Nash Equilibria and the Price of Anarchy for Flows Over Time *

Ronald Koch Martin Skutella

TU Berlin, Institut fiir Mathematik, MA 5-2, Str. des 17. Juni 136,
10623 Berlin, Germany, {koch,skutella}@math.tu-berlin.de

Abstract

We study Nash equilibria and the price of anarchy in the context of flows over time. Many results
on static routing games have been obtained over the last ten years. In flows over time (also called
dynamic flows), flow travels through a network over time and, as a consequence, flow values on edges
change over time. This more realistic setting has not been tackled from the viewpoint of algorithmic
game theory yet; on the other hand, there is a rich literature on game theoretic aspects of flows over
time in the traffic community.

In this paper, we present the first known results on the price of anarchy for flows over time. We
also present algorithms for computing Nash flows over time. Those algorithms have to iteratively solve
certain interesting and new static flow problems. Our results are based on a novel characterization of
Nash equilibria for flows over time. The underlying flow over time model is a variant of the so-called
deterministic queuing model that is very popular in road traffic simulation and related fields.

1 Introduction

In a groundbreaking paper, Roughgarden and Tardos [45] (see also Roughgarden’s book [44]) analyzed
the price of anarchy for selfish routing games in networks. Such routing games are based on a classical
static flow problem with convex latency functions on the arcs of the network. In a Nash equilibrium, flow
particles (infinitesimally small flow units) selfishly choose an origin-destination path of minimum latency.

One main drawback of this class of routing games is its restriction to static flows. Flow variation
over time is, however, an important feature in network flow problems arising in various applications. As
examples we mention road or air traffic control, production systems, communication networks (e.g., the
Internet), and financial flows. In contrast to static flow models, flow values on edges may change with
time in these applications. Moreover, flow does not progress instantaneously but can only travel at a
certain pace through the network which is determined by transit times of edges. Both temporal features
are captured by flows over time (sometimes also called dynamic flows) which were introduced by Ford
and Fulkerson [17, [18].

Another crucial phenomenon in many of those applications mentioned above is the variation of time
taken to traverse an arc with the current (and maybe also past) flow situation on this arc. The latter
aspect induces highly complex dependencies and leads to non-trivial mathematical low models. For a
more detailed account and further references we refer to [4, [12] 211 [34) 40, 41]. In particular, all of these
flow over time models (also called dynamic flow models in the literature), have so far resisted a rigorous
algorithmic analysis of Nash equilibria and the price of anarchy.

In this paper we identify a suitable flow over time model that is based on the following simplifying
assumptions. Every edge of a given network has a fixed free flow transit time and capacity. The capacity
of an edge bounds the rate (flow per time unit) at which flow may traverse the edge. The free flow transit
time denotes the time that a flow particle needs to travel from the tail to the head of the edge. If, at
some point in time, more flow wants to enter an edge than its capacity allows, the flow particles queue up
at the tail of the arc and wait in line before they actually enter the edge. When a new flow particle wants
to traverse an edge, the time needed to arrive at the head thus consists of the waiting time plus the fixed
free flow transit time. In the traffic literature, this flow over time model is known as a “deterministic
queueing model”. Similar models are used, for example, in road traffic simulation and related fields.

*This work is supported by DFG Research Center MATHEON “Mathematics for key technologies” in Berlin.

Related Literature. As already mentioned above, flows over time with fixed transit times were intro-
duced by Ford and Fulkerson [I7, [I8]. For more details and further references on these classical flows
over time we refer, for example, to [15], [16] 24} 25] 28] [29].

So far, Nash equilibria for flows over time were mostly studied within the traffic community. Vick-
rey [50] and Yagar [51] were the first to introduce this topic. Up to the middle of the 1980’s, nearly all
contributions consider Nash equilibria on given small instances. For example, Vickrey [50], Hendrickson
and Kocur [23], and de Palma, Ben-Akiva, Lefevre, and Litinas [I4] consider a network consisting of a
single edge. Networks consisting of two parallel edges are considered by Mahmassani and Hermann [32].

Starting around the middle of the 1980’s, the number of publications in this area increased rapidly
and Nash equilibria where modeled mathematically. For a survey see, e.g., [39]. These models can be
grouped into for categories: mathematical programming, optimal control, variational inequalities, and
simulation-based approaches.

Mathematical programming: The first to come up with an mathematical program for modeling Nash
equilibria in the context of flows over time was Janson [26]. His model is an extension of the the
well known static formulation of Beckmann, McGuire, and Winston [7] and is also used by others; see,
e.g., [27]. However Lin and Lo [31] give a counterexample showing that this formulation does not lead
to a Nash equilibrium in general. Recently, Han and Heydecker [22] found a mathematical programming
formulation modeling Nash equilibria for flows over time.

Optimal control: Such models are very rarely used in the literature. For example Ran, Boyce, and
LeBlanc [42] use this kind of model to formulate a Nash equilibrium for flows over time. They consider
the problem where each user decides to take a shortest path to its destination based on the current transit
times instead of experienced transit times. Moreover every user can switch to another path if its transit
time decreases over time. Optimal control formulations are mostly used in order to model system optimal
flows over time; see, e.g., [20].

Variational inequalities: Friesz, Bernstein, Smith, Tobin, and Wie [19] were the first to model Nash
equilibria in the context of flows over time using variational inequalities. Their approach leads to a very
general model. Up to now, variational inequalities are the most common formulation for analyzing Nash
equilibria in the context of flows over time, see e.g. [13] [43] [47, [48].

Simulation-based approaches: Yagar [51] for the first times used a computer in order to come up with
a flow over time which is approximately a Nash equilibrium. Since then, simulation-based approaches are
widely used due to their relative simplicity. On the positive side, they are very flexible in modeling the
behavior of individual users/agents in a network. But as a drawback, such models can hardly be analyzed
rigorously. Simulation tools are for example DYNASMART [33] [35], DynaMIT []], CONTRAM |30}, [49],
and MATSim [5] [6].

Many models mentioned above use a path-based formulation of flows over time. Therefore they are
computationally often intractable. Edge-based formulations are, for example, considered in [2] [13] [43].
Realistic assumptions on the underlying flow model with respect to traffic simulation are described by
Carey [10, [TT].

In this paper a variant of the deterministic queueing model is considered. This model was introduced
by Vickrey [50]. His analysis is based on instances consisting of a single bottleneck. A similar approach
is used by Hendrickson and Kocur [23]. Smith [46] shows the existence of a departure time equilibrium
for this model on instances where each route contains the same single bottleneck, i.e., an edge where a
waiting queue is built. He introduces user-dependent desired arrival times and a payoff function for early
and late arrival. In this setting, an equilibrium arises out of the choice of the departure times of the
network users. Smith gives sufficient conditions for the existence of such an equilibrium.

Akamatsu [I] presents an edge-based variant of the deterministic queueing model on single-source-
multi-sink-instances. In [2] he constructs an algorithm for this edge based model. This algorithm is
a globally convergent newton method for general nonlinear complementarity problems. Akamatsu and
Heydecker [3] study Braess’s paradox for single-source-multi-sink-instances. Braess’s paradox [9] states
(for static flows) that increasing the capacity of one edge can increase the total cost of all users in a Nash
flow. It is well known that this paradox is extendable to the dynamic case. Akamatsu and Heydecker [3]
give necessary and sufficient conditions for the paradox to occur in the case of saturated networks. In
saturated networks there are positive inflow rates on all edges over the entire time period as well as
nonzero queues on all edges over the entire time period.

Mounce [36] considers the case where the edge capacities can vary over time. But it is assumed

that the capacity functions are increasing. In the case where there is only one edge per route having a
nonzero waiting queue, a Nash equilibrium always exists. In [37] this approach is extended to general
but continuous capacity functions.

Our Contribution. In this paper, we characterize and analyze Nash equilibria for a variant of the
deterministic queueing model in networks with a single source and sink. We provide algortihms for
computing Nash equilibria and obtain results on the price of anarchy for several special cases. Although
algorithmic game theory is a flourishing area of research (see, e.g., the recent book [38]), network flows
over time have not been studied from this perspective in the algorithms community so far. One purpose
of this paper is to stimulate further interesting research in this relevant direction.

