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Abstract. In the well-known discrete modeling framework developed by R.
Thomas, the structure of a biological regulatory network is captured in an
interaction graph, which, together with a set of Boolean parameters, gives
rise to a state transition graph describing all possible dynamical behaviors.
For complex networks the analysis of the dynamics becomes more and more
difficult, and efficient methods to carry out the analysis are needed. In this
paper, we focus on identifying subnetworks of the system that govern the be-
havior of the system as a whole. We present methods to derive trajectories
and attractors of the network from the dynamics suitable subnetworks display
in isolation. In addition, we use these ideas to link the existence of certain
structural motifs, namely circuits, in the interaction graph to the character
and number of attractors in the state transition graph, generalizing and re-
fining results presented in [10]. Lastly, we show for a specific class of networks
that all possible asymptotic behaviors of networks in that class can be derived
from the dynamics of easily identifiable subnetworks.

1. Introduction

When modeling biological systems, one first has to decide what kind of modeling
framework is best suited to incorporate the available data and to yield results with-
out too many additional assumptions about the system. If only coarse information
is available, as is often the case when studying biological regulatory networks, logi-
cal modeling approaches lend themselves well to capturing the essential, qualitative
features of the system. In the 70’s, R. Thomas introduced a discrete modeling for-
malism, which has been continuously further developed and successfully applied
to biological problems (see [13], [14] and references therein). The structure of the
network is captured in a directed, signed graph called interaction graph. Edges
represent activating or inhibiting interactions between components, which in turn
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are represented by Boolean variables. A component is considered active if the as-
sociated variable has value 1 and inactive otherwise. Boolean parameter values
specify a function that determines the dynamical behavior. Biologically realistic
rules are employed to derive a state transition graph from the Boolean function,
which amounts to a non-deterministic representation of all possible behaviors of
the system.

Since the representation of the dynamics is in some sense comprehensive,
the analysis of the behavior is rather involved for complex networks. One idea to
simplify the analysis is to deconstruct the complex network into simpler building
blocks, to analyze their dynamics in isolation and then derive information about
the network dynamics from the subnetwork behavior. Clearly, this method will not
work for arbitrarily chosen subnetworks, because further components and interac-
tions influence its behavior once it is embedded in a complex system. If, however,
we can identify subnetworks that somehow govern the behavior of the larger net-
work, at least in some part of state space, then we can infer useful results about
the whole network from looking at those subnetworks.

We approach the problem of finding suitable subnetworks in the following
way. We basically look for parts of state space, where some of the components of
the network remain stable independent of the values of other network components.
A notion that formalizes this idea is the notion of singular steady state. It was
first introduced by R. Thomas and E.H. Snoussi in [11] for a certain class of multi-
valued discrete functions. Here, a so-called singular value represent the threshold of
an interaction, which allows a refined representation of the network dynamics. We
adapted these ideas to a Boolean setting in [10], resulting in definitions and results
for a restricted class of Boolean models. In this paper, we substantially generalize
the framework introduced in [10]. We allow characteristics, i. e., the sign of network
interactions to depend on the current state of the system. Whether a component
has an activating or inhibiting influence on its target may depend on the activity of
certain cofactors. A well-known example is the DNA-binding protein TCF which
can repress as well as activate the same target genes. TCF acts as activator in
the presence of β-catenin, induced by WNT signaling, while the co-expression
of the protein TLE converts TCF into a repressor. We call systems including
such ambiguous interactions context sensitive. Adaptations in the definition of
interaction graphs and parameters allow us to include context sensitive systems in
our considerations.

In this setting, a component can adopt the singular value θ in addition to
the two regular values 1 and 0. Again, the singular value can be interpreted as
the threshold value of an interaction, and thus represents a state where we do
not know whether or not the corresponding interaction is active. Considering such
states can help us to a clearer understanding of the component dependencies in
the system. To obtain a refined representation of the structure of the system with
respect to its dynamics, we exploit the concept of local interactions graphs. It was
already successfully used in [5] and [4], and allows for a better understanding of
what structures in the interaction graph influence the system’s behavior in a given
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state. Combining these ideas, we introduce local interaction graphs of singular
steady states which allow us to identify subnetworks that govern the behavior of
the whole system.

The paper is organized as follows. In Sect. 2 we introduce the Boolean frame-
work we use to describe regulatory networks. The following section clarifies the
relation between the function f governing the system’s dynamics and the structure
of the interaction graph, which leads to the notion of local interaction graph. Sub-
sequently, we introduce singular steady states. In Sect. 5, we employ the concept
of local interaction graphs for singular steady states. We identify subnetworks that
govern the system’s behavior, and introduce a procedure to derive the dynamics
and in particular attractors of the network from the corresponding subnetwork dy-
namics. We also focus on subnetworks that basically consist of an isolated circuit,
and link there existence in the interaction graph to certain dynamical character-
istics of the network. In Sect. 6, we then analyze a specific class of networks the
properties of which allow us to easily find subnetworks from which we can derive
all possible attractors of the original system. We end the paper with concluding
remarks and perspectives for future work.

This is the extended version of a paper presented at the Algebraic Biology
conference 2008 [9].

2. Regulatory Networks

As already mentioned, a directed, signed graph is used in the Thomas formalism
to capture the network structure of a regulatory system. We are now interested
in a more general representation that allows for the interaction sign to depend on
the current state of the system. To accurately describe the structure of such con-
text sensitive networks we use directed multigraphs that allow for parallel edges.
Multigraphs have been used in a similar way in [2]. We set B := {0, 1}.

Definition 2.1. An interaction (multi-)graph (or bioregulatory (multi-)graph) I is
a labeled directed multigraph with vertex set V := {α1, . . . , αn}, n ∈ N, and edge
set E ⊆ V × V × {+,−}.

The vertices α1, . . . , αn represent the components of the regulatory network
such as genes, RNA, or proteins. We view each component αi as a variable that
adopts values in B. The value 1 signifies that the component is active, i. e., it
influences its interaction targets according to the interaction signs. For example,
if some substance concentration needs to cross a threshold in order to influence
some target component, then the corresponding Boolean value is 0 as long as the
concentration is below, and 1 if the concentration is above the threshold.

When analyzing the interaction graph of a network we are interested in cer-
tain structural motives. We focus on so-called (feedback) circuits. Here, a circuit
is a tuple (e1, . . . , er) of edges ei = (ki, li, ε) ∈ E such that all ki, i ∈ {1, . . . , r},
are pairwise distinct, and li = ki+1 for all i ∈ {1, . . . , r} modulo r. The sign of
a circuit is the product of the signs of its edges. Note that in a multigraph a
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circuit is not uniquely determined by its vertices. Figure 1 shows an interaction
graph with two circuits consisting of the vertices α2 and α3: the positive circuit
((α2, α3,+), (α3, α2,+)) and the negative circuit ((α2, α3,+), (α3, α2,−)).

To simplify notation, we identify each vertex αi with its index i, and denote
eε
ij := (i, j, ε) for all (i, j, ε) ∈ E. For each αi we denote by Pred(αi) the set of

predecessors of αi, i. e., the set of vertices αj such that there is an edge (αj , αi, ε) for
some ε ∈ {+,−} in E. To identify parallel edges we set E′′ = {(i, j) | ∃eε

i,j , e
ε′

i,j ∈
E : ε 6= ε′} and E′ = E \ E′′.

