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Abstract

In this paper we develop several regression algorithms for solving general
stochastic optimal control problems via Monte Carlo. This type of algorithms
is particularly useful for problems with a high-dimensional state space and
complex dependence structure of the underlying Markov process with respect
to some control. The main idea behind the algorithms is to simulate a set of
trajectories under some reference measure and to use the Bellman principle
combined with fast methods for approximating conditional expectations and
functional optimization. Theoretical properties of the presented algorithms
are investigated and the convergence to the optimal solution is proved under
some assumptions. Finally, the presented methods are applied in a numer-
ical example of a high-dimensional controlled Bermudan basket option in a
�nancial market with a large investor.

1 Introduction
Modeling of optimal control is one of the most challenging areas in applied stochas-
tics, particularly in �nance. As typical real-world control problems, for example
dynamic optimization problems in �nance, are too complex to be treated analyti-
cally, e�ective generic computational algorithms are called for. Since the appearance
of the ground-breaking articles Carriere (1996), Longsta� and Schwartz (2001), and
Tsitsiklis and Van Roy (1999), regression based Monte Carlo methods emerged as
an indispensable tool for solving high-dimensional stopping problems in the context
of American style derivatives. From a mathematical point of view any optimal stop-
ping problem can be seen as a particular case of a more general stochastic control
problem. Optimal stochastic control problems appear in a natural way in many
application areas. For instance in mathematical �nance, problems such as port-
folio optimization under market imperfections, optimal portfolio liquidation, super
hedging, etc., do all come down to problems of stochastic optimal control. In fact,
an active interplay between stochastic control and �nancial mathematics has been
emerged in the last decades: While stochastic control has been a powerful tool for
studying problems in �nance on the one hand side, �nancial applications have been
stimulating the development of new methods for optimal stopping and optimal con-
trol on the other hand, see, for example, besides the works mentioned above, Rogers
(2002), Broadie and Glasserman (2004), Haugh and Kogan (2004), Ibáñez (2004),
Meinshausen and Hambly (2004), Belomestny et al. (2006), Bender and Schoen-
makers (2006), Belomestny et al. (2007), Kolodko and Schoenmakers (2006), Rogers
(2007), and Carmona and Touzi (2008), and many others.
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As a canonical general approach for solving an optimal control problem one may
consider all possible future evolutions of the process at each time that a control
choice is to be made. This method is well developed and may be e�ective in some
special cases, but for more general problems such as optimal control of a di�usion
in high dimensions, this approach is impractical. Other recently developed methods
for control problems include the Markov chain approximation method of Monoyios
(2004), a maturity randomization approach of Bouchard, Karoui and Touzi (2005)
and a Malliavin based Monte-Carlo approach of Hansen (2005) (see also Bouchard,
Ekeland and Touzi (2004)). However, all these methods are tailored to some spe-
ci�c problems and it is not clear how to generalize them. In this paper we propose
a generic Monte Carlo approach combined with fast approximation methods and
methods of functional optimization which is applicable to any discrete-time con-
trolled Markov processes. The main idea is to simulate a set of trajectories under
some reference measure and then apply a dynamic programming formulation (Bell-
man principle) to compute recursively estimates for the optimal control process and
the optimal stopping rule, where the fast approximation methods allow for comput-
ing conditional expectations without nested simulations. In particular we propose
several regression procedures and prove for these procedures convergence of the value
function estimations under some additional assumptions. Moreover, we present an
example of a high-dimensional Bermudan basket option where the dynamics of the
underlying are in�uenced by a large investor, and illustrate the numerical perfor-
mance of the regression algorithms at this example.
The outline of the paper is as follows. In Section 2 the basic stochastic setup is
presented, some notations are introduced and the main problem is formulated. In
Section 3 we introduce two kinds of regression methods for stochastic control prob-
lems: local regression methods and global regression methods, which are discussed
in Sections 3.1 and 3.1 respectively. The convergence analysis of the regression al-
gorithms is done in Section 4. A method of constructing upper bounds is discussed
in Section 5. Finally, the numerical example is studied in Section 6.

2 Basic setup
For our framework we adopt the discrete time setup as in Rogers (2007). On a
�ltered measurable probability space (Ω,F), with F := (Fr)r=0,1,...,T , T ∈ N+, we
consider an adapted control process a : Ω × {0, ..., T − 1} → A, control for short,
where (A,B) is a measurable state space. We assume a given set of admissible
controls which is denoted by A. Given a control a = (a0, a1, ..., aT−1) ∈ A, we
consider a controlled Markov process X valued in some measurable space (S,S) and
de�ned on a probability space (Ω,F ,Pa) with X0 = x0 a.s. and transition kernel of
the following type,

Pa(Xr+1 ∈ dy | Xr = x) = P ar(x, dy), 0 ≤ r < T.
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So, it is assumed that the distribution of Xr+1 conditional on Fr is governed by a
(one-step) transition kernel P ar(Xr, dy) which is in turn controlled by ar. In this
setting we may consider the general optimal control problem

Y ∗
0 := sup

a∈A
Ea

[
T−1∑
r=0

fr(Xr, ar)

]
, (2.1)

for given functions fr, r = 0, . . . , T − 1. The optimization problem (2.1) contains
the standard optimal stopping problem

Y ∗
0 := sup

τ
E [gτ (Xτ )] ,

as a special case. Indeed, take Pa independent of a, fr(x, a) = gr(x)a, and A =
Astop =

{
a =

(
1{τ=0}, . . . ,1{τ=T}

)}
with τ being F -stopping time taking values

in the set {0, . . . , T}. Multiple stopping problems may be considered in a similar
way by choosing a suitable A. In this article, however, we choose A to be the set
of all adapted controls (as in Rogers (2007)), while keeping the standard optimal
stopping problem as a special case. This leads to our central goal of solving the
optimal control problem

Y ∗
0 = sup

a∈A, τ∈T
Ea

[
τ−1∑
r=0

fr(Xr, ar) + gτ (Xτ )

]
(2.2)

for a given set of measurable functions fr : S × A → R, gr : S → R. For technical
reasons fr and g are assumed to be bounded from below. To exclude trivialities we
further assume that

sup
a∈A

Ea

[
T−1∑
r=0

|fr(Xr, ar)|
]
<∞, sup

a∈A
Ea[|gi(Xi)|] <∞, i = 0, . . . , T.

The supremum in (2.2) is taken over a ∈ A and all F -stopping times with values in
a subset T ⊂ {0, . . . , T}.
The optimal control problem (2.2) with T ={0, . . . , T} will be the main object of
our study. Consider the process

Y ∗
r = sup

a∈Ar, τ∈Tr

Ea

[
τ−1∑
s=r

fs(Xs, as) + gτ (Xτ )

∣∣∣∣∣Fr
]
, 0 ≤ r ≤ T, (2.3)

with Tr := {r, . . . , T} and Ar being the set of all adapted controls a : Ω×{r, . . . , T−
1} → A. Then there exists a vector h∗ = (h∗0, . . . , h

∗
T ) of measurable functions on S,

such that Y ∗
j = h∗j(Xj) and h∗ satis�es

h∗r(x) = max [gr(x), (Lh∗)r (x)] , 0 ≤ r < T,

h∗T (x) = gT (x), (2.4)
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where L : h→ Lh is a Bellman-type operator de�ned by

(Lh)r (x) := sup
a∈A

[fr(x, a) + P ahr+1(x)]

and
P ahr+1(x) :=

∫
P a(x, dy)hr+1(y).

We now assume that there exists a reference measure P∗ equivalent to Pa, such that

P a(x, dy) = ϕ(x, y, a)P ∗(x, dy), a ∈ A,

with P ∗(x, dy) := P∗(Xr+1 ∈ dy | Xr = x) and the function ϕ(x, y, a) satisfying
ϕ ≥ 0 and

∫
P ∗(x, dy)ϕ(x, y, a) ≡ 1. Then for any nonnegative measurable function

G : ST+1 → R+ it holds

Ea[G(X)|Fj] = E∗[G(X)Λj,T (a, X)|Fj], (2.5)

where

Λj,r(a,y) :=
r−1∏

l=j

ϕ(yl, yl+1, al), r = j + 1, . . . , T, y ∈ ST+1.