A precise description of our flow over time model is given in Section ZI1 We assume that flow
particles arrive one after another at the source. Then each flow particle selfishly chooses a route through
the network so as to minimize its arrival time at the sink. The resulting model of Nash equilibria
along with several equivalent characterizations is discussed in Section In Section [3] we prove that
Nash equilibria always exist. One of our main results is presented in Section we show that a Nash
equilibrium can be characterized via a sequence of static flows with special properties. We believe that
the resulting static flow problem is of interest in its own right. All our results mentioned so far hold for
networks with edge capacities that can vary over time. The results discussed so far not only hold for the
deterministic queueing model but for a considerably more general class of flow over time models.

In Section Ml we restrict to the case of constant capacities. We present an algorithm for computing
a Nash equilibrium that is based on a sequence of static flow computations. For the case of zero free
flow transit times or, more generally, for shortest paths networks where all source-sink paths have the
same free flow transit time, we prove that a Nash equilibrium can be computed in polynomial time. The
algorithm uses a series of sparsest cut computations. As our main result we show that the price of anarchy
is 1 in this case, that is, a Nash equilibrium is also a system optimum. For networks with arbitrary free
flow transit times, however, this nice property no longer holds. The gap between the amounts of flow that
have arrived in the sink at a certain time 7T in a system optimum and a Nash equilibrium, respectively,
can be as large as (m). Another possible objective function is to measure the time needed to send a
given amount of flow into the sink. We conjecture that the price of anarchy here is at most O(1). Finally,
we show that in a more general multi-commodity flow setting, the price of anarchy can be arbitrarily
large.

Due to space limitations, proofs and further details can be found in the appendix.

2 Model

In this section we present a model for Nash equilibria in the context of flows over time with a single
source and a single sink. First, in Section 2], we introduce an appropriate flow over time model which
is closely related to the deterministic queueing model mentioned above. Then, in Section we define
and characterize Nash equilibria for this flow over time model.

Throughout the paper we often use the term flow particle in order to refer to an infinitesimally small
flow unit which travels along a single path through the network. The term flow rate refers to an amount
of flow per time unit.

2.1 Flow Over Time Model

We consider a network (G, wu, 7, s,t) consisting of a directed graph G = (V, E), time-dependent Lebesgue
integrable capacity functions u. : Ry — R4, e € E, constant free flow transit times 7, € Ry, e € E, a
source node s € V', and a sink node ¢t € V. The basic concept of our flow over time model are waiting
queues which are built at the tail of an edge if, at some point in time, more flow particles want to traverse
an edge than the capacity of the edge allows. The free flow transit time of an edge determines the time
for traversing an edge after passing the waiting queue. Thus the (flow-dependent) transit time on an edge
is the sum of the current waiting time and the free flow transit time.

Further every flow particle arriving at a node v € V' decides immediately which of the outgoing edges
of v it traverses next. Thus one can think of the nodes as rooms with some entries and some exits, that

are large enough for containing all waiting queues of the exits and that are small enough for coming from
any entry to any exit in time 0.

In the following we give a precise mathematical description of the model. A flow over time is defined
by two families of flow rate functions which have to be Lebesgue integrable: for an edge e € E we have
an inflow rate fr : Ry — Ry meaning that flow arrives at flow rate f.F(0) at the tail (or at the end of
the waiting queue) of e at time 6 > 0; moreover, the outflow rate f; : Ry — R, describes the rate of
flow f;(0) arriving at the head of e at time 6 > 0.

Further we define for an edge e the cumulative in- and outflow at time 8 > 0 by FX(0) := f(f fr () do

and F(0) := foe fo (¥) dv, respectively. Thus the amount of flow which has been assigned to e and which
has arrived at the head of e before time 6 is F;;7(6) and F (), respectively. Note that the antiderivatives
of nonnegative Lebesgue integrable functions are continuous and monotonically increasing. In particular,
F and F_ are continuous and monotonically increasing for all e € E.

In order to obtain a feasible flow over time (f, f~) (the in- and the outflow rates) must satisfy several
conditions. The capacity function of an edge bounds the outflow rate of that edge:

fo(0) < wue(0) forallee E,0 € R,. (1)

More precisely, since we are dealing with Lebesgue integrable functions, we only require that this condition
holds almost everywhere for each edge e € E.

Further we have to impose several kinds of flow conservation constraints. Firstly flow can only traverse
an edge if it has been assigned to this edge before:
Fr0)—F - (0+7)>0 foralle € E,0 € Ry. (2)

(&

Secondly we want flow arriving at an intermediate node v € V'\ {s,t} to be immediately assigned to an
outgoing edge of v. Further, because s is the source of the network, no flow should trickle away at s.
Therefore the flow which is assigned to the outgoing edges of s must be greater than the flow arriving
at s. Similarly we have to ensure that flow cannot originate at ¢. Thus the following conditions have to
hold (almost everywhere):

o= > 1o for all v € V'\ {5,¢},0 € Ry, (3)
e€d— (v) e€dt(v)
P A ORI A() for all § € R, (4)
e€d—(s) e€dt(s)
PR A= A () for all 0 € R, (5)
e€d(t) e€dt(t)

Note that, unlike the case of static flows, conditions ([2)—) do not imply (&) since flow might vanish on
an edge. The following condition ensures that flow which is assigned to an edge must leave this edge after
a finite amount of time:

there exists A < oo such that FF(0) < F.(0+7.+A) forallec E,0 € R,. (6)

The right hand side of the last inequality is the amount of flow arriving at the head of e before time
0 + A + 7.. This is equal to the amount of flow which starts to traverse e before time 6 + A. Thus, if A
satisfies this inequality, the total flow which is assigned to e before time 0 has started to traverse e before
time 6 + A. Therefore A is an upper bound on the amount of time which the flow particles assigned to
e at time 6 must stand in line before they start traversing e.

We consider a fixed edge e and a fixed point in time 6. It turns out that the infimum over all values
A fulfilling the inequality in (@) is in fact a minimum. That is, equality is reached in (@) since F. is a
monotonically increasing continuous function. Therefore we define

qe(0) :=min{A >0 | Ff(0) = F, (9 + 7. + A)} forallee E,0 e Ry (7)

as the waiting time occurring at the tail of e experienced by flow particles assigned to e at time 8. Thus,
the (flow-dependent) transit time of e at time 6 is equal to 7, + ¢.(6).

Note that the interpretation of g.(6) as the waiting time for flow particles arriving at time 6 is based on
the assumption that the first-in-first-out (FIFO) condition is fulfilled on edge e. That is, no flow particle
overtakes other flow particles in the waiting queue, even if there is free capacity on edge e. Showing
formally that our model satisfies the FIFO condition is one purpose of the next lemma.

Lemma 2.1. For any edge e € E we have:
(i) The function Ry — Ry, 0 — 0 + q.(0) is monotonically increasing.

(i) The function q. is continuous if and only if the following condition is satisfied for almost all 6 > 0:
fo(@+7e+g(0)=0 = £h(0) =0.

Statement (L) shows the following: If flow particles start to traverse e whenever there is a waiting
queue at the tail of e or flow particles are assigned to e, then ¢, is continuous. If flow particles selfishly
travel through the network so as to minimize their arrival time at the sink (as it is the case in a Nash
flow; see Section [22), this condition is always fulfilled. Of course, this is based on the assumption that
the capacity functions u. is strictly positive (almost everywhere). In the following we assume that all
capacity functions u. are strictly positive and that all edge waiting time functions are continuous.

2.2 Definition of Nash Equilibria for Flows over Time

In this section we define Nash equilibria in the context of flows over time. To simplify matters the
approach is based on the deterministic queuing model presented above. But it can be generalized to
many other realistic flow models. We use the terms Nash flow over time and dynamic Nash equilibrium
interchangeably.

The main aspect of Nash equilibria in flow models is the selfish routing of flow particles. We assume
that flow occurs at the source according to a given supply function ug : Ry — R,. Here ug(0) is the rate
of flow arriving at the source at time 6 > 0. As soon as a flow particle pops up at the source, it decides
by itself how to travel to the sink t. That is, it chooses an s-t-path and travels along this path as early
as possible.

We define two classes of flow over times. In the first class, every flow particle travels only along
“currently shortest paths”. In the second class, every flow particle tries to overtake as many other
flow particles as possible while not be overtaken by others. The latter condition turns out to be a
non-overtaking condition. Moreover we show that the two classes of flows over time coincide.