An interaction graph holds no information about dynamical behavior. Next
we give a formal definition of the term bioregulatory network that includes infor-
mation on structure as well as dynamics. The notation is based on ideas introduced
in [1] and [7].

Definition 2.2. Let I = (V,E) be an interaction graph comprising n vertices. A
state of the system described by I is a tuple s ∈ Bn. The set of (regular) resource
edges Rj(s) = RI

j (s) of αj in state s = (s1, . . . , sn) is the set

{(αi, αj , ε) ∈ E | (ε = + ∧ si = 1) ∨ (ε = − ∧ si = 0)}.

Given a set
K(I) := {Kj,Rj(s) | j ∈ {1, . . . , n}, s ∈ Bn}

of (logical) parameters, which adopt values in B, we define the Boolean function
f = fK(I) : Bn → Bn, s 7→ (K1,R1(s), . . . ,Kn,Rn(s)). The pair N := (I, f) is called
bioregulatory network.

The behavior of a component αj is determined by the influences its predeces-
sors exert on it. The set of resource edges Rj(s) contains all edges that contribute
to an activation of αj in state s. Note that here the absence of an inhibiting in-
fluence (represented by a negative edge) is interpreted as an activating influence
on the target component. With this interpretation we have that for every s ∈ Bn

there is ε ∈ {+,−} such that eε
ij ∈ Rj(s), if (i, j) ∈ E′′. If (i, j) ∈ E′, then Rj(s)

may or may not contain the corresponding edge eε
i,j , depending on s.

In Fig. 1 an interaction graph and a choice of parameter values are given.
For α1 and α3 the parameters depend on whether or not the single positive edge
ending in α1 resp. α3 is effective or ineffective. We have R1(s) = ∅ for all states
s with s1 = 0, and R1(s) = {e+

11} for all s with s1 = 1, while the resource edge
sets for α3 depend similarly on e+

23. The component α2 is influenced by both α1

and α3 via two parallel edges, respectively. Thus the set of resources is never
empty. For example, we have R2((0, 0, 1)) = {e−12, e

+
32}. A closer look at the choice

of parameter values allows the following interpretation. If α1 has activity level
0, then the influence of α3 on α2 corresponds to an activating influence: if α3 is
inactive, α2 tends to inactivity represented by the parameter K2,{e−12,e−32}

= 0, and
if α3 is active α2 tends to activity since K2,{e−12,e+

32}
= 1. If α1 has value 1, then

the situation is reversed and α3 inhibits α2. The system is context sensitive.
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Figure 1. Interaction graph of a system comprising three com-
ponents, a list of all parameters with an assignment of Boolean
values, and the corresponding state transition graph. The heavier
gray edges indicate attractors.

In [10], the parameters correspond to sets of resource vertices, i. e., the influ-
ence of one component on another cannot change depending on the current state of
the system. The network shown in Fig. 1 cannot be represented with that restric-
tion. However, the notion of resource edges and resource vertices are equivalent, if
there are no parallel edges in the interaction graph.

The parameters determine the behavior of the system as follows. The Boolean
value of the parameter Kj,Rj(s) indicates how the activity level, i. e., the value of
the component αj will evolve from its value in state s. It will increase (resp.
decrease) if the parameter value is greater (resp. smaller) than si. The activity
level stays the same if both values are equal. Thus, the function f maps a state s
to the state the system tends to evolve to. However, if a state and its image differ
in more than one component, we take the following consideration into account. In
a biological system two different processes of change in activity level represented
by the value change of two distinct components will not take the exact same
amount of time. Thus we assume that in the discrete dynamical representation a
state differs from its successor in at most one component. This procedure is called
asynchronous update in Thomas’ framework. By applying this idea we derive a
non-deterministic representation of the dynamics which we again formalize as a
directed graph.

Definition 2.3. The state transition graph SN describing the dynamics of the net-
work N is a directed graph with vertex set Bn. For states s = (s1, . . . , sn) and
s′ = (s′1, . . . , s

′
n), there is an edge s → s′ if and only if s′ = f(s) = s or s′i = fi(s)

for some i ∈ {1, . . . , n} satisfying si 6= fi(s) and s′j = sj for all j 6= i.

On the right in Fig. 1 we see the state transition graph corresponding to the
given interaction graph and parameters. The dynamics are non-deterministic. For
example, there are two edges leaving the state (0,1,0), representing two different
behaviors of the system.
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Every possible behavior of the system is captured in the corresponding state
transition graph. To analyze the graph we use, in addition to standard terminology
from graph theory such as paths and cycles, the following concepts.

Definition 2.4. An infinite path (s0, s1, . . . ) in SN is called trajectory. A nonempty
set of states D is called trap set if every trajectory starting in D never leaves D.
A trap set A is called attractor if for all s1, s2 ∈ A there is a path from s1 to
s2 in SN . A cycle C := (s1, . . . , sr, s1), r ≥ 2, is called a trap cycle if every sj ,
j ∈ {1, . . . , r}, has only one outgoing edge in SN , i. e., the trajectory starting in
s1 is unique. A state s is called steady state, if there exists an edge s → s, i. e. if
f(s) = s.

In other words, the attractors correspond to the terminal strongly connected
components of the graph. Steady states as well as trap cycles are attractors. The
attractors in the state transition graph given in Fig. 1 are the sets containing the
steady states, i. e., {(0, 0, 0)} and {(0, 1, 1)}, and the set containing the states of
the trap cycle in the graph, i. e., {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 0)}.

The behavior of a system becomes, at least to some degree, predictable and
stable inside an attractor. Often, a sensible biological interpretation can be found
for an attractor. In cell differentiation, the different stable states reached at the end
of development may be represented by distinct steady states in the state transition
graph. Attractors of cardinality greater than one imply cyclic behavior, and thus
can often be identified with homeostasis of sustained oscillatory activity, as can
be found in the cell cycle or circadian rhythm.

State transition graphs always contain at least one attractor. The proof of
the following more precise statement can be found in [10].

Proposition 2.5. For every state s ∈ Bn exists a trajectory in SN which starts in
s and leads to an attractor.

Coming to the end of this section, we note a useful observation. If some
vertex αi in I does not have a predecessor, then clearly ai = Ki,∅ for every state
a = (a1, . . . , an) in an attractor. Similarly, we know the values aj for vertices
the only predecessor of which is αi, and so on. That is, we can easily determine
the dynamical behavior of such vertices, which leads to the same fixed values of
those components for every initial state of the system. Throughout the remainder
of the paper we exclude such components and assume that every vertex in I
has a predecessor. We still allow the system to have input values in the sense of
components maintaining their current activity level independent of the values of
the other components. Such an input component is represented as a vertex with
its only incoming edge being a positive self-loop.