If G depends on X0, . . . , Xr only, we have for 0 ≤ j ≤ r,

Ea[G(X)|Fj] = E∗[G(X)Λj,r(a, X)|Fj].

In particular, if G depends only on Xj+1 it holds

Ea[G(Xj+1)|Fj] = E∗[G(Xj+1)ϕ(Xj, Xj+1, aj)|Fj]. (2.6)

3 Regression methods for control problems
The solution Y ∗

0 of the optimal control problem (2.2) can in principle be computed
backwardly via the dynamic programming principle (2.4). However, if the space S
is high-dimensional, an analytic computation of the conditional expectation

Cr(x, a) := Ea[hr(Xr+1)|Xr = x] = E∗ [ϕ(Xr, Xr+1, a)hr+1(Xr+1) | Xr = x] ,

where henceforth for notational convenience h := h∗, is usually di�cult, even if hr+1

is explicitly known. On the other hand, a straightforward backward construction of
h using (2.4), by Monte Carlo simulation (under P∗) would lead to nested simula-
tions where the degree of nesting increases with the number of exercise dates. In
the context of optimal stopping problems, much research was focused on the devel-
opment of fast methods to approximate Cr. We will show that these methods can
be extended to a more general setting of optimal control problems.
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From now on we assume that S ⊂ Rd for some d > 0. Suppose that hr+1 is estimated
by ĥr+1 and that we want to approximate hr via (2.4) and (2.5). De�ne

ĥr(x) := max

[
gr(x), sup

a∈A

[
fr(x, a) + P aĥr+1(x)

]]

= max

[
gr(x), sup

a∈A

{
fr(x, a) + E∗

[
ϕ(Xr, Xr+1, a)ĥr+1(Xr+1) | Xr = x

]}]
.

Let ((
X(1)
r , X

(1)
r+1

)
, . . . ,

(
X(M)
r , X

(M)
r+1

))

be a Monte Carlo sample from the joint distribution of (Xr, Xr+1) under P∗ and
suppose that, based on this Monte Carlo sample and the approximation ĥr+1 of
hr+1, an estimate Ĉr,M(x, a) of the conditional expectation Cr(x, a) is constructed
for all x ∈ S and a ∈ A. In this paper we consider a class of estimation methods
with Ĉr,M being of the form

Ĉr,M(x, a) =
M∑
m=1

wm,M(x,XM
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1), (3.1)

where
wm,M

(
x,XM

r

)
= wm,M

(
x,X(1)

r , . . . , X(M)
r

)

are some coe�cients which are to be speci�ed by the method under consideration.
It turns out that this class of approximation methods is very general and contains
local and global regression methods. We discuss these two types of method in the
next sections.

3.1 Algorithms based on local estimators

By introducing

dr(x, a) :=

∫

S

ϕ(x, y, a)hr+1(y)pr(x, y) dy, pr(x) :=

∫

S

pr(x, y)dy,

with pr(x, y) being the joint density of (Xr, Xr+1) under P∗, we may write

Cr(x, a) = dr(a, x)/pr(x).

So it is natural to estimate Cr as a ratio of estimates for pr and dr, respectively.
With this goal in mind we consider, for a given Borel measurable kernel function
ΦM(x, y) on Rd × Rd, the following estimators

pr,M(x) := M−1

M∑
m=1

ΦM(x,X(m)
r ),

d̂r,M(x, a) := M−1

M∑
m=1

ΦM(x,X(m)
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1),
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where x ∈ Rd and a ∈ A. Then we estimate Cr by

Ĉr,M(x, a) :=
d̂r,M(x, a)

pr,M(x)
(3.2)

=:
M∑
m=1

wm,M(x,XM
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)

with weight coe�cients de�ned by

wm,M(x,y) := wm,M(x, y1, y2, ...) :=
ΦM(x, ym)∑M

m′=1 ΦM(x, ym′)
.

If pr,M = 0 we set Ĉr,M = 0. It is important to note that wm,M sum up to one. The
name �local� comes from the fact that in most cases the function ΦM(x, y) converges
(in some sense) to a delta function δ(x−y) asM →∞. The class of local estimators
is rather large and contains well known examples such as the Nadaraya-Watson and
the k-nearest neighbors regression estimators. In recent years, local estimators have
become popular in applied �nancial mathematics, mainly in the context of hedging
and Greek estimation (see, e.g. Elie, Fermanian and Touzi (2009)).
Example 3.1. Let K be a measurable function on Rd. Take

ΦM(x, y) = δ−dM K((x− y)/δM),

where {δM} is a sequence of positive numbers tending to zero. Then (3.2) yields the
well-known Nadaraya-Watson regression estimator

Ĉr,M(x, a) =

∑M
m=1K((x−X

(m)
r )/δM)ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)∑M

m=1K((x−X
(m)
r )/δM)

. (3.3)

Example 3.2. We can modify the estimator in Example 3.1 by specifying an increas-
ing sequence (kM) of natural numbers with kM ≤ M and by reducing the number
of summands in (3.3) to kM in the following way. Consider the �rst kM nearest
neighbors of x, say X(m1)

r , . . . , X
(mkM

)
r in the Monte Carlo sample X(1)

r , . . . , X
(M)
r ,

and de�ne RM :=
∥∥∥x−X

(mkM
)

r

∥∥∥
2
to obtain the kM -nearest neighbors regression es-

timator

Ĉr,M(x, a) =

∑kM

n=1 ϕ(x,X
(mn)
r+1 , a)ĥr+1(X

(mn)
r+1 )K((x−X

(mn)
r )/RM)

∑kM

n=1K((x−X
(mn)
r )/RM)

. (3.4)

Finally, after estimating Cr(x, a) by Ĉr,M(x, a), we construct

âr,M(x) := arg sup
a∈A

[fr(x, a) + Ĉr,M(x, a)], x ∈ S, (3.5)

and estimate hr by
ĥr,M(x) := max{gr(x), fr(x, âr,M(x)) + Ĉr,M(x, âr,M(x))}. (3.6)

Starting with ĥT,M(x) = gT (x) and working backwardly, we so obtain estimates for
all hr, r = 0, . . . , T − 1.
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Remark 3.3. Local estimators have in some respects nice theoretical properties, for
example, almost sure convergence to Cr under rather weak smoothness assumptions.
Basically only local smoothness is required for this. A disadvantage of local estima-
tors is their numerical complexity in general. For instance, if we want to compute
the Nadaraya-Watson estimator Ĉr,M(x, a) at M points in Rd, it will require M2

operations. In the case of the kM -nearest neighbors estimator this number can be
reduced to M logM using fast search algorithms.

3.2 Global regression estimators

As an alternative to local regression methods we now consider algorithms based
on global regression. From a practical point of view global regression estimators
are easier to implement in an e�cient way than local estimators. The convergence
analysis of global estimators is, however, more delicate and usually requires rather
strong assumptions on Cr and the underlying Markov process Xr. For the standard
Bermudan stopping problem (fr ≡ 0, ϕ ≡ 1) we refer to Clément, Lamberton and
Protter (2002), Eglo� (2005) and Eglo�, Kohler and Todorovic (2007). The global
regression procedures in the next two sections are in some sense a generalization of
the methods of Tsitsiklis and Van Roy (1999) and Longsta� and Schwartz (2001),
respectively, to optimal control problems.

3.2.1 Algorithms based on continuation functions

For a given Monte Carlo sample (X
(1)
r , . . . , X

(M)
r ), r = 0, . . . , L, under the measure

P ∗ and a system of basis functions ψ := [ψ1, . . . , ψK ]> we consider for each a ∈ A
the minimization problem

β̂r(a) := arg min
β∈RK

M∑
m=1

(
ψ>(X(m)

r )β − Y (m)(a)
)2
, (3.7)

where

Y (m)(a) := ϕ(X(m)
r , X

(m)
r+1, a)ĥr+1(X

(m)
r+1)

and an estimate ĥr+1 of hr+1 is assumed to be already constructed. The solution of
(3.7) is explicitly given by

β̂r(a) = (F>F )−1F>Y (a) =: F †Y (a), (3.8)

where F = (Fmk) = (ψk(X
(m)
r )) is aM×K design matrix and Y (a) := (Y (m)(a))m=1,...,M .

