
Stochastic Online Scheduling with Precedence Constraints

Nicole Megow∗ Tjark Vredeveld †

January 5, 2009

Abstract

We consider the preemptive and non-preemptive problems of scheduling jobs with prece-
dence constraints on parallel machines with the objective to minimize the sum of (weighted)
completion times. We investigate an online model in which the scheduler learns about a
job when all its predecessors have completed. For scheduling on a single machine, we show
matching lower and upper bounds of Θ(n) and Θ(

√
n) for jobs with general and equal weights,

respectively. We also derive corresponding results on parallel machines.
Our result for arbitrary job weights holds even in the more general stochastic online

scheduling model where, in addition to the limited information about the job set, process-
ing times are uncertain. For a large class of processing time distributions, we derive also an
improved performance guarantee if weights are equal.

1 Introduction

One of the classical scheduling problems that has attracted research for decades is the problem of
processing jobs with precedence constraints on parallel machines with the objective to minimize
the sum of (weighted) completion times. We consider a stochastic online version of this problem
where processing times are modelled as random variables and the jobs become known to the
scheduler online.

In traditional online paradigms, i. e., the online-time and the online-list model [21, 24], it
is assumed that all data about a request are revealed as soon as the request becomes known.
Interpreted for an online scheduling problem with precedence constraints, this means that whenever
a job arrives, a scheduler learns about its weight and processing time and – most importantly
– about job dependencies. However, these dependencies occur between two jobs and it is not
clear which job gets assigned the information about such a bilateral relation. Certainly, there
are various options to specify the information that should be revealed at job arrival. However,
we consider a model in which the moment of unveiling jobs and all their data is designated by
other job completions: a scheduler learns about the existence of a job when all its predecessors
have completed their processing. Then, its weight, (expected) processing time and all precedence
relations to predecessors become known. This model has been used earlier for online scheduling
to minimize makespan [8, 2].

1.1 Problem definition

Let J = {1, 2, . . . , n} be a set of jobs which must be scheduled on m identical, parallel machines.
Each of the machines can process at most one job at the time, and the jobs can be executed by any
of the machines. All jobs must be scheduled in compliance with the given precedence constraints.

∗Max-Planck-Institut für Informatik, Campus E1 4, 66123 Saarbrücken, Germany. Email: nmegow@mpi-

inf.mpg.de. Research partially supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

†Maastricht University, Department of Quantitative Economics, P.O. Box 616, 6200 MD Maastricht, The Nether-
lands. Email: t.vredeveld@ke.unimaas.nl. Research partially supported by METEOR, the Maastricht research
school of Economics of Technology and Organizations.

1

These constraints define a partial order (J ,≺) on the set of jobs J , where j ≺ k implies that
job k must not start processing before j has completed. If no precedence constraints are given,
then we call the jobs independent.

Each job j must be processed for P j units of time, where P j is a non-negative random variable.
By E [P j] we denote the expected value of the processing time of job j and by pj a particular
realization of P j . We assume that all random variables of processing times are stochastically
independent. We may or may not allow preemption. In the preemptive setting, a job can be
interrupted at any time and resume processing on the same or another machine at any time
later. In the non-preemptive setting, each job must run until its completion once it has started.
Additionally, each job j has associated a non-negative weight wj .

The goal is to find a non-anticipatory scheduling policy so as to minimize the total weighted
completion time of the jobs,

∑
wjCj , in expectation, where Cj denotes the completion time of job j.

For details on stochastic scheduling policies we refer to Möhring, Radermacher, and Weiss [19].
In this paper we consider the online version of these stochastic problems in which a job j

becomes known to the scheduler when all its predecessors k ≺ j have completed their processing;
at this point in time the weight wj and the probability distribution of the processing time P j

are revealed. The solution of such a stochastic online scheduling problem is a non-anticipatory,
online scheduling policy; for more details see [17]. We aim for approximative policies, and as
suggested in [17], we use a generalized definition of approximation guarantees from traditional
stochastic offline scheduling by [20]. Then, an (online) stochastic policy Π is a ρ-approximation,
for some ρ ≥ 1, if for all problem instances I,

E [Π(I)] ≤ ρ E [Opt(I)] ,

where E [Π(I)] and E [Opt(I)] denote the expected values that the policy Π and an optimal
non-anticipatory offline policy, respectively, achieve on a given instance I. The value ρ is called
performance guarantee of policy Π.

1.2 Previous Work

The deterministic offline problem of scheduling jobs with precedence constraints to minimize the
sum of (weighted) completion times has been shown to be NP-hard [12, 13] even if there is only a
single processor. The preemptive problem is NP-hard already on two machines when precedence
constraints form chains [5] and in the weighted setting even when additionally all jobs have unit
processing times [5, 27].

The deterministic single machine problem has attracted research for more than thirty years
and a vast amount of results has been obtained on this problem. Several classes of scheduling
algorithms based on different LP-formulations are known that achieve an approximation ratio of 2
in polynomial time whereas special cases are even solvable optimally; we refer to [4, 1] for a recent
comprehensive overview. For the parallel machine variant of this problem, the currently best
known approximation algorithm is by Queyranne, and Schulz [22] and yields an approximation
guarantee of 4− 2/m. When preemption is allowed, Hall et al. [9] propose an LP-based algorithm
that yields a 3− 1/m-approximate solution.