3. Functionality and Local Interaction Graphs

Throughout the paper let N := (I = (V,E), f = fK(I)) be a bioregulatory net-
work comprising n components. When analyzing the system, it is an interesting
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question whether it is possible to link structural network characteristics to dynam-
ical characteristics. In order to obtain sensible results, however, we need to make
sure that the structure of the network captured in the interaction graph and the
rules governing the behavior of the system represented by the Boolean function
f do not contradict each other. That is, the choice of parameter values should
be consistent with the information inherent in the interaction graph. We require
that each edge represented in the interaction graph should have a notable effect
on the system’s dynamics. Moreover, the edge’s character given by its sign should
be reflected in its dynamical impact.

To formalize these requirements we introduce the following notation. Recall
that we interpret the absence of inhibition as a potentially activating effect. So,
if we deal with parallel edges from a vertex i to a vertex j, that is if (i, j) ∈ E′′,
we know that for every s ∈ Bn there is ε ∈ {+,−} such that eε

ij ∈ Rj(s). If there
is only a single edge, i. e. (i, j) ∈ E′, then Rj(s) may or may not contain the
corresponding edge eε

i,j , depending on s.
For j ∈ {1, . . . , n}, set MI

j := Mj := {Rj(s) | s ∈ Bn}. Then, by the above
considerations, each M ∈ Mj can be written as M =

⋃
i∈Pred(j) Li with Li = {eε

i,j}
for some ε ∈ {+,−}, if (i, j) ∈ E′′, and Li = ∅ or Li = {eε

i,j} ⊂ E, if (i, j) ∈ E′.
By definition we have K(I) = {Kj,M | j ∈ {1, . . . , n}, M ∈ Mj}.

We want to ensure that the choice of parameter values does not contradict the
information inherent in the interaction graph. As mentioned above, that means we
have to check for the existence and the character, positive or negative, of influence
on the system dynamics exhibited by each interaction. To do so, we again have
to distinguish between edges in E′ and E′′. For e = (i, j, ε), (i, j) ∈ E′, we have
M ∪ {e} ∈ Mj for all M ∈ Mj , and we demand that Kj,M ≤ Kj,M∪{e} for all
M ∈ Mj . Recall that the addition of an edge to the set of resources always signifies
increasing activating influence. So, the condition ensures that increasing activating
influence does not result in a decrease of component activity level. To ensure that
e, at least for some state, has a notable impact on the dynamics, we extend the
condition and get:

∀M ∈ Mj : Kj,M ≤ Kj,M∪{e} and ∃M ′ ∈ Mj : Kj,M ′ < Kj,M ′∪{e} . (3.1)

In the case (i, j) ∈ E′′, there exists e′ = (i, j, ε′) with ε 6= ε′. Since αi influences αj

positively as well as negatively depending on the current state, we cannot impose
a general monotonicity condition on the parameters as in the first part of (3.1).
However, again we require that there is at least one state where the addition of e to
the set of resources induces an increase in the parameter value. Otherwise the edge
e would be superfluous. Since in every given state either e or e′ is contained in the
set of resources, we compare parameter values for sets M ∈ Mj and (M\{e′})∪{e}.
We obtain the condition

∃M ′ ∈ Mj : Kj,M ′ < Kj,(M ′\{e′})∪{e} . (3.2)

We call edges that satisfy condition (3.1) resp. (3.2) functional. This concept of
functionality is an adaptation of the notion of functionality introduced in [10].
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In the following, we always assume that all edges in the interaction graph are
functional.

We have already seen in Sect. 2 that for the example in Fig. 1 R1(s) = ∅
for all states s with s1 = 0, and R1(s) = {e+

11} for all s with s1 = 1. Thus
M1 = {∅, {e+

11}}. Similarly M3 = {∅, {e+
23}}. The choice of Boolean values for the

parameters satisfies condition (3.1) and ensures the functionality of the edges e+
11

and e+
23. Since α2 is influenced by both α1 and α3 via two parallel edges, we get

M2 = {{e+
12, e

+
32}, {e

+
12, e

−
32}, {e

−
12, e

+
32}, {e

−
12, e

−
32}}. Again the choice of parameter

values renders all edges functional.
A different choice of parameter values leads to different results. If we set

K2,{e+
12,e+

32}
= K2,{e−12,e+

32}
= 1 and K2,{e+

12,e−32}
= K2,{e−12,e−32}

= 0, then verification
of conditions (3.1) and (3.2) shows that e+

12, e−12 and e−32 are not functional. Only
the edge e+

32 is functional and influences the system’s dynamics.
It now may seem that we put a lot of restrictions on the choice of parameter

values and thus on the function f by demanding functionality of all edges. But
in fact we only make sure that the graph representation of the system’s structure
fits the structural information encoded in f . This is no restriction on the Boolean
function f as the following statement shows. The proof can be found in [9].

Proposition 3.1. Let g : Bn → Bn be a Boolean function. Then there exists an
interaction graph I = (V,E) and a set of parameters K(I) such that g = fK(I).

The above statement also illustrates the fact that the interaction graph holds
only coarse information on the system. The same interaction graph may give rise
to different dynamics depending on the choice of parameter values. However, a
more refined understanding of the network structure is possible, if we consider the
impact of interactions on the dynamics with respect to the current state of the
system.

Since all edges in the interaction graph are functional, we know that each
edge has an impact on the dynamics. However, this influence does not have to
be effective in the whole state space Bn. To capture local structural aspects we
introduce the concept of local interaction graphs. It has already been used in [5]
and [4] (see also references therein). In the following, we denote with si the state
that coincides with s in all components j 6= i and takes the value 1− si in the i-th
component.

Definition 3.2. Let I = (V,E) be an interaction graph with parameter set K(I).
Let s = (s1, . . . , sn) ∈ Bn. Then we denote by I(s) the graph with vertex set V
and edge set E(s) ⊆ E. An edge (i, j, ε) is in E(s) if and only if

Kj,Rj(s) 6= Kj,Rj(si) ∧ ε = + ⇔ si = Kj,Rj(s) .

We call I(s) the (local) interaction graph in state s.

Clearly, every edge in the local interaction graph I(s) is also contained in I,
since we use the same parameters to characterize the edges. More precisely, I is
the union of all graphs I(s), s ∈ Bn. We call I also the global interaction graph.
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Figure 2. Local interaction graphs corresponding to the graph
and parameters given in Fig. 1. I((0, 0, 0)) in (a), I((1, 0, 0)) in
(b), I((θ, 0, 0)) in (c).

Note that there are no parallel edges in a local interaction graph. Figure 2(a) and
(b) show the graphs I((0, 0, 0)) and I((1, 0, 0)) corresponding to the example given
in Fig. 1. The local interaction graphs give us a finer understanding of the way the
network components interact. They can be seen as a visualization of the discrete
Jacobian matrix of the Boolean function fI = f as introduced in [8], since we
have fj(s) = Kj,Rj(s) for all s ∈ Bn.

4. Singular States

In our formalism we only consider whether a component is active or not. We now
incorporate a threshold value that allows us to express uncertainty in the sense
that we do not know if a certain interaction is effective. We already used this
concept in [10] for networks without context sensitivity. Again, we mainly use
notation introduced in [7].