We start by defining currently shortest s-t-paths in a given flow over time. To do so, we consider
the problem of sending an additional flow particle at time 6§ > 0 from the source to the sink as quickly
as possible. Let £,(0) be the earliest point in time when this flow particle can arrive at node v € V.
Then, for each edge e = vw € E, we have that £,(0) + 7. + qe({,(0)) > £,,(0). On the other hand,
for each node w € V' \ {s}, there exists an incoming edge e = vw € §~ (w) such that equality holds,
ie. £,(0) + Te + qe(£,(0)) = £,,(0). The latter case suggests that the flow particle uses edge e in order
to arrive at node w as early as possible. Moreover, we have ¢,(0) = 6. Therefore we define the label
functions £, : Ry — R4 U {oo} as follows:

€s(0) := 0 (8)
Ly (0) :==min{ly,(0) + Te + qc(£,(0)) | e = vw € §~ (w)}. (9)

Note that the label functions are computable simultaneously for each time 6 by adapting the shortest
path algorithm of Bellmann and Ford in the following manner. After setting the label function of each
node v € V '\ {s} to the constant function oo and £4(0) := @ for all 6, we have to repeat the following
instruction |V| — 1 times.

For all edges e = vw € E, set £,,(0) := min{l,,(0),,(0) + Te + g (¢,(0))} for all 6.

The correctness of the BELLMANN-FORD algorithm ensures the existence of the label functions ¢,, v € V,
according to the conditions () and [@). Moreover by induction it is not hard to see that the minimum in
the instruction is always taken over continuous, monotonically increasing functions. Since the instruction
is executed finitely many times we get the following lemma.

Lemma 2.2. For each node v € V, the function £, is monotonically increasing and continuous.

In a Nash equilibrium, flow should always be sent over currently shortest s-t-paths only. We say that
an edge e € F is contained in a shortest path at time 6 > 0 if and only if £,,(0) = £,(0) + 7o + ¢.(£,(0)).
Of course, if an edge e = vw € F does not lie on a shortest s-t-path at a certain time 8 > 0, then no flow
should be assigned to that edge at time £, (6) in a Nash flow.

Definition 2.3. We say that flow is only sent over currently shortest paths if for every edge e = vw € FE
the following condition holds for almost all times 6 > 0:

0o(0) < 0,(0) + 7o + q.(6,(0)) = fH(£,(0)=0 .

Notice that, in general, the label functions do not have to be strictly monotonically increasing. In
particular, the label function of ¢ might be constant over a certain time interval [0, 605]. Thus, a flow
particle originating at s at time 6; might arrive at the sink ¢ at the earliest possible time without
necessarily being as early as possible at all intermediate nodes of its path. Definition enforces,
however, that all subpaths of the s-t-path chosen by a flow particle have to be as short as possible.

Definition 23] enforces that flow is sent only over shortest paths by a pointwise condition. The
next lemma gives an equivalent definition which is more global and takes a larger time horizon into
consideration.

Theorem 2.4. For a flow over time the following statements are equivalent:
(i) Flow is only sent over currently shortest paths.

(ii) For each edge e = vw € E and for all § > 0 we have

0=F7 (s(0) +7e + qe(£u(9))) — . (€w(0)) -

We next show that the condition of sending flow only over currently shortest paths is equivalent to
the condition that every flow particle wants to overtake as much other flow as possible while not being
overtaken by other flow. The latter condition is in fact a “non-overtaking condition”, i.e., it is equivalent
to the statement that no flow particle can possibly overtake any other flow particle. This is seen as
follows. Assume that a flow particle ps originating at the source at time # overtakes an earlier flow
particle p; originating at the source at time 6; < 6. That is, py arrives at the sink before p;. Since the
function 6 — 0 + 7. + ¢.(#) is monotonically increasing for each edge e, flow particle p; can arrive earlier
at the sink and avoid being overtaken by ps by choosing the same path as ps. Thus flow particle p; can
improve its situation.

In order to model the non-overtaking condition more formally, we consider again a flow over time and
an additional flow particle originating at s at time 6 > 0. Of course, in order to ensure that no flow
particle has the possibility to overtake this particle, it is necessary to take a shortest s-t-path. Therefore
we define for each edge e = vw € F the amount of flow z} () assigned to e before this particle can reach
v and the amount of flow z_ () leaving e before this particle can reach w as follows:

1 (0) == FF (£,(0)), x, (0) == F. (£4,(0)) for all 6 > 0. (10)

e e

Thus the amount of flow b,(#) that has originated at s before our flow particle occurs at s and the amount
of flow —b.(0) arriving at ¢ before our flow particle can reach ¢ is equal to:

b(0) = > al(O)— Y a (0), b(0):= > af@®)— > a (0) foralld>0. (11)
e€dt(s) e€d—(s) eedt(t) e€s—(t)

Note that bs(6) is always nonnegative and b;() is always non-positive because of flow over time
conditions @) and ([B). Moreover bs(0) > —b:(0) means that the considered flow particle overtakes other
flow particles and bs(6) < —b¢(#) means that this flow particle is overtaken by other flow particles. This
motivates the following definition:

Definition 2.5. We say that no flow overtakes any other flow if at all times 6 > 0 we have:

b.(6) = —bi(6).

Now we are able to prove the equivalence of the non-overtaking condition and the condition that flow
only uses currently shortest paths. In addition, a third equivalent statement is given.

Theorem 2.6. For a flow over time the following statements are equivalent:
(i) Flow is only sent over currently shortest paths.

(ii) For every edge e € E and all times 6 > 0 it holds that xF(0) = x (6).

€

(iii) No flow overtakes any other flow.

Before presenting the proof of the theorem in the Appendix [A3] we first discuss a intuitive real-world
example.

Note that whenever one of the three statements in Theorem holds, then % and x~ coincide.
Further, we conclude from the proof that x.(0) := zF(0) for all e € E is in fact a static s-t-flow with
value b, (6) for all > 0. In the following, for a flow over time satisfying the non-overtaking condition,
we refer to (z(0))ccr as the underlying static flow at time 0. Also note that, for an arbitrary flow over
time, the proof implies that bs(6) + b:(6) > 0 for all § > 0.

Next we define a Nash equilibrium in the context of flows over time. As already mentioned we assume
that the flow particles originate at the source s over time. This is modeled through a Lebesgue integrable
function ug : R4 — Ry such that the rate at which flow originates at s at a certain time 6 > 0 is ug(6).
Intuitively, all flow initially waits in a queue on an artificial edge pointing into s and the function wug is
the capacity function of that edge.

So far we did not really take the capacity functions of edges into consideration. But, of course, a Nash
flow should use an edge up to its capacity, especially if a nonzero waiting queue occurs at its tail.

Definition 2.7. Let (G, u,s,t,T,ug) be a network where flow originates at the source s according to the
function ug. A flow over time (fT, f7) is called dynamic Nash equilibrium or Nash flow over time if and
only if the following conditions are satisfied:

(1) U = Ze66+(s) fj - Zeé&‘(s) f;
(ii) Flow is only sent over currently shortest paths.
(iii) For each e € E and for all § > 0, if ¢.(0) > 0, then f (0 + 7) = u.(0 + 7).

Note that conditions (i) and (i) of this definition must only hold almost everywhere because we are
working with Lebesgue integrable functions.

As already mentioned at the beginning of this section, the presented approach is extendable to flow
over time models satisfying certain weak requirements: For a feasible s-t-flow over time (fT, f~), the in-
and outflow rate functions must be nonnegative and must satisfy the flow conservation constraints ([2])—
[@)). In addition, the FIFO-principle must hold for every edge. That is, if 7.(#) is the current transit time
of an edge e € F experienced by flow particles arriving at the tail of e at time 6, then 6 +— 6 + 7.(8) must
be an increasing function. Moreover, if we assume that the transit time functions are continuous, then
all of the results and definitions remain valid. Of course we must delete condition (i) of Definition 27

3 Analysis of Nash Flows Over Time

The first question one might ask is whether a Nash flow over time as in Definition 27 always exists. We
give an affirmative answer to this question in Section Bl This existence result is generalizable to other
flow models satisfying certain weak assumption. Moreover there exists a nice relationship between the
underlying static flow and the node labels. This aspect is considered in Section

3.1 Existence of Nash Flows Over Time

In this section we prove that a Nash flow over time always exists in the deterministic queuing model
introduced in Section 21l We split the initial waiting queue in front of s into flow units of size € > 0 and
route every flow unit along a currently shortest s-t-path. Thus we get a flow over time which, in general,

violates the non-overtaking condition slightly. Then we let € tend to zero in order to get a sequence of
flows over time that converges to a Nash flow over time.