Note that the design matrix F does not depend on a. We next consider

âr,M(x) = arg max
a∈A

{fr(x, a) + Ĉr,M(x, a)}, (3.9)
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where
Ĉr,M(x, a) = ψ>(x)β̂r(a) = ψ>(x)F †Y (a) (3.10)

=
M∑
m=1

wm,M(x,XM
r )ϕ(x,X

(m)
r+1, a)ĥr+1,M(X

(m)
r+1)

with coe�cients wm,M given by

wm,M(x,XM
r ) = ψ>(x)

(
(F>F )(X(·)

r )
)−1

ψ(X(m)
r ). (3.11)

In order to solve (3.9) one may, for instance, construct an approximation procedure
for �nding the a roots of the stationary point equation

∂

∂a
fr(x, a) +

K∑

k=1

ψk(x)F
† ∂
∂a
Y (a) = 0.

We proceed with a second regression problem

β̃r = arg min
β∈RK

M∑
m=1

(
ϕ(X̃(m)

r , X̃
(m)
r+1, âr,M(X̃(m)

r ))ĥr+1(X̃
(m)
r+1)− ψ>(X̃(m)

r )β
)2

based on a new set of paths
(X̃

(m)
1 , . . . , X̃

(m)
T ), m = 1, . . . ,M

under P∗ to end up with

ĥr,M(x) = max
[
g(x), fr(x, âr,M(x)) + ψ>(x)β̃r

]
. (3.12)

The second regression is needed to avoid the multiple vector-matrix multiplication
in (3.8) when computing ĥr,M(X

(m)
r ), m = 1, . . . ,M .

3.2.2 Algorithms based on backward construction of stopping time and
control

In this section we present an algorithm where, instead of regressing continuation
functions, the control and stopping times are backwardly constructed on a set of
simulated trajectories. This method relies on the following consistency theorem
proved in Appendix.
Theorem 3.4. The optimal stopping time τ ∗(r) and the optimal control a∗(r) solv-
ing the problem

Y ∗
r = sup

a∈Ar, τ∈Tr

Ea

[
τ−1∑
s=r

fs(Xs, as) + gτ (Xτ )

∣∣∣∣∣Fr
]
,

satisfy the following consistency relations
τ ∗(r) > r ⇒ τ ∗(r) = τ ∗(r + 1) and a∗j(r) = a∗j(r + 1)

for all j such that r + 1 ≤ j < τ ∗(r + 1).
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Note that a∗j(r) is only de�ned for r ≤ j < τ ∗(r), i.e. the control a∗(r) is not de�ned
if τ ∗(r) = r. Given a sample (X

(m)
0 , . . . , X

(m)
T ), m = 1, ...,M, we construct esti-

mates τ (m)(r) and a(m)
j (r), r ≤ j < τ (m)(r) for stopping times and control processes

respectively in the following way. At the terminal time we set

τ (m)(T ) = T, m = 1, ...,M.

Let τ (m)(r + 1), a
(m)
j (r + 1), r + 1 ≤ j < τ(r + 1) be constructed for m = 1, . . . ,M,

at time r + 1, 0 ≤ r < T. Let ψ := [ψ1, . . . , ψK ]> be a system of basis functions.
For any a ∈ A consider the least squares regression problem

β̂(a) := arg min
β∈RK

M∑
m=1

(
ψ>(X(m)

r )β − Y (m)(a)
)2
, (3.13)

where
Y (m)(a) = ϕ(X(m)

r , X
(m)
r+1, a)Z

(m)
r+1

with

Z
(m)
r+1 :=

τ (m)(r+1)−1∑

l=r+1

Λr+1,l(a
(m)(r + 1), X(m))fl(X

(m)
l , a

(m)
l (r + 1))

+ Λr+1,τ (m)(r+1)(a
(m)(r + 1), X(m))g(X

(m)

τ (m)(r+1)
).

The solution of (3.13) is given by (3.8) and we can de�ne an estimate Ĉr,M(x, a) =

ψ>(x)β̂(a) and then âr,M(x) as a solution of (3.9). Now simulate a new set of
trajectories

(X̃
(m)
0 , . . . , X̃

(m)
T ), m = 1, . . . ,M,

under P∗ and de�ne

β̃r := arg min
β∈RK

M∑
m=1

(
ψ>(X̃(m)

r )β − ϕ(X̃(m)
r , X̃

(m)
r+1, âr,M(X̃(m)

r ))Z
(m)
r+1

)2

.

Put C̃r,M(x) = ψ>(x)β̃r. By setting for m = 1, . . . ,M,

τ (m)(r) = r, if fr(X
(m)
r , âr,M(X(m)

r )) + C̃r,M(X(m)
r )) < g(X(m)

r ),

and

τ (m)(r) = τ (m)(r + 1), a(m)
r (r) = âr,M(X(m)

r ),

a
(m)
j (r) = a

(m)
j (r + 1), r + 1 ≤ j < τ (m)(r + 1),

otherwise, we so end up with a sequence of estimates

C̃r,M(x) :=
K∑

k=1

β̃r,kψk(x), r = 0, . . . , T − 1, (3.14)
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and a sequence of functions âr,M , r = 0, . . . , T − 1. Based on (3.14) one may use the
(generally suboptimal) stopping rule

τM := inf{0 ≤ r ≤ T : g(Xr) ≥ fr(Xr, âr,M(Xr)) + C̃r,M(Xr)} (3.15)

and the (generally suboptimal) control process

aM(X) = (â0,M(X0), â1,M(X1), . . . , âT−1,M(XT−1)) (3.16)

to construct a lower approximation for Y ∗
0 via a next Monte Carlo simulation.

4 Convergence analysis of regression methods
The issues of convergence for regression algorithms in the context of pricing Bermu-
dan options have been already studied in several papers. Clément, Lamberton and
Protter (2002) were �rst who proved the convergence of the Longsta�-Schwartz al-
gorithm. Glasserman and Yu (2005) have shown that the number of Monte Carlo
paths has to be exponential in the number of basis functions used for regression in
order to ensure the consistency of the price estimate. Recently, Eglo�, Kohler and
Todorovic (2007) have derived rates of convergence for continuation values estimates
by the so called dynamic look-ahead algorithm (see also Eglo� (2005)) that �inter-
polates� between Longsta�-Schwartz and Tsitsiklis-Roy algorithms. In the case of
general control problems the issue of convergence is more delicate because along with
the convergence of regression estimates Cr,M(x, a) we also need the convergence of
control estimates ar,M . The latter convergence can be ensured only if the �rst one is
uniform on the set of all possible controls. This type of convergence can be proved
only under some additional assumptions.
Generally, a convergence analysis can be divided into two parts. In the �rst part
one considers local convergence, that is the convergence of the one step estimate

hr,M(x) := max

[
gr(x), sup

a∈A
[fr(x, a) + Cr,M(x, a)]

]
,

based on the �pseudo� estimator

Cr,M(x, a) :=
M∑
m=1

wm,M(x,XM
r )ϕ(x,X

(m)
r+1, a)hr+1(X

(m)
r+1), (4.1)

i.e. (3.1) with ĥr+1 replaced by the exact solution hr+1. It turns out that the local
convergence relies exclusively on the sort of regression estimate under consideration
and can be established via standard results from the theory of empirical processes
and regression analysis as we will see. The second part deals with the global conver-
gence. In practice, one starts from r = T and proceeds backwardly where at each
step the previously constructed estimate ĥr+1 is used instead of hr+1. The aim of the

10



global convergence analysis is to prove the convergence of ĥr,M to hr in a suitable
sense, taking into account all errors from the previous steps. The next theorem
provides conditions for the global convergence, assuming that Cr,M is known to con-
verge to Cr in a certain sense. In fact, the prove of Theorem 4.2 is quite generic as
it involves only general properties of the weights in (3.1).