Definition 4.1. Set Bθ := {0, θ, 1}, where θ is a symbolic representation of the
threshold value and satisfies the order 0 < θ < 1. We allow each regulatory com-
ponent αi to take values in Bθ. The values 0 and 1 are called regular values and
θ is called singular value. The elements of Bn

θ are called states. If all components
of a state are regular, it is called regular state, else it is called singular state. For
every state s = (s1, . . . , sn) we define J(s) := {i ∈ {1, . . . , n} | si = θ}.

We call |a, b| a qualitative value if a, b ∈ B and a ≤ b. The qualitative value
|0, 0| is identified with the regular value 0, |1, 1| with the regular value 1, and |0, 1|
with the singular value θ. The relations <, >, and = are used with respect to this
identification.

In the following, we denote [s] := {s′ ∈ Bn | s′j = sj for all j /∈ J(s)} for all
s ∈ Bn

θ . The set [s] describes a part of the regular state space which we can be
projected on Bk, where k is the cardinality of J(s).
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Definition 4.2. We define for all i ∈ {1, . . . , n}

fθ = fK(I),θ : Bn
θ → Bn

θ by fθ
i (s) = |Ki,min(s),Ki,max(s)| ,

where Ki,min(s) := min{Ki,Ri(s′) | s′ ∈ [s]} and Ki,max(s) := max{Ki,Ri(s′) | s′ ∈
[s]}. We call s ∈ Bn

θ a steady state if fθ(s) = s.

The definition of Ki,min(s) and Ki,max(s) ensures that the image of a regular
state under fθ is again a regular state. More specific, we have fθ|Bn = f . If a
state has singular components, then Ki,min(s) and Ki,max(s) compare the best and
worst case scenario regarding activation for component i by considering all possible
combinations of regular values for the singular components of s. If the value fθ

i (s)
for some s ∈ Bn

θ is regular, we can deduce that the regular components of s already
determine the behavior of the i-th component, independent of any predecessors
with singular value in s. If it is not regular, then we simply do not have enough
information to predict what it’s future value would be. A singular steady state can
then be viewed as a partial steady state of the regular dynamics. We will exploit
this fact in the next section.

Thomas and Snoussi already link singular states to circuits in the interaction
graph, albeit in a different framework (see [11]). We have adapted their ideas to a
Boolean framework without context sensitivity in [10].

Definition 4.3. Let C = (αi1 , . . . , αir
) be a circuit in I. A state s = (s1, . . . , sn) ∈

Bn
θ is called characteristic state of C if sil

= θ for all l ∈ {1, . . . , r}.

In general, a characteristic state of a circuit is not unique. The state (θ, . . . , θ)
is characteristic for every circuit in I. A simple modification of the reasoning in
[10] leads to the following statement.

Theorem 4.4. Every singular steady state is characteristic of some circuit in I.

A singular steady state s can be characterized using only regular states and
the function f . The idea is to check component-wise the behavior for regular states
s+ and s− that satisfy Ki,Ri(s+) = Ki,max(s) and Ki,Ri(s−) = Ki,min(s) for some
i ∈ {1, . . . , n}. The proofs for networks that are not context sensitive are given in
[10] and can be easily adapted.

5. Subnetworks Governing Network Behavior

In this section we try to find subnetworks of N that in some sense govern the
behavior of the whole system, at least in some part of state space. The key idea
in this endeavor is to have a closer look at the structural as well as dynamical
information inherent in a given singular steady state. As a first step, we adapt the
concept of local interaction graphs to singular states. Recall that J(s) is the set of
all singular components of a state s ∈ Bn

θ .
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Figure 3. Local interaction graph I((0, θ, θ)) on the left,
Iθ((0, θ, θ)) and corresponding state transition graph on the right
of (a). Local interaction graph I((1, θ, θ)) on the left, Iθ((1, θ, θ))
and corresponding state transition graph on the right of (b). At-
tractors are indicated by heavier gray edges.

Definition 5.1. Let s = (s1, . . . , sn) ∈ Bn
θ . We denote by I(s) the (multi-)graph

with vertex set V and edge set E(s). An edge e is in E(s) if and only if there exists
a regular state s′ = (s′1, . . . , s

′
n) such that s′i = si for all i /∈ J(s) and e ∈ E(s′),

where E(s′) denotes the edge set of the interaction graph I(s′) in s′. Again, we
call I(s) the (local) interaction graph in s.

Note that the interaction graph in a singular state may have parallel edges.
In Fig. 2 (c) we see the local interaction graph in state (θ, 0, 0), which is the union
of the graphs I((0, 0, 0)) and I((1, 0, 0)) given in (a) and (b).

A singular steady state s yields stability in the dynamical behavior for the
components that do not belong to J(s). To make a more precise statement we intro-
duce notation for a specific subgraph of I(s). By Iθ(s) we denote the (multi-)graph
with vertex set V θ(s) := J(s) and edge set Eθ(s) := {(i, j, ε) ∈ E(s) | i, j ∈ J(s)}.
That is, we only keep the singular components and interactions between them.
We call a graph Z component of Iθ(s), if Z = (VZ , EZ) is a maximal subgraph
of Iθ(s) such that for every k, k′ ∈ VZ exist vertices k1, . . . , kr ∈ VZ with k1 = k,
kr = k′, and (ki, ki+1, ε) ∈ Eθ(s) or (ki+1, ki, ε) ∈ Eθ(s) for some ε ∈ {+,−} and
all i ∈ {1, . . . , r − 1}. In Fig. 3 we see for our running example introduced in Fig. 1
the graphs I((0, θ, θ)) and Iθ((0, θ, θ)) in (a), as well as the graphs I((1, θ, θ)) and
Iθ((1, θ, θ)) in (b). Lastly, let C be a circuit in I(s) such that all edges of C are
in Iθ(s). Then there exists a component of Iθ(s) that contains C. We denote
this component by JC(s). The next lemma shows that the stability of the regu-
lar components of a singular steady state is not influenced by value changes in
a component Z of Iθ(s). Moreover, if Iθ(s) has more than one component, the
component dynamics are independent of each other. This property is crucial for
the remaining results in this section. The proof of the lemma is an adaptation of
a similar, less general statement in [10]. Note that in [10] a different definition of
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Iθ(s) is used that does not take the effectiveness of interactions in state s into
account.

Lemma 5.2. Let s = (s1, . . . , sn) be a singular steady state, and let Z1, . . . , Zm

be the components of Iθ(s). Consider a union Z of arbitrary components Zj. Let
s̃ = (s̃1, . . . , s̃n) ∈ Bn

θ such that s̃i = si for all i /∈ Z. Then fθ
i (s̃) = fθ

i (s) = si = s̃i

for all i /∈ Z.