Despite the obvious research interest in the scheduling problem under consideration, literature
is very limited when assuming uncertainty in the problem data. As far as we know, the only
work that deals with precedence constraints in scheduling under uncertainty is by Skutella and
Uetz [25], who consider the stochastic offline scheduling model. The performance guarantees they
prove are functions of a parameter ∆ that bounds the squared coefficient of variation of processing
times. Their policies require to solve a linear programming relaxation in which all jobs must be
known in advance. This approach is not directly applicable in our online setting.

To the best of our knowledge, we present the first results on scheduling with precedence con-
straints to minimize the sum of completion times when the problem instance is revealed online.

On the other hand, research has been done on the deterministic online problem when the goal
is to minimize the makespan. Probably, one of the earliest publications using the online paradigm

2

introduced above is by Feldmann et al. [8]. They consider a different scheduling model, in which
parallel jobs are processed by more than one machine at the same time. Considering jobs that are
processed by at most one machine at the time, no algorithm can achieve a constant competitive
ratio. Azar and Epstein [2] derived a lower bound of Ω(

√
m) for the competitive ratio of any

deterministic or random online algorithm that schedules jobs, preemptively or not, on m related
machines. This bound matches an upper bound given earlier by Jaffe [11].

Finally, there exists relevant work on the deterministic offline problem of scheduling jobs with
generalized precedence constraints, so called And/Or-precedence relations. While ordinary prece-
dence constraints force a job to wait for the completion of all its predecessors (represented as an
And-node in the corresponding precedence graph), there is an additional relaxed waiting condition
that allows a job to start after at least one of its predecessors has completed (Or-node). Clearly,
ordinary precedence constraints are contained as a special case in And/Or-precedence constraints.
Erlebach, Kääb, and Möhring [7] analyze the performance of a Shortest Processing Time (Spt) Al-
gorithm for the deterministic offline problem of scheduling with And/Or-precedence constraints
on a single machine. The classic Spt algorithm schedules jobs in non-decreasing order of their
processing times. Erlebach et al.’s variant considers at any time only jobs that are available for
processing according to the precedence constraints and schedules one with minimal processing
time. Thus, it coincides with the online Spt algorithm that knows of jobs only after all predeces-
sors have finished. Therefore, the approximation results translate into competitiveness results in
our online setting if all processing times are deterministic.

Theorem 1 (Erlebach, Kääb, and Möhring [7]). The online version of the Spt algorithm has a
competitive ratio of n for the deterministic, non-preemptive problem on a single machine. If all
jobs have equal weights, then Spt is 2

√
n-competitive.

In their paper, Erlebach et al. [7] state (without proof) that a parallel machine version of Spt
also yields an approximation guarantee of n for the deterministic parallel machine scheduling
problem. This result would also hold in our model restricted to deterministic instances.

1.3 Our results

We provide the first results on online scheduling with precedence constraints to minimize
the (weighted) sum of completion times.

We complement the results in Theorem 1 by Erlebach et al. [7] with matching lower bounds on
the competitive ratio of any online algorithm for the single machine problem. It follows that an
online Spt algorithm achieves the best possible performance for this problem which is a competitive
ratio of n. If all weights are equal, then we improve this bound to

√
2n. On the other hand, we show

that no online algorithm can have a competitive ratio less than 2/3
√

n− 1. For the corresponding
scheduling problem on identical parallel machines we also provide lower and upper bounds on the
competitive ratio. Here, we leave a gap growing with the number of machines m. Table 1 gives a
summary of the lower and upper bounds we derived.

Notice, that on a single machine preemption does not lead to an improved schedule since online
information is revealed only at the completion of jobs. Therefore, the results transfer immediately
to the preemptive setting. This is also true for the bounds on parallel machine scheduling. The
worst-case instances for the lower bounds are constructed on chains in which case preemption is
redundant again [5] whereas in the analysis of the algorithm (for the upper bound) we use lower
bounds on the optimal offline value which hold in the preemptive as well as in the non-preemptive
setting.

We derive most of the performance guarantees above in a much more general model for schedul-
ing under uncertainty, in which additionally to the lack of information about job arrivals, also
processing times of known jobs are uncertain. We show that an online variant of the Shortest
Expected Processing Time (Sept) policy yields the best possible approximation guarantees, n, for
the stochastic single machine problem, independently of the probability distribution of process-
ing times. If the weights of all jobs are equal, then we improve this bound for processing time
distributions with Var[Pj]/E [Pj]2 ≤ n/(m − 1) − 1. For so called NBUE distributions, that is,

3

lower bound upper bound And/Or-prec [7]

single machine, wj = 1 2
3

√
n− 1

√
2n 2

√
n

single machine, arbitrary wj n− 1 n n

parallel machines, wj = 1 2
3

√
n
m − 1

√
2mn n

parallel machines, arbitrary wj
n−1
m n n

Table 1: Bounds on the performance guarantee of any preemptive or non-preemptive online algorithm
[lower bound] and on the performance guarantee of an online version of S(e)pt [upper bound] for non-
preemptive stochastic online scheduling of jobs with precedence constraints. Upper bounds for the un-
weighted setting are given for the special case where processing time distributions obey Var [P j] ≤ E [P j]2.
The approximation results for arbitrary weights also hold true when job preemption is allowed. For deter-
ministic problem instances this is true also for the improved results for trivial weights. Offline consider-
ations in [7] for problems with And/Or-precedence relations transfer to our deterministic online setting
and inspire our new results; their approximation guarantees are given in the third column.

