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Abstract

We discuss the solution of linear second order differential-algebraic equations with
variable coefficients. Since index reduction and order reduction for higher order higher
index differential-algebraic systems do not commute, appropriate index reduction methods
for higher order DAEs are required. We present an index reduction method based on
derivative arrays that allows to determine an equivalent second order system of lower
index in a numerical computable way. For such an equivalent second order system an
appropriate order reduction method allows to formulate a suitable first order DAE system
of low index that has the same solution components as the original second order system.
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1 Introduction

Linear second order differential-algebraic equations of the form

M(t)ẍ + C(t)ẋ + K(t)x = f(t), t ∈ I, (1)

where M, C, K ∈ C(I, Cm×n) and f ∈ C(I, Cm) are sufficiently smooth on a compact interval
I ⊆ R with initial conditions

x(t0) = x0 ∈ C
n, ẋ(t0) = ẋ0 ∈ C

n for t0 ∈ I, (2)

naturally arise in many technical applications as, e.g., in the simulation of electrical circuits
[8, 9] or mechanical multibody systems [6, 14]. Here, Ck(I, Cm,n) denotes the set of k-times
continuously differentiable functions from the interval I to the vector space of complex m×n

matrices C
m,n.

For the numerical (as well as analytical) solution, second order systems of the form (1) are
usually transformed into first order systems by introducing new variables for the derivatives,
as is the common practice in the classical theory of ordinary differential equations. For
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DAEs, however, the classical order reduction approach has to be performed with great care,
since it may lead to a number of mathematical difficulties as has been discussed in several
publications, see [1, 5, 13, 15, 16]. Moreover, the numerical solution of DAEs usually requires
the reformulation of higher index DAEs as an equivalent system of lower index to be able to use
standard integration methods suited for DAEs, see e.g. [2, 10, 11]. Therefore, the numerical
solution of linear second order differential-algebraic systems of the form (1) typically requires
the reduction to a first order system on the one hand and an index reduction for higher index
systems on the other hand. But, for high order high index differential-algebraic systems the
order reduction and index reduction do not commute as can be seen in the following example.

Example 1. We consider the linear second order system




t 0 0
0 1 1
0 t t









ẍ1

ẍ2

ẍ3



 +





1 0 0
0 0 0
0 0 0









ẋ1

ẋ2

ẋ3



 +





1 0 0
0 1 0
0 1 + t 1









x1

x2

x3



 =





f1

f2

f3



 , (3)

for t ∈ [t0, t1] with t0 > 0. System (3) has the unique solution components
[
x2

x3

]

=

[
f2 − f̈3 + tf̈2 + 2ḟ2

f3 − (1 + t)f2 + f̈3 − tf̈2 − 2ḟ2

]

,

and x1 is the solution of the second order ordinary differential equation tẍ1 + ẋ1 +x1 = f1 for
given initial values x1(t0) = x1,0 and ẋ1(t0) = ẋ1,0. Hence, the minimum requirement for the
existence of a continuous solution is that f1 is continuous and f2 and f3 are twice continuously
differentiable (corresponding to a strangeness index of µ = 2). The classical order reduction
for the second order system (3) yields a first order system of the form











t 0 0 0 0 0
0 1 1 0 0 0
0 t t 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





















v̇1

v̇2

v̇3

ẋ1

ẋ2

ẋ3











+











1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 + t 1

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0





















v1

v2

v3

x1

x2

x3











=











f1

f2

f3

0
0
0











. (4)

In comparison to the solution of (3), this system has the additional solution components
[
v2

v3

]

=

[

ḟ2 − f
(3)
3 + tf

(3)
2 + 3f̈2

ḟ3 − (t + 1)ḟ2 − f2 + f
(3)
3 − tf

(3)
2 − 3f̈2

]

,

i.e., the third derivative of the inhomogeneity is required (system (4) is of strangeness index
µ̃ = 3). On the other hand, system (3) is equivalent to the system





t 0 0
0 0 0
0 0 0









ẍ1

ẍ2

ẍ3



 +





1 0 0
0 0 0
0 0 0









ẋ1

ẋ2

ẋ3



 +





1 0 0
0 1 0
0 0 1









x1

x2

x3



 =





f1

f2 − f̈3 + (tf2)
′′

f3 − tf2 − f2 + f̈3 − (tf2)
′′



 ,

a decoupled system of two algebraic equations and one differential equation. Now, introducing
only v1 = ẋ1 as new variable, we get the first order system







t 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0













v̇1

ẋ1

ẋ2

ẋ3







+







0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0













v1

x1

x2

x3







=







f1

f2 − f̈3 + (tf2)
′′

f3 − tf2 − f2 + f̈3 − (tf2)
′′

0







,
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which is also a decoupled system of algebraic and differential equations and no further smooth-
ness requirements are imposed.

Further examples are presented in [12] that show that the classical approach of introducing
the derivatives of the unknown vector-valued function x(t) as new variables may lead to higher
smoothness requirements for the inhomogeneity f(t) to ensure the existence of a solution that
can even cause the loss of solvability of the system. By introducing only some new variables,
however, this difficulty can be circumvented. An index reduction method and condensed
forms for linear high order differential-algebraic systems are introduced in [12], which allow an
identification of those higher order derivatives of variables that can be replaced to obtain a first
order system without changing the smoothness requirements. But, the computation of this
condensed form is not feasible for numerical solution methods as it involves the derivatives of
computed transformation matrices. However, since the standard way to obtain a strangeness-
free first order formulation by first introducing new variables for the derivatives to transform
the system into a first order system and then applying the usual index reduction procedures to
the first order system can fail due to a possible increase in the index, at first an index reduction
of the higher order system should be used followed by an appropriate order reduction to obtain
a suitable strangeness-free first order formulation. Recently, it has been shown in [15, 18] that
also the direct discretization of the second order system may yield better numerical results
and is able to prevent certain numerical difficulties as the failure of numerical methods, see
also [1, 2, 17].
In this paper we will present a new index reduction method for linear second order differential-
algebraic systems of the form (1) based on the derivatives of the coefficient matrices M(t),
C(t) and K(t) that allows the computation of an equivalent system of low index and in a
second step also the formulation of a corresponding trimmed first order formulation. At
first, we present the basic results of the analysis of linear second order differential-algebraic
equations similar as in [12], including condensed forms and characteristic invariants as well
as a strangeness-free formulation in Section 2. In Section 3, we introduce the derivative array
approach which enables us to transform the linear second order system (1) into an equivalent
strangeness-free second order system with the same solution set in a numerical computable
way. Further, in Section 4, we present a trimmed first order formulation for linear strangeness-
free second order systems. Throughout this paper, for ease of representation, we restrict to
linear second order systems since they are most frequently used in practical applications.
However, all presented ideas can also be extended to arbitrary linear k-th order systems and
to nonlinear systems, see also [19].

2 Condensed Forms for Linear Second Order DAEs

In the following, we present the main results of the analysis of linear second order differential-
algebraic systems of the form (1) similar as in [12]. The condensed forms given in [12] are
used to derive the relationships between the global invariants of the triple of matrix-valued
functions (M, C, K) and the local invariants of the derivative array as presented in Section 3.
Since we use a slightly different stepwise index reduction procedure compared to [12] we state
again the main ideas of the condensed forms and of the index reduction here. First of all, to
derive condensed forms for triples (M(t), C(t), K(t)) of matrix-valued functions we need an
appropriate equivalence relation.
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Definition 2. Two triples of matrix-valued functions (M1, C1, K1) and (M2, C2, K2), with
Mi, Ci, Ki ∈ C(I, Cm×n), i = 1, 2 are called globally equivalent if there exist pointwise non-
singular matrix-valued functions P ∈ C(I, Cm×m) and Q ∈ C2(I, Cn×n) such that

M2 = PM1Q, C2 = 2PM1Q̇ + PC1Q, K2 = PM1Q̈ + PC1Q̇ + PK1Q. (5)

For equivalent matrix triples we write (M1, C1, K1) ∼ (M2, C2, K2).

Considering the action of the equivalence relation (5) locally at a fixed point t̂ ∈ I, we take
into account that for given matrices P̂ , Q̂, R̂1 and R̂2 of appropriate size, using Hermite
interpolation, we can always find matrix-valued functions P and Q, such that at a given value
t = t̂ we have P (t̂) = P̂ , Q(t̂) = Q̂, Q̇(t̂) = R̂1 and Q̈(t̂) = R̂2. Therefore, we can define local
equivalence of matrix triples in the following way.

Definition 3. Two matrix triples (M1, C1, K1) and (M2, C2, K2) with Mi, Ci, Ki ∈ C
m×n,

i = 1, 2, are called locally equivalent if there exist nonsingular matrices P ∈ C
m×m and

Q ∈ C
n×n and matrices R1, R2 ∈ C

n×n such that

M2 = PM1Q, C2 = 2PM1R1 + PC1Q, K2 = PM1R2 + PC1R1 + PK1Q. (6)

Again, we write (M1, C1, K1) ∼ (M2, C2, K2) if the context is clear.

It has be shown in [16] that the relations (5) and (6) are equivalence relations on the set
of tuples of matrix-valued functions, and on the set of tuples of matrices, respectively. For
a linear second order differential-algebraic system of the form (1) a condensed form under
local equivalence transformation (6) of the corresponding matrix triple (M(t̂), C(t̂), K(t̂)) at
a fixed point t̂ ∈ I has also been derived in [13, 16] (see Appendix A.1). In this way, second
order differential-algebraic systems are locally characterized by their purely first and second
order differential parts of size d(1) and d(2), by their algebraic part of size a, by undetermined
and redundant parts of size u and v and by the strangeness parts of size s(MCK), s(MC),
s(MK), and s(CK) due to the different possible couplings between the matrices M, C, and
K. The quantities s(MCK), s(MC), s(MK), s(CK), d(2), d(1), a, v and u are called the local
characteristic values of the linear second order DAE (1). These local characteristic values
are invariant under the equivalence relation (6) and can be expressed in terms of ranks of
matrices and dimensions of column spaces.

Lemma 4. [13, 16] Let M, C, K ∈ C
m×n and let

V1 be a basis of kernel(MH),

V2 be a basis of kernel(M),

V3 be a basis of kernel(MH) ∩ kernel(CH),

V4 be a basis of kernel(M) ∩ kernel(V H
1 C).

Then, the quantities

r = rank(M) (rank of M)
a = rank(V H

3 KV4) (algebraic part)

s(MCK) = dim(range(MH) ∩ range(CHV1) ∩ range(KHV3)) (strangeness of M, C, K)

s(CK) = rank(V H
3 KV2) − a (strangeness of C, K)
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d(1) = rank(V H
1 CV2) − s(CK) (1st-order diff. part)

s(MC) = rank(V H
1 C) − s(MCK) − s(CK) − d(1) (strangeness of M, C)

s(MK) = rank(V H
3 K) − a − s(MCK) − s(CK) (strangeness of M, K)

d(2) = r − s(MCK) − s(MC) − s(MK) (2nd-order diff. part)

v = m − r − 2s(CK) − d(1) − 2s(MCK) − s(MC) − a − s(MK) (vanishing equations)

u = n − r − s(CK) − d(1) − a (undetermined part)

are invariant under the local equivalence relation (6).

For triples (M(t), C(t), K(t)) of matrix-valued functions we can compute the local condensed
form at any fixed value t̂ ∈ I and determine the local characteristic quantities so that we
obtain functions

r, a, d(2), d(1), s(MCK), s(CK), s(MC), s(MK), u, v : I → N0.

