighbourhood of the
applicator. Thereby, the tissue is coagulated, a process which is governed by protein denaturation leading
to the disrupture of cell walls and eventually to the destruction of the tumour tissue. The deadened tissue
remains in the body and is either decomposed or encapsulated.
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Figure 1. Sketch of laser-induced thermotherapy.

The treatment is guided using magnetic resonance imaging (MRI). Unfortunately, MRI is known to have
either a good spatial or a good temporal resolution, making it difficult to predict the final size of the coagulated
zone. Hence, there is a strong demand for computer simulations of LITT to support therapy planning and
finding an optimal dosage.

For our purpose, the description of the device summarized in Figure 1 is sufficient. More details can be
found in [7, 10]. The main components of the mathematical model are a radiation transport equation coupled
to the bio-heat equation and an equation describing the coagulated zone. In Section 2 we review the system
of model equations. The particular contribution of this paper is a refined model of the applicator in Section
3, accounting especially for the influence of the coolant. Section 4 is devoted to numerical simulations and a
comparison with experimental results.

2. The model

The laser radiation emitted through the applicator acts as a volumetric heat source in the tumour tissue.
The optical properties of the tissue during the treatment depend on the evolving fraction of coagulated tissue.
Radiation transport through the tissue can be described by the radiation transport equation [5]. However,
since its numerical simulation is intricate and time consuming a number of simplified models have been
developed. Here, we use the stationary diffusion approximation [8]

(1) −∇ ·
(
D(ζ, x)∇Φ

)
+ µa(ζ, x) Φ = 0.

Here, Φ is the irradiance, µa the absorption coefficient. Next, we introduce the scattering coefficient µs and
the anisotropy factor g, which ranges between 0.7 and 0.99 for most biological tissues (cf. [8]). Then the
diffusion coefficient is given as

D(ζ, x) =
(
3

(
µa(ζ, x) + µs(ζ, x) (1− g(ζ, x) )

))−1

.
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ζ measures the fraction of native tissue, i.e., ζ = 0 means fully coagulated and ζ = 1 native tissue and we
define

(2)

µs(x, ζ) = µs,n(x) + (1− ζ)(µs,c(x)− µs,n(x)),

µa(x, ζ) = µa,n(x) + (1− ζ)(µa,c(x)− µa,n(x)),

g(x, ζ) = gn(x) + (1− ζ)(gc(x)− gn(x)),

where the indices n and c denote the coefficients for the native and coagulated tissue, respectively. The
applicator is not part of our computational domain Ω. Let Γappl be the part of the boundary ∂Ω through
which radiation is emitted, then we obtain the following boundary condition for the irradiance:

−D(ζ, x)
∂Φ(x)

∂ν
+

1
2
Φ(x) =

1
|Γappl|

p, on Γappl(3)

−D(ζ, x)
∂Φ(x)

∂ν
+

1
2
Φ(x) = 0, on ∂Ω \ Γappl,(4)

where p denotes the power of the applied laser source and |Γappl| the measure of Γappl.
In laser medicine coagulation is defined as an optically visible irreversible cell destruction (necrosis) caused

by the denaturation of proteins. Following [10], we use an Arrhenius formalism to model protein denaturation.
To this end, we assume an initial distribution of native tissue to be given by ζ(0, x) = ζ0(x). In most cases it
is equal to one, which means there is no coagulation of tissue present. However, in case of multiple treatments
the distribution of native tissue can be non-uniform.

