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Abstract. In this paper we study the shape and growth of structured pseudospectra for small
matrix perturbations of the form A  A∆ = A + B∆C, ∆ ∈ ∆, ‖∆‖ ≤ δ. It is shown that
the properly scaled pseudospectra components converge to non-trivial limit sets as δ tends to 0. We
discuss the relationship of these limit sets with µ-values and structured eigenvalue condition numbers
for multiple eigenvalues.
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1. Introduction. A structured pseudospectrum (also called spectral value set)
is the set of eigenvalues of all matrices which are obtained from a given matrix
A ∈ Cn×n by adding perturbations of a certain type [16, 18, 10, 20, 22, 35, 39].
The norm of the perturbations is bounded by a prescribed constant δ > 0. The
present paper deals with the shape and growth of structured pseudospectra for small
perturbations [1, 2, 3, 21]. It is shown that, after scaling with a suitable power of
δ, the connected components of pseudospecta converge to non-trivial limit sets as δ
tends to zero. The limit sets reflect the mobility of the spectrum of A under small
and structured perturbations. We demonstrate how the boundaries of these sets can
be calculated using µ-values. Furthermore, we discuss the relationship of the limit
sets with structured condition numbers of multiple eigenvalues. The latter have been
defined and investigated in [27]. For structured condition numbers of simple eigen-
values see e.g. [5, 6, 7, 8, 14, 23, 24, 28, 35, 36]. Finally, we apply our results to the
case of real perturbations of real matrices.

This paper is organized as follows. In Section 2 we introduce notation and recall
basic facts about structured pseudospectra. Section 3 deals with the definition of
structured condition numbers for multiple eigenvalues and their connection to pseu-
dospectra. In Section 4 we state our main result on the convergence of the pseu-
dospectra components. Examples are discussed in Section 5. Some technical proofs
including the proof of the main result are given in the appendix. The notation is
mainly adopted from the text book [16].

2. Notation and basic facts. The symbols R, C stand for the sets of real and
complex numbers respectively. By Kn×m we denote the set of n by m matrices with
entries in K, K = R or C. Furthermore, Kn = Kn×1 is the set of column vectors of
length n. By Ā, A⊤, A∗,ℜA,ℑA we denote the conjugate, the transpose, the conjugate
transpose, the real and the imaginary part of A∈C

n×m, respectively. If A is square
then σ(A), ρ(A) and ̺(A) denote its spectrum, its resolvent set and its spectral radius,
ρ(A) = C\σ(A), ̺(A) = max{|s|; s∈σ(A)}. The n by n identity matrix is written In.
The closed disk of radius r about λ ∈ C is denoted by Dλ(r) = {s ∈ C; |s − λ| ≤ r}.
The boundary and the topological closure of S ⊂ C

m×n are written ∂S and cl(S).
We define Ln,l,q to be the set of triples of matrices (A, B, C) with A ∈ Cn×n, B ∈

Cn×l, C ∈ Cq×n. Throughout this paper the symbol ∆ stands for a non-empty closed
cone in C

l×q, i.e. ∅ 6= ∆ ⊆ C
l×q, cl(∆) = ∆, and ∆ ∈ ∆ implies t∆ ∈ ∆ for all

t ≥ 0. Furthermore, ‖ · ‖ denotes a norm on Cl×q.
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2 M. KAROW

Given any triple (A, B, C)∈Ln,l,q we consider perturbations of A of the form

A A∆ = A + B∆C, ∆ ∈ ∆. (2.1)

Definition 2.1. [16, 17] The structured pseudospectrum (also called spectral
value set) of the triple (A, B, C)∈Ln,l,q with respect to (∆, ‖ · ‖) and the perturbation
level δ > 0 is the following subset of the complex plane.

σ∆(A, B, C; δ) := { s ∈ C; s ∈ σ(A+B∆C) for some ∆ ∈ ∆ with ‖∆‖ < δ }. (2.2)

The set σ∆(A, B, C; δ) is the union of all the spectra of the perturbed matrices A∆

where ∆ ∈∆, ‖∆‖ < δ. Note that in this definition, introduced by Hinrichsen and
Pritchard [15, 16], the norm of the perturbations is bounded by a strikt inequality.
The sets obtained in this way are bounded but not compact. However, our main
result in Section 4 deals with convergence with respect to the Hausdorff metric. To
this end we need compact sets. Hence, in the sequel we work with the topological
closure σ c

∆
(A, B, C; δ) of σ∆(A, B, C; δ). We always have

σc
∆

(A, B, C; δ) = { s ∈ C; s ∈ σ(A + B∆C) for some ∆ ∈ ∆ with ‖∆‖ ≤ δ }. (2.3)

This follows from Claim (c) of Proposition A.2 in the appendix.
The µ-value of M ∈Cq×l with respect to (∆, ‖ · ‖) is defined as [16, 41]

µ∆(M) := [ inf{‖∆‖ ; ∆ ∈ ∆, 1 ∈ σ(∆ M) } ]
−1

. (2.4)

If the set {∆ ∈ ∆; 1 ∈ σ(∆M)} is empty we define µ∆(M) = 0. The proposition
below specifies the relationship between spectral value sets and µ-values.