In the following, we assume that these functions are constant over the interval I, i.e.,

r(t) ≡ r, a(t) ≡ a, d(1)(t) ≡ d(1), s(MCK)(t) ≡ s(MCK),

s(CK)(t) ≡ s(CK), s(MC)(t) ≡ s(MC), s(MK)(t) ≡ s(MK), for all t ∈ I.
(7)

From Lemma 4 it then follows that d(2)(t), u(t) and v(t) are also constant in I. We will call
(7) the regularity conditions for the triple (M(t), C(t), K(t)). Under this assumption a global
condensed form for triples of matrix-valued functions via the global equivalence transforma-
tions (5) has been derived in [13, 16] (see Appendix A.1). The associated differential-algebraic
system

M̃(t)¨̃x(t) + C̃(t) ˙̃x(t) + K̃(t)x̃(t) = f̃(t), (8)

with coefficient matrices (M̃, C̃, K̃) in the global condensed form given in Lemma A.2 (see
Appendix A.1) is given by

ẍ1 + C13ẋ3 + C14ẋ4 + C17ẋ7 + C18ẋ8 + K12x2 + K14x4 + K16x6 + K18x8 = f1, (a)

ẍ2 + C23ẋ3 + C24ẋ4 + C27ẋ7 + C28ẋ8 + K22x2 + K24x4 + K26x6 + K28x8 = f2, (b)

ẍ3 + C33ẋ3 + C34ẋ4 + C37ẋ7 + C38ẋ8 + K32x2 + K34x4 + K36x6 + K38x8 = f3, (c)

ẍ4 + C43ẋ3 + C44ẋ4 + C47ẋ7 + C48ẋ8 + K42x2 + K44x4 + K46x6 + K48x8 = f4, (d)

ẋ5 + K52x2 + K54x4 + K56x6 + K58x8 = f5, (e)

ẋ6 + K62x2 + K64x4 + K66x6 + K68x8 = f6, (f)

ẋ1 + K72x2 + K74x4 + K76x6 + K78x8 = f7, (g)

ẋ2 + K82x2 + K84x4 + K86x6 + K88x8 = f8, (h)

x7 = f9, (i)

x5 = f10, (j)

x3 = f11, (k)

x1 = f12, (l)

0 = f13. (m)

If we differentiate the equations (g)− (l) once, we can eliminate the corresponding derivatives
ẋ1, ẋ3, ẋ5, ẋ7, ẍ1, ẍ2 in the equations (a) − (e) and (g) and get the system

−K72ẋ2 + (C14 − K74)ẋ4 − K76ẋ6 + (C18 − K78)ẋ8 + (K12 − K̇72)x2

5



+(K14 − K̇74)x4 + (K16 − K̇76)x6 + (K18 − K̇78)x8 = f1 − ḟ7 − C17ḟ9 − C13ḟ11,

−K82ẋ2 + (C24 − K84)ẋ4 − K86ẋ6 + (C28 − K88)ẋ8 + (K22 − K̇82)x2

+(K24 − K̇84)x4 + (K26 − K̇86)x6 + (K28 − K̇88)x8 = f2 − C27ḟ9 − ḟ8 − C23ḟ11,

ẍ3 + C34ẋ4 + C38ẋ8 + K32x2 + K34x4 + K36x6 + K38x8 = f3 − C37ḟ9 − C33ḟ11,

ẍ4 + C44ẋ4 + C48ẋ8 + K42x2 + K44x4 + K46x6 + K48x8 = f4 − C47ḟ9 − C43ḟ11,

K52x2 + K54x4 + K56x6 + K58x8 = f5 − ḟ10,

ẋ6 + K62x2 + K64x4 + K66x6 + K68x8 = f6,

K72x2 + K74x4 + K76x6 + K78x8 = f7 − ḟ12,

ẋ2 + K82x2 + K84x4 + K86x6 + K88x8 = f8,

x7 = f9,

x5 = f10,

x3 = f11,

x1 = f12,

0 = f13.

Thus, after one differentiation-and-elimination step we get an equivalent second order system

M<1>(t)¨̃x + C<1>(t) ˙̃x + K<1>(t)x̃ = f<1>(t),

with (M<1>, C<1>, K<1>; f<1>) being of the form

















































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 Is(MK) 0 0 0 0 0
0 0 0 Id(2) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

























0 C 0 C 0 C 0 C

0 C 0 C 0 C 0 C

0 0 0 C 0 0 0 C

0 0 0 C 0 0 0 C

0 0 0 0 0 0 0 0
0 0 0 0 0 Id(1) 0 0
0 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

























0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 Ia 0
0 0 0 0 Is(CK) 0 0 0
0 0 Is(MK) 0 0 0 0 0

Is(MCK) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























;


























f1 − ḟ7 − C17ḟ9 − C13ḟ11

f2 − C27ḟ9 − ḟ8 − C23ḟ11

f3 − C37ḟ9 − C33ḟ11

f4 − C47ḟ9 − C43ḟ11

f5 − ḟ10

f6

f7 − ḟ12

f8

f9

f10

f11

f12

f13



















































.

(9)
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Note that, for convenience of expression, in (9) and in the following, we drop the sub-
scripts of the elements of block matrices unless they are needed for clarification. The triple
(M<1>, C<1>, K<1>) in (9) can then again be transformed to the global condensed form and
the reduction step is repeated, i.e., again, the derivatives of certain equations are added to
other equations to eliminate the coupling between equations. Note, that the identity block of
size s(MK) in the matrix M̃ is not eliminated in the first reduction step, as this would require
the second derivative of equation (k). This block is eliminated in the second reduction step by
differentiating equation (k) twice and eliminating ẍ3 in equation (c). Continuing this process,
we obtain a sequence of triples of matrix-valued functions (M<i>(t), C<i>(t), K<i>(t)), i ∈

N0, with corresponding global characteristic values (ri, d
(1)
i , ai, s

(MC)
i ,s

(CK)
i , s

(MK)
i , s

(MCK)
i , ui,

vi), where (M<0>(t), C<0>(t), K<0>(t)) = (M(t), C(t), K(t)). During this reduction proce-

dure the identity blocks of size s
(MK)
i are decomposed into two blocks of size si and si−1,

with s
(MK)
i = si + si−1, and s0 = s

(MK)
0 , in such a way that si−1 denotes the part of s

(MK)
i

that can be eliminated in the (i + 1)-th reduction step, while si denotes the part that cannot
be eliminated until reduction step i + 2. Here, we set s−1 = 0 and for the following we use
the convention that characteristic quantities with negative subscript are zero. The relations

rank (M<i+1>) = ri+1 = ri − s
(MCK)
i − s

(MC)
i − si−1,

rank (K<i+1>) ≥ ai+1 ≥ ai + s
(CK)
i + s

(MCK)
i

guarantee that after a finite number of steps µ, the strangeness s
(MCK)
µ , s

(MK)
µ , s

(CK)
µ and

s
(MC)
µ corresponding to (M<µ>(t), C<µ>(t), K<µ>(t)) vanish and the process becomes sta-

tionary. We call µ the strangeness index or s-index of the second order system of DAEs (1)
and we call the final equivalent second order system of DAEs strangeness-free.

Remark 5. Here, we differ slightly from the index reduction procedure described in [13, 16],
where the identity block of size s(MK) is also completely eliminated in every reduction step.
Thus, for one reduction step one or two differentiations of equations are required, depending
on the occurrence of strangeness blocks. In this way, the index definition does not correspond
to the differentiability requirements for the right hand side. In our approach the right-hand
side is only differentiated once in each elimination step before the system is again transformed
to global condensed form such that the strangeness index corresponds to the differentiability
requirements for the right hand side, which is the case for all general index concepts.

Theorem 6. Consider the linear second order system (1), suppose that the regularity condi-
tions (7) hold, and let µ be the strangeness index of (1). If f ∈ Cµ(I, Cm), then system (1) is
equivalent (in the sense that there is a one-to-one correspondence between the solution sets)
to a strangeness-free system of second order differential-algebraic equations of the form

¨̃x1 + C̃11(t) ˙̃x1 + C̃14(t) ˙̃x4 + K̃11(t)x̃1 + K̃12(t)x̃2 + K̃14(t)x̃4 = f̃1(t), ( d(2)
µ )

˙̃x2 + K̃21(t)x̃1 + K̃22(t)x̃2 + K̃24(t)x̃4 = f̃2(t), ( d(1)
µ )

x̃3 = f̃3(t), ( aµ )

0 = f̃4(t), ( vµ )

(10)

where the inhomogeneity f̃ := [f̃H
1 , . . . , f̃H

4 ]H is determined by f (0), . . . , f (µ). In particular,

d
(2)
µ , d

(1)
µ and aµ are the number of second order differential, first order differential, and

7



algebraic components of the unknown x̃ := [x̃H
1 , . . . , x̃H

4 ]H , while uµ is the dimension of the
undetermined vector x̃4, and vµ is the number of conditions in the last equation.

Proof. The proof is similar to the proof of [16, Theorem 2.12] with slight modifications con-
cerning the definition of the strangeness index and the counting of the differentiations.

Using the strangeness-free form (10) we can analyze existence and uniqueness of solutions
and consistency of initial conditions for linear second order differential-algebraic systems (1),
see [13, 16]. Further, the strangeness-free form (10) allows the identification of those second
order derivatives of variables that can be replaced to obtain a first order system that is
strangeness-free without increasing the index.
Instead of actually performing the differentiation-and-elimination steps leading to (9) we can
apply all equivalence transformations directly to the triple (M(t), C(t), K(t)) and construct
a triple of matrix functions from which we can read off the whole sequence of characteristic

values (ri, d
(1)
i , ai, s

(MCK)
i , s

(MC)
i , s

(MK)
i , s

(CK)
i , ui, vi). This sequence of characteristic values

can be further characterized in terms of ranks of block matrices of the matrix triple.

Lemma 7. Let the functions M, C, K ∈ C(I, Cm,×n) be sufficiently smooth and let the
strangeness index µ be well-defined. Further, let the process leading to Theorem 6 yield a
sequence (M<i>, C<i>, K<i>), i ∈ N0, with (M<0>, C<0>, K<0>) = (M, C, K) and char-

acteristic values (ri, d
(1)
i , ai, s

(MCK)
i , s

(MC)
i , s

(MK)
i , s

(CK)
i , ui, vi) according to Lemma 4. The

triple (M<i>, C<i>, K<i>) of matrix-valued functions is globally equivalent to the triple



























































I
s
(MCK)
i

0 0 0 0 0 0 0 0

0 I
s
(MC)
i

0 0 0 0 0 0 0

0 0 Isi−1
0 0 0 0 0 0

0 0 0 Isi
0 0 0 0 0

0 0 0 0 I
d
(2)
i

0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0






























,
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





























0 0 C<i>
13 C<i>

14 C<i>
15 0 0 C<i>

18 C<i>
19

0 0 C<i>
23 C<i>

24 C<i>
25 0 0 C<i>

28 C<i>
29

0 0 C<i>
33 C<i>

34 C<i>
35 0 0 C<i>

38 C<i>
39

0 0 C<i>
43 C<i>

44 C<i>
45 0 0 C<i>

48 C<i>
49

0 0 C<i>
53 C<i>

54 C<i>
55 0 0 C<i>

58 C<i>
59

0 0 0 0 0 I
s
(CK)
i

0 0 0

0 0 0 0 0 0 I
d
(1)
i

0 0

I
s
(MCK)
i

0 0 0 0 0 0 0 0

0 I
s
(MC)
i

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0































, (11)


































0 K<i>
12 0 0 K<i>

15 0 K<i>
17 0 K<i>

19

0 K<i>
22 0 0 K<i>

25 0 K<i>
27 0 K<i>

29

0 K<i>
32 0 0 K<i>

35 0 K<i>
37 0 K<i>

39

0 K<i>
42 0 0 K<i>

45 0 K<i>
47 0 K<i>

49

0 K<i>
52 0 0 K<i>

55 0 K<i>
57 0 K<i>

59

0 K<i>
62 0 0 K<i>

65 0 K<i>
67 0 K<i>

69

0 K<i>
72 0 0 K<i>

75 0 K<i>
77 0 K<i>

79

0 K<i>
82 0 0 K<i>

85 0 K<i>
87 0 K<i>

89

0 K<i>
92 0 0 K<i>

95 0 K<i>
97 0 K<i>

99

0 0 0 0 0 0 0 Iai
0

0 0 0 0 0 I
s
(CK)
i

0 0 0

0 0 Isi−1
0 0 0 0 0 0

0 0 0 Isi
0 0 0 0 0

I
s
(MCK)
i

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



































































s
(MCK)
i

s
(MC)
i

si−1

si

d
(2)
i

s
(CK)
i

d
(1)
i

s
(MCK)
i

s
(MC)
i

ai

s
(CK)
i

si−1

si

s
(MCK)
i

vi

,

where s
(MK)
i is separated into s

(MK)
i = si + si−1 and the last block columns have size ui. We

define

C̃<i>
1j := C<i>

1j − K<i>
8j , j = 5, 9,

C̃<i>
2j := C<i>

2j − K<i>
9j , j = 5, 9,

K̃<i>
1j := K<i>

1j − K̇<i>
8j + K<i>

82 K<i>
9j + K<i>

87 K<i>
7j , j = 2, 5, 7, 9,

K̃<i>
2j := K<i>

2j − K̇<i>
9j + K<i>

92 K<i>
9j + K<i>

97 K<i>
7j , j = 2, 5, 7, 9,

C̃1 :=
[
C̃<i>H

15 C̃<i>H
25 C<i>H

35

]H
,

C̃2 :=
[

C̃<i>H
19 C̃<i>H

29 C<i>H
39

]H
,

as well as

k0 = d
(1)
0 + s

(CK)
0 , ki+1 = rank C̃2,

e0 = d
(1)
0 + s

(MC)
0 + s

(CK)
0 + s

(MCK)
0 , ei+1 = rank

([
C̃1 C̃2

])
.
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Then, let U and V be nonsingular matrix-valued functions of size (s
(MCK)
i + s

(MC)
i + si−1,

s
(MCK)
i + s

(MC)
i + si−1) and (d

(2)
i + ui, d

(2)
i + ui), respectively, such that

UH
[
C̃1 C̃2

]
V =

[
Iei+1 0

0 0

]

.