Given a network (G, u, s,t,7,ug) and € > 0, the so called GENERAL ITERATIVE ALGORITHM works
as follows: In a first step, the initial waiting queue is split into flow units of size €, i.e., the algorithm
determines (0;);eny such that fﬁ:“ ug(9) d = e. Then the following instructions are iterated over
i=1,2,....

(i) Compute a shortest s-t-path P at time 6; according to the flow over time caused by the earlier flow
units.

(ii) Route the flow originating at s within the time interval [0;,0;11] along P such that the resulting
flow over time is feasible and satisfies condition (i) and (i) of Definition 2.7]

The next lemma shows that the output of the this algorithm violates the non-overtaking condition only
slightly.

Lemma 3.1. Let (f*,f7) be the output of the GENERAL ITERATIVE ALGORITHM on a given network
for some € > 0. Then,

|bs(6) + b:(0)| < Me forall >0
where M is the number of simple s-t-paths in G.

Lemma [3.T] shows that the non-overtaking condition is less violated for smaller values of e. Thus, if
we let € tend to 0, we can hope to obtain a Nash flow over time. Unfortunately, for each edge e, we get
a sequence of in- and outflow functions f;" and f, which are only Lebesgue integrable. Such a sequence
has no limit point in general. We even cannot guarantee the existence of an accumulation point which
would be enough for proving the existence of a Nash flow over time. Considering the cumulative flow
functions (F*, F~) instead leads to:

Theorem 3.2. A Nash flow over time always exists.

We only remark that this existence result is also valid for flow models satisfying the weak conditions
mentioned at the end of Section 2.2] even if we do not assume the continuity of the transit time functions.

3.2 A Special Class of Static Flows

In this section we present a property which will allow us to compute Nash flows over time for the special
case of constant capacity functions by only solving a sequence of static flow problems (see Section [).
The property is based on the subnetwork containing all currently shortest s-t-paths.

Definition 3.3 (Current Shortest Paths Network). Let ¢ be the family of label functions and ¢ be the
family of waiting time functions of a flow over time on a network (G, u,s,t,7,ug). The current shortest
paths network Gy for a point in time 6 > 0 is the subnetwork induced by the edges occurring in a currently

shortest path, i.e., V(Gp) :=V and E(Gp) :={e=vw € E | £,(0) + 7e + q.(¢,(0)) = £,,(0)}.

Note that, assuming the continuity of the label functions for all # > 0, there exists an € > 0 such that
Gy is a subgraph of Gy for all ¢’ € [0,0 + €). Furthermore, we need the following definition of a special
static flow:

Definition 3.4 (Thin Flow with Resetting). Let (G, u,s,t,ug) be a “static” network and E; C E(G)
be an edge set. A static flow 2’ with flow value F is called a thin flow with resetting on Ey if there exist
node labels ¢ such that:

F
/= 12
=L (12)
o < for all e = vw € E(G) \ E1,2, =0 (13)
!
ﬂiﬂzmax{ﬂﬂ%} for all e = vw € E(G)\ E1,2, >0 (14)
e
/
0, = % for all e = vw € B (15)

For the special case where F1 = (), the label £, of node v is the congestion of al flow-carrying s-v-path
and a lower bound on the congestion of any s-v-path. Here, the congestion of a path is the maximum
congestion of its edges. The name “thin flow with resetting” refers to the special arcs in E; which play
the following role. Whenever a path starting at s traverses an edge e € E1, it “forgets” the congestion of
all arcs seen so far and “resets” its congestion to x,/u.. As shown in Section [thin flows with resetting
are computable in polynomial time for the special case & = (). We conjecture that this also holds for the
general case. Without going into details we remark that the general case can be solved iteratively with
a fix point approach, where an algorithm for the special case E1 = () is used as subroutine.

Next we show that for a Nash flow over time the derivatives of the label functions and of the under-
lying static flow behave like a thin flow with resetting. The following lemma is only applicable if the
derivatives of the label and the underlying static flow functions exist. But both the label functions and
the underlying static flow functions are monotonically increasing implying that both families of functions
are differentiable almost everywhere. For the next lemma all derivatives are defined as derivatives from
the right.

Theorem 3.5. Consider a Nash flow over time on a network (G,u,s,t,7,ug). Let £ be the family of
label functions, q be the family of edge time waiting functions, and, for 8 > 0, let x(0) be the underlying
static flow. Let 0 > 0 such that d;;“ (0) and %(9) exist for all e € E and v € V, respectively. Further
assume that the capacity function of each edge is right continuous.

Moreover, let Gy be the current shortest path network at time 0. Then we have on Gy with capacities
e (L (0)), e = vw € E(Gy), and initial capacity ug(0) that (4= (0))cer(G,) is a thin flow of value uo(6)

with resetting on the waiting edges Ey := {e € E | q.(0) > 0} according to the node labels (“e(0)),cv (Gy)-

The reverse direction of the lemma also holds. Whenever the derivatives of the underlying static flow
functions and the label functions of a flow over time are thin flows with resetting in the current shortest
path network for almost all times 6, then the flow over time is in fact a Nash flow over time.

4 Networks with Constant Capacities

In this section we consider dynamic Nash equilibria on networks with constant capacities. Thus a network
(G,u,T,s,t,up) is given where the capacity on an edge is a real number u, € R,. Also the rate of flow ug
originating at the source is constant, i.e., ug € Ry. We show that there exists a Nash flow over time
such that all in- and outflow rate functions of edges are piecewise constant. We assume that each flow
rate function is right continuous and is encoded as a sequence of supporting points where the flow rate
function is discontinuous. The encoding size of the flow over time is the sum of the encoding sizes of the
flow rate functions.

We construct an algorithm for computing a Nash flow over time. In this algorithm we iteratively have
to find thin flows with resetting and we assume that we can solve these problems, i.e., we use an oracle
for solving them. If this oracle is polynomial, the resulting algorithm is polynomial in the input plus
output size. Further we consider instances where the network is a shortest path network according to the
free flow transit times. In this case we are able to show that a Nash equilibrium sends until every point
in time the maximal amount of flow to .

The idea of the iterative algorithm is based on Theorem 3.0l Initially the flow over time is the constant
zero flow. At the beginning of an iteration the flow originating at s up to a given time 6 > 0 has been
routed in a Nash way. That is, it is a Nash flow over time for the instance where the inflow rate at s is
zero after time 6. In each iteration we extend the current Nash flow over time for times greater than 6.

Let 6 correspond to the beginning of an iteration. We compute a thin flow 2’ on the current shortest
path network Gy with resetting on the edges having a nonzero waiting queue. Let £ be the corresponding
node labels. The flow rates given by z’ are used to extend the current flow over time; a detailed description
of the algorithm is given in Appendix

If we increase 6, then the thin flow with resetting instance remains the same if no new edge is added
to Gy and no waiting time decreases to 0. Therefore the flow rate functions are constant in such time
intervals. Let a be the largest period such that these requirements are satisfied. Then « must be feasible
according to the following conditions. Note that ¢’ are the constant derivatives of the label functions ¢
within the interval [0, 0 + «). Further let E; be the edge set containing all waiting edges and distf (v, w)

denotes the length of a shortest v-w-path in G according to 7.

lw + all, — €, — ol < distS\FG) (4 w) for all v,w € V(Gy), (16)
by +ally, —l, —all, > T, for all e = vw € Ej. (17)

Note that deleting edges e € E(Gy) with 2, = 0 does not change the thin flow with resetting on the
support of z’. Without going into details, we remark that o can be computed in polynomial time. At the
end of each iteration we set the in- and outflow rate of an edge e = vw to z—} and % in the time interval
[£y,0 4+ al)) and [£,,,0 + «ll,), respectively. This is feasible because of the definition of z* = 2~ in (@.
Further if o < oo we update the current label of node v € V' to £, + af, and start the next iteration for

6 + a. A detailed description of this NASH FLow OVER TIME ALGORITHM is given in Appendix [A.Gl

Theorem 4.1. Given a polynomial oracle for computing thin flows with resetting, we can compute a
Nash flow over time on a network (G,u,T,s,t,up) in time polynomial in the input plus output size.