The coagulation process can be described by the ODE

∂ζ(t)
∂t

= −F (T (t)) ζ(t),

where the right-hand side is given by

F (T (t)) :=

{
0 for T < 44◦C,

A exp
(

−G
RT (t)

)
else.

with some positive coefficients A and G and the universal gas constant R. The two cases in the above
equation are needed to prevent any (unrealistic) protein denaturation below 44◦C. Values for A and G have
to be identified for different kinds of tissue. The approximation of the tissue coagulation process by only
two parameters is very rough, since the tissue is consisting of several proteins. Therefore we generalize this
approach to a heuristic model, where the coagulation status is a weighted sum of several coagulation states
ζi for different proteins. The weights ci are representing the concentrations of different proteins:

ζ(t) =
N∑

i=1

ciζi(t), with
N∑

i=1

ci = 1,

and the previous equations turn to

(5)
∂ζi(t)

∂t
= −Fi(T (t)) ζi(t), Fi(T (t)) :=

{
0 for T < 44◦C,

Ai exp
(
−Gi

RT (t)

)
else.

The initial value has to be given for all proteins considered, i.e., ζi(0, x) = ζi,0(x).
The temperature distribution T (x, t) is governed by the bio-heat equation.

(6) ρ(x, T ) Cp(x)
∂T (x, t)

∂t
−∇ · (κ(x, T )∇T (x, t)) = Q(x, t, T ),

where ρ is the density, cp the specific heat capacity at constant pressure and κ the thermal conductivity.
According to [10] cp and ρ vary less than 1 % and κ not more than 5 % in the relevant temperature interval
between 37◦C and 70◦C, say. Hence, the are assumed to be constant in the sequel.

The heat source term Q is a sum of absorbed laser radiation QL and the heat exchange due to blood
perfusion and metabolic changes QB . The amount of absorbed laser radiation is given by the product of
irradiance and absorption coefficient µa, i.e.,

(7) QL(x, t) = µa(x, t) Φ(x, t).

Neglecting metabolic changes, the term QB describes the heat exchange due to blood perfusion in the
tissue. A change in the blood perfusion rate is one of the reactions to the thermal changes in the tissue.
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Figure 2. Schematic view of the applicator device.

Different modelling approaches are dealing with effects of higher perfusion rates for temperatures between 37
and 50◦C or effects of a thick vessel located near the applicator device.

In [6] a model with higher perfusion rates for the named temperature region is used resulting in a significant
difference in the coagulated tissue volume. In [3] a more complicated model with different blood perfusion
terms for different tissues (healthy and pathological) was used. In [7] a thick vessel near the applicator device
and its effect on the coagulation volume is investigated. All these methods require knowledge about additional
parameters. Instead we have chosen to apply the simple, but widely used Pennes ansatz [9] to account for the
blood perfusion. It has been shown to be a good approximation at least if we can assume that in the domain
of interest only capillary vessels are located. Moreover we have to assume an isotropic blood flow. Then the
Pennes ansatz is given by

(8) QB(x, t, T ) = νB(ζ, x)ρρBCp,B(TB − T (x, t)),

where νB(ζ, x) [cm3g−1s−1] is the perfusion rate, ρB is the density of the blood, Cp,B is the specific heat
capacity of the blood, and TB is the temperature of the arterial blood.

For the tumourous tissue we use the same model with different perfusion rates. It seems reasonable to
assume lower blood perfusion rates in the tumour, because the vascular system is not as efficient as in the
healthy tissue, due to its chaotic structure [10]. In the coagulated tissue the vascular structure is destroyed
and therefore the blood perfusion rate is zero in this region.
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3. Thermal Analysis of the applicator

3.1. The cooling device. Figure 2 depicts a sketch of the applicator device. In cylindrical coordinates we
denote Γin := [R1, R2] and Γout := [R3, R4] with 0 < R1 < R2 < R3 < R4 the inflow and outflow boundary,
respectively.

The study of temperature distribution in the cooling device is effectively performed by means of rescaling.
A suitable reference temperature is the difference δ between the coagulation temperature T̂c and the normal
body temperature ˆTbody(δ = 8◦C).

Temperature T̂ is rescaled as T =
T̂ − T̂body

T̂c − T̂body

.

A typical length is the length of the applicator (L = 4cm) (which is also comparable to the diameter of the
coagulated region), and we rescale longitudinal coordinate ẑ ∈ (0, L) to z = ẑ/L.