Further, let U and V be partitioned into U =
[
U1 U2 U3

]
and V =

[
V1 V2 V3

]
such that





UH
1

UH
2

UH
3




[

C̃1 C̃2

] [
V1 V2 V3

]
=





Iei+1−ki+1
0 0

0 Iki+1
0

0 0 0



 ,

and with a splitting of V3 into V3 =
[
V31 V32

]
with V31 of size (d

(2)
i + ui, d

(2)
i − ei+1 + ki+1)

and V32 of size (d
(2)
i + ui, ui − ki+1) we can define

[
K1 K2 K3 K4 K5 K6

]
:=

[
UH

3 0
0 I

]









K̃<i>
15 K̃<i>

17 K̃<i>
12 K̃<i>

19

K̃<i>
25 K̃<i>

27 K̃<i>
22 K̃<i>

29

K<i>
35 K<i>

37 K<i>
32 K<i>

39

K<i>
65 K<i>

67 K<i>
62 K<i>

69

K<i>
85 K<i>

87 K<i>
82 K<i>

89
















[V1 V31] 0 0 0
0 I

d
(1)
i

0 0

0 0 I
s
(MC)
i

0

0 0 0 [V2 V32]








,
(12)

where the identity matrix on the left-hand side is of size s
(CK)
i + s

(MCK)
i . Further, we define

b0 = a0, bi+1 = rank (
[
K6

]
),

p0 = a0 + s
(CK)
0 , pi+1 = rank (

[
K5 K6

]
),

t0 = a0 + s
(CK)
0 − s

(MK)
0 , ti+1 = rank (

[
K4 K5 K6

]
),

d0 = a0 + s
(CK)
0 , di+1 = rank (

[
K3 K4 K5 K6

]
),

h0 = a0 + s
(CK)
0 + s

(MK)
0 , hi+1 = rank (

[
K2 K3 K4 K5 K6

]
),

c0 = a0 + s
(MCK)
0 + s

(CK)
0 + s

(MK)
0 , ci+1 = rank (

[
K1 K2 K3 K4 K5 K6

]
),

w0 = v0, wi+1 = vi+1 − vi,

q0 = e0, qi+1 = ei+1 + ci − s
(CK)
i − s

(MCK)
i .

Then, we have

ri+1 = ri − s
(MCK)
i − s

(MC)
i − si−1,

ci+1 = bi+1 + s
(MCK)
i+1 + s

(CK)
i+1 + s

(MK)
i+1 − si,

ei+1 = ki+1 + s
(MC)
i+1 + s

(MCK)
i+1 ,

ai+1 = ai + s
(CK)
i + s

(MCK)
i + si−1 + bi+1 = c0 + · · · + ci+1 − s

(CK)
i+1 − s

(MK)
i+1 − s

(MCK)
i+1 ,

s
(MCK)
i+1 = ci+1 − hi+1,

s
(MC)
i+1 = ei+1 − ki+1 − ci+1 + hi+1,

si+1 = hi+1 − di+1,

s
(MK)
i+1 = si+1 + si,

s
(CK)
i+1 = di+1 − bi+1,
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d
(2)
i+1 = ri+1 − s

(MCK)
i+1 − s

(MC)
i+1 − s

(MK)
i+1 = d

(2)
i − ei+1 + ki+1 − si+1,

d
(1)
i+1 = d

(1)
i + s

(MC)
i + ki+1 − s

(CK)
i+1

= q0 + · · · + qi+1 − c0 − · · · − ci − s
(MCK)
i+1 − s

(MC)
i+1 − s

(CK)
i+1 ,

wi+1 = 2s
(MCK)
i + s

(CK)
i + s

(MC)
i + si−1 − ei+1 − ci+1,

ui+1 = u0 − b1 − · · · − bi+1,

vi+1 = v0 + w1 + · · · + wi+1 = 2s
(MCK)
i + s

(CK)
i + s

(MC)
i + si−1 − ei+1 − ci+1 + vi.

Proof. The proof of Lemma 7 is given in the Appendix A.2.

3 Derivative Array Approach

The algebraic approach described in the previous section allows for the theoretical analysis of
linear second order DAEs (1), but it cannot be used for the development of numerical methods
as neither the inductive process of the reduction to the strangeness-free formulation (10) nor
the global condensed form are obtained in a way that is feasible for numerical methods.
Therefore, we look for other ways to compute the characteristic invariants of a given DAE
as well as a canonical form similar to (10) in a numerically stable procedure. The basic
idea due to Campbell [4] is to differentiate the differential-algebraic equation (1) a number of
times and put the original DAE and its derivatives into a large system. Then, purely local
invariants can be constructed via local equivalence transformations, which allow to determine
the global invariants including the strangeness index, wherever they are defined. Further, it
is also possible to derive a strangeness-free formulation using only local informations.
In the following, we consider matrix-valued functions M, C, K ∈ C(I, Cm,n) that are suffi-
ciently smooth and we assume that the strangeness index µ is well-defined, i.e., the ranks are
constant in the considered interval and none of the invariant values changes its value during
the process. This can always be achieved by going to smaller intervals since there always exits
open intervals Ij ⊆ I, j ∈ N with

⋃

j∈N
Ij = I, Ii ∩ Ij = ∅ for i 6= j such that the constant

rank assumption holds for all t ∈ Ij , j ∈ N and the following construction can be applied
separately for each interval Ij, see e.g. [11]. Differentiating the differential-algebraic equation
(1) and putting the original DAE and its derivatives up to a sufficiently high order into a
large system, we obtain the derivative array associated with the linear second order DAE (1)
of the form

Ml(t)z̈l + Ll(t)żl + Nl(t)zl = gl(t), l ∈ N0, (13)

where Ml, Ll, Nl, zl and gl are defined by

[Ml]i,j :=

(
i

j

)

M (i−j) +

(
i

j + 1

)

C(i−j−1) +

(
i

j + 2

)

K(i−j−2), i, j = 0, . . . , l,

[Ll]i,j :=

{
C(i) + iK(i−1) for i = 0, . . . , l, j = 0,
0 otherwise,

(14)

[Nl]i,j :=

{
K(i) for i = 0, . . . , l, j = 0,
0 otherwise,

[zl]i := x(i), i = 0, . . . , l,

[gl]i := f (i), i = 0, . . . , l.
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Here, we use the convention that
(

i
j

)
= 0 for i < 0, j < 0 or j > i. For l = 2, for example,

the extended system (13) is of the form





M 0 0

Ṁ + C M 0

M̈ + 2Ċ + K 2Ṁ + C M









ẍ
...
x

x(4)



 +





C 0 0

Ċ + K 0 0

C̈ + 2K̇ 0 0









ẋ

ẍ
...
x



 +





K 0 0

K̇ 0 0

K̈ 0 0









x

ẋ

ẍ



 =





f

ḟ

f̈



 .

For every l ∈ N0 and every t ∈ I, we can now determine the local characteristic values of the
triple (Ml(t),Ll(t),Nl(t)) by transforming it to the local condensed form given in Lemma
A.1. These local quantities at a fixed point t̂ ∈ I are invariant under global equivalence
transformations of the original triple (M(t), C(t), K(t)) of matrix-valued functions. To prove
this, we use the following Lemmas.

Lemma 8. [11, Lemma 3.28] Let D = ABC be the product of three sufficiently smooth matrix
valued functions of appropriate dimensions. Then

D(i) =
i∑

j=0

i−j
∑

k=0

(
i
j

)(
i−j
k

)
A(j)B(k)C(i−j−k).

Lemma 9. For all integers i, j, k, l with i ≥ 0, i ≥ j ≥ 0, i − j ≥ k ≥ 0, we have
„

i

k

« „

i − k

l

« „

i − k − l

j

«

=

„

i

j

« „

i − j

k

« „

i − j − k

l

«

,

„

i

k

« „

i − k

l

« „

i − k − l + 2
j + 2

«

=

„

i

j

« „

i − j

k

« „

i − j − k

l

«

+ 2

„

i

j + 1

« „

i − j − 1
k

« „

i − j − k − 1
l

«

+

„

i

j + 2

« „

i − j − 2
k

« „

i − j − k − 2
l

«

,

„

i

k

« „

i − k

l

« „

i − k − l + 1
j + 2

«

=

„

i

j + 1

« „

i − j − 1
k

« „

i − j − 1 − k

l

«

+

„

i

j + 2

« „

i − j − 2
k

« „

i − j − k − 2
l

«

,

„

i

k

« „

i − k

l

« „

i − k − l

j + 2

«

=

„

i

j + 2

« „

i − j − 2
k

« „

i − j − k − 2
l

«

.

Proof. The proof follows by straightforward calculations.

Now, we can show that the local quantities of the triple (Ml(t̂),Ll(t̂),Nl(t̂)) are invariant
under global equivalence transformations of the original triple (M(t), C(t), K(t)).

Theorem 10. Consider two triples (M, C, K) and (M̃, C̃, K̃) of sufficiently smooth matrix-
valued functions that are globally equivalent via the transformation

M̃ = PMQ, C̃ = PCQ + 2PMQ̇, K̃ = PKQ + PCQ̇ + PMQ̈

according to Definition 2, with sufficiently smooth matrix-valued functions P and Q. Let
(Ml,Ll,Nl) and (M̃l, L̃l, Ñl), l ∈ N0, be the corresponding inflated triples constructed as in
(14) and introduce the block matrix functions

[Πl]i,j =
(

i
j

)
P (i−j), [Ψl]i,j =

{
i+2
2 Q(i+1) for i = 0, . . . , l, j = 0,

0 otherwise,
(15)

[Θl]i,j =
(

i+2
j+2

)
Q(i−j), [Σl]i,j =

{
Q(i+2) for i = 0, . . . , l, j = 0,
0 otherwise.

12



Then,

[M̃l(t), L̃l(t), Ñl(t)] = Πl(t)[Ml(t),Ll(t),Nl(t)]





Θl(t) 2Ψl(t) Σl(t)
0 Θl(t) Ψl(t)
0 0 Θl(t)



 (16)

for every t ∈ I, and the corresponding matrix triples are locally equivalent.

Proof. First, we note that all matrix-valued functions Ml,Ll,Nl,M̃l, L̃l, Ñl, Πl, Ψl, Θl and
Σl are block lower triangular with the same block structure. Furthermore, Nl, Ñl,Ll, L̃l, Ψl

and Σl have nonzero blocks only in the first block column. Using Lemma 8 we obtain

M̃ (i) =
i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

)
P (k1)M (k2)Q(i−k1−k2),

C̃(i) =

i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

) [

P (k1)C(k2)Q(i−k1−k2) + 2P (k1)M (k2)Q(i+1−k1−k2)
]

,

K̃(i) =
i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

) [

P (k1)K(k2)Q(i−k1−k2) + P (k1)C(k2)Q(i+1−k1−k2)

+P (k1)M (k2)Q(i+2−k1−k2)
]

.

Inserting the definitions, shifting and inverting the summations and applying Lemma 9 leads
to

[ΠlMlΘl]i,j =
i∑

l1=j

l1∑

l2=j

[Πl]i,l1 [Ml]l1,l2 [Θl]l2,j

=
i∑

l1=j

l1∑

l2=j

(
i
l1

)
P (i−l1)

[(
l1
l2

)
M (l1−l2) +

(
l1

l2+1

)
C(l1−l2−1) +

(
l1

l2+2

)
K(l1−l2−2)

] (
l2+2
j+2

)
Q(l2−j)

=

i−j
∑

k1=0

k1+j
∑

l2=j

(
i

k1+j

)
P (i−k1−j)

[(
k1+j

l2

)
M (k1+j−l2) +

(
k1+j
l2+1

)
C(k1+j−l2−1)

+
(
k1+j
l2+2

)
K(k1+j−l2−2)

] (
l2+2
j+2

)
Q(l2−j)

=
(

i
j

)
i−j
∑

k1=0

i−j−k1∑

k2=0

(
i−j
k1

)(
i−j−k1

k2

)
P (k1)M (k2)Q(i−j−k1−k2)

+
(

i
j+1

)
i−j−1
∑

k1=0

i−j−1−k1∑

k2=0

(
i−j−1

k1

)(
i−j−1−k1

k2

) [

P (k1)C(k2)Q(i−j−1−k1−k2) + 2P (k1)M (k2)Q(i−j−k1−k2)
]

+
(

i
j+2

)
i−j−2
∑

k1=0

i−j−2−k1∑

k2=0

(
i−j−2

k1

)(
i−j−2−k1

k2

) [

P (k1)K(k2)Q(i−j−2−k1−k2)

+P (k1)C(k2)Q(i−j−1−k1−k2) + P (k1)M (k2)Q(i−j−k1−k2)
]

=
(

i
j

)
M̃ (i−j) +

(
i

j+1

)
C̃(i−j−1) +

(
i

j+2

)
K̃(i−j−2) = [M̃l]i,j .