In the following we consider a network (G,u,T,s,t, up) with constant capacities and the additional
restriction that G is a shortest path network with respect to the free flow transit times 7. In the first
iteration of the NASH FLow OVER TIME ALGORITHM we have that a = oo because Gy = G and E; = ()
implying that (I6]) and (I7) are satisfied for all & > 0. Moreover, we only have to find a thin flow without
resetting, meaning that we can delete condition (I3 in Definition B4 in this special case. Thin flows
without resetting are simply called thin flows and are defined as follows:

Definition 4.2. For a network (G,u,s,t), a static s-t-flow 2’ € RP(S) is called thin flow if for each
node v every flow carrying s-v-path has the same congestion ¢, and every s-v-path has congestion at
least ¢,. If in addition an initial capacity ug is given we initialize £/ := u—lz where F' is the flow value of z.

It is not hard to see that thin flows on a network (G, u, s,t,ug) are really thin flows with resetting on
E; := (). In order to study thin flows, we can restrict to instances without an initial capacity, i.e., £, = 0.
This is due to the fact that we can model the initial capacity simply by adding a node sy and an edge sgs
with capacity ug to the network. Then, of course, a thin flow on the new instance corresponds to a thin
flow on the original instance and vice versa. Further, the definition of thin flows is directly generalizable
to b-flow instances (G, u,b) where only one node s has a positive supply. Next we prove some properties
of thin flows also motivating their name. We define an edge label £, for each edge e = vw € E by

’
0 := max{l., Z—:}

Lemma 4.3. Let 2’ be a thin b-flow on a network (G, u,b) where only one node s has a positive supply.
Then the mazimum label £, of any edge is equal to the congestion ¢* of a sparsest cut in (G, u,b), i.e.

a node set X C V mazimizing %.

The last lemma shows that a thin s-t-flow of value equal to the maximum flow value is also feasible
according to the edge capacities. Moreover, thin flows are unique in some sense and computable in
polynomial time:

Lemma 4.4. Consider a pair of thin flows with the same flow value or the same node balances. Then
the node labels are identical. Moreover, a thin flow of given flow value can be computed in polynomial
time.

As already mentioned, the underlying static flow of a Nash flow over time is a thin flow if the given
network is a shortest path network with respect to the free flow transit times. As shown above, such a
thin flow has maximal value, is unique in some sense and is computable in polynomial time. Thus we
get:

Theorem 4.5. Let (G,u,T,s,t,up) be a network with constant edge capacities such that G is a shortest
paths network with respect to free flow transit times 7. Then a Nash flow over time can be computed in
polynomial time. Moreover, each Nash flow over time is a universally maximal flow over time, that is,
for all 0 > 0, it sends the mazimum possible amount of flow into the sink before time 0.

10

Theorem 4.5 shows that a Nash flow over time is a universally maximal flow over time if the underlying
network is a shortest path network according to the free flow transit time. As already mentioned a
universally maximal flow over time sends the maximum possible amount of flow into the sink until a
certain time and this is done for all times simultaneously. We only remark here that a universally
maximal flow over time always exists in the case of constant capacities.

In algorithmic game theory it is very common to compare a Nash equilibrium with a system optimum
according to some objective. A system optimum can only be obtained by a central authority who routes
the flow optimally according to some objective. In the following we consider two different objectives.
The first is to route flow such that at every point in time the amount of flow having reached the sink is
maximal. This is, for example, the primary goal in an evacuation situation. The second, closely related
objective is to route the flow such that a given amount of flow reaches the sink as early as possible. It is
not hard to see that a universally maximal flow over time optimizes both objectives.

The ratio between the objective value of a Nash equilibrium and a system optimum is often called price
of anarchy. Two kinds of prices of anarchy arise out of the two objectives mentioned above: According
to the first objective, compute for some given time T the quotient between the amount of flow having
reached the sink in a universally maximal flow over time and the amount of flow having reached the sink
in a Nash flow over time. Then the evacuation price of anarchy is defined to be the largest quotient
over all times T'. According to the second objective, compute for a given amount of flow F' the quotient
between the time when this amount of flow has reached the sink in a universally maximal flow over time
and the time when this amount of flow has reached the sink in a Nash flow over time. Then the time
price of anarchy is defined to be the smallest quotient over all amounts F'. Thus Theorem can be
restated as follows.

Corollary 4.6. Let (G,u,7,s,t,ug) be a network with constant edge capacities such that G is a shortest
paths network with respect to free flow transit times 7. Then the price of anarchy (w.r.t. both versions)
s equal to 1.

If we drop the assumption that the underlying network is a shortest path network with respect to the
free flow transit times, we are able to construct instances with an arbitrarily large evacuation price of
anarchy. More precisely, the price of anarchy can get as large as Q(m) where m is the number of edges
in the graph (see Appendix[A.9). But surprisingly it can be shown that the time price of anarchy on the
instances considered in Appendix is lower bounded by egl. In fact we believe that the time price of
anarchy is constantly bounded:

Conjecture 4.7. Let (G, u,T,s,t,ug) be a network with constant edge capacities. Then the time price of
anarchy is O(1).

Last but not least we mentioned that in a multicommodity setting the evacuation price of anarchy
can be arbitrarily large; see Appendix [A. 10

References

[1] T. Akamatsu. A dynamic traffic equilibrium assignment paradox. Transportation Research Part B:
Methodological, 34(6):515-531, 2000.

[2] T. Akamatsu. An efficient algorithm fo dynamic traffic equilibrium assignmen with queues. Trans-
portation Science, 35(4):389-404, 2001.

[3] T. Akamatsu and B. Heydecker. Detecting dynamic traffic assignment capacity paradoxes in satu-
rated networks. Transportation Science, 37(2):123 — 138, 2003.

[4] J. E. Aronson. A survey of dynamic network flows. Annals of Operations Research, 20:1-66, 1989.

[5] M. Balmer, K.W. Axhausen, and K. Nagel. An agent based demand modeling framework for large
scale micro-simulations. Technical Report 329, Institute for Transport Planning and Systems (IVT),
ETH Zurich, Switzerland, 2005.

[6] M. Balmer, M. Rieser, K. Meister, D. Charypar, N. Lefebvre, K. Nagel, and K.W. Axhausen. Matsim-
t: Architektur und rechenzeiten. submitted to Heureka08, 2008.

11

[7]

8]

M. Beckmann, C.B. Mcguire, and C.B. Winsten. Studies in the Economics of Transportation. Yale
University Press, New Haven, 1956.

M. J. Ben-Akiva, M. Bierlaire, H. N. Koutsopoulos, and R. Mishalani. Dynamit: A simulation-based
system for traffic prediction and guidance generation. In Proceedings of the 3rd Triennial Symposium
on Transportation Systems, 1998.

D. Braess. “lber ein paradoxon aus der verkehrsplanung”. Unternehmensforschung 12, 12:258-268,
1968.

M. Carey. Link travel times i: Properties derived from traffic-flow models. Networks and Spatial
Economics, 4(3):257-268, 2004.

M. Carey. Link travel times ii: Properties derived from traffic-flow models. Networks and Spatial
Economics, 4(4):379-402, 2004.

H.-K. Chen. Dynamic Travel Choice Models: A Variational Inequality Approach. Springer, Berlin,
1999.

H. K. Chen and C. F. Hsueh. A model and an algorithm for the dynamic user-optimal route choice
problem. Transportation Research Part B: Methodological, 32(3):219-234, 1998.

A. de Palma, M. Ben-Akiva, C. Lefvre, and N. Litinas. Stochastic equilibrium model of peak period
traffic congestion. Transportation Science, 17(4):430-453, 1983.

L. Fleischer and M. Skutella. Quickest flows over time. SIAM Journal on Computing, 36:1600-1630,
2007.

L. K. Fleischer and E. Tardos. Efficient continuous-time dynamic network flow algorithms. Operations
Research Letters, 23:71-80, 1998.

L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static flows. Operations
Research, 6:419-433, 1958.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

T. L. Friesz, D. Bernstein, T. E. Smith, R. L. Tobin, and B. W. Wie. A variational inequality
formulation of the dynamic network user equilibrium problem. Operations Research, 41(1):179-191,
1993.

T. L. Friesz, J. Luque, R. L. Tobin, and B. W. Wie. Dynamic network traffic assignment considered
as a continuous time optimal control problem. Operations Research, 37(6):893-901, 1989.

H. W. Hamacher and S. A. Tjandra. Mathematical modelling of evacuation problems: A state of the
art. In M. Schreckenberg and S. D. Sharma, editors, Pedestrian and Evacuation Dynamics, pages
227-266. Springer, Berlin, 2002.