distributions for which holds that E [Pj − t |Pj > t] ≤ E [Pj], for all t ≥ 0, and thus satisfying
Var[Pj] ≤ E [Pj]2 [10], the competitive ratio is no more than

√
2mn. Obviously, this holds also for

deterministic processing times in which case the Sept policy coincides with the Spt algorithm.
Finally, the lower bounds on the competitive ratio for deterministic online scheduling translate

directly into lower bounds on our more general model, since online scheduling instances with
deterministic processing times can be seen as a special case.

In stochastic (online) scheduling preemption is a powerful tool for dealing with the uncertainty
of processing times even on a single machine; see e.g. [28, 18]. However, the approximation guaran-
tee of n for scheduling jobs with arbitrary weights by Sept holds also in the preemptive scheduling
setting. This is not true for the improved result for jobs with equal job weights because we use
a lower bound on the optimum value which does not hold when preemption is allowed. Actually,
simple examples show that Sept as well as any other policy that does not utilize preemption may
perform arbitrarily bad.

Our results are still valid when considering the more general And/Or-precedence constraints
even though this is not focus of our work. Thereby we give a full proof for the approximation
guarantee of n for parallel machine scheduling with And/Or-precedence constraints which was
mentioned in [7]. Moreover, we improve this result for scheduling instances in which all jobs have
equal weights and give a approximation guarantee of

√
2mn.

2 Scheduling jobs with arbitrary weights

For scheduling independent jobs, good performance guarantees have been obtained for online ver-
sions of Smith’s classic rule [26], also known as Weighted Shortest Processing Time Rule (Wspt),
its stochastic counterpart, and various extensions [23, 16, 17, 15]. If jobs must obey precedence re-
lations which are revealed after all predecessors have completed, no such variant yields a bounded
performance. We give a simple single machine example where all jobs have even deterministic
processing times. Note, that on a single machine no waiting time will reveal new information on
the online sequence and no preemption will improve the schedule.

Example 1. Consider an instance that consists of the following three jobs. The first job has
processing time p1 = k ≥ 3 and weight w1 = 1. Jobs 2 and 3 must obey the precedence con-
straint 2 ≺ 3; they have processing times p2 = 1 and p3 = ε, respectively, and their weights
are w2 = ε and w3 = k. Let k and ε be such that the ratios of weight over processing time of the
two independent jobs 1 and 2 fulfill w1/p1 > w2/p2, that means ε < 1/k.

Then the online version of the Wspt algorithm schedules the jobs in increasing order of their
indices, 1, 2, and 3 achieving an objective value of k2 + 2k + ε(2k + 1). In contrast, an optimal

4

schedule has job 2 being processed first, followed by 3 and 1, and yields thus a value of 2k + 1 +
ε(k + 2). For k ≥ 3, the ratio of values of the Wspt schedule and an optimal schedule is larger
than k

2 which is unbounded for increasing k.

Consider the online variant of the Shortest Processing Time (Spt) policy that schedules at any
point in time the job with the shortest processing time among the available jobs. Even though it
seems counter intuitive to ignore known job weights, Theorem 1 states that this algorithm yields
a competitive ratio that matches the lower bound on the performance guarantee for any online
algorithm on a single machine as we prove later in Theorems 5 and 6.

We extend this result to the more general parallel machine setting in which all jobs have
stochastic processing times, without loosing in the performance guarantee. Consider the stochastic
online preemptive and non-preemptive scheduling problems on parallel machines and the stochastic
online policy that runs the online variant of the Shortest Expected Processing Time (Sept) policy
on only one out of m machines. This non-preemptive policy simply ignores the m − 1 remaining
available machines. We denote this policy by 1-Sept.

Lemma 2. The order of jobs in a schedule obtained by 1-Sept is independent of the realization
of processing times.

Proof. We claim that for any two realizations of processing times, at the completion of job j the
same set of jobs is available, for any j ∈ J . This implies the lemma, as 1-Sept chooses the job to
process only based on the set of available jobs and the expected processing times of these jobs.

To see the claim, consider two realizations of processing times. We assume that jobs are indexed
in order in which they are processed in the first realization. First note that when no job has been
processed, obviously the same set of jobs is available to 1-Sept in both realizations. Suppose the
claim is true up to job j. As 1-Sept chooses job j + 1 to be processed after job j in the first
realization and in the second realization the same set of jobs is available to 1-Sept, the policy will
also choose job j + 1 to be processed for the second realization. Hence, at the completion of job
j + 1 the same set of jobs will be set free to 1-Sept in the first as in the second realization.

Let E
[
CΠ

j

]
denote the expected completion time of a job j in the schedule obtained by

policy Π. Inspired by [7], we define a stochastic version of the threshold ξΠ
j of a job j for policy Π

as the maximum expected processing time of a job that finishes in expectation no later than j.
More formally,

ξΠ
j = max

k∈J
{ E [P k] | E

[
CΠ

k

]
≤ E

[
CΠ

j

]
} .