13



In the same way we get

[ΠlLlΘl]i,0 + [2ΠlMlΨl]i,0 =

i∑

l1=0

[Πl]i,l1 [Ll]l1,0[Θl]0,0 + 2

i∑

l1=0

l1∑

l2=0

[Πl]i,l1 [Ml]l1,l2 [Ψl]l2,0

=
i∑

l1=0

(
i
l1

)
P (i−l1)

[

C(l1) + l1K
(l1−1)

]

Q

+ 2
i∑

l1=0

l1∑

l2=0

(
i
l1

)
P (i−l1)

[(
l1
l2

)
M (l1−l2) +

(
l1

l2+1

)
C(l1−l2−1) +

(
l1

l2+2

)
K(l1−l2−2)

] l2 + 2

2
Q(l2+1)

=
i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

) [

P (k1)C(k2)Q(i−k1−k2) + 2P (k1)M (k2)Q(i+1−k1−k2)
]

+ i

i−1∑

k1=0

i−1−k1∑

k2=0

(
i−1
k1

)(
i−1−k1

k2

) [

P (k1)K(k2)Q(i−1−k1−k2)

+P (k1)C(k2)Q(i−k1−k2) + P (k1)M (k2)Q(i+1−k1−k2)
]

= C̃(i) + iK̃(i−1) = [L̃l]i,0,

and

[ΠlNlΘl]i,0 + [ΠlLlΨl]i,0 + [ΠlMlΣl]i,0 =

=
i∑

l1=0

[Πl]i,l1 [Nl]l1,0[Θl]0,0 +
i∑

l1=0

[Πl]i,l1 [Ll]l1,0[Ψl]0,0 +
i∑

l1=0

l1∑

l2=0

[Πl]i,l1 [Ml]l1,l2 [Σl]l2,0

=

i∑

l1=0

(
i
l1

)
P (i−l1)K(l1)Q +

i∑

l1=0

(
i
l1

)
P (i−l1)

[

C(l1) + l1K
(l1−1)

]

Q(1)

+

i∑

l1=0

l1∑

l2=0

(
i
l1

)
P (i−l1)

[(
l1
l2

)
M (l1−l2) +

(
l1

l2+1

)
C(l1−l2−1) +

(
l1

l2+2

)
K(l1−l2−2)

]

Q(l2+2)

=

i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

) [

P (k1)(K(k2)Q(i−k1−k2) + C(k2)Q(i+1−k1−k2) + M (k2)Q(i+2−k1−k2))
]

= K̃(i) = [Ñl]i,0.

As a consequence of Theorem 10 the local characteristic values (r̃l, d̃
(1)
l , ãl, s̃

(MCK)
l , s̃

(MK)
l ,

s̃
(CK)
l , s̃

(MC)
l , ũl, ṽl) of the inflated triple (Ml(t̂),Ll(t̂),Nl(t̂)) at a fixed point t̂ are well-defined

for equivalent triples of matrix-valued functions and for each l ∈ N0. These quantities are
numerically computable via a number of numerical rank decisions. Next, we show how these
local quantities of the inflated triple (Ml(t̂),Ll(t̂),Nl(t̂)) are related to the global character-
istic values of the original triple (M, C, K) at the point t̂. For convenience of representation
we restrict ourselves in the following to the case that µ ≤ 2.

Theorem 11. Let the functions M, C, K ∈ C(I, Cm,n) be sufficiently smooth with well-defined

strangeness index µ ≤ 2 and global characteristic values (ri, d
(1)
i , ai, s

(MCK)
i , s

(CK)
i , s

(MC)
i ,

s
(MK)
i , ui, vi), i ∈ N0. Furthermore, let (Ml(t̂),Ll(t̂),Nl(t̂)) be the corresponding inflated

14



matrix triple at a fixed t̂ ∈ I with local characteristic values (r̃l, d̃
(1)
l , ãl, s̃

(MCK)
l ,s̃

(CK)
l ,s̃

(MC)
l ,

s̃
(MK)
l ,ũl,ṽl). Then, for l = 0, 1, 2, we have

rank [Ml] = r̃l = (l + 1)m −

l∑

i=0

qi −

l∑

i=0

ci −

l∑

i=0

vi,

rank [Ml,Ll] = (l + 1)m −

l∑

i=0

ci −

l∑

i=0

vi,

rank [Ml,Ll,Nl] = (l + 1)m −

l∑

i=0

vi,

(17)

using the definitions as in Lemma 7, and

d̃
(1)
l = kl − pl + bl,

ãl = bl = cl − s
(MCK)
l − s

(CK)
l − s

(MK)
l + sl−1,

s̃
(MCK)
l =

l∑

i=0

ci − bl−1 − pl −

l∑

i=1

(di − ti),

s̃
(CK)
l = bl−1 − bl + pl,

s̃
(MC)
l =

l∑

i=0

qi −

l∑

i=0

ci +

l∑

i=1

(di − ti) + pl − kl,

s̃
(MK)
l =

l∑

i=1

(di − ti),

ṽl =
l∑

i=0

vi,

ũl = (l + 1)u0 + (l + 1)a0 + lk0 −

l∑

i=0

ki −

l∑

i=0

bi.

(18)

Proof. The proof is given in the Appendix A.2.

From the relations (18) we can determine recursive formulas for the global characteristic
values of the original matrix triple (M, C, K).

Corollary 12. Let the strangeness index µ of the matrix triple (M, C, K) be well-defined

with µ ≤ 2 and let (r̃l, d̃
(1)
l , ãl, s̃

(MCK)
l , s̃

(CK)
l , s̃

(MC)
l , s̃

(MK)
l , ũl, ṽl), l = 0, . . . , µ be the se-

quence of the local characteristic values of (Ml,Ll,Nl) for some t ∈ I. Then for the sequence

(ri, d
(1)
i , ai, s

(MCK)
i , s

(CK)
i , s

(MC)
i , s

(MK)
i , ui, vi) of the global characteristic values of (M, C, K)

it holds that

c0 = ã0 + s̃
(MCK)
0 + s̃

(CK)
0 + s̃

(MK)
0 ,

ci+1 = (ãi+1 − ãi) + (s̃
(MCK)
i+1 − s̃

(MCK)
i ) + (s̃

(CK)
i+1 − s̃

(CK)
i ) + (s̃

(MK)
i+1 − s̃

(MK)
i ),

q0 = d̃
(1)
0 + s̃

(MCK)
0 + s̃

(CK)
0 + s̃

(MC)
0 ,

15



qi+1 = (d̃
(1)
i+1 − d̃

(1)
i ) + (s̃

(MCK)
i+1 − s̃

(MCK)
i ) + (s̃

(CK)
i+1 − s̃

(CK)
i ) + (s̃

(MC)
i+1 − s̃

(MC)
i ),

v0 = m − c0 − q0 − r̃0, (19)

vi+1 = m − ci+1 − qi+1 − (r̃i+1 − r̃i),

s
(MCK)
i + s

(CK)
i + si = ci − ãi,

s
(MCK)
i + s

(MC)
i + si−1 = qi − d̃

(1)
i − s̃

(CK)
i .

Proof. The relations follow directly from Theorem 11 and from the definitions in Theorem 7
since

ãi+1 − ãi = bi+1 − bi,

s̃
(MCK)
i+1 − s̃

(MCK)
i + s̃

(CK)
i+1 − s̃

(CK)
i = ci+1 − di+1 + ti+1 − bi+1 + bi,

s̃
(MK)
i+1 − s̃

(MK)
i = di+1 − ti+1,

d̃
(1)
i+1 − d̃

(1)
i = ki+1 − ki + pi − pi+1 + bi+1 − bi,

s̃
(MC)
i+1 − s̃

(MC)
i = qi+1 − ci+1 + di+1 − ti+1 + pi+1 − pi + ki − ki+1,

m − ci+1 − qi+1 − (r̃i+1 − r̃i) = m − ci+1 − qi+1 − m + qi+1 + ci+1 + vi+1 = vi+1,

ci − ãi = ci − ci + s
(MCK)
i + s

(CK)
i + s

(MK)
i − si−1 = s

(MCK)
i + s

(CK)
i + si,

qi − d̃
(1)
i − s̃

(CK)
i = qi − ki − bi−1 = s

(MCK)
i + s

(MC)
i + si−1.

The recursive formulas (19) enable the determination of the strangeness index µ in a nu-
merically computable way by determining the local characteristic values of the inflated triple
(Ml,Ll,Nl) for each time t ∈ I. The obtained system in the i-th reduction step is strangeness

free if the sums s
(MCK)
i + s

(MC)
i + si−1 and s

(MCK)
i + s

(CK)
i + si vanish, since then s

(MCK)
i =

s
(CK)
i = s

(MK)
i = s

(MC)
i = 0, as all summands are nonnegative integer values. Finally, for the

characteristic values of the strangeness-free system we get

aµ =

µ
∑

i=0

ci = rank [Mµ,Lµ,Nµ] − rank [Mµ,Lµ],

d(1)
µ =

µ
∑

i=0

qi −

µ−1
∑

i=0

ci

= rank [Mµ,Lµ] − r̃µ + rank [Mµ−1,Lµ−1] − rank [Mµ−1,Lµ−1,Nµ−1],

vµ = ṽµ − ṽµ−1,

d(2)
µ = m − aµ − d(1)

µ − vµ.

(20)

Next, we want to extract a strangeness-free triple (M̂, Ĉ, K̂) from the inflated system with

characteristic values r̂ = d
(2)
µ , d̂(1) = d

(1)
µ , â = aµ, û = uµ, v̂ = vµ and ŝ(MCK) = ŝ(CK) =

ŝ(MK) = ŝ(MC) = 0 using only local information from (Mµ(t),Lµ(t),Nµ(t)).

Theorem 13. Consider a linear second order differential-algebraic system (1) with well-
defined strangeness-index µ ≤ 2. Then the inflated triple (Mµ,Lµ,Nµ) associated with
(M, C, K) has the following properties:
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1. For all t ∈ I it holds that

rankMµ(t) = (µ + 1)m − aµ − ṽµ − d(1)
µ −

µ−1
∑

i=0

ci,

such that there exists a smooth matrix function Z with orthonormal columns and size

((µ + 1)m, aµ + ṽµ + d
(1)
µ +

∑µ−1
i=0 ci) satisfying

ZHMµ = 0.

2. For all t ∈ I it holds that

rank [Mµ(t),Lµ(t)] = (µ + 1)m − aµ − ṽµ,

rank [Mµ(t),Lµ(t),Nµ(t)] = (µ + 1)m − ṽµ,

such that without loss of generality Z can be partitioned into Z = [Z2, Z3, Z4], with Z2

of size ((µ+1)m, d
(1)
µ +

∑µ−1
i=0 ci), Z3 of size ((µ+1)m, aµ) and Z4 of size ((µ+1)m, ṽµ)

such that

ZH
3 Lµ = 0, ZH

4 Lµ = 0, ZH
4 Nµ = 0.

3. For all t ∈ I we have

rank (ZH
3 Nµ

[
In 0 . . . 0

]H
) = aµ,

rank (ZH
2 Lµ

[
In 0 . . . 0

]H
) = d(1)

µ +

µ−1
∑

i=0

ci,

such that there exists a smooth matrix function T3 with orthonormal columns and size

(n, n − aµ), with n − aµ = d
(2)
µ + d

(1)
µ + uµ satisfying

ZH
3 Nµ

[
In 0 · · · 0

]H
T3 = 0.

4. For all t ∈ I we have

rank (ZH
2 Lµ

[
In 0 . . . 0

]H
T3) = d(1)

µ ,

such that there exists a smooth matrix function Z1 of size (d
(1)
µ +

∑µ−1
i=0 ci, d

(1)
µ ) with

orthonormal columns such that

rank (ZH
1 ZH

2 Lµ

[
In 0 · · · 0

]H
) = d(1)

µ .

Furthermore, there exists a smooth matrix function T2 of size (n − aµ, n − aµ − d
(1)
µ )

with orthonormal columns, such that

ZH
1 ZH

2 Lµ

[
In 0 · · · 0

]H
T3T2 = 0.
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5. For all t ∈ I it holds that rank (MT3T2) = d
(2)
µ . This implies the existence of a smooth

matrix function Z0 with orthonormal columns and size (m, d
(2)
µ ) such that ZH

0 M has

constant rank d
(2)
µ .