Proof. First, let us consider i ∈ J(s)\Z. Then sj = s̃j for every j ∈ Pred(αi), since
there are no predecessors of αi in Z. Therefore, the sets of resource edges of αi are
not influenced by value changes in Z, i. e., {Ri(s′) | s′ ∈ Bn, s′j = sj for all j /∈
J(s)} = {Ri(s′) | s′ ∈ Bn, s′j = s̃j for all j /∈ J(s̃)}. Then Ki,min(s) = Ki,min(s̃)

and Ki,max(s) = Ki,max(s̃), and fθ
i (s̃) = fθ

i (s) = si = s̃i.
Now, let i /∈ J(s). Since sj = θ for all j ∈ Z, we have J(s̃) ⊆ J(s). Therefore,

{s′ ∈ Bn | s′j = s̃j for all j /∈ J(s̃)} ⊆ {s′ ∈ Bn | s′j = sj for all j /∈ J(s)}.
It follows that Ki,min(s) ≤ Ki,min(s̃) ≤ Ki,max(s̃) ≤ Ki,max(s). Since fθ

i (s) = si is
regular, we know Ki,min(s) = Ki,max(s) = si. Thus, Ki,min(s̃) = Ki,max(s̃) = si and
fθ

i (s̃) = si = s̃i. �

Recall that we denote [s] := {s′ ∈ Bn | s′j = sj for all j /∈ J(s)}. The
above lemma shows that the network behavior in [s] is completely governed by
the components of Iθ(s). To give a clear understanding of how to construct the
network dynamics from the dynamics derived from the subnetworks we need the
following notation.

Let s be a singular steady state and Z a component of Iθ(s) with k :=
cardVZ . We may assume that VZ = {αl+1, . . . , αl+k} for some l ∈ {0, . . . , n− 1}.
Then Z is an interaction graph comprising k vertices. Now, we want to define the
dynamics of Z as the projection of the dynamics of I with respect to s. We define
a parameter set K(Z) according to Def. 2.2 as the set of all parameters KZ

i,RZ
i (z)

:=

Ki,Ri(s̃) for z ∈ Bk and s̃ ∈ Bn with s̃i = si for all i /∈ J(s) and s̃i = zi−l for all
i ∈ Z. The parameters are well defined since there are no predecessors of vertices
in Z in J(s) \ Z. We set fK(Z) = fZ : Bk → Bk, z 7→ (KZ

1,RZ
1 (z)

, . . . ,KZ
k,RZ

k (z)
).

We then have fZ = πZ ◦ fθ ◦ ρZ , where ρZ : Bk → Bn with ρZ
i (z) = si for

i /∈ Z and ρZ
i (z) = zi−l for i ∈ Z, and πZ : Bn → Bk is the projection on the

components of Z. Note that fZ yields always regular values, since the singular
values in J(s) \ Z do not influence the components in Z according to Lem. 5.2.
The definitions of parameters and Iθ(s) ensure that all edges in Z are functional.
In a next step we can then derive the state transition graph SZ = SNZ for the
network NZ = (Z, fZ), the vertex set of which is Bk.

We illustrate the definitions by considering our running example in Fig. 1. As
shown in Fig. 3 (a), the graph Iθ((0, θ, θ)) has only one component Z consisting
of a positive circuit containing α2 and α3. We derive the parameters K(Z) from
those given in Fig. 1 for the global interaction graph. Since s1 = 0, we obtain,
according to the above definition, the parameters KZ

2,∅ := K2,{e−12,e−32}
= 0 and
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KZ
2,{e+

32}
:= K2,{e−12,e+

32}
= 1. The parameters for α3 stay the same, i. e., KZ

3 , ω =

K3,ω for ω ∈ {∅, {e+
23}}. The resulting state transition graph SZ

N is also given in
Fig. 3 (a).

After calculating the state transition graph for every component of Iθ(s), we
need to find a way to glue them together such that the resulting graph reflects the
behavior of our original system in [s].

Definition 5.3. Let s = (s1, . . . , sn) be a singular steady state and let Z1, . . . , Zm

be the components of Iθ(s). W. l. o. g. we may assume that Z1 contains the vertices
α1, . . . , αcard Z1 , Z2 contains the vertices αcard Z1+1, . . . , αcard Z1+card Z2 , etc., and
sk, . . . , sn are all the regular components of s for some k ∈ {1, . . . , n}. We then
denote by S(s,Z1,...,Zm) the graph with vertex set V(s,Z1,...,Zm) := VZ1 ×· · ·×VZm

×
{(sk, . . . , sn)} and edge set E(s,Z1,...,Zm). An edge s1 → s2 belongs to the edge set
iff

πZj (s1) = fZj (πZj (s1)) = πZj (s2) for all j ∈ {1, . . . ,m},
or if there exists j ∈ {1, . . . ,m} such that

πZj (s1) → πZj (s2) is an edge in SZj
and s1

i = s2
i for all i /∈ VZj

.

We call S(s,Z1,...,Zm) the product state transition graph corresponding to s.
Furthermore, we denote by S [s]

N the graph with vertex set [s] and edge set E[s]. For
states s1 and s2 the edge s1 → s2 is in E[s] iff it is an edge in the state transition
graph SN of N .

Note that technically the sets [s] and V(s,Z1,...,Zm) are not the same, but of
course we can identify them with each other and do so to simplify notation. Since
s is a singular steady state, we can deduce from Lemma 5.2 that for each x ∈ [s]
we have x′ ∈ [s] for all x′ with x′i = fi(x) 6= xi for some i and x′j = xj for all
j 6= i. Thus, there are no edges leaving [s] in the state transition graph SN . The
next theorem now tells us that we can reconstruct the behavior of the system N
in [s] from the dynamics of the subnetworks NZi .

Theorem 5.4. Let s = (s1, . . . , sn) be a singular steady state and let Z1, . . . , Zm be
the components of Iθ(s). Then S [s]

N = S(s,Z1,...,Zm).

Proof. As mentioned above, we identify the sets [s] and V(s,Z1,...,Zm). Let us remark
that we have πZj (f(s′)) = πZj (fθ(s′)) = πZj (fθ(ρZj (πZj (s′)))) = fZj (πZj (s′))
for all s′ ∈ [s] and all j ∈ {1, . . . ,m} according to the definition of ρZj , πZj and
Lemma 5.2.

Let s1 = (s1
1, . . . , s

1
n) → s2 = (s2

1, . . . , s
2
n) be an edge in S [s]

N . According
to Def. 2.3, we have either s1 = s2 is a fixed point of f , or s1 and s2 differ
in one component only. If s1 = f(s1) = s2, we have πZj (s1) = πZj (s2) and
fZj (πZj (s1)) = πZj (f(s1)) = πZj (s1) for all j ∈ {1, . . . ,m}. Thus, s1 → s2 is an
edge in S(s,Z1,...,Zm).

Now, let us assume there exists i ∈ {1, . . . , n} such that s1
i 6= fi(s1) = s2

i and
s1

j = s2
j for all j 6= i. Then there is l ∈ {1, . . . ,m} such that i ∈ Zl, and s1

j = s2
j for
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α2

α1 α3

+

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

+ +

−−

K1,{e−11,e
+
21}

= 1

K2,{e+22}
= 1

K3,{e+23,e
−
33}

= 1

(a) (b) (c)

s = (θ, 1, θ)

Iθ(s)

SZ1 = SZ2

α1 α3 −−

10

Figure 4. We list only the parameter values greater than zero
in (a). The local interaction graph of s in (b) has two components
Z1 and Z2. In (c) the state transition graph of the system in (a).

all j /∈ Zl. We have to show that πZl(s1) → πZl(s2) is an edge in SZl
. Let kl be the

cardinality of VZl
, and let il ∈ {1, . . . , kl} such that xi = (πZl(x))il for all x ∈ Bn,

i. e. the πZl projects the i-th component of a n-vector on the il-th component
of a k-vector. Then fZl

il (πZl(s1)) = (πZl(f(s1)))il = fi(s1) = s2
i = (πZl(s2))il

and fZl

il (πZl(s1)) = fi(s1) 6= s1
i = (πZl(s1))il . Since we know s1

j = s2
j for all

j 6= i, j ∈ {1, . . . , n}, we have (πZl(s1))j′ = (πZl(s2))j′ for all j′ 6= il, j′ ∈ Zl.
By definition πZl(s1) → πZl(s2) is an edge in SZl

and s1 → s2 is an edge in
S(s,Z1,...,Zm).