Thresholds have a useful property.

Lemma 3 (Threshold-Lemma). Let Π be a feasible policy for the stochastic preemptive or non-
preemptive scheduling problem on parallel machines. Then for any job j ∈ J with threshold ξΠ

j

holds
ξ1−Sept
j ≤ ξΠ

j .

Proof. For any non-anticipatory policy Π, we have that ξΠ
j ≥ E [P j] since E [P j] ≤ E

[
CΠ

j

]
.

If ξΠ
j = E [P j], then the lemma holds. Suppose that ξ1−Sept

j > E [P j]. Then there exists a job
k that was completed before job j by 1-Sept, and that has expected processing time E [P k] =
ξ1−Sept
j > E [P j]. As 1-Sept chooses the job with smallest expected processing time, we know by

Lemma 2 that in any realization of processing times, job j cannot be available to 1-Sept when
job k is started to be processed. Hence, k must be a predecessor of j. Thus, any policy processes
job k before j, from which follows ξΠ

j ≥ E [P k] = ξ1−Sept
j .

Now, we can establish a performance guarantee for 1-Sept.

Theorem 4. The 1-Sept policy that utilizes only one machine is an n-approximation for the
stochastic online scheduling problem on parallel machines with and without preemption.

5

Proof. Let jobs be indexed in their order in the 1-Sept schedule. Recall from Lemma 2 that
the order of jobs in the 1-Sept schedule is independent of the realization of processing times.
Then k < j implies E

[
C1−Sept

k

]
< E

[
C1−Sept

j

]
. Since there is no idle time, the expected

completion time E
[
C1−Sept

j

]
of a job j in the 1-Sept schedule is

E
[
C1−Sept

j

]
=

j∑
k=1

E [P k] ≤ n ξ1−Sept
j . (1)

With the Threshold-Lemma 3 and the fact that ξΠ
j ≤ E

[
CΠ

j

]
holds by definition for any policy Π

– thus, also for an optimal policy Opt – we conclude from inequality (1)

E
[
CSept

j

]
≤ n ξOpt

j ≤ n E
[
COpt

j

]
.

Weighted summation over all jobs j ∈ J proves the theorem.

In the following we show that no online algorithm using m machines can have a competitive
ratio of less than (n− 1)/m. Thus the analysis of the simple 1-Sept policy using one machine is
tight if there is just one machine available, whereas in general it leaves a gap in the order of m. The
lower bound is achieved even when the processing times are given deterministically. By definition
of the model, these bounds carry over to the more general stochastic online scheduling model.

Theorem 5. No preemptive or non-preemptive deterministic online algorithm can achieve a com-
petitive ratio less than (n − 1)/m for scheduling with precedence constraints on any number of
machines m.

Proof. Consider the following instance that consists of n jobs and assume, w.l.o.g., that n − 1 is
a multiple of the number of machines m. We have n − 1 independent jobs 1, 2, . . . , n − 1 with
weights wj = 0 and unit processing time. Suppose, that the online algorithm chooses the job ` to
be scheduled such that it completes as the last job. Then, we have one final job n in the instance
with ` as its predecessor and with processing time zero and weight 1.

Clearly, the online algorithm can schedule the highly weighted last job only as the final job,
achieving a schedule with value (n− 1)/m. In contrast, an offline algorithm would choose job ` as
one of the m first jobs to be processed, followed by the highly weighted job n. This yields value
of 1. Thus, the ratio between both value is (n− 1)/m.

Adding a randomizing ingredient to the instance above, we extend the result to a lower bound
for any randomized online algorithm. Here, we make use of Yao’s principle [29] which states
that a lower bound on the expected competitive ratio of any deterministic online algorithm on an
appropriate input distribution also lower bounds the competitive ratio of any randomized online
algorithm against an oblivious adversary. Since this is the weakest type of adversaries, these lower
bounds hold against any other adversary with more power as well; see, e.g., Ben-David et al. [3].

Theorem 6. No preemptive or non-preemptive randomized online algorithm can achieve a com-
petitive ratio less than (n− 1)/(m + 1) for scheduling with precedence constraints on any number
of machines m.

Proof. Consider the instance in the previous proof. When playing against a randomized algo-
rithm, an oblivious adversary does not know which will be the last completing job ` among the
independent jobs. Therefore, we modify the instance by adding m random precedence relations to
each job 1, . . . , n− 1 with the same probability. Let k := (n− 1)/m be an integral number. Then,
any set of m jobs (excluding n) has probability 1/

(
km
m

)
for being the set of predecessors of n.

6

Clearly, the optimal offline solution has still value 1. Now, consider any deterministic online
algorithm Alg.

E [Alg] = E
[
CAlg

n

]
≥

k−1∑
i=1

iPr
[
i ≤ CAlg

n < i + 1
]
+ k Pr

[
k ≤ CAlg

n

]
=

k∑
k=i

Pr
[
CAlg

n ≥ i
]

=
k∑

i=1

1− Pr
[
CAlg

n < i
]

= k −
k∑

i=1

Pr
[
CAlg

n < i
]
. (2)

Moreover, we give Alg the advantage that it schedules job n as soon as all its predecessors have
completed. The number of jobs that can be completed strictly before a fixed (integral) point in
time i + 1 is at most im. Therefore, the probability that all m random predecessors of job n
complete before a fixed time 2 ≤ i + 1 ≤ k is

Pr
[
CAlg

n < i + 1
]
≤

(
im
m

)(
km
m

) =
(im)!