Theorem 4.1. Suppose that starting with ĥT,M = h∗T (x) = gT (x), at each backward
step ĥr,M is constructed from ĥr+1,M via (3.6) or (3.12) using a new independent
sample of M trajectories. Suppose further that the function ϕ is uniformly bounded,
that is |ϕ| ≤ Aϕ for some constant Aϕ. If

E

{∫

Rd

‖Cr,M(x, ·)− Cr(x, ·)‖qA pr(x) dx
}1/q

= E

{∫

Rd

[
sup
a∈A

|Cr,M(x, a)− Cr(x, a)|
]q
pr(x) dx

}1/q

= O(εM), r = 0, . . . , T − 1, M →∞ (4.2)

with some q ≥ 1 and some sequence εM tending to 0, then it holds

E
∥∥∥ĥr,M − hr

∥∥∥
Lq(pr)

= O
(
λT−rq,M εM

)
, 0 ≤ r ≤ T,

with

λq,M = sup
0≤r≤T

M∑
m=1

‖wm,M(·, ·)‖Lq(pr⊗M
l=1pr) . (4.3)

Corollary 4.2. If q = 1 and all weights wm,M in (3.1) are nonnegative and sum up
to 1 (e.g. in the case (3.2) if ΦM ≥ 0), then λq,M ≤ 1 and

E
∥∥∥ĥr,M − hr

∥∥∥
L1(pr)

= O (εM) , 0 ≤ r ≤ T.

Thus, in the case of nonnegative weights and q = 1 the �global� convergence rates
coincide with the rates of a particular regression estimator.

4.1 Convergence of local regression estimators

In this section we analyze the convergence of local regression estimators of the form
(3.2). De�ne two sets of functions

FM := {ΦM(x, ·) : x ∈ Rd},
Fϕ,M := {ϕ(x, ·, a)ΦM(x, ·) : x ∈ Rd, a ∈ A}.

Assume that for some constant Ah > 0,

P (|hr(Xr)| < Ah) = 1, r = 0, . . . , T, (4.4)

11



and that the function ϕ is uniformly bounded, i.e. there exists a constant Aϕ such
that

sup
(x,y)∈Rd×Rd

sup
a∈A

ϕ(x, y, a) < Aϕ. (4.5)

Theorem 4.3. Let FM and Fϕ,M be measurable uniformly bounded Vapnik-�ervonenkis
(VC) classes of functions (see Appendix), such that (7.11) is ful�lled for some ν > 0
and A > 0, simultaneously for all M. Furthermore, let σM and UM be two sequences
of positive real numbers such that

UM ≥ sup
(x,y)∈Rd×Rd

|ΦM(x, y)|, (4.6)

σ2
r,M ≥ sup

x∈Rd

E[Φ2
M(x,Xr)], (4.7)

and the following relations hold as M →∞,

(i) 0 < σr,M < UM/2,

(ii) (UM/σr,M)
√

log(UM/σr,M) ≤ √
M ,

(iii) γM := M−1/2σr,M
√

log(UM/σr,M) = o(1),

(iv) log γM = O(log (σr,M/UM)),

(v) ‖pr − E pr,M‖Rd → 0,

(vi) ‖dr − E dr,M‖Rd×A → 0.

Let D be a �xed bounded domain such that

pmin = pmin(D) := min
r

inf
x∈D

pr(x) > 0.

De�ne a truncated version of Cr,M (depending on D) as

CDr,M(x, a) :=

{
Cr,M(x, a), |pr,M(x)| > pmin/2 and x ∈ D,
0, otherwise.

Then it holds

E ‖CDr,M − Cr‖D×A ≤ C̃max

p̃min

(
L0γM + ‖pr − E pr,M‖Rd + ‖dr − E dr,M‖Rd

)

with C̃max := max(Cmax(D), 1), where Cmax(D) = maxr sup(x,a)∈D×ACr(x, a), p̃min :=
2 min(pmin, 1), and with L0 depending only on the VC characteristics of the classes
FM and Fϕ,M .
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The proof of Theorem 4.3 is given in the Appendix. This result can be used to prove
the condition (4.2) needed for the global convergence. Let us �x some R > 0 and
consider the ball BR := B(x0, R) := {x : |x− x0| ≤ R} with some �xed x0 ∈ Rd.
For a �xed q ≥ 1 we then have

E

{∫

Rd

∥∥CBR
r,M(x, ·)− Cr(x, ·)

∥∥q
A
pr(x) dx

}1/q

≤

E ‖CBR
r,M − Cr‖BR×A +

{∫

Rd\BR

‖Cr(x, ·)‖qA pr(x)dx
}1/q

.

So, if RM is an increasing sequence of positive numbers such that both

E1,M :=
C̃max(BRM

)

p̃min(BRM
)

(L0γM + ‖pr − E pr,M‖Rd

+ ‖dr − E dr,M‖Rd×A) → 0,

and

E2,M :=

(∫

Rd\BRM

‖Cr(x, ·)‖qA pr(x)dx
)1/q

→ 0, M →∞,

then by Theorem 4.3 it holds

E

{∫

Rd

∥∥∥CBRM
r,M (x, ·)− Cr(x, ·)

∥∥∥
q

A
pr(x) dx

}1/q

≤ E1,M + E2,M → 0.

Kernel type estimators. Let us consider the application of Theorem 4.3 to a
kernel type regression estimator (3.3). Let K be a bounded square integrable func-
tion on Rd. In Dudley (1999) su�cient conditions are given that ensure that the
set

F =

{
K

(
x− ·
δ

)
: x ∈ Rd, δ ∈ R \ {0}

}
(4.8)

is a uniformly bounded VC class, i.e. it satis�es (7.11) with some A and ν and all
probability measures P. In particular it is shown that (4.8) is a bounded VC class
if K(x) = f(p(x)) for some polynomial p and a bounded real function f of bounded
variation. Obviously, the standard Gaussian kernel falls into this category. Another
example is the case where K is a pyramid, or K = 1[−1,1]d . For constituting new VC
classes from given ones the following lemma may be useful.
Lemma 4.4. If F is a uniformly bounded VC class, then for any bounded measurable
function h the class of functions hF := {h ·f : f ∈ F} is again a uniformly bounded
VC class. In particular, if h is a constant then the VC characteristics of hF are
equal to the VC characteristics of F . Moreover, if F and G are uniformly bounded
VC classes then the function classes F ± G := {f ± g : f ∈ F , g ∈ G} and F · G
:= {f · g : f ∈ F , g ∈ G} are uniformly bounded VC classes.
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As can be easily seen from the above lemma the class

Fϕ :=

{
ϕ(x, ·, a)K

(
x− ·
δ

)
: x ∈ Rd, δ ∈ R \ {0}, a ∈ A

}

is a uniformly bounded VC class, provided that the function classes (4.8) and

{ϕ(x, ·, a) : x ∈ Rd, a ∈ A}

are uniformly bounded VC classes. In this case the classes FM and Fϕ,M with

ΦM(x, ·) = δ−dM K

(
x− ·
δM

)
, x ∈ Rd, M = 1, 2, . . .

satisfy the conditions of Theorem 4.3. With regard to (4.6) and (4.7), we may take
UM = δ−dM ‖K‖∞ and

σ2
r,M = sup

x∈Rd

δ−dM

∫

Rd

K2(u)pr(x− uδM) du ≤ δ−dM ‖K‖2
2‖pr‖∞,

respectively. Note that under this choice of σr,M and UM the relation (i) of Theo-
rem 4.3 is satis�ed. In order to make the conditions (ii)-(iv) hold we additionally
suppose that the bandwidths δM satisfy for M → ∞,

δM → 0,
MδdM
| log δM | → ∞, log

MδdM
| log δM | = O(log δM). (4.9)