Proposition 2.2. Let (A, B, C)∈Ln,l,q and G(s) = C(sIn − A)−1B, s ∈ ρ(A).
Then for any δ > 0,

σ∆(A, B, C; δ) = σ(A) ∪ {s ∈ ρ(A); 1 ∈ σ(∆ G(s)) for some ∆ ∈ ∆ with ‖∆‖ < δ }
= σ(A) ∪ {s ∈ ρ(A); µ∆(G(s)) > δ−1}

σc
∆

(A, B, C; δ) = σ(A) ∪ {s ∈ ρ(A); 1 ∈ σ(∆ G(s)) for some ∆ ∈ ∆ with ‖∆‖ ≤ δ }
= σ(A) ∪ {s ∈ ρ(A); µ∆(G(s)) ≥ δ−1}

Proof. These identities are immediate from the definition of µ∆ and the following
chain of equivalences which holds for all s ∈ ρ(A) and all ∆ ∈ C

l×q, (see also [16,
Lemma 5.2.7]).

s∈σ(A + B∆C) ⇔ 0 = det(sIn − (A + B∆C))

= det(sIn − A) det(In − (sIn − A)−1B∆C)

⇔ 1 ∈ σ((sIn − A)−1B∆C)

⇔ 1 ∈ σ(∆G(s)).

In the last step we used the fact that the nonzero eigenvalues of a product of two
matrices are independent of the order of the factors.

Much work has been done in order to find estimates and computable formulae for
µ-values with respect to several perturbation classes ∆ and norms [4, 11, 16, 17, 23,
30, 32, 34, 35, 40]. We only mention the following basic results which are necessary
for the understanding of this paper.
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(i) If ∆ is invariant under complex multiplication (i.e. ∆ ∈ ∆ implies t∆ ∈ ∆

for all t ∈ C) and ‖ · ‖ is an arbitrary norm on Cl×q then for all M ∈ Cq×l

[16, Lemma 4.4.7],

µ∆(M) = max
∆ ∈ ∆

‖∆‖ = 1

̺(∆ M). (2.5)

(i) If the underlying norm is the spectral norm then for M ∈ Cq×l [4, 16, 32],

µCl×q (M) = ‖M‖ = σ1(M)

µRl×q (M) = inf
γ∈(0,1]

σ2

([
ℜM −γ ℑM

γ−1 ℑM ℜM

])
, (2.6)

where σ1(·), σ2(·) denote the largest and the second largest singular value
respectively. For a scalar multiple of a real matrix R ∈ Rq×l we have [16,
Example 4.4.45]

µRl×q (eiφR) =

{
σ1(R) if φ ∈ {0, π},√

σ1(R) σ2(R) if 0 < φ < 2π, φ 6= π.
(2.7)

3. Condition numbers. In this section we introduce condition numbers of sim-
ple and multiple eigenvalues with respect to structured perturbations. Furthermore
we establish their relationship to pseudospectra. Let us first recall the definition of
condition numbers for functions between normed vector spaces.

Definition 3.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces. Let U
be a subset of X and let x0∈U be an accumulation point of U . The Hölder condition
number of order γ > 0 of a function f : U → Y at the point x0 is defined by

κγ(f, x0) := lim
x→x0

‖f(x) − f(x0)‖Y

‖x − x0‖γ
X

,

where lim denotes the limit superior.
Note that κγ(f, x0) ∈ [0,∞] is well defined for all γ > 0. However, there is at

most one order γ > 0 such that 0 6= κγ(f, x0) 6= ∞, since these inequalities imply that
κeγ(f, x0) = 0 for γ̃ < γ and κeγ(f, x0) = ∞ for γ̃ > γ. If f is discontinuous at x0 then
κγ(f, x0) = ∞ for all γ > 0. We remark that our terminology here differs slightly from
that in [10, Definiton 4.1] where the quantity κγ(f, x0) is called asymptotic Hölder
condition number.

Lemma 3.1. The condition number satisfies

κγ(f, x0) = lim
δց0

δ−γF (δ), where F (δ) = sup
‖x−x0‖X≤δ

x∈U

‖f(x) − f(x0)‖Y .

Proof. For every δ, ǫ > 0 there exists an xǫ ∈ U such that ‖xǫ − x0‖X ≤ δ and

F (δ) ≤ (1 + ǫ)‖f(xǫ) − f(x0)‖Y , whence F (δ)
δγ ≤ (1 + ǫ) ‖f(xǫ)−f(x0)‖Y

‖xǫ−x0‖γ
X

. This yields

limδց0
F (δ)

δγ
≤ κγ(f, x0). (3.1)
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By definition of F we have ‖f(x) − f(x0)‖Y ≤ F (‖x − x0‖X) for every x∈U . Hence

κγ(f, x0) ≤ lim
x→x0

F (‖x − x0‖X)

‖x − x0‖γ
X

≤ lim
δց0

F (δ)

δγ
. (3.2)

The inequalities (3.1) and (3.2) imply the Lemma.
We now define the condition numbers of eigenvalues. In contrast to the approach

in [27, 29] our definition is not based on the Puisseux expansion for perturbed eigen-
values. See however the remark after Theorem 4.1.

Definition 3.2. For λ∈C, Ã∈C
n×n and m ≤ n let

dm(λ, Ã) := min{ δ ≥ 0; the disk Dλ(δ) contains at least m eigenvalues of Ã }.

In particular for m = 1, d1(λ, Ã) = minν∈σ( eA) |ν − λ|.

Let (A, B, C) ∈ Ln,l,q and let λ be an eigenvalue of A of algebraic multiplicity m.
Then the structured Hölder condition number of order γ > of the eigenvalue λ is
defined as

condγ
∆

(A, B, C, λ) := lim
δց0

sup
∆∈∆

‖∆‖≤δ

dm(λ, A + B∆C)

‖∆‖γ
.