Similar straight forward reasoning shows that an edge in S(s,Z1,...,Zm) is also
an edge in S [s]

N . �

For the system given in Fig. 4 the state s = (θ, 0, θ) is a singular steady state.
The components Z1 and Z2 of Iθ(s) are the negative loop in α1 and the negative
loop in α3, respectively. The state transition graphs SZ1 and SZ2 coincide and just
consist of the cycle 0 → 1 → 0. The graph S(s,Z1,Z2) is indicated by heavier gray
edges in the state transition graph in Fig. 4 (c). Looking at the example in Fig. 1
and the local interaction graphs and corresponding component state transition
graphs derived from the singular steady states s1 = (0, θ, θ) and s2 = (1, θ, θ) in
Fig. 3, we see that the two product state transition graphs derived from them each
form a component of the state transition graph of the original system. That is, we
obtained the whole state transition graph from the subnetworks induced by the
singular steady states. The following proposition generalizes this observation. The
easy proof is omitted.

Proposition 5.5. If s1, . . . , sk are singular steady states such that Bn =
⋃k

i=1[s
i],

then SN =
⋃k

i=1 S
[si]
N .
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In many cases, the above proposition is not very useful. For the system in
Fig. 3, for example, there is no singular steady state generating the lower compo-
nent of the state transition graph. However, we are often not interested in transient
states of the system, but rather in the asymptotic behavior. So, we do not neces-
sarily want to reconstruct the complete state transition graph but rather focus on
the attractors. According to Prop. 2.5 the graph SNZ for a component of Iθ(s)
for a singular steady state s contains an attractor. However, it is not a priori clear
that attractors of subsystems generate attractors of the complete network. The
next theorem shows that this is indeed possible. More precisely, all the attractors
in S [s]

N can be constructed from attractors of the subnetworks Zi and vice versa.

Theorem 5.6. Let s = (s1, . . . , sn) and Z1, . . . , Zm be as in Def. 5.3. The attractors
of SN with vertices in [s] are precisely the sets of states that can be represented as
A1 × · · · ×Am ×{(sk, . . . , sn)}, where for all i ∈ {1, . . . ,m} the set Ai denotes an
attractor in SZi

.

Proof. For i ∈ {1, . . . ,m} let Ai be an attractor in SZi
and set A := A1 × · · · ×

Am × {(sk, . . . , sn)}. We again interpret A as a subset of Bn. First, we show that
A is a trap set, i. e., every successor of a state in A is again in A. Let x ∈ A and
x′ be a successor of x in SN , and more precisely in S [s]

N . Assume x 6= x′. Since
S [s]

N = S(s,Z1,...,Zm), we infer from Def. 5.3 that there exists j ∈ {1, . . . ,m} such
that πZj (x) → πZj (x′) is an edge in SZj

. Since πZj (x) ∈ Aj and since Aj is an
attractor, we have πZj (x′) ∈ Aj . Since x and x′ only differ in one component, we
have x′ ∈ A.

Now, we have to show that there is a path from x to x′ in SN for all distinct
x, x′ ∈ A. First, we note that if there is an edge from state z to state z′, z 6= z′, in
SZl

, l ∈ {1, . . . ,m}, then there is an edge from x to x′ in SN for all states x, x′ ∈ A
satisfying πZl(x) = z, πZl(x′) = z′, and xj = x′j for all j /∈ Zl, according to the

definition of edges in S(s,Z1,...,Zm) = S [s]
N .

Let x, x′ ∈ A. We set x1
i := xi for all i /∈ Z1 and x1

i := x′i for all i ∈ Z1. For
l ∈ {2, . . . ,m} we set xl

i := xl−1
i for all i /∈ Zl and xl

i := x′i for all i ∈ Zl. Then
there exists a path in SNZ1 from πZ1(x) to πZ1

(x1), since A1 is an attractor. As
seen above, we then can find a path γ1 from x to x1 in SN such that x̃j = xj

for every state x̃ ∈ γ1 and every j /∈ Z1. In the same fashion we find a path γ2

from x1 to x2 in Sn such that x̃j = x1
j for all x̃ ∈ γ2 and j /∈ Z2. We continue the

procedure for Z3, . . . , Zm. Since xm = x′ per definition, combining the paths γi in
the order of their indices yields a path from x to x′ in SN . It follows that A is an
attractor in SN .

Now, let A be in arbitrary attractor in SN with vertices in [s] and consider
the set Aj = πZj (A) for j ∈ {1, . . . ,m}. Aj has to be a trap set in SZj

since
edges leaving Aj would generate edges leaving A in S(s,Z1,...,Zm) = S [s]

N according
to Def. 5.3. Let x, x′ ∈ Aj . Then there exist states y, y′ ∈ A such that x = πZj (y)
and x = πZj (y). Since A is an attractor, there is a path γ from y to y′ in SN , and
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more precisely in S [s]
N , since [s] is a trap set. It is easy to verify that we obtain a

path from x to x′ in SNj
by projecting the vertices of γ onto Zj and eliminating

all but one of consecutive identical vectors in the resulting sequence of states. The
existence of edges in SNj between the remaining vertices is again guaranteed by
Def. 5.3. �

Let us use the example in Fig. 1 to illustrate the theorem. In Fig. 3 (a),
we see the state transition graph SZ

N for the single component Z of Iθ(s). It
contains the attractors {(0, 0)} and {(1, 1)}. It follows from Theorem 5.6 that the
sets {(0, 0, 0)} and {(0, 1, 1)} are attractors in SN . Similarly, we derive a state
transition graph from Iθ((1, θ, θ)) which consists of a negative circuit. The state
transition graph is shown in Fig. 3 (b) and contains only one attractor, the set
{(0, 0), (1, 0), (1, 1), (0, 1)}, which has cardinality greater than one. Thus, we find
an attractor {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1)} in SN . The state transition graph
SN is given in Fig. 1 with the attractors emphasized.

The number and size of attractors are important characteristics of bioregula-
tory networks. There are many results that link these dynamical characteristics to
properties of the network structure. In [3] it is shown that isolated circuits always
display a characteristic behavior depending on their sign. A positive circuit gives
rise to two attractors, more precisely two steady states, a negative circuit results
in a cyclic attractor, i. e., an attractor with cardinality greater than one. The sit-
uation is much more difficult to analyze if there are many circuits in I, possibly
even intertwined. Thomas conjectured in 1981 that the existence of a positive resp.
negative circuit in the interaction graph is a necessary condition for the existence
of two attractors resp. a cyclic attractor in the state transition graph. The con-
jectures haven been proven in different settings (see e. g. [12], [4] and [6]). For
regulatory networks without context sensitivity, we formulated in [10] a sufficient
condition for circuits to display their characteristic behavior using singular steady
states. The proof in [10] can be easily adapted to show the next statement.