S. Han and B.G. Heydecker. Consistent objectives and solution of dynamic user equilibrium models.
Transportation Research Part B: Methodological, 40(1):16-34, 2006.

C. Hendrickson and G. Kocur. Schedule delay and departure time decisions in a deterministic model.
Transportation Science, 15(1):62-77, 1981.

B. Hoppe. Efficient dynamic network flow algorithms. PhD thesis, Cornell University, 1995.

B. Hoppe and E. Tardos. The quickest transshipment problem. Mathematics of Operations Research,
25:36-62, 2000.

B. N. Janson. Dynamic traffic assignment for urban road networks. Transportation Research Part
B: Methodological, 25(2-3):143-161, 1991.

R. Jayakrishnan, W. K. Tsai, and A. Chen. A dynamic traffic assignment model with traffic-flow
relationships. Transportation Research Part C: Emerging Technologies, 3(1):51-72, 1995.

12

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[44]
[45]

[46]

[47]

B. Klinz and G. J. Woeginger. Minimum-cost dynamic flows: The series-parallel case. Networks,
43:153-162, 2004.

B. Kotnyek. An annotated overview of dynamic network flows. Rapport de recherche 4936, INRIA
Sophia Antipolis, 2003.

D. R. Leonard, P. Gower, and N. B. Taylor. Contram: structure of the model. Technical report,
Transport and Road Research Laboratory, 1989. Report RR 178.

W. H. Lin and H. K. Lo. Are the objective and solutions of dynamic user-equilibrium models always
consistent? Transportation Research Part A: Policy and Practice, 34(2):137-144, 2000.

H. Mahmassani and R. Herman. Dynamic user equilibrium departure time and route choice on
idealized traffic arterials. Transportation Science, 18(4):362-384, 1984.

H. S. Mahmassani and R. Jayakrishnan. Dynamic traffic assignment and simulation for advanced
network informatics (dynasmart). In Urban Traffic Networks: Dynamic Flow Modeling and Control
(Transportation Analysis). Springer-Verlag, 1995.

H. S. Mahmassani and S. Peeta. System optimal dynamic assignment for electronic route guidance
in a congested traffic network. In N. H. Gartner and G. Improta, editors, Urban Traffic Networks.
Dynamic Flow Modelling and Control, pages 3-37. Springer, Berlin, 1995.

H. S. Mahmassani, H. A. Sbayti, and X. Zhou. DYNASMART-P Version 1.0 Users Guide. Maryland
Transportation Initiative, College Park, Maryland, 2004.

R. Mounce. Convergence in a continuous dynamic queueing model for traffic networks. Transporta-

tion Research Part B: Methodological, 40(9):779-791, 2006.

R. Mounce. Convergence to equilibrium in dynamic traffic networks when route cost is decay mono-
tone. Transportation Science, 41(3):409-414, 2007.

N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cambridge
University Press, 2007.

S. Peeta and A. K. Ziliaskopoulos. Foundations of dynamic traffic assignment: The past, the present
and the future. Networks and Spatial Economics, 1(3-4):233-265, 2001.

W. B. Powell, P. Jaillet, and A. Odoni. Stochastic and dynamic networks and routing. In M. O.
Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Network Routing, volume 8
of Handbooks in Operations Research and Management Science, chapter 3, pages 141-295. North—
Holland, Amsterdam, The Netherlands, 1995.

B. Ran and D. E. Boyce. Modelling Dynamic Transportation Networks. Springer, Berlin, 1996.

B. Ran, D. E. Boyce, and L. J. Leblanc. A new class of instantaneous dynamic user-optimal traffic
assignment models. Operations Research, 41(1):192-202, 1993.

B. Ran, R. W. Hall, and D. E. Boyce. A link-based variational inequality model for dynamic
departure time/route choice. Transportation Research Part B: Methodological, 30(1):31-46, 1996.

T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.

T. Roughgarden and E. Tardos. How bad is selfish routing? In Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science, pages 93-102, Redondo Beach, CA, 2000.

M. J. Smith. The existence of a time-dependent equilibrium distribution of arrivals at a single
bottleneck. Transportation Science, 18(4):385-394, 1984.

M. J. Smith. A new dynamic traffic model and the existence and calculation of dynamic user equilibria
on congested capacity-constrained road networks. Transportation Research Part B: Methodological,
27(1):49-63, 1993.

13

[48] W. Y. Szeto and Hong K. Lo. A cell-based simultaneous route and departure time choice model
with elastic demand. Transportation Research Part B: Methodological, 38(7):593-612, 2004.

[49] N. B. Taylor. The contram dynamic traffic assignment model. Networks and Spatial Economics,
3(3):297-322, 2003.

[50] W. S. Vickrey. Congestion theory and transport investment. The American Economic Review,
59(2):251-260, 1969.

[61] S. Yagar. Dynamic traffic assignment by individual path minimization and queuing. Transportation
Research, 5(3):179-196, 1971.

14

A Appendix: Omitted Proofs
A.1 Proof of Lemma 2.7

In addition we need the following property thereinafter:

(a) Let 6 > 0" > 0. If no flow is assigned to e between 6" and 6 then ¢. decreases, i.e.:
0
W) d =0 = qe(0) < qe(0").
9/

Moreover ¢.(0) > 0 implies 6 + ¢.(0) = 6’ + ¢.(¢).

Proof. In order to prove () let 8 > 6’ > 0. Assuming 6 + ¢.(0) < ' + q.(0") gives us the following. Note
that the cumulative in- and outflow functions are monotonically increasing.

0< FH0)— F(0) dv
D047 +0.(0) = Fo (0 + 7+ .(6)
<0
Therefore equality must hold especially for the last inequality which together with ([7):
FAO0") = FO(0+ e +qe(0) = F7 (0" + 7e + (0 — 0" + e (0)))

But from our assumption we get g.(6’) > 6 — 0"+ ¢.(f) > 0 and we have a contradiction according to ().
Therefore (i) must hold.

Claim A.0.1.
The function q. is left continuous for every edge e € E.
Proof of Claim[A.01 We have to show limg 9 q.(6') = ¢.(6) for all § > 0. From () we get that

limg: g 6" + ge(0') exists and therefore also limg: 9 ¢.(6"). The following we get from the continuity of
cumulative flow functions.

— . 12 _ — . / /
FZ (0 + Jim au(0) = 7 (Jm (6 4+ 7+ 0.(0)
. _ @ ,.
=1 F / "\ =1 FH(g) =F*t
Jg B (0" + e+ 40(0) = Jim FZ(0) = F7(0)
Because of (7)) this leads to limg: -9 ge(0") > gc(0). From (@) we get limg: -9 6'+¢.(6") < 6+ ¢.(0) implying
limg: g ge(0') < ¢e(0) and therefore proving this claim. O
0+q.(0)
Claim A.0.2. Let g (0) := lim q.(0'). Then it holds / foe W+ 7)) dv =0.
o™\6 6+4.(6)

Proof of Claim[A.0.3. First we remark that the existence of g,(0) is ensured by (). The continuity of
the cumulative flow functions implies:

F (lim
6’0

B

"+ 70+ 0.(67)) = Jim, Fe (6" + re + a.(6))
@

@ . oty —
—91/1219F€ 0"y =FI(6)

Fo (04 7 + qe(0)).
Subtracting the left most term this directly implies this claim because of limg\ g 0'+¢.(¢') = 0+q.(6). O
For showing (@) we know from (7):
FLO0)=FI0") = F (0 + 7e + qe(0)) = Fo (0 + 7 + (0 — 0 + qe(9)))-
Thus (@) and the monotonicity of F, gives us ¢.(0) < max{0,0" — 0 + ¢.(0")} < ¢.(0"). If moreover
qe(0) > 0 we get q.(0) = 0" — 0 + q.(0") proving (@).

15

As the last part of this proof we have to show (). Firstly we assume that g, is continuous. Then
for every € > 0 and for every time 6 > 0 there exists an 0 < €; < § such that g.(6 +€1) — § < g.(0) <
qe(0 —€1) + § implying 0+ €1 +qe (0 +€1) < 0+ qe(0) +€and 6 —e1 +qe(0 —€1) > 04 qc(0) — . Thus if no
measurable amount of flow reach the head of e within the time interval (0+ 7. +g.(0) —€, 0+ 7e + e (0) +¢)
we get from the definition of g.:

0+qe(0)+e O+e1+qe(0+e1) 0+e€1
0= / fo (4 7e) d9 > / Lo+ 1) dd = £ (9) av. (18)
0+qc(0)—¢ 0—e14qe(6—e1) 0—ep

But this shows that the implication of (i) is valid.