Note that condγ
∆

(A, B, C, λ) equals the condition number κγ(f, 0) of the function
f : ∆ → R, f(∆) = dm(λ, A + B∆C). Lemma 3.1 yields

condγ
∆

(A, B, C, λ) = lim
δց0

δ−γ sup
∆∈∆

‖∆‖≤δ

dm(λ, A + B∆C) (3.3)

Next, we relate eigenvalue condition numbers to spectral value sets.
Notation 3.3. From now on Cλ(δ) denotes the connected component of σ c

∆
(A, B, C; δ)

that contains the eigenvalue λ of A.
Proposition 3.4. The structured condition number of λ ∈ σ(A) satisfies

condγ
∆

(A, B, C, λ) = lim
δց0

δ−γ sup
s∈Cλ(δ)

|s − λ|.

Proof. We set S(δ) := {A + B∆C; ∆ ∈ ∆, ‖∆‖ ≤ δ }. Then σ c
∆

(A, B, C; δ) =

∪ eA∈S(δ)σ(Ã). Since ∆ is a cone the set S(δ) is connected. Hence, it follows from claim

(d) of Proposition A.2 that each connected component of σ c
∆

(A, B, C; δ) contains at
least one eigenvalue of A. Thus σ c

∆
(A, B, C; δ) = ∪λ∈σ(A)Cλ(δ). Let ǫ > 0 be such

that the disks Dλ(ǫ), λ ∈ σ(A), are pairwise disjoint. If δ is small enough then
σ c
∆

(A, B, C; δ) ⊂ ∪λ∈σ(A)Dλ(ǫ). This follows from the continuity of eigenvalues (see
Proposition A.2 (a)). Consequently, we have for the connected components that
Cλ(δ) ⊆ Dλ(ǫ). In particular Cλ(δ) contains no eigenvalue of A different from λ. Let
mλ denote the algebraic multiplicity of λ. It follows from Claim (d) of Proposition A.2

that for each Ã ∈ S(δ) the set Cλ(δ) contains precisely mλ eigenvalues of Ã counting
algebraic multiplicities (see also [13]). This yields

sup
∆∈∆

‖∆‖≤δ

dmλ
(λ, A + B∆C) = sup

s∈Cλ(δ)

|s − λ|.

Thus, the proposition is a consequence of (3.3).
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4. Main results. Let Xλ = ker(A − λ In)n denote the generalized eigenspaces
of A∈C n×n . Let Pλ ∈ Cn×n, λ ∈ σ(A), be the projectors of direct decomposition
C

n =
⊕

λ∈σ(A) Xλ, i.e. P 2
λ = Pλ, range(Pλ) = Xλ, ker (Pλ) =

⊕
λ 6=ν∈σ(A) Xν .

Furthermore let Nλ = (A − λ In)Pλ. Then the matrices Nλ are nilpotent and the
spectral representation of A is given by

A =
∑

λ∈σ(A)

( λ Pλ + Nλ ). (4.1)

Let iλ be the index of nilpotency of Nλ, i.e. iλ = min{ ℓ ≥ 0; N ℓ
λ = 0 }. Then

iλ is the size of the largest Jordan block associated with the eigenvalue λ in the
Jordan canonical form of A. If iλ = 1 (i.e. Nλ = 0) then λ is called a semi-simple
(non-defective) eigenvalue of A. For any s ∈ ρ(A) we have

(s In − A)−1 =
∑

λ∈σ(A)

(
Pλ

s − λ
+

iλ∑

ℓ=2

N ℓ−1
λ

(s − λ)ℓ

)
, (4.2)

see e.g. [16, Lemma 4.2.21]. Let B, C be such that (A, B, C) ∈ Ln,l,q. Then for
G(s) = C(sIn − A)−1B and s ∈ ρ(A),

G(s) =
∑

λ∈σ(A)

(
CPλB

s − λ
+

ℓλ∑

ℓ=2

CN ℓ−1
λ B

(s − λ)ℓ

)
, (4.3)

where

ℓλ :=

{
1 if CN ℓ−1

λ B = 0 for all ℓ ≥ 2,

max{ ℓ ≥ 2; CN ℓ−1
λ B 6= 0 } otherwise.

(4.4)

Obviously ℓλ ≤ iλ. If l = q = n and the matrices B, C are nonsingular then ℓλ = iλ
for all λ∈σ(A). We denote the leading coefficients in (4.3) by

Γλ :=

{
CPλB if ℓλ = 1,

CN ℓλ−1
λ B otherwise.

(4.5)

Note that Γλ = 0 if and only if ℓλ = 1 and CPλB = 0. Next, we introduce the sets

Lλ := { z ∈ C; zℓλ ∈ σ(∆Γλ) for some ∆ ∈ ∆ with ‖∆‖ ≤ 1 }. (4.6)

In words, Lλ is the set of roots of order ℓλ of all eigenvalues of the matrix products
∆Γλ, where ∆ ∈ ∆ with ‖∆‖ ≤ 1.

The theorem below is the main result of this paper. It provides information about
the shape and growth of the connected components Cλ(δ) for small δ. In order not
to disturb the flow of exposition we give the technical proof of the theorem in the
appendix.

Theorem 4.1. Let (A, B, C) ∈ Ln,l,q and λ ∈ σ(A). Then

lim
δց0

Cλ(δ) − λ

δ1/ℓλ
= Lλ, (4.7)

where Lλ is given by (4.6) and Cλ(δ) denotes the connected component of the structured
pseudospectrum σc

∆
(A, B, C, δ) which contains λ. The limit is taken with respect to

the Hausdorff distance of non-empty compact subsets of C.
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More explicitely, (4.7) states that to each ǫ > 0 there exists an δ0 > 0 such that
for all positive δ ≤ δ0,

(1) Cλ(δ) ⊂ λ + δ1/ℓλ Uǫ(Lλ), (2) λ + δ1/ℓλLλ ⊂ U(ǫ δ1/ℓλ )(Cλ(δ)),

where Uǫ(M) = { z ∈ C; |z−s| < ǫ for some s ∈ M} is an ǫ-neighborhood of M ⊂ C.
Remark 4.2. The elements of Lλ are the coefficients in the first terms of the

Puisseux epansions of λ with respect to the 1-parameter perturbations A  Aδ =
A + δ B∆0C, ∆0 ∈ ∆, ‖∆0‖ = 1. See [29] for details. However, Theorem 4.1 is not
an immediate consequence of this fact.