Lemma 5.7. Let I be an interaction graph that contains only one circuit C. If C
is a positive circuit, then f has two fixed points. If C is negative, then there exists
an attractor with cardinality greater than one in the state transition graph.

We make some short remarks on the proof. Recall our assumption that every
vertex in I has a predecessor. Since every edge is functional, the state (θ, . . . , θ) is
steady. In [10], it is shown that I then has a particular structure. It consists of the
circuit C with directed acyclic graphs coming out of vertices of C. This structure
allows us to explicitly specify values for the vertices of C that remain fix under fθ

in the case of C being positive, or behave like a trap cycle, if C is negative. From
this core behavior we can then infer the behavior of the whole graph. Here, we also
have to consider that there may be parallel edges outside the circuit C. However,
the proof method is still valid. The necessary technical adaptations to the proofs
in [10] correspond to those made in the proof of Lemma 5.2.
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α1

α2 α3

+

−

−

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)+

−
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−
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α3
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+

(a) (c)(b)

Figure 5. We choose the parameters for the interaction graph in
(a) as K1,{e+

11,e+
31}

= K1,{e−11,e−31}
= K2,{e−12,e+

22}
= K3,{e−13,e−23}

= 1
and set all other parameters 0. In (b) the graph Iθ(s) for the
singular steady state s = (θ, 0, θ). In (c) the corresponding state
transition graph.

The above lemma together with Theorem 5.6 leads to the following theorem.
Recall that we denote the component of Iθ(s) containing some circuit C by JC(s).

Theorem 5.8. Let C be a circuit in I and s a singular steady state characteristic
of C. Assume that C is the only circuit in the component JC(s) of Iθ(s). If C is
a positive circuit, then fθ has at least three fixed points and SN contains at least
two attractors. If C is negative, there is an attractor in SN with cardinality greater
than one.

Proof. We may assume that JC(s) comprises the vertices α1, . . . , αr for some r ∈
{1, . . . , N}. Let at first C be positive. Then fJC(s) has two fixed points x, x′ ∈ Br

according to Lemma 5.7. We define states s1 and s2 in Bn
θ by s1

i := s2
i := si for all

i /∈ JC(s), s1
i := xi and s2

i := x′i for all i ∈ {1, . . . , r}. From Lemma 5.2 follows
that the states s1 and s2 are steady states. Thus fθ has three fixed points, since
s is distinct from s1 and s2. According to Theorem 5.6 we find attractors A1 and
A2 in SN such that πJC(s)(A1) = {s1} and πJC(s)(A2) = {s2}.

If C is negative, we find an attractor A′ in the state transition graph of the
component graph JC(s) with card A′ > 1. Theorem 5.6 yields an attractor A in
SN with πJC(s)(A) = A′. Thus cardinality of A is also greater than one. �

Theorem 5.8 is a stronger result than the one obtained in [10], even for
networks without context sensitivity. The use of local interaction graphs allows
for a more refined picture of the dynamics possible in restricted parts of the state
space.

Our running example from Fig. 1 together with Fig. 3 illustrates the theorem.
Figure 5 shows that the statement does not hold, if the circuit C is not the only
circuit in JC(s). The state (θ, 0, θ) is steady for the bioregulatory network derived
from the interaction graph in (a) and the parameters specified in the caption. There
are four circuits in Iθ((θ, 0, θ)), two negative and two positive circuits. However,
the state transition graph contains only one attractor, namely the set {(0, 0, 1)},
as is shown in (c). Neither the behavior characteristic for positive circuits nor that
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characteristic for negative circuits is displayed. Further examples can be found in
[10]. However, a system may display the behavior characteristic for a circuit of a
given sign, although there is no singular steady s such that the circuit is the only
one in the corresponding component of Iθ(s). The condition is not necessary, as
illustrated by an example given in [10], Fig. 4.

6. Networks with Input Layer

In the preceding section we gave several results on how to derive information on the
behavior of a complex network by looking at suitable subnetworks, which in turn
we derived from singular steady states. However, in most cases the results do not
yield a complete analysis of the system’s dynamics. To obtain more comprehensive
results we are faced with two difficulties. First, we need to make sure that our in
nature local analysis covers all parts of state space containing asymptotically stable
behavior. This is a difficult task, since we in general do not know anything about
the network dynamics a priori. This directly relates to the second difficulty. Since
we use singular steady states to deconstruct the network, we need a method to
find singular steady states, and, coming back to the first problem, in particular to
identify a set of singular steady states such that the generated subnetworks hold
sufficient information to characterize the global dynamics of the whole system.

In this section we introduce a class of networks for which we can solve the
problems described above. In the following, we only consider interaction graphs
the underlying undirected graph of which is connected. For the general case, we
just consider the components separately.

Definition 6.1. We call N a network with input layer, if there exists a vertex αi

with a positive edge to itself and no other incoming edges. A vertex satisfying this
condition is called input vertex.

In the following we assume that N is a network with input layer. Without loss
of generality we assume that α1, . . . , αk are the input vertices of N . In Fig. 6 we
see a network with input layer. The components α1 and α2 are the input vertices.

Networks with input layer often play an important role in biological systems.
When modeling signal transduction networks, for example, we can model receptors
as input vertices. Different input values then represent different signals reaching
the receptors, and we want to understand how the system reacts to such signals.

If a system has an input layer, then we can immediately make some ob-
servation about the network dynamics. The coordinate function fi governing the
behavior of the input vertex αi solely depends on the value of αi. Since αi influ-
ences itself via a positive edge, we have fi(x) = xi for all x ∈ Bn according to
condition (3.1). That is, the input vertex values always stay fixed and therefore
the state transition graph consists of 2k components. In particular, we know that
each attractor of the system is contained in one of the components. This proves
the statement of the following lemma.
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Lemma 6.2. Let A be an attractor in SN . Then ai = a′i for all a, a′ ∈ A and
i ∈ {1, . . . , k}.

The specific structure of a network with input layer allows us to find singular,
or possibly even regular, steady states in a simple way. Recall that we denote the
set of singular components of a state s by J(s).

Lemma 6.3. Let x1, . . . , xk ∈ B. Define x0 ∈ Bn
θ by x0

i := xi for all i ∈ {1, . . . , k}
and x0

i := θ for i > k. Then the sequence (xl)l∈N where xl := fθ(xl−1) converges
to a fixed point s of fθ. Moreover, if we set x0

i := xi for all i ∈ {1, . . . , k} and
arbitrarily choose x0

i ∈ B for i > k and define the sequence (xl)l∈N as above, then
there exists l ∈ N such that xm

i = si for all i ∈ {1, . . . , n} \ J(s) and m ≥ l.