For the moment we consider the coolant flow in a generic gap Ra < r̂ < Rb, and we denote by A the area
of the gap cross section, A = π(R2

b −R2
a), and by v0 the average velocity of the flow

(9) v0 =
1
A

∫ Rb

Ra

2πr̂v̂(r̂)dr̂,

which we use to rescale velocity: v = v̂/v0. Note that by definition the average of v is equal to 1.
Since the leading phenomenon in the process is heat diffusion in the tissue, it is natural to rescale time by

τt =
L2ρC

κ
. Since the thermal properties of the tissue are similar to the ones of the coolant (water), defining

for the latter the corresponding time τc, we have τt/τc = O(1). The rescaled time t is t = t̂/τt.

We also introduce the typical time of the advective flow τa =
L

v0
, so that the heat balance equation

(10) ρc
∂T̂

∂t̂
− k(

∂2T̂

∂ẑ2
+ ∆rT̂ ) + ρcv̂(r̂)

∂T̂

∂ẑ
= µΦ,

takes the form

(11)
∂T

∂t
− τt

τc

∂2T

∂z2
− τt

τc
L2∆rT +

τt

τa
v
∂T

∂z
=

τt

ρc

1
T̂c − T̂body

µcΦc.

The ratio
τt

τa
plays the role of a Peclet number Pe, since τt ' 104 s, τa '

10−1 s, Pe ' 105.
Dividing (11) throughout by Pe, we see that we can neglect the inertia term and that longitudinal diffusion

is likewise negligible.
Next we observe that

(12)
∫ Rb

Ra

2πrk∆rT = 2πk[r
∂T

∂r
]Rb

Ra
= 2π[hbRb(T b

ext − T b)− haRa(T a
ext − T a)],

where we have applied the boundary conditions

(13)
κ

∂T

∂r
(Ra, z) = ha

(
T a

ext(z)− T (Ra, z)
)
,

κ
∂T

∂r
(Rb, z) = hb

(
T b

ext(z)− T (Rb, z)
)
.

We exploit the smallness of the ratio Rb/L to identify T (z, r̂, t) with its average, which we still denote by
T :

(14) T (z, r̂, t) ' T (z, t).

Moreover, we stress that the heat exchange condition taken at the boundary is justified in the presence of
a thermal boundary layer (for v0 sufficiently large). The heat transfer coefficient depends on the thickness of
the boundary layer, which in turn decreases when v0 increases. Therefore we write

(15) ha = h̃av0, hb = h̃bv0,

where, within a certain range of v0, the coefficients h̃a, h̃b (having the same dimensions as ρc) depend on the
device more than on the process.
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If now we take the cross-sectional average of what survives in (11) with T = T (z, t), exploiting the fact
that the average of v is 1, we obtain

(16) −χb[T b
ext − T − h̃a

h̃b

Ra

Rb
(T a

ext − T )] +
∂T

∂z
=

L

ρc(T̂c − T̂body)v0

µcΦc.

where

(17) 2π
τa

ρc

v0

A
h̃bRb = 2π

LRb

ρcA
h̃b =

L

Rb

2πR2
b

A

h̃b

ρc
:= χb.

For the specific experiment here examined we find χb ' 0.067 and in summary it can be concluded that in

a typical situation (
∂T

∂z
' 1.67, Text − T ' 4 · 1.67) we have χb(Text − T )/

∂T

∂z
' 0.27, showing that the heat

exchanged through each wall is of the same order as the heat convected longitudinally.
Equation (16) can be used for the temperature Tin of the inflowing coolant with the condition

(18) Tin(0, t) = T 0
in

and Ra = R1, Rb = R2. In this case the temperatures T a
ext, T

b
ext are the temperature Tg of the optical glass

fiber and the temperature of the outflowing coolant Tout, respectively. The coefficients h̃a, h̃b refer to the
corresponding boundaries. For the outflowing coolant equation (16) must be integrated backward with the
condition

(19) Text(1, t) = Tin(1, t)

and T a
ext = Tin, T b

ext = Tt (tissue), Ra = R3, Rb = R4.