We continue with some statements about the limit sets Lλ. The next proposition
gives a characterization via µ-values. For φ ∈ R let

rλ(φ) := [ µ∆( e−iℓλφ Γλ ) ]1/ℓλ .

Proposition 4.3. We always have Lλ = { r eiφ; φ∈ [0, 2π), 0 ≤ r ≤ rλ(φ) }.
Proof. Obviously, 0 ∈ Lλ. For r > 0 and φ ∈ R the following chain of equivalences

holds.

r eiφ ∈ Lλ ⇔ (r eiφ)ℓλ ∈ σ(∆Γλ) for some ∆ ∈ ∆ with ‖∆‖ ≤ 1

⇔ 1 ∈ σ( (r−ℓλ∆) (e−iℓλφΓλ) ) for some ∆ ∈ ∆ with ‖∆‖ ≤ 1

⇔ 1 ∈ σ( ∆ (e−iℓλφΓλ) ) for some ∆ ∈ ∆ with ‖∆‖ ≤ r−ℓλ

⇔ µ∆(e−iℓλφΓλ) ≥ rℓλ .

In the following, Rλ ≥ 0 denotes the radius of the smallest disk about 0 that
contains the set Lλ, i.e.

Rλ = sup
φ∈[0,2π]

rλ(φ).

Proposition 4.4.

(i) If ∆ = −∆ then rλ(φ + π/ℓλ) = rλ(φ) for all φ ∈ R. Thus eiπ/ℓλLλ = Lλ.
(ii) If C∆ = ∆ (i.e. ∆ is invariant under complex multiplication) then

rλ(φ) = const = Rλ =





µ∆(CPλB) if ℓλ = 1,

[ µ∆(CN ℓλ−1
λ B) ]1/ℓλ otherwise.

Hence, in this case the limit sets are closed disks, Lλ = D0(Rλ).
(iii) We have Rλ = 0 (i.e. Lλ = {0}) if and only if ∆Γλ is nilpotent for all

∆ ∈ ∆.
Proof. Obvious.
The next proposition gives an alternative representation of Lλ, which may be

useful for its computation.
Proposition 4.5. Suppose Γλ has the factorization Γλ = XY ∗ with X ∈

Cq×r, Y ∈ Cl×r. Then

Lλ = { z ∈ C; zℓλ ∈ σ(Y ∗∆X) for some ∆ ∈ ∆ with ‖∆‖ ≤ 1 }. (4.8)

In particular, if rank(Γλ) = 1 and Γλ = xy∗, x ∈ Cq, y ∈ Cl, then

Lλ = { z ∈ C; zℓλ = y∗∆x for some ∆ ∈ ∆ with ‖∆‖ ≤ 1 }. (4.9)
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Proof. The matrices ∆Γλ = (∆X)Y ∗ and Y ∗(∆X) have the same nonzero eigen-
values.

The sets (4.9) have been investigated in [24]. It has been shown there that these
sets are ellipses in many important cases. The next proposition connects the limit
sets to eigenvalue condition numbers.

Proposition 4.6. The structured condition number of λ to the order 1/ℓλ sat-
isfies

cond
1/ℓλ

∆
(A, B, C, λ) = Rλ

= max
∆ ∈ ∆

‖∆‖ = 1

[̺(∆Γλ)]1/ℓλ

= max
∆ ∈ ∆

‖∆‖ = 1

[̺(Y ∗∆X)]1/ℓλ if Γλ = XY ∗.

Proof. The first identity follows from Proposition (3.4) and Theorem 4.1. The
second and the third are consequences of (4.6) and (4.8), respectively.

Remark 4.7. As already mentioned in Proposition 4.4 we may have Rλ = 0.
In this case there may be an order γ0 6= 1/ℓλ such that condγ0

∆
(A, B, C, λ) 6∈ {0,∞}.

For examples see the introduction of [27]. The order γ0 can be found via Newton

diagrams, see [29]. It is an open question whether limδց0
C(δ)−λ

δγ0
exists with respect

to the Hausdorff metric.

5. Examples. We now give some examples that illustrate the results of the
former section. In doing so we concentrate on real perturbations, i.e. ∆ = Rl×q.
Throughout this section the underlying norm is the spectral norm. The figures below
have been generated using Proposition 4.3 and the formulae (2.6), (2.7).

Example 5.1. Let 0 6= M ∈Cn×n be a nilpotent matrix and let λ∈C \ R be a
non-real number. We set

A =

[
ℜ(λ In + M) −ℑ(λ In + M)
ℑ(λ In + M) ℜ(λ In + M)

]
∈ R

2n×2n, S =
1√
2

[
In In

−i In i In

]
.

Then S−1 = 1√
2

[
In i In

In −i In

]
and A = S

[
λ In + M 0

0 λ In + M

]
S−1. Thus A has

eigenvalues λ, λ. The projector onto the generalized eigenspace associated with λ is

Pλ = S

[
In 0
0 0

]
S−1 =

1

2

[
In i In

−i In In

]
.