Turn now to the conditions (v)-(vi). It can be easily shown that if functions dr(x, a)
and pr(x) have continuous derivatives in x of order s and these derivatives are
uniformly bounded on Rd × A and Rd respectively, then

‖pr − E pr,M‖Rd = O(δsM), ‖dr − E dr,M‖Rd×A = O(δsM), M →∞,

provided that
∫

Rd

‖x‖sK(x) dx <∞ and
∫

Rd

xljK(x) dx = 0

for j = 1, . . . , d, l = 1, . . . , s− 1. Hence, according to Theorem 4.3

E ‖CDr,M − Cr‖D×A ≤ C̃max

p̃min

(
D0

√
| log δM |/MδdM +D1δ

s
M

)
, M →∞,

where D0 and D1 are positive constants independent of the region D.
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4.2 Convergence of global regression estimators

Fix some r > 0 and consider the one step regression problem

β̂(a) := arg min
β∈RK

M∑
m=1

(
ψ>K(X(m)

r )β − Y (m)(a)
)2
,

where
Y (m)(a) := ϕ(X(m)

r , X
(m)
r+1, a)hr+1(X

(m)
r+1), m = 1, ...,M,

and ψK(x) := [ψ1(x), . . . , ψK(x)]> with {ψi(x) : i = 1, 2, ..} being a set of basis
functions. Consider the matrix ΓM,K with elements

ΓM,K
l,k :=

1

M

M∑
m=1

ψl
(
X(m)
r

)
ψk

(
X(m)
r

)
, 1 ≤ l, k ≤ K, (4.10)

and the matrix ΓK = (ΓKl,k)1≤l,k≤K with elements

ΓKl,k := E ΓM,K
l,k =

∫

Rd

ψl(z)ψk(z)pr(z) dz.

In the sequel we assume that the smallest eigenvalue of the matrix ΓK is bounded
from below by λmin > 0 for all K and r > 0. Let us de�ne a truncated version
CT
r,M(x, a) of the standard least squares regression estimator Cr,M(x, a) = ψ>K(x)β̂

as follows. If the smallest eigenvalue λM,K
min of ΓM,K ful�lls λM,K

min ≥ λmin/2, we set
CT
r,M(x, a) = Cr,M(x, a) and otherwise CT

r,M(x, a) = 0. The following theorem holds.

Theorem 4.5. Suppose that conditions (4.4) and (4.5) are ful�lled and let {ψk,
k = 1, 2, . . .} be a system of basis functions on Rd which are uniformly bounded,
that is there exists a constant Aψ > 0 such that maxk ‖ψk‖∞ < Aψ. Let further the
families of functions

{
ϕ(x, ·, a) : x ∈ Rd, a ∈ A}

and {ψk(·) : k = 1, 2, ... }

be bounded VC classes. Then it holds

E

(∫
sup
a∈A

∣∣CT
r,M(x, a)− Cr(x, a)

∣∣2 pr(x)dx
)1/2

≤ 2CmaxK
2 exp

[−B0M/K2
]
+B1

K2

√
M

+

(∫

R
sup
a∈A

|∆r(x, a)|2 pr(x) dx
)1/2

, (4.11)

where B0 and B1 are some positive constants, Cmax := maxr sup(x,a)∈Rd×ACr(x, a)
and

∆r(x, a) = E
[
ψ>K(x)

(
ΓK

)−1
ψK(X(1)

r )Cr(X
(1)
r , a)

]
− Cr(x, a).
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Corollary 4.6. Suppose that

Cr(x, a) =
∞∑

k=1

βk(a)ψk(x), (4.12)

where the convergence takes place both pointwise and in L2(pr) sense. Then (4.11)
becomes

E

(∫
sup
a∈A

∣∣CT
r,M(x, a)− Cr(x, a)

∣∣2 pr(x)dx
)1/2

(4.13)

≤ 2CmaxK
2 exp

[−B0M/K2
]
+B1

K2

√
M

+ γK

with

γK :=


E sup

a∈A

∣∣∣∣∣
∞∑

k=K+1

βk(a)ψk(Xr)

∣∣∣∣∣

2



1/2

≤
(

sup
a∈A

∞∑

k,k′=K+1

|βk(a)βk′(a)|Γ1/2
kk Γ

1/2
k′k′

)1/2

. (4.14)

Corollary 4.7. We can represent the truncated estimator CT
r,M(x, a) in the form

CT
r,M(x, a) :=

M∑
m=1

w̃m,M(x,XM
r )ϕ(X(m)

r , X
(m)
r+1, a)hr+1(X

(m)
r+1)

with w̃m,M(x,XM
r ) := M−1ψ>K(x)

(
ΓM,K

)−1
ψK(X

(m)
r ) if λM,K

min ≥ λmin/2 and 0 oth-
erwise. A straightforward calculations lead to the bound

‖w̃m,M(·, ·)‖L2(pr⊗M
l=1pr) =

(
E

∣∣w̃m,M(Xr,X
M
r )

∣∣2
)1/2

≤ B4K
1/2M−1

and hence we obtain λ2,M = O(
√
K) with λ2,M being de�ned in (4.3).

Corollary 4.8. Suppose that K2/M = o(log−1(M)) as M → 0, then

E
∥∥∥ĥr,M − hr

∥∥∥
L2(pr)

= O
(
KT/2(γK +K2/

√
M)

)
, r = 0, . . . , T − 1,

for M →∞. Moreover, if (4.12) holds and the coe�cients {βk(a)} in (4.12) ful�ll

sup
a

∞∑

k=0

|βk(a)| exp(µkα) <∞

for some positive α and µ, then under the choice K = ((logM)/2µ)1/α, we get

E
∥∥∥ĥr,M − hr

∥∥∥
L2(pr)

≤ A1
log(T+2)/α(M)√

M
, r = 0, . . . , T − 1.
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5 Dual upper bounds
In order to assess the quality of our estimates we need to construct upper bounds for
the value process. To this aim we extend the approach in Rogers (2007) to problem
(2.2). In fact, the following theorem is a generalization of Theorem 1 in Rogers
(2007).

Theorem 5.1. Let Y ∗
r be the solution of the optimal control problem (2.3), then the

following representation holds

Y ∗
r = inf

h∈H

{
hr(Xr) + E∗

[
T−1∑
j=r

Wr,j

(
(Lh)j (Xj)− hj(Xj)

)+

+ max
r≤i≤T

Wr,i (gi(Xi)− hi(Xi))
+

∣∣∣∣Fr
]}

,

where Wr,j = supa∈A [Λr,j(a, X)] and H is the space of bounded measurable vector
functions h = (h0, ..., hT ) on ST+1.

6 Numerical example
Now we illustrate our algorithms by pricing a Bermudan basket call option in a
model, where asset prices can be in�uenced by an investor holding large amounts
of shares of the asset. In our model the large investor can increase the expected
value of future asset prices, hence the future option pay-o�, by borrowing assets
(and return them later on).
Let Xr, r = 0, . . . , T be a discrete time Markov process. Consider a Bermudan call
option on a basket of d assets with the payo�

g(Xr) :=

(
1

d

d∑
i=1

X(i)
r −K

)+

, K > 0

which can be exercised at times r = 1, . . . , T. We assume that the large investor
borrows ar × 100% (0 ≤ ar ≤ 1) of each asset at time r and pays to his lender the
so called lending fee which is proportional to ar:

αar

d∑

k=1

X(k)
r , α > 0. (6.1)

Furthermore, the dynamic of Xr+1 given Xr depends on ar via

X
(i)
r+1 = X(i)

r exp

(
−σ

2

2
δr + σ

√
δrζr,i

)
γ(ar), X

(i)
0 = x0, i = 1, ..., d,
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where ζr,i are i.i.d. standard Gaussian random variables, γ : [0, 1] → R+ is some
function, and δr is a time scaling parameter. The transition kernel of the process X
is given by

Par(x, dy) =
y−1

1 · . . . · y−1
d

σd
√

2πδdr
exp

(
−

∑d
j=1(ln

yj

xj
+ σ2δr/2− ln γ(ar))

2

2σ2δr

)
dy.