((i−1)m)!

(km)!
((k−1)m)!

≤
(

i

k

)m

, (3)

and Pr
[
CAlg

n < 1
]

= 0. Now we use the bound
∑k−1

i=1

(
i
k

)m ≤ k
m+1 which we prove below. This

bound combined with (2) and (3) yields

E [Alg] ≥ k −
k−1∑
i=1

(
i

k

)m

≥ k

(
1− 1

m + 1

)
=

n− 1
m + 1

.

By Yao’s principle [29] this gives the desired lower bound on the competitive ratio of any online
algorithm.

It is left to show
∑k−1

i=1

(
i
k

)m ≤ k
m+1 . We prove the bound by induction on k; it is certainly

true for k = 2.

k∑
i=1

(
i

k + 1

)m

=
k−1∑
i=1

(
i

k

)m (
k

k + 1

)m

+
(

k

k + 1

)m

=
(

k

k + 1

)m
[

k−1∑
i=1

(
i

k

)m

+ 1

]

≤
(

k

k + 1

)m [
k

m + 1
+ 1

]
=

km+1 + (m + 1)km

(k + 1)m(m + 1)
(4)

≤ (k + 1)m+1

(k + 1)m(m + 1)
=

k + 1
m + 1

. (5)

Inequality (4) follows from the induction hypothesis. The second inequality (5) follows from

(k + 1)n =
n∑

i=0

(
n

i

)
ki > kn + n kn−1,

which concludes the inductive step.

2.1 Scheduling Jobs with equal Weights

If all job weights are equal then, intuitively, the 1-Sept policy should perform better than in
the general setting. We show a performance bound for non-preemptive scheduling which improves
the n-approximation in Theorem 4 for a large class of problem instances; in particular, for instances
with NBUE distributed processing times, which include deterministic instances, it is

√
2nm. We

achieve this bound by extending ideas of Erlebach et al. [7] to the stochastic online parallel-
machine setting. Moreover, we apply the following lower bound on the expected optimal value for
the relaxed problem without precedence constraints given by Möhring, Schulz, and Uetz [20].

7

Lemma 7 (Möhring et al. [20]). Consider the stochastic scheduling problem on parallel machines
to minimize the expected total weighted completion time in which all jobs are available for processing
from the beginning. Assume that the jobs are indexed in non-decreasing order of expected processing
times E [P j]. Then, an optimal policy Opt yields a value

∑
j

E
[
COpt

j

]
≥

∑
j

j∑
k=1

E [P k]
m

− (m− 1)(∆− 1)
2m

∑
j

E [P j] ,

where ∆ bounds the squared coefficient of variation of the processing times, that is, Var[P j] ≤
∆ E [P j]2 for all jobs j = 1, . . . , n and some ∆ ≥ 0.

Theorem 8. The 1-Sept policy achieves an approximation guarantee of

ρ =
1
2
(m− 1)(∆− 1) +

1
2

√
[(m− 1)(∆− 1)]2 + 8mn ,

with Var[P j] ≤ ∆ E [P j]2 for any instance of the non-preemptive stochastic online problem on
parallel machines.

Proof. Consider an 1-Sept schedule. Let α > (m − 1)(∆ − 1)/
√

n be a parameter that will be
specified later. For notational convenience, we define for each job j the set of jobs completed no
later than job j in the 1-Septschedule as B(j) = {k ∈ J | E

[
C1−Sept

k

]
≤ E

[
C1−Sept

j

]
}. Let x

be the last job in the 1-Sept schedule such that all jobs scheduled before this job have an expected
processing time of at most E

[
C1−Sept

x

]
/(α

√
n), that is,

x := arg max

{
E

[
C1−Sept

j

] ∣∣∣∣ j ∈ J and E [P k] ≤
E

[
C1−Sept

j

]
α
√

n
for all k ∈ B(j)

}
.

This designated job x is used to partition the set of jobs into two disjunctive subsets: J≤ denotes
the set of jobs that complete before x in the 1-Sept schedule, that is, J≤ = {j ∈ J |E

[
C1−Sept

j

]
≤

E
[
C1−Sept

x

]
}, and J> consists of the remaining jobs J \J≤. Obviously, the expected completion

time of job x is E
[
C1−Sept

x

]
=

∑
j∈J≤ E [P j]. Now, the expected value of the Sept schedule can

be expressed as ∑
j∈J

E
[
C1−Sept

j

]
=

∑
j∈J≤

E
[
C1−Sept

j

]
+

∑
j∈J>

E
[
C1−Sept

j

]
.

We bound the expected completion times of jobs of both job sets separately. To bound the
contribution of the jobs in J≤, assume that J≤ 6= ∅.