The powers of the eigennilpotent Nλ = (A − λ In)Pλ satisfy

N ℓ
λ =

1

2

[
M ℓ i M ℓ

−i M ℓ M ℓ

]
, ℓ = 1, 2, . . . . (5.1)

We now consider perturbations of A of the form

A A∆ =

[
ℜ(λ In + M) + ∆ −ℑ(λ In + M)

ℑ(λ In + M) ℜ(λ In + M)

]
= A + B∆C,
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where

B =

[
In

0

]
∈ R

2n×n, C =
[
In 0

]
∈ R

n×2n

and ∆ ∈ Rn×n. The relation (5.1) yields that CN ℓ
λB = M ℓ. Hence, in this example

the number ℓλ defined in (4.4) equals the index of nilpotency of M . Furthermore,
Γλ = M ℓλ−1. The associated limit sets are

Lλ = { z ∈ C; zℓλ ∈ σ(∆ M ℓλ−1) for some ∆ ∈ R
n×n with ‖∆‖ ≤ 1 }

= { r eiφ | φ∈ [0, 2π), 0 ≤ r ≤ rλ(φ) },

where

rλ(φ) = [ µRn×n(e−i ℓλ φM ℓλ−1) ]1/ℓλ .

Figure 5.1 shows the limit sets Lλ for M = Mjk, j = 1, 2, k = 1, 2, 3, where

M1k =

[
0 Zk

0 0

]
, M2k =



0 Zk 0
0 0 Zk

0 0 0


 ,

and

Z1 =

[
1 − 2i 2 − 3i
−i 4 − 3i

]
, Z2 =

[
4 − 5i 1 − i
3 − 3i −i

]
, Z3 =

[
3 − 2i 2
1 − 2i 5 − i

]
.

−2 0 2

−3

−2

−1

0

1

2

3 M
11

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

M
21

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

M
12

−2 0 2

−3

−2

−1

0

1

2

3 M
22

−2 0 2

−3

−2

−1

0

1

2

3 M
13

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

M
23

Fig. 5.1. The limit sets Lλ of the matrices in Example 5.1 .

Example 5.2. Next, we consider real perturbations of a semi-simple eigenvalue
λ ∈ σ(A) with associated eigenprojector Pλ. We assume that B = C = In, so our
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matrix perturbations are of the form

A A + ∆, ∆ ∈ R
n×n (5.2)

Since Nλ = 0 by assumption, we have ℓλ = 1 and Γλ = Pλ. Thus, the associated limit
sets are

Lλ = { z ∈ C; z ∈ σ(∆ Pλ) for some ∆ ∈ R
n×n with ‖∆‖ ≤ 1 }

= { r eiφ | φ∈ [0, 2π), 0 ≤ r ≤ rλ(φ) },

where rλ(φ) = µRn×n(e−i φPλ).
The upper row of Figure 5.2 shows the limit sets Lλ for the projectors Pλ = P1k,

k = 1, 2, 3, where P1k = d−1
k XkY ∗

k and

X1 =
[
−3i −1 + i 2 − 3i −2i

]⊤
,

Y ∗
1 =

[
−4 + 6i 18 − 24i 6 − 12i 6 − 6i

]
,

X2 =

[
−2 − i −1 − 2i 2 −2 + 3i

−1 + 3i 0 1 − 2i i

]⊤
,

Y ∗
2 =

[
−4 − 2i 8 − 4i −4 − 2i 4 + 2i

−20 + 14i −8 − 4i −36 + 14i −12 + 2i

]
,

X3 =

[
−2 − 3i −i −3 − 4i −i −2 − 3i −1
−1 + i 2 −2 −1 4 + i 3 + i

]⊤
,

Y ∗
3 =

[
−36 + 296i −60 + 280i 12 − 112i −480i −80i 36 − 216i
−4 + 36i −140 + 60i −52 − 12i 240 − 120i 40 84 − 36i

]
,

d1 = −12, d2 = −32, d3 = 240i.

The projectors P1k satisfy P1kP1k = 0. Hence, they are the eigenprojectors to the
eigenvalue λ ∈ C \ R of any real matrix A with spectral representation

A = λ P1k + λ̄ P1k +
∑

ν∈σ(A)\{λ,λ̄}
(ν Pν + Nν).

The lower row of Figure 5.2 shows the limit sets for the real projectors

P21 =

[
1 0
0 0

]
, P22 =

1

2

[
1 1/2
2 1

]
, P23 = diag(P21, P22).

The depicted limit sets for these projectors can be easily computed using formula
(2.7): We have σ1(P23) = σ1(P22) = 2, σ2(P23) = σ1(P21) = 1, σ2(P21) = σ1(P22) = 0
and

rλ(φ) = µRn×n(e−i φP2k) =





σ1(P2k) if φ ∈ {0, π},
√

σ1(P2k) σ2(P2k) if 0 < φ < 2π, φ 6= π.
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Fig. 5.2. Limit sets of the projectors in Example 5.2

Example 5.3. Suppose the matrix A ∈ Rn×n has the spectral representation

A = (λ Pλ + Nλ) +
∑

ν∈σ(A)\{λ}
(ν Pν + Nν),

where λ, Pλ, Nλ are real and Nλ 6= 0. Then the limit set Lλ with respect to pertur-
bations of the form (5.2) is given by

Lλ = { z ∈ C; z ∈ σ(∆ N ℓλ−1
λ ) for some ∆ ∈ R

n×n with ‖∆‖ ≤ 1 }
= { r eiφ; φ∈ [0, 2π), 0 ≤ r ≤ rλ(φ) },

where ℓλ is the index of nilpotency of Nλ and

rλ(φ) = µRn×n(e−i ℓλφN ℓλ−1
λ ) =





σ1(N
ℓλ−1
λ ) if φ ∈ {0, π},

√
σ1(N

ℓλ−1
λ ) σ2(N

ℓλ−1
λ ) if 0 < φ < 2π, φ 6= π.