Proof. By assumption, the strangeness index is well-defined and the ranks of Mµ, Lµ and
Nµ are constant in I with

rank [Mµ,Lµ,Nµ] = (µ + 1)m − ṽµ,

rank [Mµ,Lµ] = (µ + 1)m − aµ − ṽµ,

rankMµ = (µ + 1)m − aµ − ṽµ − d(1)
µ −

µ−1
∑

i=0

ci,

due to Theorem 11 and Corollary 12 (see also the relations (20)). Thus, there exists a

continuous matrix-valued function Z of size ((µ + 1)m, aµ + ṽµ + d
(1)
µ +

∑µ−1
i=0 ci), whose

columns form a basis of corangeMµ, i.e., ZHMµ = 0. Without loss of generality the matrix

Z can be partitioned into Z = [Z2, Z3, Z4], with Z2 of size ((µ + 1)m, d
(1)
µ +

∑µ−1
i=0 ci), Z3 of

size ((µ + 1)m, aµ) and Z4 of size ((µ + 1)m, ṽµ), such that

ZH
3 Lµ = 0, ZH

4 Lµ = 0, ZH
4 Nµ = 0,

i.e., the columns of the matrices Z4 and Z3 form bases of corange ([Mµ,Lµ,Nµ]), and of
corange ([Mµ,Lµ]), respectively. First, we note that multiplication of (13) for l = µ by ZH

3

gives
ZH

3 Nµzµ = ZH
3 gµ.

The only nontrivial entries in Nµ are in the first block column belonging to the original
unknown x. Hence, we get purely algebraic equations for x. Lemma 4 and (18) give that

rank (ZH
3 Nµ

[
In 0 . . . 0

]H
) = ãµ + s̃(MCK)

µ + s̃(CK)
µ + s̃(MK)

µ = aµ, (21)

thus, with Z3 we obtain the complete set of algebraic equations. Next, we must get d
(1)
µ

first order differential equations and d
(2)
µ second order differential equations to complete these

algebraic equations to a strangeness-free differential-algebraic system. In a similar way mul-
tiplication of (13) with the matrix ZH

2 yields

ZH
2 Lµżµ + ZH

2 Nµzµ = ZH
2 gµ.

Again, the only non-zero entries of Lµ are in the first block column belonging to the first
order derivative ẋ. Lemma 4 and (18) give

rank (ZH
2 Lµ) = d̃(1)

µ + s̃(CK)
µ + s̃(MC)

µ + s̃(MCK)
µ =

µ
∑

i=0

qi = d(1)
µ +

µ−1
∑

i=0

ci.

So far we have shown the first three parts of Theorem 13. To show part 4 and 5 of the
Theorem we distinguish between systems of strangeness index µ = 0, 1 and 2. Let (M̃, C̃, K̃)
be a normal form of the triple (M, C, K) according to the global condensed form given in
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Lemma A.2. with corresponding inflated triples (M̃µ, L̃µ, Ñµ). Due to Theorem 10, there
exist matrices Π, Θ, Ψ, and Σ such that

M̃µ = ΠMµΘ, L̃µ = ΠLµΘ + 2ΠMµΨ, Ñµ = ΠNµΘ + ΠLµΨ + ΠMµΣ,

according to (16). For µ = 0 the triple (M̃0, L̃0, Ñ0) is of the form














I
d
(2)
µ

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0








,








C 0 C C

0 I
d
(1)
µ

0 0

0 0 0 0
0 0 0 0








,







K K 0 K

K K 0 K

0 0 Iaµ 0
0 0 0 0














. (22)

Let Π and Θ be partitioned as Π := [ΠH
1 , ΠH

2 , ΠH
3 , ΠH

4 ]H and Θ := [Θ1, Θ2, Θ3, Θ4] according
to (22). Then, setting

Z2 = ΠH
2 , Z3 = ΠH

3 , Z4 = ΠH
4 ,

yields

ZH
4 M0 = 0, ZH

4 L0 = 0, ZH
4 N0 = 0,

ZH
3 M0 = 0, ZH

3 L0 = 0, ZH
2 M0 = 0,

as well as

rank (ZH
3 N0) = rank

[
0 0 Iaµ 0

]
= aµ,

rank (ZH
2 L0) = rank

[

0 I
d
(1)
µ

0 0
]

= d(1)
µ .

Further, setting T3 = [Θ1, Θ2, Θ4] we get

rank (ZH
2 L0T3) = rank

[

0 I
d
(1)
µ

0
]

= d(1)
µ ,

and with Z1 = I
d
(1)
µ

and T2 =






I
d
(2)
µ

0

0 0
0 Iuµ




 we get ZH

1 ZH
2 L0T3T2 = 0, and

rank (MT3T2) = rank








I
d
(2)
µ

0

0 0
0 0
0 0








= d(2)
µ .

Finally, setting ZH
0 =

[

I
d
(2)
µ

0 0 0
]

yields

rank (ZH
0 M) = rank

[

I
d
(2)
µ

0 0 0
]

= d(2)
µ .

In the case µ = 1 the triple (M̃1, L̃1, Ñ1) is in the form (33) given in the proof of Theorem
11. Let Π and Θ be partitioned as

Π :=
[
ΠH

1 , . . . , ΠH
28

]H
, Θ := [Θ1, . . . , Θ18],
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corresponding to the structure of block matrices in (33). Then, setting

Z = [ΠH
1 , ΠH

2 , ΠH
3 , ΠH

7 , . . . , ΠH
15, Π

H
24, . . . , Π

H
28],

Z4 = [ΠH
3,2, Π

H
7,2, Π

H
9,2, Π

H
15, Π

H
28],

Z3 = [ΠH
3,1, Π

H
7,1, Π

H
9,1, Π

H
11, . . . , Π

H
14],

Z2 = [ΠH
1 , ΠH

2 , ΠH
8 , ΠH

10, Π
H
24, . . . , Π

H
27],

where again Π.,1 and Π.,2 denote the parts of Π. that after one more block decomposition of
the matrices in (33) corresponds to the range and nullspace of block rows, respectively (see
also the proof of Theorem 11), we have

rank (ZH
3 N1) = c0 + c1 = aµ,

rank (ZH
2 L1) = e1 + d

(1)
0 + s

(MC)
0 + c0 = d(1)

µ + c0.

Setting T3 = [Θ2,2, Θ4,2, Θ5,2, Θ7,2, Θ9,2, Θ10,2] we get

rank (ZH
2 L1

[
In 0

]H
T3) = d

(1)
0 + s

(MC)
0 + e1 = d(1)

µ ,

and further choosing Z1 such that Z2Z1 = [ΠH
1 , ΠH

2 , ΠH
8 , ΠH

10] we have

rank (ZH
1 ZH

2 L1) = d(1)
µ .

If we choose T2 such that T3T2 = [Θ5,2, Θ10,2], then we have

ZH
1 ZH

2 L1

[
In 0

]H
T3T2 = 0,

and

rank(MT3T2) = d
(2)
0 = d(2)

µ .

Finally, there exists a smooth matrix function Z0 of size (m, d
(2)
µ ) with orthonormal columns

such that

rank (ZH
0 M) = d(2)

µ .

For s-index µ = 2 the triple (M̃2, L̃2, Ñ2) is in the form (34) and Π and Θ are partitioned
into

Π :=
[
ΠH

1 , . . . , ΠH
44

]H
, Θ := [Θ1, . . . , Θ28]

according to the block structure of (34). Then, by setting

Z = [ΠH
1 , . . . , ΠH

6 , ΠH
10, . . . , Π

H
18, Π

H
20, Π

H
23, Π

H
25, Π

H
27, . . . , Π

H
31, Π

H
44],

Z4 = [ΠH
3,2, Π

H
6,2, Π

H
10,2, Π

H
12,2, Π

H
18, Π

H
20,3, Π

H
23,3, Π

H
25,3, Π

H
31, Π

H
44],

Z3 = [ΠH
3,1, Π

H
6,1, Π

H
10,1, Π

H
12,1, Π

H
14, . . . , Π

H
17, Π

H
20,2, Π

H
23,2, Π

H
25,2],

Z2 = [ΠH
1 , ΠH

2 , ΠH
4 , ΠH

5 , ΠH
11, Π

H
13, Π

H
20,1, Π

H
23,1, Π

H
25,1, Π

H
27, . . . , Π

H
30],
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we have

rank (ZH
3 N2) = c0 + c1 + c2 = aµ,

rank (ZH
2 L2) = e1 + e2 + d

(1)
0 + s

(MC)
0 + c0 + b1 = d

(1)
2 + c0 + c1 − s1 = d(1)

µ + c0 + c1.

Further, setting T3 = [Θ2,2, Θ4,2, Θ5,2, Θ6,2, Θ8,2, Θ10,2, Θ11,2, Θ12,2] yields

ZH
3 N2

[
In 0 0

]H
T3 = 0

and we get

rank (ZH
2 L2

[
In 0 0

]H
T3) = d

(1)
2 .

In a similar way as before, choosing Z1 such that Z2Z1 = [ΠH
1 , ΠH

2 , ΠH
4 , ΠH

5 , ΠH
11, Π

H
13] we have

rank (ZH
1 ZH

2 L2) = d(1)
µ ,

and if we choose T2 such that T3T2 = [Θ5,2, Θ10,2] we have

ZH
1 ZH

2 L2

[
In 0 0

]H
T3T2 = 0,

as well as

rank(MT3T2) = d(2)
µ .

Again, there exists a smooth matrix function Z0 of size (m, d
(2)
µ ) with orthonormal columns

such that

rank (ZH
0 M) = d(2)

µ .

From the results of Theorem 13 we can construct a triple of matrix-valued functions

(M̂, Ĉ, K̂) =













M̂1

0
0
0







,







Ĉ1

Ĉ2

0
0







,







K̂1

K̂2

K̂3

0













, (23)

with entries

M̂1 = ZH
0 M, Ĉ1 = ZH

0 C, K̂1 = ZH
0 K,

Ĉ2 = ZH
1 ZH

2 Lµ

[
In 0 · · · 0

]H
, K̂2 = ZH

1 ZH
2 Nµ

[
In 0 · · · 0

]H
,

K̂3 = ZH
3 Nµ

[
In 0 · · · 0

]H
,

which has the same size as the original triple (M, C, K). We can show that this triple is
strangeness-free with the same characteristic values as the strangeness-free system (10).
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Theorem 14. Let the strangeness index µ of (M, C, K) be well-defined with µ ≤ 2 and global

characteristic values (ri, d
(1)
i , ai, s

(MCK)
i , s

(MC)
i , s

(MK)
i , s

(CK)
i , ui, vi), for i = 0, . . . , µ. Then,

the triple (M̂, Ĉ, K̂), constructed as in (23), has a well-defined strangeness index µ̂ = 0 and
the global characteristic values of (M̂(t), Ĉ(t), K̂(t)) are given by

(r̂, d̂(1), â, ŝ(MCK), ŝ(MC), ŝ(MK), ŝ(CK), v̂) = (d(2)
µ , d(1)

µ , aµ, 0, 0, 0, 0, vµ)

uniformly for all t ∈ I.

Proof. In the following, we omit the argument t. By construction the columns of T3 defined
in Theorem 13 form a basis of kernel K̂3 and the columns of T2 form a basis of kernel (Ĉ2T3).
We consider the matrix T = T3T2. Because M̂1 has full row rank we can split T without loss
of generality into T =

[
T ′

1 T ′
4

]
in such a way that M̂1T

′
1 is nonsingular. Choosing T ′

3 such

that K̂3T
′
3 is also nonsingular and T ′

2 such that Ĉ2T
′
2 is nonsingular and K̂3T

′
2 = 0 we get a

nonsingular matrix T̂ =
[
T ′

1 T ′
2 T ′

3 T ′
4

]
. By multiplication with this matrix from the right

we get the following local equivalence

(M̂, Ĉ, K̂) =













M̂1

0
0
0







,







Ĉ1

Ĉ2

0
0







,







K̂1

K̂2

K̂3

0













∼













M̂1T
′
1 M̂1T

′
2 M̂1T

′
3 M̂1T

′
4

0 0 0 0
0 0 0 0
0 0 0 0







,







Ĉ1T
′
1 Ĉ1T

′
2 Ĉ1T

′
3 Ĉ1T

′
4

Ĉ2T
′
1 Ĉ2T

′
2 Ĉ2T

′
3 Ĉ2T

′
4

0 0 0 0
0 0 0 0







,







K̂1T
′
1 K̂1T

′
2 K̂1T

′
3 K̂1T

′
4

K̂2T
′
1 K̂2T

′
2 K̂2T

′
3 K̂2T

′
4

K̂3T
′
1 K̂3T

′
2 K̂3T

′
3 K̂3T

′
4

0 0 0 0













∼













M̂1T
′
1 M̂1T

′
2 M̂1T

′
3 M̂1T

′
4

0 0 0 0
0 0 0 0
0 0 0 0







,







Ĉ1T
′
1 Ĉ1T

′
2 Ĉ1T

′
3 Ĉ1T

′
4

0 Ĉ2T
′
2 0 0

0 0 0 0
0 0 0 0







,







K̂1T
′
1 K̂1T

′
2 K̂1T

′
3 K̂1T

′
4

K̂2T
′
1 K̂2T

′
2 K̂2T

′
3 K̂2T

′
4

0 0 K̂3T
′
3 0

0 0 0 0













∼













M̂1T
′
1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0







,







⋆ ⋆ ⋆ ⋆

0 Ĉ2T
′
2 0 0

0 0 0 0
0 0 0 0







,







⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 K̂3T
′
3 0

0 0 0 0













∼















I
d
(2)
µ

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0








,








⋆ ⋆ ⋆ ⋆

0 I
d
(1)
µ

0 0

0 0 0 0
0 0 0 0








,







⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 Iaµ 0
0 0 0 0














.
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From the last triple we obtain r̂ = d
(2)
µ , d̂(1) = d

(1)
µ , â = aµ, ŝ(MCK) = ŝ(MC) = ŝ(MK) =

ŝ(CK) = 0 and v̂ = vµ from Lemma 4.