In our particular example we take γ(a) = exp(a/20) and choose as a reference
measure the one corresponding to a = 0. Hence

Pa(x, dy) = ϕ(x, y; a) P∗(x, dy)

with

ϕ(x, y; a) = exp

(∑d
j=1 ln(yj/xj) + dσ2δr/2

σ2δr
ln γ(a)− d ln2 γ(a)

2σ2δr

)
.

The value of the controlled Bermudan option contract in this situation is given by
(2.2) with gr ≡ g and fr(x, a) = −αa

(∑d
k=1 xk

)
.

We now study a numerical example with d = 5, T = 3, δr ≡ 1, x0 = 100, K = 90, σ =
0.2 where we shall construct lower bounds for the option price using local regression
and global regression methods. First, using the k-nearest neighbor estimator (3.4)
and the corresponding estimator (3.5), based on M paths of the process X, we
construct a suboptimal stopping time and a suboptimal control. Then averaging
over a new independent set of 50000 trajectories, we get a lower bound denoted by
Y knn,low

0,M . This lower bound is shown in Table 1 for di�erentM and di�erent numbers
of nearest neighbors used to construct (3.4). Similarly, a suboptimal stopping time
(3.15) and a suboptimal control (3.16) lead to a lower bound denoted by Y gr,low

0,M . In
Table 2 the values of Y gr,low

0,M are presented in dependence on the set of basis functions
used for the least squares approximation.
Furthermore, we construct upper bounds Y knn,up

0,M and Y gr,up
0,M for the option price

based on the dual representation in Theorem 5.1, using approximative value func-
tions (3.6) and (3.12), respectively. To get these upper bounds we simulate 50
(�outer�) trajectories where on each trajectory the conditional expectations in (Lh)r
are estimated using 10000 independent (�inner�) trajectories.
Note that it can be advantageous to take the number of nearest neighbors kM in
(3.4) depending on x. To illustrate this we plot in Figure 1 the root-mean-square
errors of the estimates Ĉknn

2,10000(x, 1) and Ĉknn
2,50000(x, 1), relative to the �exact� values

C2(x, 1), computed using 106 Monte Carlo trajectories, for di�erent numbers of
nearest neighbors and for two points x(0) and x(1) with

x
(i)
k = x0 exp(−σ

2

2
(δ0 + δ1) + ζi(σ

√
δ0 + σ

√
δ1)), k = 1, . . . , d, i = 0, 1,

where ζ0 ≡ 0 (left �gure) and ζ1 ≡ 1.5 (right �gure). Here the best value of kM for
the �centralpoint x(0) is about 0.1 ×M and the RMS error does not exceed 5% for
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M = 10000. However, the error becomes rather large if x lies in the region with a
small concentration of the pre-simulated regression points (the optimal kM is about
10 in the right-hand side �gure). Thus, the performance of the k-nearest neighbor
estimator can be improved by choosing kM adaptively depending on x.
As can be seen from our simulation study, global regression estimators provide a
smaller gap between lower and upper bounds for the option price than their local
regression counterparts. The gap between lower and upper bounds in the case of
global regression for the best choice of basis functions does not exceed 4% (relative
to the lower estimate), while for the local regression estimator the smallest gap is
larger than 15%.

Table 1: Lower and upper bounds obtained via the k-nearest neighbor estimator
(3.4) for di�erent numbers of the nearest neighbors.

k ĥknn,low0,10000 (SD) ĥknn,up0,10000(SD) ĥknn,low0,50000 (SD) ĥknn,up0,50000(SD)

10 13.94(0.06) 20.94(0.23) 13.82(0.06) 21.22(0.27)
20 14.10(0.06) 18.89(0.20) 14.20(0.06) 18.41(0.16)
50 14.08(0.06) 16.74(0.09) 14.33(0.06) 17.08(0.14)
100 14.13(0.05) 16.59(0.14) 14.19(0.05) 16.68(0.13
500 14.17(0.05) 16.73(0.14) 14.17(0.05) 16.48(0.13)
1000 13.56(0.05) 17.04(0.13) 14.06(0.05) 16.27(0.11)

Table 2: Lower and upper bounds using global regression algorithms with di�erent
sets of basis functions.

base functions ĥgr,low0,200000(SD) ĥgr,up0,200000(SD)
up to 2nd degree polynomials on gr(Xr) 15.15(0.06) 15.75(0.10)
up to 3th degree polynomials on gr(Xr) 15.10(0.07) 15.62(0.07)
up to 4th degree polynomials on gr(Xr) 15.13(0.07) 15.70(0.09)

1, X(1)
r , . . . , X

(5)
r , gr(Xr) 15.01(0.07) 15.76(0.08)

up to 2nd degree polynomials on
X

(1)
r , . . . , X

(5)
r , gr(Xr) 15.09(0.06) 15.55(0.07)
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Figure 1: Root-mean-square errors (in %) of the estimators Ĉknn
2,10000(x, 0) (solid line)

and Ĉknn
2,50000(x, 0) (dashed line) for di�erent numbers k of nearest neighbors at two

points x0 exp(−σ2) (left) and x0 exp(−σ2 + 1.5(σ
√
δ0 + σ

√
δ1)) (right).

7 Appendix

7.1 Proof of Theorem 3.4

The statement of the theorem holds trivially true for r = T. For r < T we have

1{τ∗(r)>r}Y
∗
r = 1{τ∗(r)>r} sup

a∈Ar, τ∈Tr

Ea

[
τ−1∑
j=r

fj(Xj, aj) + gτ (Xτ )

∣∣∣∣∣Fr
]

= 1{τ∗(r)>r} sup
τ∈Tr+1

Ea∗(r)
r

[
τ−1∑
j=r

fj(Xj, aj) + gτ (Xτ )

∣∣∣∣∣Fr
]

= 1{τ∗(r)>r}fr(Xr, a
∗
r(r))+

+ 1{τ∗(r)>r} sup
τ∈Tr+1

Ea∗(r)
r E

(a∗r+1(r),...)

r+1

[
τ−1∑
j=r+1

fj(Xj, a
∗
j(r)) + gτ (Xτ )

∣∣∣∣∣Fr+1

]

≤ 1{τ∗(r)>r}fr(Xr, a
∗
r(r))+

1{τ∗(r)>r} Ea∗(r)
r sup

a∈Ar+1, τ∈Tr+1

E(ar+1(r),...)

[
τ−1∑
j=r+1

fj(Xj, aj) + gτ (Xτ )

∣∣∣∣∣Fr+1

]

= 1{τ∗(r)>r}fr(Xr, a
∗
r(r)) + 1{τ∗(r)>r} E(a∗(r),a∗r+1(r+1),...)×

×


τ∗(r+1)−1∑
j=r+1

fj(Xj, a
∗
j(r + 1)) + gτ∗(r+1)(Xτ∗(r+1))

∣∣∣∣∣∣
Fr




= 1{τ∗(r)>r}fr(Xr, a
∗
r(r)) + 1{τ∗(r)>r} Ea∗(r)

r Y ∗
r+1 = 1{τ∗(r)>r}Y

∗
r ,
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due to the Bellman principle. Hence

1{τ∗(r)>r}Y
∗
r = 1{τ∗(r)>r}fr(Xr, a

∗
r(r)) + 1{τ∗(r)>r} E

(a∗(r),a∗r+1(r+1),...)
r ×

×


τ∗(r+1)−1∑
j=r+1

fj(Xj, a
∗
j(r + 1)) + gτ∗(r+1)(Xτ∗(r+1))

∣∣∣∣∣∣
Fr




from which the consistency relations follow.