Let Opt be an optimal policy for all jobs j ∈ J and Opt’ an optimal policy that schedules
only the jobs in J≤. Clearly, ∑

j∈J≤

E
[
COpt

j

]
≥

∑
j∈J≤

E
[
COpt′

j

]
. (6)

By ignoring the release dates, we can use Lemma 7. Assuming that the jobs in J≤ are indexed,
1, . . . , |J≤|, in non-decreasing order of their expected processing times, we obtain:

∑
j∈J≤

E
[
COpt′

j

]
≥

∑
j∈J≤

j∑
k=1

E [P k]
m

− (m− 1)(∆− 1)
2m

∑
j∈J≤

E [P j] , (7)

where Var[P j] ≤ ∆ E [P j]2 for all jobs j ∈ J and some ∆ ≥ 0. We claim that
∑

j∈J≤
∑j

k=1 E [P k]
is bounded from below by

α
√

n

2
E

[
C1−Sept

x

]
.

8

To see this claim, note that

∑
j∈J≤

j∑
k=1

E [P k] =
∑

k∈J≤

(|J≤| − k + 1) E [P k] .

This value can not be less than the minimum of this value over all possible expected
processing times for jobs in j ∈ J≤ satisfying

∑
j∈J≤ E [P j] = E

[
C1−Sept

x

]
and

E [P j] ≤ E
[
C1−Sept

x

]
/(α

√
n). This minimum is obviously obtained by setting E [P j] =

E
[
C1−Sept

x

]
/(α

√
n) for j = |J≤| − b + 1, . . . , |J≤|, E [P j] = (1 − b/(α

√
n))E

[
C1−Sept

x

]
, for

j = |J≤| − b, and E [P j] = 0 for all other j, where b = bα
√

nc. This proves the claim and
with

∑
j∈J≤ E [P j] = E

[
C1−Sept

x

]
we have

∑
j∈J≤

E
[
COpt

j

]
≥ α

√
n

2m
E

[
C1−Sept

x

]
− (m− 1)(∆− 1)

2m
E

[
C1−Sept

x

]
=

α
√

n− (m− 1)(∆− 1)
2m

E
[
C1−Sept

x

]
.

With this estimate of the relevant portion of the expected optimal value we can bound the value
achieved by the 1-Sept policy∑

j∈J≤

E
[
C1−Sept

j

]
≤ n E

[
C1−Sept

x

]
≤ 2 m n

α
√

n− (m− 1)(∆− 1)

∑
j∈J≤

E
[
COpt

j

]
, (8)

if and only if α
√

n > (m− 1)(∆− 1).

Consider now jobs in the remaining job set J>; by definition, there exists for each
job j ∈ J> a job k that completes in 1-Sept earlier than j and has processing time E [P k] >
E

[
C1−Sept

j

]
/(α

√
n). We conclude from this fact and the Threshold-Lemma 3 (including the

notion of the threshold ξS
j) that for all j ∈ J> holds

E
[
COpt

j

]
≥ ξOpt

j ≥ ξ1−Sept
j ≥ E [P k] >

E
[
C1−Sept

j

]
α
√

n
.

Summation over all jobs j ∈ J> yields a bound on the completion times in the 1-Sept schedule,∑
j∈J>

E
[
C1−Sept

j

]
≤ α

√
n

∑
j∈J>

E
[
COpt

j

]
.

Finally, combination with Equality (8) yields the bound∑
j∈J

E
[
C1−Sept

j

]
≤ max

{
2 m n

α
√

n− (m− 1)(∆− 1)
, α

√
n

} ∑
j∈J

E
[
COpt

j

]
.

The performance bound is minimized when choosing the parameter α := ((m − 1)(∆ − 1) +√
[(m− 1)(∆− 1)]2 + 8mn)/(2

√
n) which gives the desired approximation guarantee

ρ =
1
2

(m− 1)(∆− 1) +
1
2

√
[(m− 1)(∆− 1)]2 + 8mn .

Observe that the optimal choice of α fulfills the condition α
√

n > (m−1)(∆−1) in equality (8).

In contrast to the previous, more general approximation guarantee of value n in Theorem 4,
this result depends on the variance of processing times. In particular, the performance guarantee ρ
grows with the parameter ∆. However, for instances with distributions of small relative variance,

9

this bound improves on the n-approximation for the general weighted problem in Theorem 4. More
precisely, for instances with an upper bound on the squared coefficient of processing times

∆ ≤ n

m− 1
− 1

the performance guarantee ρ in Theorem 8 is at most n. Moreover, this theorem leads immediately
to the following result for a restricted class of probability distributions – the NBUE distributions,
which imply ∆ ≤ 1 [10].

Corollary 9. If all jobs have processing times that follow a NBUE distribution, that is, ∆ ≤ 1,
the 1-Sept policy that utilizes only one machine is a

√
2mn-approximation for the non-preemptive

stochastic online scheduling problem on parallel machines with equal job weights. This includes
deterministic instances.

It follows from the analysis that the result holds also if And/Or-precedence constraints are
present. Thus, we improve the approximation factor of n for the offline scheduling problem where
jobs have equal weights and processing times are deterministic in [7] even though we consider a
more general model.

Corollary 10. The 1-Spt algorithm that utilizes only one machine is a
√

2mn-approximation for
the scheduling problem on parallel machines with And/Or-precedence constraints with equal job
weights.