For the other direction it is enough to consider only the right continuity because of Claim (A.0.d]).
Because of Claim (A20.2) we know for a time 6 > 0 that g, is (right) continuous at § whenever 0+q.(0)+7.
is contained in an left open interval where the outflow rate is strictly positive. Thus it is enough to show
that whenever there exists a time § > 0 and an € > 0 such that f;+6 [(9) d¥ = 0 holds then ¢, is right
continuous at f. Because of (@) we get in this case that ¢.(0) > g.(¢’) for all 8’ € [0,60 + €] implying
limg g ge(0") < ge(#). On the other hand we know from (f) that limg~ g 0"+ g.(0") > 0+ g.(6) such that
we can conclude limg g ge(6') > ge(6). But this proves the right continuity at 6 and therefore ([@). O

A.2 Proof of Theorem 2.4]

Proof. Because the condition in (@) is satisfied obviously if e is contained in a shortest path at time 6 it
is enough to consider only edges e and times 6 such that e does not lie on a shortest path at time 6.

[)=(@) Let # > 0 and e = vw € F be an edge which is not contained in a shortest path at time 6, i.e.
0, (0) < £,(0) + Te + g (€,(0)). Defining 61 := max{0,sup{6’ > 0| £,(0") + e + qc(£,(8")) < £, (0)}}
we have £,,(0") < £,(0) < €,(0') + Te + qe(£,(0")) for all & € (01,0]. Thus e does not occur in a
shortest path within the time interval (6, 0]. Because of Definition 23] we get:

0= FF(£(0) = FF(6o(01) = FZ(€o(0) + Te + qe(£o(0))) — FZ (£o(01) + 7e + qe(€0(61))))
We know £,(01) + e + qe (€4 (01)) < £,(0) < £,(0) + Te + qe(£,(0)). Thus we get () because F is

monotonically increasing.

[{)=@) Let # > 0 and e = vw € E be an edge such that e is not contained in a shortest path at time
0, ie. Ly(0) < £,(0) + Te + qe(£,(0)). Assuming the continuity of the edge waiting time functions
and therefore the continuity of the label functions there exists an € > 0 such that £,(6 + €) <
Ly(0 —€) + Te + qe (£, (0 — €)). Thus we get from the nonnegativity of the flow rate functions:

£y (0+€) Ly (0+€)+Tetge (€y (04€)) Ly (0+€)+Tetqe (Lo (0+¢€))
o< [rwa= [frwars [f7 () dv =0
21!(075) 51}(97€)+Te+‘h(£v(075)) ew(e“l’ﬁ)

which proves statement (). O

A.3 Proof of Theorem

Before presenting the proof of the theorem, we first discuss the following intuitive real-world example.

Ezxample A.1. Suppose you are at the airport and, since you are already late, you want to get to the gate
as quickly as possible. But first you have to check-in. Afterwards, you head for the security check in order
to finally get to your gate and board the aircraft. But there is a waiting queue in front of the check-in
counter and another queue at the security check. The question is how quickly you should approach the
end of the waiting queue at the check-in counter. Of course, as long as the last person in line remains
the same, i.e., no one else enters the line, it does not matter at what time you line up—you always leave
the check-in counter at the same time. However, Definition of routing along shortest path tells you
that you should line up as early as possible and Theorem also tells you why. It says that if you do
not reach the end of the waiting queue as early as possible then other persons may overtake you. And,
of course, if there are people behind you who wants to check in at the same counter, they could overtake
you if you do not line up immediately.

16

z(6) . (0) zf(0) ve . (0)

Figure 1: Construction of the b-flow instance used in the proof of Theorem Below the edges the in-
and outflow of the dynamic Nash equilibrium (left) and the flow value of the b-flow (right) are shown.
Above nodes the corresponding b-values are displayed.

Proof of Theorem[2.40. The main observation we need in order to prove this lemma is the following equa-
tion which we get from the definitions of zF, z7, and g, in (I0) and (), respectively.

x:(ﬂ) -z, (0) = FJ(EU(G)) = Fo (0y(0)) = FZ (£(0) + 7e + qe(£0(0))) — Fo (£w(0)) - (19)

Because of Theorem [2.4] this equation implies directly the equivalence of (i) and ().

In order to prove the equivalence of (i) and (i) we construct a static b-flow instance (see Figure[]). We
split every edge e = vw € E by inserting a node v, into two consecutive edges vv, and v.w. The supply-
demand vector of the corresponding b-flow instance is defined as follows. For every node v € V' \ {s,t}
we set b, (0) := 0 and for every new node v, with e € F we define b,_(0) := x7(0) — 2 (). Note that we
have defined b4(6) and b,(6) in (II). Further we know from (&) and (I9) together with the nonnegativity
of the outflow rate functions that only node s has a supply, i.e., a positive b-value.

Consider the following static flow. For every edge e = vw € E we set the flow value on edge vv, to
xF(0) and the flow value on edge v.w to z7 (f). We claim that this static flow is a feasible b-flow. To
prove this we need to check the flow conservation conditions. By construction and ([IIl), flow conservation
is fulfilled at s, ¢, and also at the new nodes v, e € E. It remains to verify flow conservation at nodes
v € V\ {s,t}. The following equation follows from linearity of the integral operator and condition (B]).

£y (0) Ly (0)
AR (/ fe‘(ﬁ)dﬁ>=/0 S)]

e€d (w) e€d (w) e€d— (w)

Luy (0) Luy (0)
/ S orw) =3 (/ f:ww): > w0,

e€dt(w) e€dt(w) e€dt(w)

Thus we have a feasible b-flow on the constructed instance. In particular, the sum over all supplies and
demands must be 0, i.e. Y7 oy 0,(0) + > cpbo, (0) = 0. But, as already mentioned, the source s is the
only node with a supply, i.e., a positive b-value. Therefore, the supply of s is equal to the demand of ¢ if
and only if all other nodes have neither a supply nor a demand meaning that their b-values are 0. This
proves the equivalence of (i) and (ii). O

A.4 Proof of Theorem [3.7]

Proof. Since we know that bs(0) + b.(6) > 0, it is enough to show bs(0) + b:(0) < Me. First we observe
that whenever two flow units use the same s-t-path, then the unit which starts later at s cannot overtake
flow of the other, i.e., they traverse the network one after another. This is easily seen by induction on
the number of edges of the used path.

On the other hand, one flow unit can overtake at most one flow unit on every other path. Assume
that there is one flow unit using s-t-path P; which overtakes more than one flow unit of an s-t-path Ps.
Therefore the first particle of the last flow unit using P» reaches a node v € V(P,) strictly later than the
first particle of the flow unit on P;. Thus v is the node where the flow unit on P; overtakes more than
one flow unit using P». But because the node labels increase monotonically, the length of the subpath
of Py to v is shorter than the length of the subpath of P> to v at the time when the last flow unit on
P; starts traversing the network. This is a contradiction because the GENERAL ITERATIVE ALGORITHM
sends the flow units always along a currently shortest s-t-path. Thus one flow unit can overtake at most
M — 1 other flow units which proves the lemma. O

17

A.5 Proof of Theorem

Proof. We prove that for every time Ty € R there exists a Nash flow over time for the flow which arrives
at s until time Ty. Thus we assume that ug is 0 from time Ty on. Therefore there exists a time T, for
every edge e € E such that for all flow over times satisfying conditions (i) and () of the Nash flow over
time definition we have that the in- and outflow rate of e is equal to 0 for all times greater than 7.

Further let (¢;);en be a zero sequence, for all i € N let f; be the flow over time computed by the
GENERAL ITERATIVE ALGORITHM on (G, u, T, 8,t,ug) with € := ¢; and let (F;", F;”) be the corresponding
pair of families of cumulative flow functions. Since each cumulative flow function is the antiderivative
of a nonnegative Lebesgue integrable function they are absolutely continuous and of bounded variation.
Moreover since the flow rate function of an edge is bounded by a Lebesgue integrable capacity function
the corresponding sequence of cumulative in- and outflow functions, respectively, has uniformly bounded
total variation. Further each cumulative flow function is 0 at time 0.