7.2 Proof of Theorem 4.1

For r = T the statement is trivial. As induction hypothesis we assume that

E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

= O
(
λT−r−1
q,M εM

)
, M →∞. (7.1)

Based on a new sample (X
(m)
r , X

(m)
r+1), m = 1, ...,M, independent of the samples

needed for constructing the estimate ĥr+1,M , we de�ne

ar,M(x) := arg sup
a∈A

[fr(x, a) + Cr,M(x, a)],

âr,M(x) := arg sup
a∈A

[fr(x, a) + Ĉr,M(x, a)],

where

Ĉr,M(x, a) :=
M∑
m=1

wm,M(x,XM
r )ϕ(x,X

(m)
r+1, a)ĥr+1,M(X

(m)
r+1).

Observe that due to

− sup
a∈A

∣∣∣Ĉr,M(x, a)− Cr,M(x, a)
∣∣∣

≤ fr(x, âr,M(x)) + Ĉr,M(x, âr,M(x))− {fr(x, ar,M(x)) + Cr,M(x, ar,M(x))}
≤ sup

a∈A

∣∣∣Ĉr,M(x, a)− Cr,M(x, a)
∣∣∣

the inequality
∣∣∣ĥr,M(x)− hr,M(x)

∣∣∣ ≤ sup
a∈A

∣∣∣Ĉr,M(x, a)− Cr,M(x, a)
∣∣∣

holds for all x and a, where

hr,M(x) := max{gr(x), fr(x, ar,M(x)) + Cr,M(x, ar,M(x))}.
Analogously one can show that

|hr(x)− hr,M(x)| ≤ sup
a∈A

|Cr(x, a)− Cr,M(x, a)|. (7.2)
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On the other hand we have

Ĉr,M(x, a)− Cr,M(x, a) = (7.3)
M∑
m=1

wm,M(x,XM
r )ϕ(x,X

(m)
r+1, a)(ĥr+1,M(X

(m)
r+1)− hr+1(X

(m)
r+1)),

hence
∣∣∣ĥr,M(x)− hr,M(x)

∣∣∣

≤ Aϕ

M∑
m=1

|wm,M(x,XM
r )|

∣∣∣ĥr+1,M(X
(m)
r+1)− hr+1(X

(m)
r+1)

∣∣∣ , x ∈ Rd.

Denote with Gr+1 the σ-algebra generated by the samples used from T down to
r + 1. The application of Hölder's and Jensen inequality leads to

E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

≤ Aϕ E
M∑
m=1

EGr+1

[∣∣∣ĥr+1,M(X
(m)
r+1)− hr+1(X

(m)
r+1)

∣∣∣
∥∥wm,M(·, X(·)

r )
∥∥
Lq(pr)

]

≤ Aϕ E

{[
EGr+1

∣∣∣ĥr+1,M(X
(1)
r+1)− hr+1(X

(1)
r+1)

∣∣∣
q]1/q

×
M∑
m=1

[
EGr+1

∥∥wm,M(·,XM
r )

∥∥ q
q−1

Lq(pr)

]1−1/q
}

≤ Aϕ E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

M∑
m=1

(∫
pr(x) E

∣∣wm,M(x,XM
r )

∣∣q dx
) 1

q

= Aϕ E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

M∑
m=1

‖wm,M(·, ·)‖Lq(pr⊗M
l=1pr) .

The induction assumption (7.1) implies now that

E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

= O(εMλ
T−r
q,M ).

Note that by letting q ↓ 1, the last estimate holds true for q = 1 as well. Further we
have

E
∥∥∥ĥr,M − hr

∥∥∥
Lq(pr)

≤ E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

+ E ‖hr,M − hr‖Lq(pr)

and due to (7.2)

E ‖hr,M − hr‖Lq(pr)

≤
{∫

Rd

‖Cr(x, ·)− Cr,M(x, ·)‖qA pr(x) dx
}1/q

= O(εM), M →∞.
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7.3 Proof of Theorem 4.3

For any x ∈ D we have on the set {|pr,M(x)| > pmin/2}

CDr,M(x, a)− Cr(x, a) =
dr,M
pr,M

− dr
pr

=
dr,M − dr
pr,M

+ Cr
pr − pr,M
pr,M

and so
∥∥CDr,M − Cr

∥∥
D×A ≤ 2p−1

min ‖dr,M − dr‖D×A + 2Cmaxp
−1
min ‖pr − pr,M‖D .

Hence

E
∥∥CDr,M − Cr

∥∥
D×A ≤ 2p−1

min E ‖dr,M − dr‖D×A + 2Cmaxp
−1
min E ‖pr − pr,M‖D

+ Cmax P
(‖pr − pr,M‖D > pmin/2

)
. (7.4)

Since

pr,M(x)− E pr,M(x) =
1

M

M∑
m=1

(
ΦM(x,X(m)

r )− E ΦM(x,X(m)
r )

)

we immediately get from Theorem 7.1 taking into account conditions (i), (ii), and
(iii) in Theorem 4.3,

E ‖pr,M − E pr,M‖Rd ≤ B

M

[
νUM log

AUM
σr,M

+
√
ν

√
Mσ2

r,M log
AUM
σr,M

]

≤ B1

√
νγM , M →∞,

with some universal positive constants constants B and B1. Similarly,

P
(‖pr,M − E pr,M‖Rd > C1γM

) ≤

L exp

(
−C1 log(1 + C1/(4L))

L
log

UM
σr,M

)
, M →∞,

for any C1 ≥ C, where positive constants C and L only depend on the VC-
characteristics A and ν. Due to condition (iv) there exists W > 0 such that

(
σr,M
UM

)W

≤ γM .

Then for any �xed C1 ≥ C such that
C1 log(1 + C1/(4L))

L
≥ W

we have

P
(‖pr,M − E pr,M‖Rd > C1γM

)

≤ L

(
σr,M
UM

)C1 log(1+C1/(4L))
L

≤ L

(
σr,M
UM

)W

≤ LγM , M →∞.
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Due to (iii) we can now �nd M0 such that for all M > M0 it holds C1γM ≤ pmin/4.
Hence

P
(‖pr − E pr,M‖Rd > pmin/4

) ≤ LγM , M →∞.

Since

P
(‖pr − pr,M‖D > pmin/2

) ≤ P
(‖pr − E pr,M‖Rd > pmin/4

)

+ P
(‖E pr − pr,M‖Rd > pmin/4

)

and ‖pr − E pr,M‖D goes to zero for M →∞, we end up with

P
(‖pr − pr,M‖D > pmin/2

) ≤ LγM , M →∞.

Similarly,

E ‖pr − pr,M‖D ≤ ‖pr − E pr,M‖Rd + E ‖E pr,M − pr,M‖Rd

≤ ‖pr − E pr,M‖Rd + L1γM

with L1 := B1

√
ν only depending on the VC characteristics. Next, by applying

Theorem 7.1 to the representation

dr,M(x)− E dr,M(x) =
1

M

M∑
m=1

(
ΦM(x,X(m)

r )ϕ(x,X
(m)
r+1, a)hr+1(X

(m)
r+1)

−E
[
ΦM(x,X(m)

r )ϕ(x,X
(m)
r+1, a)hr+1(X

(m)
r+1)

])
,

with ŨM := AφAhUM and σ̃r,M := AφAhσr,M , and observing that (i)-(iv) in The-
orem 4.3 are trivially ful�lled for the sequences ŨM and σ̃r,M , we obtain in an
analogous way the estimate

E ‖dr − dr,M‖Rd×A ≤ E ‖dr − E dr,M‖Rd×A + L2γM

with some constant L2 > 0 only depending on the VC characteristics. Taking all
together, (7.4) yields

E ‖CDr,M − Cr‖D×A ≤
(
CmaxL+ 2Cmaxp

−1
minL1 + 2p−1

minL2

)
γM

+ 2Cmaxp
−1
min ‖pr − E pr,M‖Rd + 2p−1

min ‖dr − E dr,M‖Rd ,

from which the statement of the theorem follows with L0 := 1
2
L+ L1 + L2.