Thus, we have derived an index reduction method that allows us to extract a strangeness-free
triple from the original triple of matrix-valued functions and its derivatives. The matrix-
valued functions Z0, Z1, Z2 and Z3 as given in Theorem 13 can be determined via numerical
rank decisions, e.g., using a singular value decomposition or a rank revealing QR decompo-
sition, see e.g. [7]. Setting the inhomogeneities f̂1 = ZH

0 f , f̂2 = ZH
1 ZH

2 gµ, f̂3 = ZH
3 gµ and

f̂4 = 0 accordingly (assuming that the system is solvable) we obtain a differential-algebraic
system

M̂(t)ẍ + Ĉ(t)ẋ + K̂(t)x = f̂(t), (24)

from the inflated differential-algebraic equation (13). Setting f̂4 = 0 in (24) can be seen as
a regularization, since an unsolvable problem is replaced by a solvable one. System (24) is
strangeness-free and has the same size and also the same solution set as the original system
(1) since only transformations from the left are involved. Concluding, we give an example to
illustrate the index reduction procedure.

Example 15. We consider again the linear second order system (3) of strangeness index

µ = 2 with characteristic values d
(2)
µ = 1, d

(1)
µ = 0, aµ = 2, vµ = 0 and uµ = 0. The matrix

triple corresponding to the extended system (13) is given by

(M2(t),L2(t),N2(t)) =
































t 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 t t 0 0 0 0 0 0
2 0 0 t 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 1 1 0 t t 0 0 0
1 0 0 3 0 0 t 0 0
0 1 0 0 0 0 0 1 1
0 1 + t 1 0 2 2 0 t t

















,

















1 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 1 + t 1
0 0 0
0 0 0
0 2 0

















,

















1 0 0
0 1 0
0 1 + t 1
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0

































.

We have

rank [M2(t),L2(t),N2(t)] = 9 = (µ + 1)m − ṽµ,

rank [M2(t),L2(t)] = 7 = (µ + 1)m − aµ − ṽµ,

rank [M2(t)] = 6 = (µ + 1)m − d(1)
µ − c0 − c1 − aµ − ṽµ,

independent of t ∈ I and we can choose

ZH
3 =

[
0 −1 0 0 −2 0 0 −t 1
0 −t 1 0 0 0 0 0 0

]

,

ZH
2 =

[
0 −1 0 0 −t 1 0 0 0

]
,

T3 =
[
1 0 0

]H
, T2 = 1.
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Then, we have

rank (ZH
3 N2

[
In 0 0

]H
) = rank

([
0 −1 0
0 1 1

])

= 2 = aµ,

rank (ZH
2 L2

[
In 0 0

]H
) = rank

([
0 1 1

])
= 1 = d(1)

µ + c0 + c1,

rank (ZH
2 L2

[
In 0 0

]H
T3) = rank

([
0
])

= 0 = d(1)
µ ,

rank(MT3T2) = rank
([

t 0 0
]H

)

= 1 = d(2)
µ .

Finally, choosing ZH
0 =

[
1 0 0

]
we get a strangeness-free system of the form





t 0 0
0 0 0
0 0 0



 ẍ +





1 0 0
0 0 0
0 0 0



 ẋ +





1 0 0
0 −1 0
0 1 1



x =





f1

−f2 − 2ḟ2 − tf̈2 + f̈3

−tf2 + f3



 , (25)

with the same solution as the original system (3).

Remark 16. The proof of Theorem 11, and consequently also of Corollary 12, Theorem 13
and Theorem 14, is given only for DAEs of strangeness index µ ≤ 2 for ease of representation.
However, the results are also valid for systems of arbitrary high index. To prove the results
for linear second order systems (1) of arbitrary strangeness index µ > 2 the construction of a
global canonical form analogous to the form given in [11, Theorem 3.21] is more convenient,
but until now it is not clear how a suitable condensed form can be constructed.

Remark 17. The derivative array approach presented in this section can also be extended to
arbitrary linear high order differential-algebraic systems. The inflated system corresponding
to (13) can be obtained in the same way by differentiating the original k-th order system
and ordering the derivatives of the coefficient matrices in such a way that only the leading
coefficient matrix has a lower triangular block structure and all other coefficient matrices of
the inflated system have entries only in the first block columns. Then, the results of Theorem
10 also hold for k-th order systems and a Hypothesis similar to Theorem 13 can be formulated
that allows an index reduction for linear k-th order systems by choosing suitable projections
in the same way as for linear second order systems. For the theoretical analysis of linear k-th
order differential-algebraic systems see also [13, 16]. Further, a corresponding Hypothesis for
nonlinear second order differential-algebraic systems has been formulated in [19].

4 Order Reduction for Linear Second Order DAEs

The numerical solution of higher order differential-algebraic systems either requires the direct
numerical solution of the higher order system by appropriate numerical methods, see e.g.
[15, 18], or a suitable transformation into a first order system that does not increase the
index. Since most of the numerical methods suited for the solution of DAEs are constructed
for first order systems and these methods are well-studied, in general a transformation into
a first order system is desired. Furthermore, for a robust solution the numerical methods
require differential-algebraic systems of low index, such that besides the order reduction also
an index reduction is required. In Example 1 we have seen that for higher order DAEs the
classical order reduction by introducing new variables v = ẋ for the derivatives can lead to
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an increase in the index of the DAE corresponding to higher smoothness requirements for
the inhomogeneity f(t) that even can cause the loss of solvability of the system, see also
[13]. For k-th order linear DAEs it has been shown in [13] that if µ is the strangeness index
of the tuple of matrix-valued functions associated with the k-th order DAE system, then
the maximal possible increase in the strangeness index µ̃ of the first order system obtained
by the classical order reduction procedure is µ̃ ≤ µ + k − 1. In [13] it has been proposed
to use the strangeness-free condensed form (10) given in Theorem 6 for the identification
of those second order derivatives of variables that can be replaced to obtain a first order
system that is strangeness-free without increasing the index. By introducing the new variable
ṽ = ˙̃x1 for the strangeness-free system (10) we obtain a first order system in the variables
(x̃1, x̃2, x̃3, x̃4, ṽ) that is also strangeness-free The drawback of this approach is that there is
no computational feasible method to compute the condensed form (10), except if the structure
can be used, since the derivatives of computed transformation matrices are used during the
transformations. Further, the strangeness-free system (10) does not have the same solution x

as the original second order system (1), but a transformed solution x̃ = Q−1x. Nevertheless,
the results suggest that first index reduction and then order reduction should be used for a
proper treatment of second order systems.
In the following, we will use the index reduction based on derivative arrays derived in Section
3 to obtain a strangeness-free second order system (24), which can then be used to construct
a trimmed first order formulation in a numerical feasible way. We assume that we have locally
computed a strangeness-free second order system (24) with matrix triple of the form

(M̂, Ĉ, K̂) =













M̂1

0
0
0







,







Ĉ1

Ĉ2

0
0







,







K̂1

K̂2

K̂3

0













.

To find a suitable first order formulation, we first have to identify the second order differential
variables. As the matrices M̂1, Ĉ2 and K̂3 have full row rank due to construction (see Theorem
13) there exists a pointwise unitary matrix-valued function Q ∈ C(I, Cn×n) that is sufficiently
smooth, such that





M̂1

Ĉ2

K̂3



 Q =





M11 0 0 0
C21 C22 0 0
K31 K32 K33 0



 , (26)

where the matrix-valued functions M11 of size d
(2)
µ × d

(2)
µ , C22 of size d

(1)
µ × d

(1)
µ and K33 of

size aµ × aµ are pointwise nonsingular. With the corresponding basis transformation

x = Qx̂, ẋ = Q ˙̂x + Q̇x̂, ẍ = Q¨̂x + 2Q̇ ˙̂x + Q̈x̂,
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we get the equivalent system







M11 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







︸ ︷︷ ︸

M̂Q







¨̂x1
¨̂x2
¨̂x3
¨̂x4







︸ ︷︷ ︸

¨̂x

+







C11 C12 C13 C14

C21 C22 0 0
0 0 0 0
0 0 0 0







︸ ︷︷ ︸

ĈQ+2M̂Q̇







˙̂x1
˙̂x2
˙̂x3
˙̂x4







︸ ︷︷ ︸

˙̂x

+







K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 0
0 0 0 0







︸ ︷︷ ︸

K̂Q+ĈQ̇+M̂Q̈







x̂1

x̂2

x̂3

x̂4







︸ ︷︷ ︸

x̂

=








f̂1

f̂2

f̂3

f̂4








︸ ︷︷ ︸

f̂

,

(27)

where the second order differential variables x̂1 are explicitly specified. By introducing the
new variable v̂ = ˙̂x1 we can transform the system (27) into first order form









M11 C11 C12 C13 C14

0 C21 C22 0 0
0 0 0 0 0
0 0 0 0 0
0 I 0 0 0

















˙̂v
˙̂x1

˙̂x2
˙̂x3

˙̂x4









+









0 K11 K12 K13 K14

0 K21 K22 K23 K24

0 K31 K32 K33 0
0 0 0 0 0
−I 0 0 0 0

















v̂

x̂1

x̂2

x̂3

x̂4









=









f̂1

f̂2

f̂3

f̂4

0









. (28)

Here, we have

v̂ =
[
I 0 0 0

]
˙̂x =

[
I 0 0 0

]
(Q̇Hx + QH ẋ) = Q̇H

1 x + QH
1 ẋ = d

dt
(QH

1 x),

˙̂v = d2

dt2
(QH

1 x),

with Q1 = Q
[
I 0 0 0

]H
. Therefore, system (28) is equivalent to

[

M̂Q1 ĈQ + 2M̂Q̇

0 J

] [
d2

dt2
(QH

1 x)
d
dt

(QHx)

]

+

[

0 K̂Q + ĈQ̇ + M̂Q̈

−I 0

] [
d
dt

(QH
1 x)

QHx

]

=

[

f̂

0

]

, (29)

with J =
[
I 0 0 0

]
. Now, introducing another variable v = QH

1 ẋ = d
dt

(QH
1 x) − Q̇H

1 x, the
first equation of (29) becomes

M̂Q1v̇ + (Ĉ + M̂(Q1Q̇
H
1 + 2Q̇QH))ẋ + (K̂ + M̂(Q1Q̈

H
1 + 2Q̇Q̇H + Q̈QH))x = f̂ ,

where we have used that Q̇QH +QQ̇H = 0, as Q is unitary. Thus, we get a first order system
in the original variable x and in v of the form

[
M̂Q1 C̃

0 QH
1

] [
v̇

ẋ

]

+

[
0 K̃

−I 0

] [
v

x

]

=

[

f̂

0

]

,

with

C̃ = Ĉ + M̂(Q1Q̇
H
1 + 2Q̇QH) = Ĉ + M̂(Q1Q̇

H
1 − 2QQ̇H),

K̃ = K̂ + M̂(Q1Q̈
H
1 + 2Q̇Q̇H + Q̈QH) = K̂ + M̂(Q1Q̈

H
1 − QQ̈H),
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using that Q̈QH + 2Q̇Q̇H + QQ̈H = 0. In addition, it holds that

Q1Q̇
H
1 − 2QQ̇H = QJHJQ̇H − 2QQ̇H = Q







−I 0 0 0
0 −2I 0 0
0 0 −2I 0
0 0 0 −2I







Q̇H ,

Q1Q̈
H
1 − QQ̈H = QJHJQ̈H − QQ̈H = Q







0 0 0 0
0 −I 0 0
0 0 −I 0
0 0 0 −I







Q̈H ,

such that we get

C̃ = Ĉ − M̂Q







I 0 0 0
0 2I 0 0
0 0 2I 0
0 0 0 2I







Q̇H = Ĉ −







M11 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







Q̇H = Ĉ − M̂QQ̇H ,

K̃ = K̂ − M̂Q







0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I







Q̈H = K̂.

Altogether, we have constructed a first order formulation in the original variable x and v,
only using the coefficient matrices of the strangeness-free formulation (24) and the unitary
transformation matrix Q. Due to construction this first order system is strangeness-free.

Theorem 18. Consider a strangeness-free linear second order differential-algebraic system
(24) with matrix-valued functions M̂, Ĉ, K̂ ∈ C(I, Cm,n) and right-hand side f̂ ∈ C(I, Cm).
Further, let Q ∈ C1(I, Cn,n) be a unitary matrix-valued function that decomposes M̂, Ĉ, K̂ as
in (26). Then, the trimmed first order formulation

[
M̂Q1 Ĉ + M̂Q̇QH

0 QH
1

] [
v̇

ẋ

]

+

[
0 K̂

−I 0

] [
v

x

]

=

[

f̂

0

]

, (30)

is also strangeness-free, with Q1 = Q[I 0 0 0]H , and the characteristic values are given by

dµ = 2d
(2)
µ + d

(1)
µ , aµ, vµ and uµ.