3.2. The glass fiber. Using subscript g for the quantities referring to glass, introducing the approximation

(20) Tg(z, r̂, t) ' Tg(z, t)

and applying the same procedure of averaging over cross-sections, we obtain the equation

(21)
∂Tg

∂t
− τt

τg

∂2Tg

∂z2
+ 2

hg

ρgcg

τt

Rg
(Tg − Tin) =

τt

ρgcg(T̂c − T̂body)
µgΦg.

The coefficient of (Tg − Tin) can be given the form
τt

τa
χg with χg = 2

L

Rg

ĥg

ρgcg
, and ĥg = hg/v0. Since χg

is of the same order as χb, it turns out that
τt

τa
� 1, which allows us to neglect the first two terms in (21).

Now we have two possibilities: either
(i) the same coefficient is much larger than the free term in (21), i.e.

(22) 2
hg

Rg
� µgΦg

1
T̂c − T̂body

then we deduce that

(23) Tg ' Tin,

or
(ii) the two sides of (22) are of the same order, then

(24) T̂g − T̂in =
Rg

2hg
µgΦg.

Of course the choice between (23) and (24) depends on the relative rates of thermal energy accumulation
by the glass and thermal energy removed from the flow. In normal operating conditions (23) is the right
option.
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3.3. Summary of the equations. In the above we have neglected the thermal capacity of the glass walls
of the device. Using (23) the equations describing the whole applicator are

(25)
∂Tin

∂z
− χ2(Tout − Tin) =

L

ρcv0(T̂c − T̂body)
µcΦc

with χ2 =
L

R2

2R2
2

R2
2 −R2

1

h̃f

ρc
, where h̃f refers to the heat exchange between the flow in and the flow out,

(26)
∂Tout

∂z
− χ4[Tt − Tout −

h̃f

h̃t

R3

R4
(Tin − Tout)] =

L

ρcv0(T̂c − T̂body)
µcΦc

with χ4 =
L

R4

2R2
4

R2
4 −R2

3

h̃t

ρc
, and h̃t referring to the heat exchange with the tissue.

The system is complemented by conditions (18), (19).

3.4. Remarks on error sources. Condition (19) eliminates the intermediation of the fluid in the tip region
between the flow in and the flow out. The tip is characterized by the presence of stagnation. Clearly this
procedure will lead to a relatively high error in the estimation of the temperature in and near the tip. However
the volume of this region is so small that the main thermal field remains practically not affected.

Another source of error is having linearized the heat transfer of the applicator. Indeed, this tends to slightly
underestimate the temperature close to the main body of the applicator. However, from the practical point
of view such a discrepancy has no influence, since when the coagulation front has spread to the desired limit,
some action has to be taken to coagulate the tissue close to the applicator, which has remained below the
coagulation temperature during the whole process. What really matters is that the predicted temperature is
in excellent agreement with the one measured over almost the whole coagulated mass, and in particular the
prediction of the extension of the coagulated mass is quite accurate.
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Figure 3. Temperature distribution and tissue coagulation at t = 600 s of
the simulation with P = 20 W. The maximal temperature is 80.6 ◦C. The
greyly shaded area shows the coagulated tissue (ζc ≥ ζb). The line at z = 3 cm
indicates a cross-section line for the next figure.
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4. Numerical simulations

To verify our model we consider ex-vivo experiments described by Roggan [10, p.145], in which pig liver has
been exposed to a Nd:YAG laser with a cooled applicator as discussed in the preceding section. We consider
two variants corresponding to a treatment with 20 W and 30 W, respectively. The exposure time in both
cases was 10 min. For convenience, we have summarized all data used in the simulations in the appendix.
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Figure 4. Cross-section plot of the temperature distribution of the simulation
at z = 3 cm corresponding to the previous figure.