For preemptive scheduling of jobs with trivial weights, the analysis of 1-Sept above does not
improve the general n-approximation of Theorem 4. The reason is, that the lower bound on the
expected optimum value in Lemma 7 does not hold when jobs are allowed to be preempted. In
fact, the Sept policy which does not preempt a job performs arbitrarily bad in the preemptive
stochastic scheduling environment as simple examples show. However, for deterministic instances
without precedence constraints preemption is redundant; see McNaughton [14]. Therefore, the
deterministic version of the lower bound on the optimum value in Lemma 7 holds also for preemp-
tive scheduling. In fact, in that case it coincides with the classical result by Eastman, Even, and
Isaacs [6]. Now, the analysis of 1-Spt as in the proof of Theorem 8 holds true also for deterministic
online scheduling with precedence constraints. Choosing α =

√
2mn leads to the corollary.

Corollary 11. The 1-Spt algorithm is
√

2mn-competitive for the deterministic preemptive online
scheduling problem on parallel machines, with the equal job weights

Finally, we complement the new improved performance guarantees by a lower bound which leaves
a gap in the order of m.

Theorem 12. The competitive ratio of any preemptive and non-preemptive, deterministic online
algorithm for scheduling jobs with precedence constraints has a lower bound of 2

3

√
n/m− 1/3 and

any randomized online algorithm has a lower bound of 2
3

√
nm/(m + 1)2 − 1/3 on the competitive

ratio.

Proof. We have mk independent jobs with processing times pj = 1 for all j = 1, . . . ,mk
where k >> m. Moreover, there are mk2 − mk jobs that have length 0 and which must obey
precedence constraints that form one long chain mk + 1 ≺ mk + 2 ≺ Let ` ∈ {1, . . . ,mk} be
the job to be scheduled last by the online algorithm among the independent jobs. This job ` is a
predecessor of mk + 1, the first job of the chain. Note, that an online algorithm Alg cannot start
the job chain with mk2 −mk jobs earlier than time k. Alg yields a schedule of value

Alg ≥ m

k∑
i=1

i + (mk2 −mk)k =
1
2

mk (1 + (2k − 1) k) ≥ 1
2

mk2(2k − 1) . (9)

10

In contrast, an optimal offline algorithm Opt knows the sequence in advance. By processing job `
at time 0 and starting the chain of zero length jobs at time 1, it can achieve an objective value

Opt ≤ m
k∑

i=1

i + mk2 −mk =
1
2

mk (3k − 1) ≤ 3
2

mk2 . (10)

The ratio of the bounds in (9) and (10) combined with the number of jobs, n = mk2, gives the
lower bound on the competitive ratio of any deterministic online algorithm.

Alg

Opt
≥ 2k − 1

3
≥ 2

3

√
n

m
− 1

3
.

We achieve almost the same bound for randomized online algorithms by randomizing the deter-
ministic instance in the same way as in the proof of Theorem 6. We consider the instance above
and replace the precedence constraint ` ≺ mk + 1 by m random precedence constraints. That
means, any set of m jobs precedes job mk + 1, the first job of the job chain, with the same prob-
ability. Then with the same arguments as in the Theorem 6, the expected completion time of the
jobs in the chain is k(1− 1/(m + 1)) which gives the result.

3 Conclusion

We presented first results for (stochastic) online scheduling with precedence constraints to minimize
the (expected) sum of weighted completion times. The bounds for the single machine setting are
tight whereas in the parallel machine setting we leave a gap of O(m).

For closing this gap, it is not sufficient to run simply a parallel version of the Sept or Spt
algorithm. The following deterministic instance shows that the competitive ratio of Spt is also at
least in the order of n for the problem with arbitrary job weights.

Example 2. Consider an instance with n jobs and m machines. Job 1 has processing time ε
and weight 0. Jobs 2, . . . , n−m have unit processing time and weight 0, and they can start only
after job 1 has completed. Job n − m + 1 has m jobs out of 2, . . . , n − m as direct predecessors
and wn−m+1 = 1 and pn−m+1 = 0. The adversary chooses the m precedence relations such that
these are the latest finishing jobs. Finally there are m− 1 large independent jobs with processing
times n−m and weight 0. When ε tends to 0, the parallel online version of Spt has value n−m
whereas an optimal solution has value 1.

A slightly modified instance in which the job with high weight is substituted by a long chain of jobs
with zero processing time shows that in the scheduling setting where all jobs have equal weights,
the parallel Spt algorithm yields a competitive ratio Ω(

√
n).

Our final remark concerns preemptive stochastic online scheduling. We mentioned that simple
examples show that the Sept policy and actually any other policy that does not utilize preemption
can perform arbitrarily bad when jobs are allowed to be interrupted. Therefore other policies must
be considered. But still Lemma 7, which provided one of the lower bounds that were used in the
analysis, does not do so in the preemptive scheduling environment. However, [18] provides a general
lower bound for the preemptive stochastic online scheduling problem on parallel machines. Applied
to a variant of the preemptive online policy Generalized Gittins Index Policy also proposed in [18]
with a modification such that it respects precedence constraints, this could lead to an improved
approximation result.

Acknowledgements. We thank Jǐŕı Sgall for pointing out that the randomized lower bounds
in previous versions of Theorems 6 and 12 could be strengthened.