7.4 Proof of Theorem 4.5

We have

λMmin = min
‖w‖=1

w>ΓM,Kw

≥ min
‖w‖=1

w>ΓKw + min
‖w‖=1

w>(ΓM,K − ΓK)w

≥ λmin −K max
1≤k,l≤K

|ΓM,K
l,k − ΓKl,k|. (7.5)
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By the uniform boundedness of ψk(x) on Rd it follows that

Var [ψl (Xr)ψk (Xr)] ≤ E
[
ψ2
l (Xr)ψ

2
k (Xr)

] ≤ A4
ψ,

and so we get by Bernstein's inequality

P(|ΓMl,k − Γl,k| > δ) ≤ 2 exp

[
− Mδ2

2A2
ψ

(
A2
ψ + 2δ/3

)
]
. (7.6)

Combining (7.5) and (7.6), we get

P(λM,K
min < λmin/2) ≤ P

(
max

1≤k,l≤K

∣∣∣ΓM,K
l,k − ΓKl,k

∣∣∣ > λmin/2K

)

≤ 2K2 exp

[
− Mλ2

min

8K2A2
ψ

(
A2
ψ + 2δ/3

)
]
≤ 2K2 exp

[−B0M/K2
]

(7.7)

with some constant B0 > 0 independent of K and M. We further have

1{λM
min≥λmin/2}

∣∣CT
r,M(x, a)− Cr(x, a)

∣∣ ≤ E (1)
r,M + E (2)

r,M + |∆r(x, a)| (7.8)

with

E (1)
r,M = sup

(x,a)∈A

∣∣∣∣∣
1

M

M∑
m=1

ψ>K(x)
[(

ΓM,K
)−1 − (

ΓK
)−1

]
ψK(X(m)

r )Y (m)(a)

∣∣∣∣∣ ,

E (2)
r,M = sup

(x,a)∈A

∣∣∣∣∣
1

M

M∑
m=1

(
ψ>K(x)

(
ΓK

)−1
ψK(X(m)

r )Y (m)(a)

−E
[
ψ>K(x)

(
ΓK

)−1
ψK(X(m)

r )Y (m)(a)
])∣∣∣ .

The matrix identity A−1 − B−1 = A−1(B − A)B−1 and the multiplicativity of the
spectral matrix norm imply on the set {λM,K

min ≥ λmin/2},
∥∥∥
(
ΓM,K

)−1 − (
ΓK

)−1
∥∥∥

2
≤ 2

λ2
min

∥∥ΓK − ΓM,K
∥∥

2
.

Hence, it holds on the set {λM,K
min ≥ λmin/2},

sup
(x,a)∈A

∣∣∣ψ>K(x)
[(

ΓM,K
)−1 − (

ΓK
)−1

]
ψK(X(m)

r )Y (m)(a)
∣∣∣

≤ 2AϕAh
λ2

min

‖ψK(x)‖2

∥∥ψK(X(m)
r )

∥∥
2

∥∥ΓK − ΓM,K
∥∥

2

≤ K2AϕAhA
2
ψ

2

λ2
min

∥∥ΓK − ΓM,K
∥∥

max
,

where ‖·‖max denotes the elements-wise maximum. Due to our assumptions it follows
from Theorem 7.1 that

E E (1)
r,M ≤ B2

K2

√
M
, (7.9)
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where the constant B2 does not depend on K and M. Since

E (2)
r,M ≤

√
K
Aψ
λmin

sup
a∈A

∥∥∥∥∥
1

M

M∑
m=1

(
ψK(X(m)

r )Y (m)(a)− EψK(X(m)
r )Y (m)(a)

)
∥∥∥∥∥

2

≤ KAψ
λmin

sup
a∈A

max
1≤k≤K

∣∣∣∣∣
1

M

M∑
m=1

(
ψk(X

(m)
r )Y (m)(a)− Eψk(X

(m)
r )Y (m)(a)

)
∣∣∣∣∣ ,

our assumptions and Theorem 7.1 lead to the following bound

E E (2)
r,M ≤ B3

K√
M
, (7.10)

where constant B3 does not depend on K and M. Combining (7.8) with (7.9) and
(7.10), we arrive at (4.11).

7.5 Proof of Theorem 5.1

For any h = (h0, ..., hT ) ∈ H and a ∈ A let consider a martingale Mr from the Doob
decomposition of hr(Xr):

Ma
r+1 −Ma

r = hr+1(Xr+1)− Ea [hr+1(Xr)|Fr] ,

with Ma
0 = 0, i.e.,

Ma
r =

r−1∑
j=0

(
Ma

j+1 −Ma
j

)
=

r−1∑
j=0

(hj+1(Xj)− P ajhj+1(Xj)) .

We then have

Y ∗
r = inf

h
sup
a∈Ar
τ, τ≥r

Ea

[
τ−1∑
j=r

fj(Xj, aj) + gτ (Xτ )−
τ−1∑
j=r

(hj+1(Xj)− P ajhj+1(Xj))

∣∣∣∣∣Fr
]

≤ inf
h

{
hr(Xr) + sup

a∈Ar

E∗
[
i−1∑
j=r

Λr,j(a, X) (fj(Xj, aj) + P ajhj+1(Xj)− hj(Xj))

+Λr,i(a, X) (gi(Xi)− hi(Xi))| Fr]}

≤ inf
h

{
hr(Xr) + E∗

[
T−1∑
j=r

sup
a∈Ar

Λr,j(a, X)
(
(Lh)j (Xj)− hj(Xj)

)+

+ max
i≥r

sup
a∈Ar

Λr,i(a, X) (gi(Xi)− hi(Xi))
+

∣∣∣∣Fr
]}

.

For h = h∗ it holds max [gi, (Lh∗)i] = h∗i , and h∗T (x) = gT (x), so we �nally have

identity.
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7.6 Some results from the theory of empirical processes

For the readers convenience we here recall some de�nitions and corner stone results
from the theory of empirical processes.

De�nition A class F of measurable functions on a measurable space (S,S) is
called a Vapnik-�ervonenkis class if there exist positive numbers A and ν such that,
for any probability measure P on (S,S) and any 0 < ρ < 1,

N (F , L2(P), ρ‖F‖L2(P)) ≤
(
A

ρ

)ν

, (7.11)

where N (F , d, ε) denotes the ε-covering number of F in a metric d, that is the
minimal number of spheres with radius ε needed to cover F , and F := supf∈F |f |
is the envelope of F (with here and below sup denoting esssup with respect to P).
The following proposition is a key tool for obtaining convergence rates for the local
and global type estimators considered in this paper.

Theorem 7.1 (Talagrand (1994), Giné and Guillou (2002)). Let F be a measurable
uniformly bounded VC class of functions. Let P be any measure on (S,S), and let
(Xm)m=1,2,... be an i.i.d. sequence of S-valued random variables with distribution P.
Let σ and U be any numbers such that

sup
f∈F

VarP(f) ≤ σ2, sup
f∈F

‖f‖∞ ≤ U

and 0 < σ ≤ U . Then, there exist a universal constant B such that

E

[
sup
f∈F

∣∣∣∣∣
M∑
m=1

(f(Xm)− E f(X1))

∣∣∣∣∣

]
≤ B

[
νU log

AU

σ
+
√
ν

√
Mσ2 log

AU

σ

]
.

If moreover 0 < σ < U/2 and
√
Mσ ≥ U

√
log(U/σ), there exist constants L and

C which only depend on the VC characteristics of F , such that for all λ ≥ C and t
satisfying

C
√
Mσ

√
log

U

σ
≤ t ≤ λ

Mσ2

U
,

it holds

P

(
sup
f∈F

∣∣∣∣∣
M∑
m=1

(f(Xm)− E f(X1))

∣∣∣∣∣ > t

)
≤ L exp

(
− log(1 + λ/(4L))

λL

t2

Mσ2

)
.

Thus, in particular, for any C1 ≥ C we may take

t = C1

√
Mσ

√
log

U

σ
, λ = C1,
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which yields

P

(
sup
f∈F

∣∣∣∣∣
M∑
m=1

(f(Xm)− E f(X1))

∣∣∣∣∣ > C1

√
Mσ

√
log

U

σ

)
(7.12)

≤ L exp

(
−C1 log(1 + C1/(4L))

L
log

U

σ

)
.
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