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Abstract

We consider scheduling on a single machine with one non-availability
period to minimize the weighted sum of completion times. We provide a
preemptive algorithm with an approximation ratio arbitrarily close to the
Golden Ratio, (1+

√
5)/2+ε, which improves on a previously best known 2-

approximation. The non-preemptive version of the same algorithm yields
a (2 + ε)-approximation.

1 Introduction

We consider the problem of scheduling a set of jobs, J = {1, 2, . . . n}, with
nonnegative processing times pj and weights wj , for each j ∈ J , on a single
machine. Due to maintenance or shift breaks, the machine is not available
during the time intervals [si, ti], for i ∈ N. Let Cj denote the completion time
of job j ∈ J . The objective is to schedule all jobs preemptively on the machine
using only time periods in which the machine is available, minimizing the sum
of weighted completion times,

∑
j∈J wjCj .

This problem is known to be strongly NP-hard [8]. If jobs are not allowed
to be preempted an easy reduction from Partition shows that the problem
with two or more non-available periods is not approximable, unless P = NP.
The reduction is similar to the one in [9] for scheduling with fixed jobs. On
the other hand, if all jobs have equal weight, a simple interchange argument
shows that processing jobs preemptively in non-increasing order of processing
times is optimal as it is in the setting with continuous machine availability [7].
However, in the problem setting with general job weights, natural greedy strate-
gies perform arbitrarily bad. So far, no constant approximation algorithm has
been found and therefore research focusses on special problem settings; a survey
on scheduling with limited machine availability can be found in [6]. Particular
interest has been devoted to the special case of scheduling on a machine that
has exactly one non-available period [s, t]. In that case, the problem is weakly
NP-hard [4, 1, 5] in both, the preemptive and non-preemptive setting. The
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currently best known results for both problems are 2-approximations [8, 3]; for
a recent overview on previous results we refer to the same two papers.

In this note, we give a preemptive polynomial time algorithm for scheduling
with a single non-available period that achieves an approximation ratio arbi-
trarily close to the Golden Ratio, namely (1 +

√
5)/2 + ε ≈ 1.618 + ε for any

fixed ε > 0. More precisely, our algorithm yields this performance guarantee
even in the more restricted resumable scheduling model, in which a job can be
interrupted only by a machine breakdown and must resume processing imme-
diately after this unavailable period. However, for simplicity we will generally
talk about preemption. As a side result, the non-preemptive version of the same
algorithm yields an approximation factor of 2 + ε.

2 The algorithm

The classical Smith rule [7] runs jobs in non-increasing order of their ratios of
weight over processing time. It is the optimal scheduling algorithm for min-
imizing the weighted sum of completion times if the machine is continuously
available. It has been observed in earlier works that in case that a machine
becomes unavailable, it may perform ”arbitrarily bad”.

Example 1. Consider two jobs with p1 = 1, w1 = 1 + ε and p2 = s, w2 = s and
a non-availability period [s, s2]. The ratio between the solution of Smith’s rule
and an optimal solution is given by s which is unbounded.

However, the performance of Smith’s rule can be expressed dependent on
the parameter δ := t/s. In the example above we have a worst case δ =
s. Before showing such an upper bound on the performance guarantee, we
introduce two lower bounds on the value Opt of an optimal solution. For a job
set A ⊆ J let S(A) denote the weighted sum of completion times for scheduling
all jobs in A by Smith’s rule starting at time 0 on a continuously available
machine. Moreover, let J∗1 and J∗2 denote the sets of jobs that complete in the
optimum schedule before and after the break, respectively. Clearly, within each
set the jobs are scheduled in Smith’s order. Thus, a lower bound on the optimal
value Opt is given by

Opt ≥ S(J) + (t− s)
∑
j∈J∗2

wj .

The second lower bound we will use is Opt ≥ t
∑

j∈J∗2
wj .

Lemma 1. Scheduling jobs by Smith’s rule yields an approximation ratio of δ
for preemptive scheduling on a single machine with one non-availability period.

Proof. Let J1 and J2 denote the sets of jobs completing before and after the
break, respectively, in the schedule obtained by Smith’s rule. At any completion
time Cj for j ∈ J in this schedule, we have finished at least as much weight
as any other algorithm by that time. Let x ∈ J2 be the first job completing
after the break, i.e. Cx := min{Cj |Cj > t for j ∈ J}. Then it holds for the
remaining weight ∑

j∈J2\{x}

wj ≤
∑

j:C∗
j >Cx

wj ≤
∑
j∈J∗2

wj ,
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where C∗
j denotes the completion time of job j ∈ J in an optimal schedule.