Proof. The proof follows directly from the construction of the trimmed first order formulation
(30). Setting x̂ = QHx and v̂ = d

dt
(QH

1 x) = v + Q̇H
1 x, we obtain










M11 C11 C12 C13 C14

0 C21 C22 0 0
0 0 0 0 0
0 0 0 0 0
0 I

d
(2)
µ

0 0 0



















˙̂v
˙̂x1
˙̂x2
˙̂x3
˙̂x4










+










0 K11 K12 K13 K14

0 K21 K22 K23 K24

0 K31 K32 K33 0
0 0 0 0 0

−I
d
(2)
µ

0 0 0 0


















v̂

x̂1

x̂2

x̂3

x̂4









=










f̂1

f̂2

f̂3

f̂4

0










,

which is clearly strangeness-free, since M11, C22 and K33 are nonsingular.
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Theorem 18 allows to construct a strangeness-free first order formulation directly from the
coefficients of the strangeness-free second order system (24). The trimmed first order for-
mulation (30) is of minimal possible size, has the same solution component x as the original
system (1), and no further smoothness requirements for the inhomogeneity are required.

Example 19. For the second order system (3) given in Example 1 we have computed an
equivalent strangeness-free formulation (25) using the derivative array approach. Following
Theorem 18 a trimmed first order formulation (with Q = I) for system (3) is given by







t 1 0 0
0 0 0 0
0 0 0 0

0 1 0 0













v̇

ẋ1

ẋ2

ẋ3







+







0 1 0 0
0 0 −1 0
0 0 1 1

−1 0 0 0













v

x1

x2

x3







=







f1

−f2 − 2ḟ2 − tf̈2 + f̈3

−tf2 + f3

0







,

which is strangeness-free and has the same solution components x1, x2, and x3 as the original
system (3).

Remark 20. For strangeness-free linear k-th order system, the trimmed order reduction for-
malism can also be applied successively to the k-th order system to reduce the order by one
in each reduction step. In this process the derivative of order (k − 1) of the transformation
matrix Q, chosen similar as in (26), will occur. In the constant coefficient case structure
preserving staircase forms for matrix tuples are given in [3], that allow trimmed lineariza-
tions for arbitrary high order systems in the context of matrix polynomials. For the variable
coefficient case, however, it is not clear if such structure preserving staircase forms exist and
how trimmed first order formulations can be derived in this case.

5 Conclusions

In this paper we have discussed the solution of linear second order differential-algebraic equa-
tions with variable coefficients. Since index reduction and order reduction for higher order
higher index DAEs do not commute, appropriate index reduction methods for higher or-
der DAEs are required. We have presented a numerically computable way to determine
a strangeness-free normal form using the derivative array approach for linear second order
DAEs. For differential-algebraic systems with well-defined strangeness index µ the complete
structural information on the global characteristic values of the triple (M(t), C(t), K(t))
can be obtained from the local information of an inflated triples and it is possible to de-
rive a strangeness-free differential-algebraic system using only local information. For this
strangeness-free second order system a trimmed first order formulation is derived that is
strangeness-free and has the same solution components as the original second order system.
Concluding, for an appropriate treatment of higher order differential-algebraic system the
index reduction should be carried out at first, either by transforming to the condensed form
(10) or by using the derivative arrays (13), followed possibly by a suitable order reduction to
obtain a strangeness-free first order system.
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A Appendix

A.1 Condensed Forms

Lemma A.1. [13, 16] Consider matrices M, C, K ∈ C
m×n. Then the matrix triple (M, C, K)

is locally equivalent via equivalence transformation (6) to a matrix triple (M̂, Ĉ, K̂) of the
following local condensed form



















































Is(MCK) 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 Is(MK) 0 0 0 0 0
0 0 0 Id(2) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


























,


























0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 0 C Is(CK) 0 0 0
0 0 0 0 0 Id(1) 0 0

Is(MCK) 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


























, (31)
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
























0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 Ia 0
0 0 0 0 Is(CK) 0 0 0
0 0 Is(MK) 0 0 0 0 0

Is(MCK) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



















































s(MCK)

s(MC)

s(MK)

d(2)

s(CK)

d(1)

s(MCK)

s(MC)

a

s(CK)

s(MK)

s(MCK)

v

,

where the quantities s(MCK), s(MC), s(MK), s(CK), d(2), d(1), a and v are nonnegative integers
and the last column in each matrix is of width u.

Lemma A.2. [13, 16] Let the matrix-valued functions M, C, K ∈ C(I, Cm,×n) be sufficiently
smooth, and suppose that the regularity conditions (7) hold for the local characteristic values
of (M, C, K). Then, (M, C, K) is globally equivalent to a triple of matrix-valued functions
(M̃, C̃, K̃) of the condensed form



















































Is(MCK) 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 Is(MK) 0 0 0 0 0
0 0 0 Id(2) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


























,


























0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 0 0 Is(CK) 0 0 0
0 0 0 0 0 Id(1) 0 0

Is(MCK) 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


























, (32)
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
























0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 Ia 0
0 0 0 0 Is(CK) 0 0 0
0 0 Is(MK) 0 0 0 0 0

Is(MCK) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



















































s(MCK)

s(MC)

s(MK)

d(2)

s(CK)

d(1)

s(MCK)

s(MC)

a

s(CK)

s(MK)

s(MCK)

v

.

Here, all blocks are again functions on I and the last block columns have size u.

A.2 Proofs of Lemma 7 and Theorem 11

Proof of Lemma 7: From Lemma A.2 it follows that each triple (M<i>, C<i>, K<i>), i ∈ N0

is globally equivalent to the form (11). The identity blocks of size s
(MK)
i are decomposed into

two identity blocks of size si and si−1, such that in one differentiation and elimination step the
block of size si−1 can be eliminated. To prove the relations for the characteristic quantities we
first perform one differentiation and elimination step for system (11) and thus get the matrix
triple


























































0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 Isi

0 0 0 0 0
0 0 0 0 I

d
(2)
i

0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





























,






























0 0 0 0 C̃<i>
15 0 0 0 C̃<i>

19

0 0 0 0 C̃<i>
25 0 0 0 C̃<i>

29

0 0 0 0 C<i>
35 0 0 0 C<i>

39

0 0 0 0 C<i>
45 0 0 0 C<i>

49

0 0 0 0 C<i>
55 0 0 0 C<i>

59

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I

d
(1)
i

0 0

0 0 0 0 0 0 0 0 0
0 I

s
(MC)
i

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0






























,
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




























0 K̃<i>
12 0 0 K̃<i>

15 0 K̃<i>
17 0 K̃<i>

19

0 K̃<i>
22 0 0 K̃<i>

25 0 K̃<i>
27 0 K̃<i>

29

0 K<i>
32 0 0 K<i>

35 0 K<i>
37 0 K<i>

39

0 K<i>
42 0 0 K<i>

45 0 K<i>
47 0 K<i>

49

0 K<i>
52 0 0 K<i>

55 0 K<i>
57 0 K<i>

59

0 K<i>
62 0 0 K<i>

65 0 K<i>
67 0 K<i>

69

0 K<i>
72 0 0 K<i>

75 0 K<i>
77 0 K<i>

79

0 K<i>
82 0 0 K<i>

85 0 K<i>
87 0 K<i>

89

0 K<i>
92 0 0 K<i>
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In the following, we omit the subscript i. Permutation of the resulting triple of matrix-valued
functions yields
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.

The so obtained triple has to be transformed to global condensed form (32). We can restrict
ourselves to the upper left blocks and use global equivalence transformations to separate the
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corresponding nullspaces. In the following, we only specify the blocks we are using in the
transformations for convenience. Thus, we consider the triple of matrix-valued functions
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with C̃1 =
[

C̃H
15 C̃H

25 CH
35

]H
and C̃2 =

[

C̃H
19 C̃H

29 CH
39

]H
. Using equivalence transforma-

tions this triple is equivalent to the following triple
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,

with rank [C̃1 C̃2] = ei+1 = e1 + e2, e1 = ki+1, and r1 = d
(2)
i − e2. Rearanging the block rows

and summarizing the last two block rows using the definition in (12) yields
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, with rankK6 = r2,
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, with rank K̃5 = r3, and s2 = e1 − r3,
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, with rank K̃4 = r4, and s3 = s
(MC)
i − r4,
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, with rank K̃3 = r5, and s4 = d
(1)
i − r5,
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 C C 0 0 0 0 0 0 C C

0 C C 0 0 0 0 0 0 C C

0 C C 0 0 0 0 0 0 C C

0 C C 0 0 0 0 0 0 C C

0 0 0 0 0 0 0 Ir3 0 0 0
0 0 0 0 0 0 0 0 Is2 0 0

Ie2 0 0 0 0 0 0 0 0 0 0
0 0 0 Ir5 0 0 0 0 0 0 0
0 0 0 0 Is4 0 0 0 0 0 0
0 0 0 0 0 Ir4 0 0 0 0 0
0 0 0 0 0 0 Is3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

0 0 0 0 0 0 0 0 0 Ir2 0
0 0 0 0 0 0 0 Ir3 0 0 0
0 0 0 0 0 Ir4 0 0 0 0 0
0 0 0 Ir5 0 0 0 0 0 0 0
0 Ir6 0 0 0 0 0 0 0 0 0

K̃1 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, with rank K̃2 = r6, r8 = r1 − r6,
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∼

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Ir7 0 0 0 0 0 0 0 0 0 0 0
0 Is6 0 0 0 0 0 0 0 0 0 0
0 0 Ir6 0 0 0 0 0 0 0 0 0
0 0 0 Ir8 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 C C 0 0 0 0 0 0 C C

0 0 C C 0 0 0 0 0 0 C C

0 0 C C 0 0 0 0 0 0 C C

0 0 C C 0 0 0 0 0 0 C C

0 0 C C 0 0 0 0 0 0 C C

0 0 0 0 0 0 0 0 Ir3 0 0 0
0 0 0 0 0 0 0 0 0 Is2 0 0

Ir7 0 0 0 0 0 0 0 0 0 0 0
0 Is6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Ir5 0 0 0 0 0 0 0
0 0 0 0 0 Is4 0 0 0 0 0 0
0 0 0 0 0 0 Ir4 0 0 0 0 0
0 0 0 0 0 0 0 Is3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 0 0 0 0 0 0 0 0 0 Ir2 0
0 0 0 0 0 0 0 0 Ir3 0 0 0
0 0 0 0 0 0 Ir4 0 0 0 0 0
0 0 0 0 Ir5 0 0 0 0 0 0 0
0 0 Ir6 0 0 0 0 0 0 0 0 0

Ir7 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

with rank K̃1 = r7, and s6 = e2 − r7. With the given definitions we then have that
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r2 = bi+1, r6 = hi+1 − di+1,
r3 = pi+1 − bi+1, r7 = ci+1 − hi+1,
r4 = ti+1 − pi+1, e1 = ki+1,
r5 = di+1 − ti+1, e2 = ei+1 − ki+1,

and thus we get

ai+1 = ai + s
(CK)
i + s

(MCK)
i + si−1 + r2,

s
(MCK)
i+1 = r7,

s
(MC)
i+1 = s6 = e2 − r7,

s
(MK)
i+1 = r6 + si,

s
(CK)
i+1 = r5 + r4 + r3,

d
(2)
i+1 = r8 = d

(2)
i − e2 − r6,

d
(1)
i+1 = s2 + s3 + s4 = d

(1)
i + s

(MC)
i + e1 − r3 − r4 − r5,

wi+1 = vi+1 − vi

= 2s
(MCK)
i + s

(CK)
i + s

(MC)
i + si−1 − e1 − e2 − r2 − r3 − r4 − r5 − r6 − r7.

�

Proof of Theorem 11:

Due to Theorem 10 we may assume without loss of generality that the triple (M, C, K) is
already given in the global condensed form (32). Then, for fixed t̂ ∈ I, we have to determine
the local characteristic quantities of (Ml(t̂),Ll(t̂),Nl(t̂)). In the following, we will omit the
argument t̂ and we use local equivalence transformations of the form (6) on the inflated triple.
For l = 0 it is immediately clear that

r̃0 = rankM0 = m − q0 − c0 − v0,

rank [M0,L0] = m − a0 − s
(CK)
0 − s

(MCK)
0 − s

(MK)
0 − v0 = m − c0 − v0,

rank [M0,L0,N0] = m − v0,

and the local characteristic values of (M0,L0,N0) correspond to the global characteristic
values of (M, C, K). For l = 1 we have to consider the inflated triple

(M1,L1,N1) =

([
M 0

Ṁ + C M

]

,

[
C 0

Ċ + K 0

]

,

[
K 0

K̇ 0

])

,

with (M, C, K) in global condensed form (32). The identity blocks in the matrix M allow
to eliminate all other entries in the corresponding block rows of M1 by local equivalence
transformations. Further eliminations using the identity blocks of the global condensed form
and block decompositions yield the following matrix triple, where we only state the first block
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columns of L1 and N1 since all other entries are zero
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@
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6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 . . . . . . . . .