11

References

[1] C. Ambühl and M. Mastrolilli. Single machine precedence constrained scheduling is a vertex cover
problem. In Y. Azar and T. Erlebach, editors, Proceedings of 14th European Symposium on Algo-
rithms, number 4168 in Lecture Notes in Computer Science, pages 28–39, Zurich, Switzerland, 2006.
Springer.

[2] Y. Azar and L. Epstein. On-line scheduling with precedence constraints. Discrete Applied Mathemat-
ics, 119:169–180, 2002.

[3] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the power of randomization
in on-line algorithms. Algorithmica, 11:2–14, 1994.

[4] J. R. Correa and A. S. Schulz. Single-machine scheduling with precedence constraints. Mathematics
of Operations Research, 30(4):1005–1021, 2005.

[5] J. Du, J. Y.-T. Leung, , and G. H. Young. Scheduling chain-structured tasks to minimize makespan
and mean flow time. Information and Computation, 92(2):219–236, 1991.

[6] W. L. Eastman, S. Even, and I. M. Isaacs. Bounds for the optimal scheduling of n jobs on m
processors. Management Science, 11:268–279, 1964.

[7] T. Erlebach, V. Kääb, and R. H. Möhring. Scheduling AND/OR-networks on identical parallel
machines. In K. Jansen and R. Solis-Oba, editors, Proceedings of the First International Workshop
on Approximation and Online Algorithms, WAOA 2003, volume 2909 of Lecture Notes in Computer
Science, pages 123–136, Budapest, Hungary, 2004. Springer.

[8] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng. Optimal online scheduling of parallel jobs with
dependencies. Journal of Combinatorial Optimization, 1(4):393–411, 1998.

[9] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion
time: Off-line and on-line approximation algorithms. Mathematics of Operations Research, 22:513–
544, 1997.

[10] W. J. Hall and J. A. Wellner. Mean residual life. In M. Csörgö, D. A. Dawson, J. N. K. Rao, and
A. K. Md. E. Saleh, editors, Proceedings of the International Symposium on Statistics and Related
Topics, pages 169–184, Ottawa, ON, Canada, 1981.

[11] J. M. Jaffe. Efficient scheduling of tasks without full use of processor resources. Theoretical Computer
Science, 12:1–17, 1980.

[12] E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject to precedence
constraints. Annals of Discrete Mathematics, 2:75–90, 1978.

[13] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence constraints.
Operations Research, 26(1):22–35, 1978.

[14] R. McNaughton. Scheduling with deadlines and loss functions. Management Science, 6:1–12, 1959.

[15] N. Megow. Coping with incomplete information in scheduling – stochastic and online models. Disser-
tation, Technische Universität Berlin, 2006.

[16] N. Megow and A. S. Schulz. On-line scheduling to minimize average completion time revisited.
Operations Research Letters, 32(5):485–490, 2004.

[17] N. Megow, M. Uetz, and T. Vredeveld. Models and algorithms for stochastic online scheduling.
Mathematics of Operations Research, 31(3):513–525, 2006.

[18] N. Megow and T. Vredeveld. Approximation in preemptive stochastic online scheduling. In Y. Azar
and T. Erlebach, editors, Proceedings of 14th European Symposium on Algorithms, number 4168 in
Lecture Notes in Computer Science, pages 516–527, Zurich, Switzerland, 2006. Springer.

[19] R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems I: General strategies.
Zeitschrift für Operations Research, 28:193–260, 1984.

[20] R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in stochastic scheduling: the power of
LP-based priority policies. Journal of the ACM, 46:924–942, 1999.

[21] K. R. Pruhs, J. Sgall, and E. Torng. Online scheduling. In J. Y.-T. Leung, editor, Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, chapter 15. Chapman & Hall/CRC,
2004.

12

[22] M. Queyranne and A. S. Schulz. Approximation bounds for a general class of precedence constrained
parallel machine scheduling problems. SIAM Journal on Computing, 35(5):1241–1253, 2006.

[23] A. S. Schulz and M. Skutella. The power of α-points in preemptive single machine scheduling. Journal
of Scheduling, 5:121–133, 2002.

[24] J. Sgall. On-line scheduling – a survey. In A. Fiat and G. J. Woeginger, editors, Online Algorithms:
The State of the Art, volume 1442 of Lecture Notes in Computer Science, pages 196–231. Springer,
Berlin, 1998.

[25] M. Skutella and M. Uetz. Stochastic machine scheduling with precedence constraints. SIAM Journal
on Computing, 34(4):788–802, 2005.

[26] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics Quarterly,
3:59–66, 1956.

[27] V. Timkovsky. Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling
complexity. European J. Oper. Res., 149(2):355–376, 2003.

[28] G. Weiss. On almost optimal priority rules for preemptive scheduling of stochastic jobs on parallel
machines. Advances in Applied Probability, 27:827–845, 1995.

[29] A. C.-C. Yao. Probabilistic computations: toward a unified measure of complexity (extended ab-
stract). In Proceedings of the 18th IEEE Symposium on the Foundations of Computer Science, pages
222–227, 1977.

13

	Introduction
	Problem definition
	Previous Work
	Our results

	Scheduling jobs with arbitrary weights
	Scheduling Jobs with equal Weights

	Conclusion