Figure 5.3 shows the limit sets Lλ for the cases Nλ = N1, N2, N3, where

N1 =

2

4

0 1 0
0 0 1
0 0 0

3

5 , N2 =

2

4

0 2 0
0 0 2
0 0 0

3

5 , N3 = diag(N1, N2).

Appendix A. In this section we derive some facts related to the continuity of
eigenvalues and prove our main result Theorem 4.1.

Zero sets of holomorphic functions. Let (X, d) be a metric space, and let
K(X) denote the set of non-empty compact subsets of X. The Hausdorff distance of
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Fig. 5.3. Limit sets for the nilpotent matrices in Example 5.3.

S, S̃ ∈ K(X) is defined by

dH(S, S̃) := max

{
max
x∈S

min
ex∈ eS

d(x, x̃), max
ex∈ eS

min
x∈S

d(x̃, x)

}
.

Recall that dH(·, ·) is a metric on K(X). In the following the Hausdorff distance of two
sets in K(C) is induced by the metric dC(z, z̃) = |z − z̃|, z, z̃ ∈ C. The lemma below
yields the basis for the proof of Theorem 4.1 as well as for the statements concerning
the continuity of eigenvalues that have been used in Sections 2 and 3.

Lemma A.1. Let (X, d) be a metric space, and let Ω be a non-empty open subset
of C. Let f : X × Ω → C be a continuous map such that for any x ∈ X, the function
f(x, ·) : Ω → C is holomorphic and non-constant. For any subset S of X let

Z(S) := { z ∈ C; f(x, z) = 0 for some x ∈ S }.

Then the following holds.
(a) Let z ∈ Ω be a zero of multiplicity m of the function f(x, ·), x ∈ X. Then

there is an ǫ0 > 0 such that the disk Dz(ǫ0) contains no zero of f(x, ·) different
from z. To each ǫ ∈ (0, ǫ0] there exists a δ > 0 such that for all x̃ ∈ X
satisfying d(x̃, x) ≤ δ the disk Dz(ǫ) contains precisely m zeros of f(x̃, ·),
counting multiplicities.

(b) Let S be a subset of X such that cl(S) is compact. Then cl(Z(S)) = Z(cl(S)),
where cl(·) denotes the topological closure.

(c) Assume that each f(x, ·) has at least one zero. Assume further that to any
bounded subset S of X there exists a compact subset K of Ω such that Z(S) ⊆
K. Then the map

Z : K(X) → K(C), S Z7−→ Z(S)

is well defined and continuous.
(d) Suppose all f(x, ·) have the same (finite) number of zeros, counting multi-

plicites. Let S be a connected subset of X and let C be a connected component
of Z(S). Suppose there is an x ∈ S such that precisely m zeros of f(x, ·)
are contained in C, counting multiplicities. Then for any x̃ ∈ S, precisely m
zeros of f(x̃, ·) are contained in C, counting multiplicities.

Proof. (a). By elementary function theory the zeros of the non-constant holo-
morphic function f(x, ·) are isolated points. Hence, if ǫ > 0 is small enough then
f(x, ζ) 6= 0 for all ζ ∈ Dz(ǫ) \ {z}. Since f is continuous and ∂Dz(ǫ) is compact,
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there is a δ > 0 such that d(x, x̃) ≤ δ implies |f(x̃, ζ) − f(x, ζ)| < |f(x, ζ)| for all
ζ ∈ ∂Dz(ǫ). Then, by Rouche’s theorem f(x̃, ·) and f(x, ·) have the same number of
zeros in Dz(ǫ).
Below we will use the following corollary of (a).

(i) Let f(x, z) = 0. Then to each ǫ > 0 there exists a δ(x, z, ǫ) > 0 such that
f(x̃, ·) has a zero in Dz(ǫ) whenever d(x, x̃) ≤ δ(x, z, ǫ).

(b). Let z ∈ Z(cl(S)), i.e. f(x, z) = 0 for some x ∈ cl(S). Let ǫ > 0 and let x̃ ∈ S with
d(x, x̃) < δ(x, z, ǫ). Then f(x̃, ·) has a zero in Dz(ǫ). This yields Z(cl(S)) ⊆ cl(Z(S)).

Let z ∈ cl(Z(S)). Then there are sequences xj ∈ S, zj ∈ Ω with lim zj = z
and f(xj , zj) = 0. Since cl(S) is compact a subsequence xjk

of xj converges to some
x ∈ cl(S). By continuity we have f(x, z) = 0. This yields cl(Z(S)) ⊆ Z(cl(S)).
(c). A compact subset of a metric space is closed and bounded. Hence, if S ⊆ X is
compact then (b) yields that Z(S) is closed. By assumption, Z(S) is contained in a
compact set K ⊂ Ω. Thus, Z(S) is compact. Thus we have shown that the function
S 7→ Z(S) maps compact sets to compact sets.
In the following Sǫ and Zǫ(S) denote closed ǫ-neighborhoods of S ⊆ X and Z(S), i.e.

Sǫ = {x̃ ∈ X; d(x, x̃) ≤ ǫ for some x ∈ S },
Zǫ(S) = {z̃ ∈ Ω; |z − z̃| ≤ ǫ for some z ∈ Z(S) }.