In Figures 3 and 4 the simulated temperature distribution at t = 600 s is shown for P = 20W . A
visual comparison to Roggan’s experiment (Figure 5) shows, that there is not much of a difference in the
distribution and maximal or minimal temperatures. The temperatures of the simulation slightly underestimate
the temperatures of the experiment.

Figure 5. Temperature distribution at t = 600 s of Roggan’s experiment [10].
(P = 20 W, Tappl = 9 ◦C, Tinit = Tbnd = 18 ◦C.)

Unfortunately, there is no statement about the size of the coagulated zone for the 20W experiment in [10].
The second experiment corresponds to the higher laser power P = 30W. For this case, experimental results

for the coagulated zone but not for the temperature distribution are reported.
Figure 6 shows the simulated temperature distribution and coagulated zone at t = 600 s, i.e. at the

end of the exposure time. For a better comparison between experimentally achieved coagulation zone and
the simulated one, both are depicted in Figure 7. Both, experiment and simulation show a region of partly
coagulated tissue. Moreover, although the core coagulated zone with complete necrosis seems to be slightly
underestimated by the simulation, the region in which coagulation takes place at all is of merely the same
size in experiment and simulation .
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Figure 6. Left: Temperature distribution and tissue coagulation at t = 600 s
of the simulation with P = 30 W. The maximal temperature is 90.5 ◦C. The
greyly shaded area shows the coagulated tissue (ζc ≥ ζb). Right: Tissue coagu-
lation.
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Figure 7. Distributions of coagulated tissue of Roggan’s experiment [10] (left)
and simulation (right). (P = 30 W, Tappl = 9 ◦C, Tinit = Tbnd = 18 ◦C.)

5. Conclusions

We have investigated a mathematical model for laser-induced thermotherapy. The numerical results show
that the model is capable of reproducing experimentally measured temperatures in the case of a cooled
applicator. Hence, we may conclude that our approach to modelling the effect of the coolant is appropriate.

The numerical simulations underestimate the experimentally achieved coagulated zone. This is probably
due to the fact that the simulation has been stopped at the end of the exposure time, since the experimental
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conditions after the treatments are not reported. In any case the coefficients in the damage model are fitting
parameters which have to be chosen appropriately. From practical point of view it seems to be more promising
to use phenomenological rate laws derived from Avrami-type models (see, e.g., [4]), which are frequently used
to describe damage mechanisms in metals [2]. Then the temperature dependent coefficient can be computed
as the solution of an inverse problem.

Another direction of future research is the study of related control problems to compute the optimal dosage
as well as the optimal placement of the applicators, especially in the case, when more than one applicator is
used.
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Appendix A. Data used in the simulations

The following two tables list all the parameters used in the simulations in Section 4. The optical parameters
of the coolant were taken as those of distilled water. The same parameters were chosen for the walls of
applicator device. The thermal properties of the coolant are those of distilled water at T = Tac. The thermal
properties of the applicator walls and of the laser fiber are those of silica glass. While the latter data have
been taken from the Comsol Multiphysics 3.3 material library, all the other parameters have been taken
from [10].

Domain
description

Optical parameters Thermal parameters

µa µs g ρ Cp κ
(mm−1) (mm−1) (kg m−3) (J kg−1 K−1) (W m−1 K−1)

Appl. device

Laser fiber – – – 2203 703 1.38
Walls 0.266 3.0 0.98 2203 703 1.38
Coolant 0.266 3.0 0.98 999.9 4200 0.586

Liver tissue

Native 0.0195 4.35 0.931 1040 3640 0.518
Coagulated 0.013 30.59 0.9165 1040 3640 0.518

Blood – – – 1060 3640 –
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The following table lists tissue coagulation parameters of the heuristic model based on the Arrhenius for-
malism, taken again from [10].

Symbol Units i = 1 i = 2 i = 3 i = 4

Ai s−1 9.51 · 1048 5.20 · 1059 1.38 · 1033 1.00 · 1023

Gi J K−1 mol−1 330444 411481 221361 138348
ci – 0.372 0.328 0.247 0.053