Proof. First, we show by induction that if xl
i is a regular value for some l ∈ N and

some i ∈ {1, . . . , n}, then xm
i = xl

i for all m ≥ l. The only regular values of x0

correspond to the input vertices α1, . . . , αk, and we have xm
i = x0

i for all m ∈ N
and i ∈ {1, . . . , k}. Let l ∈ N. We assume that if xl

i ∈ {0, 1} for some i ∈ {1, . . . , n},
then xm

i = xl
i for all m ≥ l.

Let i ∈ {1, . . . , n} such that xl+1
i ∈ {0, 1}. If i /∈ J(xl), our assumption yields

xm
i = xl

i = xl+1
i for all m ≥ l + 1. Let i ∈ J(xl). Since xl+1

i = fθ
i (xl) is a regular

value, we have fθ
i (xl) = Ki,min(xl) = Ki,max(xl). Since xl and xm coincide in all

regular values of xl for all m ≥ l, we have xm ∈ [xl] for all m ≥ l. It follows
from the definition of Ki,min(xm) and Ki,max(xm) that Ki,min(xl) ≤ Ki,min(xm) ≤
Ki,max(xm) ≤ Ki,max(xl), and thus Ki,min(xm) = Ki,max(xm) for all m ≥ l. We
obtain xm+1

i = fθ(xm) = Ki,min(xm) = Ki,min(xl) = xl+1
i for all m ≥ l, which

proves our statement. Since we obtain the sequence (xl)l∈N by iteration of fθ and
since Bn

θ is finite, the sequence converges to a regular or singular fixed point of fθ.
Now set x̃0

i := x0
i for i ∈ {1, . . . , k}, choose x̃i ∈ B for i > k and define

x̃l+1 := f(x̃l) for l ∈ N. Then, we have x̃0 ∈ [x0] and thus it follows with the same
reasoning as above that x̃1

i = x1
i for all i /∈ J(x1). Again, we have x̃1 ∈ [x1] and it

follows x̃2
i = x2

i for all i /∈ J(x2). Repeating the argument until we reach the fixed
point s generated by (xl)l∈N, we find l ∈ N such that x̃m

i = si for all m ≥ l and
i /∈ J(s). �

We call the resulting fixed point in the preceding lemma the fixed point de-
rived from the input values x1, . . . , xk. The above lemma provides a method to
translate combinations of input values into singular or regular steady states. It
turns out that if we calculate the fixed points derived from all possible combina-
tions of input values, then we can completely describe the asymptotic behavior of
the network by considering resulting regular steady states and the subnetworks
obtained from the resulting singular steady states.

Theorem 6.4. Let A be an attractor of N . Then there exist input values x1, . . . , xk ∈
B such that either A = {s} or we can construct A from s as shown in Theorem 5.6,
where s = (s1, . . . , sn) is the fixed point derived from x1, . . . , xk.
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α4

α5

α6
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+

+

+

+

(s1, s2) f(s) = s attractors
(0, 0) (0, 0, θ, 0, 0, θ) {(0, 0, 0, 0, 0, 0)}, {(0, 0, 1, 0, 0, 1)}
(1, 0) (1, 0, 1, 0, 0, 1) {(1, 0, 1, 0, 0, 1)}
(1, 1) (1, 1, 1, θ, θ, 1) {(1, 1, 1, x, y, 1) | x, y ∈ {0, 1}}
(0, 1) (0, 1, 1, θ, θ, 1) {(0, 1, 1, x, y, 1) | x, y ∈ {0, 1}}

Figure 6. We choose the parameters for the given interaction
graph such that the inputs to α3 and α6 operate via an OR gate,
while inputs to α4 are processed via an AND gate. The left column
in the table lists the different input values for the network, the
middle column the derived singular steady states, and the right
column the resulting attractors.

Proof. Let a′ ∈ A and set xi := a′i for all i ∈ {1, . . . , k}. Let s be the fixed point
derived from x1, . . . , xk. According to Lemma 6.2, the first k components remain
fix in A, and thus ai = xi = si for all i ∈ {1, . . . , k}. Since A is a trap set, we
can deduce from the second statement in Lemma 6.3 that ai = si for all a ∈ A
and i ∈ {1, . . . , n} \ J(s), since those values remain fixed under f after sufficiently
many iteration steps. It follows that A ⊆ [s]. If s is a singular steady state, then we
can construct A from the attractors of the subnetworks derived from s according
to Theorem 5.6. Otherwise, we have J(s) = ∅ and thus A consists of the regular
fixed point S. �

We illustrate the theorem with the system given in Fig. 6. The table on
the left of the figure shows in the left column the possible combinations of input
values, in the middle column the fixed point derived from those values, and in
the right column the resulting attractors of the system. The input (α1, α2) =
(0, 0) yields the singular steady state (0, 0, θ, 0, 0, θ). The subnetwork governing
the behavior of the system in the corresponding part of state space consists of the
positive loop in α3 and the edge from α3 to α6. This subsystems has two fixed
points (0, 0) and (1, 1). Thus, we obtain two steady states of the original system,
namely (0, 0, 0, 0, 0, 0) and (0, 0, 1, 0, 0, 1). The input (1, 0) directly leads to the
regular steady state (1, 0, 1, 0, 0, 1). Both input vectors (1, 1) and (0, 1) generate a
singular steady state the local interaction graph of which consist of the negative
circuit between α4 and α5. This subsystem has only one attractor consisting of
the states (0, 0), (0, 1) ,(1, 1) and (1, 0). So we obtain a cyclic attractor of the
original system for each of the two input vectors. According to Theorem 6.4 the
five listed attractors are all the attractors of the system, which is easily confirmed
when calculating the whole state transition graph.
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7. Conclusion

The focus of this paper is to obtain information about the dynamics of complex
regulatory networks by analyzing subsystems of the network, thereby reducing
the complexity of the problem. To identify suitable subnetworks we use the no-
tion of singular steady state, which we introduced in [10] in a more restricted
framework. In addition we employ the idea of local interaction graphs in order
to obtain a refined understanding of what interactions in the network structure
measurably influence the behavior of the system in any given part of state space.
We show in Sect. 5 that the information about the network behavior encoded in a
given singular steady state together with the refined structural representation of
a corresponding interaction graph allows us to derive the dynamics of the whole
network, at least in part of state space, and show how to construct attractors of the
network from attractors of subnetworks. This approach also yields a deeper under-
standing of the relation between structural and dynamical network characteristics.
We obtain a result linking the existence of circuits in the interaction graph to the
existence of multiple attractors resp. an attractor with cardinality greater than
one, which generalizes and refines a corresponding statement in [10]. Feedback cir-
cuits are known to be an important building block, or so-called network motif, for
bioregulatory networks. Our result gives sufficient conditions for them to imprint
the behavior characteristic for them in isolation on a complex network containing
such circuits. Other important structural network motifs have been characterized,
and in this context application of our methods may help to analyze their behavior
if embedded in a complex network.

In future work, we also plan to focus more on the application side. Sect. 6
introduces a solid starting point for this endeavor. In particular, the analysis of
signal transduction networks is of interest for further studies. However, when mod-
eling biological systems, Boolean networks, although often yielding a fruitful first
model, can only provide a very course description. Multi-valued models allow for
finer representation, still preserving the advantages of discrete modeling. General-
izing the results presented in this paper to the framework of multi-valued discrete
networks thus is another priority for future work.
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