The continuity of the function S 7→ Z(S), S ∈ K(X), is immediate from the
statements (ii) and (iii) below. Let S ∈ K(X). Then

(ii) to each ǫ > 0 there exists a δ > 0 such that for any subset S̃ of X,

S̃ ⊆ Sδ implies Z(S̃) ⊆ Zǫ(S);

(iii) to each ǫ > 0 there exists a δ > 0 such that for any subset S̃ of X,

S ⊆ S̃δ implies Z(S) ⊆ Zǫ(S̃).
Proof of (ii): Suppose the statement fails. Then there are an ǫ > 0 and sequences
x̃j ∈ X, xj ∈ S and z̃j ∈ Ω such that

d(x̃j , xj) < 1/j, and f(x̃j , z̃j) = 0, and |z̃j − z| ≥ ǫ for all z ∈ Z(S). (A.1)

Since S is compact and compact sets are bounded, the sequence x̃j is bounded too.
Hence, by the assumption made in (c), all z̃j are contained in a compact set K ⊂ Ω.
By compactness there are converging subsequences xjk

→ x ∈ S and z̃jk
→ z̃ ∈ K.

From (A.1) it follows that x̃jk
→ x, and f(x, z̃) = 0 (hence z̃ ∈ Z(S)), and |z̃− z| ≥ ǫ

for all z ∈ Z(S), a contradiction.
Proof of (iii): By compactness we have Z(S) ⊂ ∪q

j=1Dzj
(ǫ/2) for some z1, . . . , zq ∈

Z(S). Let xj ∈ S be such that f(xj , zj) = 0 and let δ = minj δ(xj , zj , ǫ/2), where

δ(xj , zj , ǫ/2) satisfies (i). To each j there is some x̃j ∈ S̃ with d(x̃j , xj) ≤ δ since we

assume that S ⊆ S̃δ. By definition of δ there exists to each j a z̃j ∈ Dzj
(ǫ/2) with

f(x̃j , z̃j) = 0. Hence zj ∈ Zǫ/2(S̃), which implies Dzj
(ǫ/2) ⊂ Zǫ(S̃). This yields (iii).

(d). Let n denote the constant number of zeros of the functions f(x, ·). A connected
component C of Z(S) is closed and open with respect to the topology on Z(S) induced
by the topology on C. Hence there are open subsets U ,V of C such that C = Z(S)∩U
and Z(S) \ C = Z(S) ∩ V . Let Xm be the set of x̃ ∈ X such that at least m zeros
of f(x̃, ·) are contained in U and at least n − m zeros are contained in V , counting
multiplicities. Claim (a) yields that the sets Xm are open subsets of X. Hence the
sets Wm := Xm ∩ S are open subsets of S. Furthermore, Wm is the set of x̃ ∈ S
such that at least m zeros of f(x̃, ·) are contained in C and at least n − m zeros are
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contained in Z(S) \ C. However, since each f(x̃, ·) has n zeros, it follows that Wm is
the set of x̃∈S such that precisely m zeros of f(x̃, ·) are contained in C. Hence the
sets Wm are pairwise disjoint and form an open covering of S. Since S is connected
it follows that Wm = S for some m.

Remark A.1. The following example shows that the assumption made in Claim
(c) of Lemma A.1 is necessary for the well definedness and the continuity of the map
K(X) ∋ S 7→ Z(S) ∈ K(C).

Let X1 = [−1, 1], X2 = [1, 2], Ω1 = C, Ω2 = {z ∈ C; |z| < 1} and

Zj(S) = { z ∈ Ωj ; f(x, z) = 0 for some x ∈ S }, S ⊆ Xj , j = 1, 2,

where f(x, z) = z(1 − xz). Then for x ∈ Xj ,

Z1({x}) =

{
{0} if x = 0,

{0, 1/x} otherwise,
Z2({x}) =

{
{0} if x = 1,

{0, 1/x} otherwise.

In both cases Xj is bounded and Zj(Xj) is not contained in a compact subset
of Ωj . Furthermore, Z1(X1) is not compact, limx→0 Z1({x}) does not exist, and
limx→1 Z2({x}) = {0, 1} 6= Z2({1}).

Continuity of eigenvalues. Next, we consider eigenvalues of matrix sets. For
S ⊆ C

n×n let

σ(S) :=
⋃

A∈S
σ(A) = { z ∈ C; z ∈ σ(A) for some A ∈ S }.

Let ‖ · ‖ be a norm on C
n×n. Then d(A, Ã) = ‖A − Ã‖ is a metric on C

n×n. If S
is bounded, i.e. ‖A‖ ≤ r for all A ∈ S and a fixed r > 0, then σ(S) is contained in
the compact disk D0(R), where R = max{̺(A); A ∈ Cn×n, ‖A‖ ≤ r}. Hence, all
statements of the proposition below follow by specializing Lemma A.1 to the function
f(A, z) = det(zI − A).

Proposition A.2.

(a) Let λ ∈ C be an eigenvalue of A ∈ Cn×n of algebraic multiplicity m. Let
ǫ > 0 be such that the disks Dz(ǫ) contains no eigenvalue of A different from

λ. Then there is a δ > 0 such that for all Ã ∈ Cn×n satisfying ‖A − Ã‖ ≤ δ

the disk Dλ(ǫ) contains precisely m eigenvalues of Ã, counting multiplicities.
(b) Let S be a a bounded subset of Cn×n. Then cl(σ(S)) = σ(cl(S)).
(c) If S is compact then σ(S) is also compact. Furthermore, the map

σ : K(Cn×n) → K(C), S σ7−→ σ(S)

is continuous.
(d) Let S be a connected subset of Cn×n and let C ⊆ C be a connected component

of σ(S). Suppose there is an A ∈ S such that C contains precisely m eigen-

values of A counting algebraic multiplicities. Then for any Ã ∈ S the set C
contains precisely m eigenvalues of Ã.