The value of the schedule obtained by the algorithm is then∑
j∈J

wjCj = S(J) + (t− s)
∑
j∈J2

wj (1)

≤ S(J) + (t− s)
∑
j∈J∗2

wj + (t− s)wx

≤ Opt + (δ − 1) swx .

Suppose that jobs are indexed in their oder of scheduling by Smith’s rule.
Then Opt ≥ S(J) ≥

∑
j∈J wj

∑
k≤j pk ≥ wx

∑
k≤x pk. Since x is the first

job that completes after the break, we have
∑

k≤x pk ≥ s, and therefore, swx ≤
Opt.

A simple adaptation of the proof gives immediately a slightly worse perfor-
mance guarantee for non-preemptive scheduling in Smith’s order.

Corollary 1. Scheduling jobs non-preemptively in the order of Smith’s rule
yields an approximation ratio of 1 + δ on a single machine with one non-
availability period.

Proof. In addition to the value of the preemptive algorithm given in equality (1),
we have to add the postponement of all jobs in set J2 by at most px, that
is, px

∑
j∈J2

wj which is a lower bound on the optimal value Opt ≥ S(J) ≥∑
j∈J pj

∑
k≥j wk.

While the schedule obtained by Smith’s rule is close to optimal if there is a
very small break, its performance deteriorates with increasing parameter δ. If
the proportional break length is very large, i.e. δ is very large, then intuitively
we have a knapsack problem and want to complete as much weight as possible
before the break. In other words, we want to find a schedule that minimizes the
total weight completed after the break. This corresponds to the deadline based
scheduling problem 1||

∑
wjUj with the common deadline dj = s for all j ∈ J .

Here Uj denotes a binary variable indicating if job j has completed by its due
date. Gens and Levner [2] provided a fully polynomial time approximation
scheme (FPTAS) for this problem.

Lemma 2. For any ε > 0, there is a polynomial time algorithm solving the
scheduling problem with one non-available period with an approximation ratio

1 +
1
δ

+ ε .

This is true even if jobs must not be preempted.

Proof. We solve the problem 1|d = s|
∑

wjUj using the FPTAS in [2]. Let J1 =
{j ∈ J |Uj = 0} and J2 = J \ J1. We schedule the jobs in J1 by Smith’s rule
before the break and the jobs in J2 accordingly after t.

By definition, the total weight completing after the break is bounded from
above:

∑
j∈J2

wj ≤ (1+ε)
∑

j∈J∗2
wj . Thus, the algorithm yields a solution that
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is bounded by∑
j∈J

wjCj ≤ S(J1) + S(J2) + t
∑
j∈J2

wj

≤ S(J1) + S(J2) + (1 + ε) t
∑
j∈J∗2

wj

= S(J1) + S(J2) + (t− s)
∑
j∈J∗2

wj +
(

1
δ

+ ε

)
t

∑
j∈J∗2

wj .

Clearly, S(J1) + S(J2) ≤ S(J). Then the approximation guarantee follows
directly from applying the two lower bounds above.

The following example shows that this analysis is (almost) tight.

Example 2. Consider two jobs such that p1 = s, w1 = 1 and p2 = ε, w2 =
1. An optimal algorithm for the deadline problem ignores the scheduling as-
pect (min

∑
wjCj) and schedules job 2 after the break whereas an optimal algo-

rithm schedules it before the break. The ratio between both solution values tends
to 1 + 1/δ if ε goes to 0.

Obviously, for small values of δ Smith’s rule is preferably while for large δ
the deadline focussed approach performs well. Combining these two algorithms
yields the main result.

Theorem 1. For any ε > 0, there is a polynomial time algorithm solving the
preemptive scheduling problem on a single machine with one non-availability
period that achieves an approximation ratio

1 +
√

5
2

+ ε ≈ 1.618 + ε .

Proof. The algorithm runs either Smith’s rule or the FPTAS with a parameter ε′

whatever gives the minimum value. Given an ε > 0, set ε′ = 2ε(
√

5 + ε)/(1 +√
5+2ε). Then the minimum of the performance guarantees proven in Lemma 1

and 2 gives in the worst case the claimed approximation ratio.

Corollary 1 and Theorem 2 immediately imply a performance guarantee
arbitrarily close to 2 for the non-preemptive version of the same procedure.

Corollary 2. For any ε > 0, there is a polynomial time algorithm solving the
non-preemptive scheduling problem on a single machine with one non-availability
period that achieves an approximation ratio 2 + ε.
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