. 0 . . . . . . . .

. 0 . . . . . . . .

. . I . . . . . . .

. . . I . . . . . .

. . . . I . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . 0 0 0 . . 0 0 0 I

. . 0 0 0 . . 0 0 0 I

. . 0 0 0 . . 0 0 0 I

. . 0 0 0 . . 0 0 0 I

. . . . . I . . . .

. . . . . . I . . .

I .

. I

. .

. .

. .

. .

. .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, (33)
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6

6

6

6

6

6
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6
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6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

. 0 0 0 0 . 0 0 Ik1 0

. 0 0 Iẽ1 0 . 0 0 0 0

. 0 0 0 0 . 0 0 0 0

. . 0 0 C . . 0 0 C

. . 0 0 C . . 0 0 C

. . 0 0 C . . 0 0 C

. . . . . 0 . . . .

. . . . . . I . . .

0 .

. I

. .

. .

. .

. .

. .

. K 0 Ċ Ċ . K 0 Ċ Ċ

. K 0 Ċ Ċ . K 0 Ċ Ċ

. K 0 Ċ Ċ . K 0 Ċ Ċ

. K 0 Ċ Ċ . K 0 Ċ Ċ

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. . . . . . . I . .

. . . . . I . . . .

. . I . . . . . .

I . . . . . . . . .

. . . . . . . . . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

. K̃ . K̃ K̃ . K̃ . K̃ K̃

. K̃ . K̃ K̃ . K̃ . K̃ K̃

. K̃ . K̃ K̃ . K̃ . K̃ K̃

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. . . . . . . I . .

. . . . . I . . . .

. . I . . . . . . .

I . . . . . . . . .

. . . . . . . . . .

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

k1

ẽ1

s̃5

s̃6

ẽ1

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

s̃1

s̃2

s̃3

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

with dimensions s̃1 = s
(MCK)
0 , s̃2 = s

(MC)
0 , s̃3 = s

(MK)
0 , s̃4 = s

(CK)
0 , s̃5 = s

(MCK)
0 +s

(MC)
0 −e1,

s̃6 = s
(MK)
0 − e1 + k1, ẽ1 = e1 − k1, d̃1 = d

(1)
0 , and d̃2 = d

(2)
0 . Now, we can read off the

corresponding ranks as

r̃1 = rankM1 = 2m − c0 − 2v0 − e0 − 2s
(MCK)
0 − s

(MC)
0 − s

(CK)
0 − s

(MK)
0 − a0

= 2m − c0 − c1 − v0 − v1 − e0 − e1 − a0 − s
(MK)
0

= 2m − c0 − c1 − v0 − v1 − e0 − (e1 + c0 − s
(CK)
0 − s

(MCK)
0 ),

rank [M1,L1] = 2m − c0 − s
(CK)
0 − 2s

(MCK)
0 − 2v0 − s

(MC)
0 + e1

= 2m − c0 − c1 − v0 − v1,

rank [M1,L1,N1] = 2m − 2v0 − 2s
(MCK)
0 − s

(CK)
0 − s

(MC)
0 + e1 + c1

= 2m − v0 − v1.

Let Π ∈ C
2m×2m and Θ, Ψ, Σ ∈ C

2n×2n be block matrices, such that

(M̃1, L̃1, Ñ1) = (ΠM1Θ, ΠL1Θ + 2ΠM1Ψ, ΠN1Θ + ΠL1Ψ + ΠM1Σ)

is in the locally transformed form (33). Further, let Π and Θ be partitioned as

Π :=
[
ΠH

1 , . . . , ΠH
28

]H
, Θ := [Θ1, . . . , Θ18],

40



corresponding to the row and column structure of the block matrices in (33). Then we have

[ΠH
1 , ΠH

2 , ΠH
3 , ΠH

7 , . . . , ΠH
15, Π

H
24, . . . , Π

H
28]

HM1 = 0,

M1[Θ8, Θ9, Θ10, Θ15, . . . , Θ18] = 0,

[ΠH
3 , ΠH

7 , ΠH
9 , ΠH

11, . . . , Π
H
15, Π

H
28]

HL1 = 0,

[ΠH
1 , ΠH

2 , ΠH
3 , ΠH

7 , . . . , ΠH
15, Π

H
24, . . . , Π

H
28]

HL1[Θ10, Θ15, . . . , Θ18] = 0.

This means that the columns of the matrix V1 := [ΠH
1 , ΠH

2 , ΠH
3 , ΠH

7 , . . . , ΠH
15, Π

H
24, . . . , Π

H
28]

form a basis of kernel(MH
1 ), the columns of V2 := [Θ8, Θ9, Θ10, Θ15, . . . , Θ18] form a ba-

sis of kernel(M1), the columns of V3 := [ΠH
3 , ΠH

7 , ΠH
9 , ΠH

11, . . . , Π
H
15, Π

H
28] form a basis of

kernel(MH
1 ) ∩ kernel(LH

1 ), and the columns of V4 := [Θ10, Θ15, . . . , Θ18] form a basis of
kernel(M1)∩ kernel(V H

1 L1). Therefore, using Lemma 4 and with the definitions of Lemma 7
we have

ã1 = rank(V H
3 N1V4) = b1,

s̃
(MCK)
1 = dim(range(MH

1 ) ∩ range(LH
1 V1) ∩ range(NH

1 V3)) = c0 + c1 − b0 − d1 + t1 − p1,

s̃
(CK)
1 = rank(V H

3 N1V2) − ã1 = a0 + p1 − b1,

d̃
(1)
1 = rank(V H

1 L1V2) − s̃
(CK)
1 = k1 + a0 − p1 − a0 + b1 = k1 − p1 + b1,

s̃
(MC)
1 = rank(V H

1 L1) − s̃
(MCK)
1 − s̃

(CK)
1 − d̃

(1)
1 = q0 + q1 − c0 − c1 + d1 − t1 + p1 − k1,

s̃
(MK)
1 = rank(V H

3 N1) − ã1 − s̃
(MCK)
1 − s̃

(CK)
1 = d1 − t1,

ṽ1 = 2m − r̃1 − 2s̃
(CK)
1 − d̃

(1)
1 − 2s̃

(MCK)
1 − s̃

(MC)
1 − ã1 − s̃

(MK)
1 = v0 + v1,

ũ1 = 2n − r̃1 − s̃
(CK)
1 − d̃

(1)
1 − ã1 = 2u0 + a0 + k0 − k1 − b1.

Finally, for l = 2 we have to consider the inflated triple

(M2,L2,N2) =









M 0 0

Ṁ + C M 0

M̈ + 2Ċ + K 2Ṁ + C M



 ,





C 0 0

Ċ + K 0 0

C̈ + 2K̇ 0 0



 ,





K 0 0

K̇ 0 0

K̈ 0 0







 .

Again, the identities in the diagonal blocks of M2 allow to eliminate all another entries in
the corresponding block rows of M2 without altering L2 or N2. Further eliminations using
identity blocks in the global condensed form and block decompositions using local equivalence
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transformations yield the matrix triple (M̃2, L̃2, Ñ2) of the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
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. K 0 Ċ Ċ Ċ . K 0 Ċ Ċ Ċ

. K . K K K . K . K K K

. K . K K K . K . K K K

. K . K K K . K . K K K

. K . K K K . K . K K K

. . . . . . . . I . . .

. . . . . . I . . . . .
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

k1

ẽ1

s̃7

k2

ẽ2

s̃8

ẽ1

ẽ2

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

s̃1

s̃2

s̃3

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

s̃1

s̃2

s̃3

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

with dimensions ẽ2 = e2 − k2, s̃7 = s
(MCK)
0 + s

(MC)
0 − e1 − e2, s̃8 = s

(MK)
0 − e1 + k1 − e2 + k2.

We can read off the corresponding ranks to be

r̃2 = rankM̃2 = 3m − q0 − 2c0 − 3v0 − 3s
(MCK)
0 − 2s

(MC)
0 − s

(CK)
0 − s

(MK)
0 + k1

= 3m − c0 − c1 − c2 − v0 − v1 − v2 − q0 − q1 − q2,

rank [M̃2, L̃2] = 3m − c0 − 3v0 − 4s
(MCK)
0 − 2s

(MC)
0 − 2s

(CK)
0 − s

(MK)
0 + e1 + e2 + k1 + b1

= 3m − c0 − c1 − c2 − v0 − v1 − v2,

rank [M̃2, L̃2, Ñ2]

= 3m − 3v0 − 4s
(MCK)
0 − 2s

(MC)
0 − 2s

(CK)
0 − s

(MK)
0 + c1 + b1 + k1 + c2 + e1 + e2
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= 3m − v0 − v1 − v2.

Again, let Π̃ ∈ C
3m×3m and Θ̃, Ψ̃, Σ̃ ∈ C

3n×3n be the corresponding block matrices that
locally transform the inflated triple (M2,L2,N2) to the form (34), i.e.,

(M̃2, L̃2, Ñ2) = (Π̃M2Θ̃, Π̃L2Θ̃ + 2Π̃M2Ψ̃, Π̃N2Θ̃ + Π̃L2Ψ̃ + Π̃M2Σ̃),

and Π̃ and Θ̃ be partitioned as

Π̃ :=
[
ΠH

1 , . . . , ΠH
44

]H
, Θ̃ := [Θ1, . . . , Θ28],

corresponding to the row and column structure of the block matrices in (34). Then we have

[ΠH
1 , ..., ΠH

6 , ΠH
10, ..., Π

H
18, Π

H
20, Π

H
23, Π

H
25, Π

H
27, ..., Π

H
31, Π

H
44]

HM2 = 0,

M2[Θ11, Θ12, Θ19, Θ20, Θ25, ..., Θ28] = 0,

such that the columns of V1 := [ΠH
1 , ..., ΠH

6 , ΠH
10, ..., Π

H
18, Π

H
20, Π

H
23, Π

H
25, Π

H
27, ..., Π

H
31, Π

H
44] form

a basis of kernel(MH
2 ) and the columns of V2 := [Θ11, Θ12, Θ19, Θ20, Θ25, ..., Θ28] form a basis

of kernel(M2). Further decompositions of rows and columns of L̃2, where Π.,2, Θ.,2 denote
the parts of the rows and columns of Π̃ and Θ̃, respectively, that corresponds to null-rows or
null-columns after the decomposition, yield

[ΠH
3 , ΠH

6 , ΠH
10, Π

H
12, Π

H
14, ..., Π

H
18, Π

H
20,2, Π

H
23,2, Π

H
25,2, Π

H
31, Π

H
44]

HL2 = 0,

as well as

V H
1 L2[Θ12,2, Θ19, Θ20, Θ25, ..., Θ28] = 0,

such that the columns of

V3 := [ΠH
3 , ΠH

6 , ΠH
10, Π

H
12, Π

H
14, ..., Π

H
18, Π

H
20,2, Π

H
23,2, Π

H
25,2, Π

H
31, Π

H
44]

form a basis of kernel(MH
2 ) ∩ kernel(LH

2 ), and the columns of the matrix V4 given by V4 :=
[Θ12,2, Θ19, Θ20, Θ25, ..., Θ28] form a basis of kernel(M2) ∩ kernel(V H

1 L2). Therefore, we have

rank(V H
1 L2) = q0 + q1 + q2,

rank(V H
3 N2) = c0 + c1 + c2,

and

ã2 = rank(V H
3 N2V4) = b2,

s̃
(MCK)
2 = dim(range(MH

2 ) ∩ range(LH
2 V1) ∩ range(NH

2 V3))

= c0 + c1 + c2 − b1 − d1 + t1 − d2 + t2 − p2,

s̃
(CK)
2 = rank(V H

3 N2V2) − ã2 = b1 + p2 − b2,

d̃
(1)
2 = rank(V H

1 L2V2) − s̃
(CK)
2 = k2 + b1 − b1 − p2 + b2,

s̃
(MC)
2 = rank(V H

1 L2) − s̃
(MCK)
2 − s̃

(CK)
2 − d̃

(1)
2

= q0 + q1 + q2 − c0 − c1 − c2 + d1 − t1 + d2 − t2 − k2 + p2,

s̃
(MK)
2 = rank(V H

3 N2) − ã2 − s̃
(MCK)
2 − s̃

(CK)
2 = d1 − t1 + d2 − t2,

ṽ2 = 3m − r̃2 − 2s̃
(CK)
2 − d̃

(1)
2 − 2s̃

(MCK)
2 − s̃

(MC)
2 − ã2 − s̃

(MK)
2 = v0 + v1 + v2,

ũ2 = 3n − r̃2 − s̃
(CK)
2 − d̃

(1)
2 − ã2 = 3u0 + 2a0 + k0 − k1 − k2 − b1 − b2.

�
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