Proof of Theorem 4.1. By (4.4) and (4.5) the rational matrix function G(s) =
C(sI − A)−1B can be written as

G(s) =
∑

ν∈σ(A)

(
CPνB

s − ν
+

ℓν∑

ℓ=2

CN ℓ−1
ν B

(s − ν)ℓ

)
= (s − λ)−ℓλ(Γλ + H(s)),
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where

Γλ =

{
CPλB if ℓλ = 1,

CN ℓλ−1
λ B otherwise,

and

H(s) := H0(s) +
∑

ν∈σ(A)\{λ}
(s − λ)ℓλ

(
CPνB

s − ν
+

ℓν∑

ℓ=2

CN ℓ−1
ν B

(s − ν)ℓ

)
,

H0(s) :=

{
0 if ℓλ = 1,

(s − λ)ℓλ−1CPλB +
∑ℓλ−1

ℓ=2 (s − λ)ℓλ−ℓCN ℓ−1
λ B otherwise.

Note that H(λ) = 0. According to (2.5) the following equivalence holds for all s ∈
C \ σ(A) and any ∆ ∈ Cl×q.

s ∈ σ(A + B∆C) ⇔ 1 ∈ σ(∆G(s)) ⇔ (s − λ)ℓλ ∈ σ(∆(Γλ + H(s))) (A.2)

Let R > 0 be such that the disk Dλ(R) contains no eigenvalue of A different from λ.
Then the function s 7→ H(s) is holomorphic in an open neighborhood of Dλ(R). Let
B := { ∆0 ∈ ∆; ‖∆0‖ ≤ 1 } and let r1, r2 > 0 be such that

max{ ̺(∆0 (Γλ + H(s))); ∆0 ∈ B, s ∈ Dλ(R) } < r1 < r2. (A.3)

Then, since ∆ is a cone, we have for any δ > 0,

max{ ̺(∆ (Γλ + H(s))); ∆ ∈ ∆, ‖∆‖ ≤ δ, s ∈ Dλ(R) } < r1 δ < r2 δ. (A.4)

Suppose s ∈ σ(A + B∆C) ∩ Dλ(R) for some ∆ ∈ ∆ with ‖∆‖ ≤ δ. Then (A.2) and
(A.4) yield |s − λ|ℓλ < r1 δ. Hence,

σc
∆

(A, B, C; δ) ∩ Dλ(R) ⊂ K1(δ) ⊂ K2(δ), (A.5)

where Kj(δ) := { s ∈ C; |s − λ|ℓλ < rjδ }, j = 1, 2. Suppose 0 < δ ≤ Rℓλ/r2. Then
K1(δ) ⊂ K2(δ) ⊂ Dλ(R). Hence, by (A.5),

σc
∆

(A, B, C; δ) ∩ Dλ(R) = σc
∆

(A, B, C; δ) ∩ Kj(δ), j = 1, 2.

It follows that σc
∆

(A, B, C; δ) ∩ ∂K1(δ) = ∅. The latter implies that each connected
component of σc

∆
(A, B, C; δ)∩K1(δ) is also a connected component of σc

∆
(A, B, C; δ).

However, since each connected component of σc
∆

(A, B, C; δ) contains at least one
eigenvalue of A and λ is the only eigenvalue in K1(δ) ⊂ Dλ(R), we have

Cλ(δ) = σc
∆

(A, B, C; δ) ∩ Kj(δ), j = 1, 2. (A.6)

Next, we want to apply Lemma A.1. To this end we define a metric space (X, d) by
X := [0, Rℓλ/r2]×B and d((δ1, ∆1), (δ2, ∆2)) := |δ1−δ2|+‖∆1−∆2‖. Furthermore, we
set Ωj := {z ∈ C; |z| < rj }, j = 1, 2, and define a continuous family of holomorphic
functions by

f : X × Ω2 → C, f((δ, ∆0), z) = det(zℓλI − ∆0(Γλ + H(λ + δ1/ℓλz))).

Note that for δ 6= 0 the map z 7→ λ + δ1/ℓλz is a bijection between Ωj and Kj(δ),
j = 1, 2. On replacing in (A.2) s by λ + δ1/ℓλz and ∆ by δ∆0 with ∆0 ∈ B we obtain
that the following statements (a) and (b) are equivalent for z 6= 0, δ 6= 0 and j = 1, 2.
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(a) z ∈ Ωj and f((δ, ∆0), z) = 0.
(b) λ + δ1/ℓλz ∈ Kj(δ) and λ + δ1/ℓλz ∈ σ(A + B(δ ∆0)C).

The statements (a) and (b) both hold if ∆0 = 0 and z = 0. For any non-empty subset
S of X let

Z(S) := { z ∈ C; f((δ, ∆0), z) = 0 for some (δ, ∆0) ∈ S }.

Then from (A.6) and the equivalence of (a) and (b) we obtain

Cλ(δ) = λ + δ1/ℓλ Z({δ} × B).

Note that the set Z(X) =
⋃

0≤δ≤Rℓλ/r2
Z({δ} × B) is contained in the closure of Ω1,

which is a compact subset of Ω2. As δ tends to 0 the compact set {δ} × B tends to
{0} × B with respect to the Hausdorff metric induced by d. Thus, by Claim (c) of
Lemma A.1,

lim
δ→0

Cλ(δ) − λ

δ1/ℓλ
= lim

δ→0
Z({δ} × B) = Z({0} × B) = Lλ. �

Acknowledgements. The author thanks Daniel Kressner for valuable com-
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