Now Helly’s selection theorenf] ensures the existence of an accumulation point (F*,F~) of these
(F",F)’s, i.e. there exists a subsequence which converges pointwise again (F*, F~). But this also
implies that every cumulative flow function of (FT, F7) is also absolute continuous. Further Komura’s
theorentd states that every absolute continuous function has a density. This means that the there exists
corresponding flow rate functions (f*, f7) to (F*, F7).

Now it is not hard to see that f is a flow over time satisfying conditions (i) and ([l of the Nash flow
over time definition. Moreover because of Lemma [B] and Theorem condition (Il is also satisfied.
Thus (f*, f7) is a Nash flow over time. O

In order to prove Theorem we need the following lemma.

Lemma A.2. Let f be a flow over time which sends flow only over currently shortest paths on a network
(G, u,7,8,t,up). Further let e =vw € E be an edge and 6 > 0 be a time such that there exists a nonzero
waiting queue in front of e at time £,(0), i.e. q.(£,(0)) > 0. Then e is contained in a shortest path at
time 6.

Proof. We have to show £,(0) + 7 + q.(£,(0)) = £,,(0). For it let ; be the smallest time such that no
measurable amount of flow is assigned to e within the time interval [£,(01),¢,(6)). Then for each € > 0
there exists an 6. € [0 —¢, 01) such that flow is assigned to e at time ¢, (6.). This means that e is contained
in a shortest path at time .. Let € tend to zero. Since the label and edge waiting time functions are
continuous we get £, (01)+7c+qe(£,(01)) = £,y (61). But this implies £, (0)+7.+¢e (£, (0)) = £, (01) because
of Lemma 2Tl (@) (Statement found in the Appendix [A]). Further we know that the label functions are
increasing which completes the proof because of (). O

Proof of Theorem [From Theorem and Definition 277 we know that (6 + €) — x(9) is a static
flow of value f99+5 uo(¥) dv for every e > 0. Since the flow conservation equation for static flows is
differentiable 4 (6) is also a static flow with flow value uo(6). This follows from the right-continuity of
the initial capacity functions are.

Thus we have to show that (%(9))66E(G9) and (%(0))1}6‘/@9) satisfy the thin flow with resetting
conditions (I2) - (I3 according to the edge set By := {e € E | q.(#) > 0}. Because the label and the
edge waiting time functions are right-continuous there exists an € > 0 such that for all 8’ € [0,0 + €) we
have that Gy is a subgraph of Gy and ¢.(6’) > 0 for all edges e € Ej.

The condition ([I2)) for the label of s is implied by the equation () defining the label {5 from which
we get:

Ay db, . up(h)
de(e)’@()’l’uZ(a)'

I The statement of Helly’s theorem is the following: Let U C R be an open set and let (gn, : U — R4), en be a sequence
of functions. Assume that the total variation of each g; on every compact set W C U is bounded by the same constant
(only depending on W). Further assume that there exist a point g € U such that the set {g;(1) | ¢ € N} is bounded. Then
there exists a subsequence which converges pointwise.

2 The statement of Komura’s theorem is the following: Every absolute continuous function defined on a closed interval
of R has a density.

18

For proving the other conditions we consider three cases and show that the conditions (I3)-([IH]) are
satisfied in every case. For it let e = vw € E(Gjp) be an edge which is contained in a currently shortest
s-t-path at a time 6 > 0.

Case 1

Case 2

Case 3

The edge e fits this case if there exists an € > 0 such that for all ¢’ € (6, 6+¢€] we have ¢.(¢,(6")) > 0.
That means a waiting queue is built or occurs which does not decrease to zero over a small time
interval. Note that if e € E; then e belongs to this case. Condition (i) of Definition 27 gives us:

L0 (8+€) Lo (0+€)
(0 +€) —ze(0) = / fo(¥) dv = ue(9) do.
£w(0) £w (0)
Further the mean value theorem of the integral calculus ensures the existence of a number u, €
[min{u.(0") | ¢ € (bw,(0),£,(0 + €))}, max{u.(6') | ¢ € (€w(0), £y, (0 + €))}] such that x.(0 + €) —
2e(0) = (L (04 €) — £4(0)) - u. Now we divide both sides of the last equation by € and let € tend
to 0. With the right continuity of the capacity functions we obtain:

dly, dx, 1
a0 = o)

Therefore condition (IH)) is satisfied in this case. Further condition (I3) is also satisfied because
the label functions are monotonically increasing. In order to show that condition (I4)) is also valid
in this case we have to show that % (0) < % (9) if there is no waiting queue in front of e at time 6
meaning ¢, (0)+71. = £,,(0). Because we know that e is contained in a shortest path for all times in
(0, 0+€] we can conclude that £, (04¢€)—£,(0) = £y, (0+€) — £y (0) — qe (£, (0+€)) < Loy (0+€) — Ly (6).
But this gives us the desired result if we divide both sides by € and let € tend to 0.

Here we consider the case that there exists an e such that for all ' € (0,0 + €] we have £,(0")+ 7.+
qe(£,(0")) > €,,(0), i.e. edge e is not contained in a shortest path for all times in (6,6 + €]. Note
that this case is disjoint to Case 1 because of Lemma Further we know that g.(£,(0")) =0
for all 0’ € [0,0 + €]. Therefore we have £,(6 + €) — £,(0) > £,,(0 + €) — £,,(0). Further we know
that no flow is assigned to e during the time interval (£,(0),£,(0 + €)], i.e. (0 + €) — z.(f) = 0.
Thus dividing both sides of the last inequality and of the last equation by € we get

dly, de, dx.

W(G) < E(Q) and =0 0)=0 (20)

if we let € tend to 0. Thus condition ([I3]) is satisfied and the two other conditions do not fall in
this case.

In this case we firstly consider the complement of Case 2. This means for every € > 0 there exists
an 0. € (0,0 + €| such that ¢,(0.) + 7 + ge(€y(0e)) = £,(0.). Because we can use the fact that
we need not consider situations which fall in Case 1 we can assume further that there exists an
0" € (0,0,] such that g.(¢,(0")) = 0. Let 0, € (0, 6.] be the supremum over these §'. Because we
assume that the edge waiting time functions are continuous €. is in fact a maximum implying
qe(£,(0.)) = 0. Further we know that between the times 6. and 6. there is always a nonzero
waiting queue. Lemma and the continuity of the label functions show that e occurs also in a
shortest path at time 6., i.e. £,(0.) +7. = £,,(0.). But this leads to £,(0.) — £, (0) = £,(0.) —£,,(9).
If we divide both sides of the last equation by 6. — 6 and let € tend to 0 we get the following.
Note that we assume that the derivatives exist.

de de

w gy — Yo g
Therefore condition ([3]) is satisfied. Because condition (&) does not belong to this case we only
have to show that condition (I4) is valid. For it we have to show that % () m < dfé“ (9).
To prove this we apply like in Case 1 the mean value theorem of the integral calculus to the right
most side of the following inequality which we get from condition () in the flow over time model.

0 (6+¢) Cu(6+¢)

2o(0+ €) — z(0) = /g Fo W) d9 < / ue () do.

w(0) Lw (0)
If we divide for the last time both sides by € and let € tend to 0 we get the desired result and
complete the proof. O

19

A.6 Nash Flow Over Time Algorithm

NasH FLow OVER TIME ALGORITHM

Input: A network (G,u,T,s,t,ug).

Output: A Nash flow over time (T, f7).

(1) Initialize the flow rate functions f.f, f; : Ry — R, for all edges e € E:

fH=0):=0 forall 6.

(2) Initialize the node labels ¢ € RY with ¢, := dist®(s,v) and set ¢ := 0 € RY 0:=0€R;.

(3) Define the shortest path network Gy as the subgraph of G induced by the edge set
E(Gy) ={e=vw € E |ty —{l,>71.}and E; :={e€ E'|q. > 0}.

(4) Compute a thin flow 2’ of value ug with resetting on F; on (Gy,u, s,t,ug) and let ¢’ be the corre-
sponding node labels.

(5) Find the largest a > 0 such that:

by + all, — €, — ol < distS\FE) (4 w) for all v,w € V(Gy)
by +all, — 4, —all, > T, for all e = vw € E}

(6) Update the flow over time parameters in this order:

/
) = % for all e = vw € E(Gy)
!
Fo(by) == ZT for all e = vw € E(Gy)
by =Ly + b)) for all v € V(Gy)
qe :=max{0, 0y, — by, — T} for all e = vw € E(Gy)
0:=0+«

(7) Update the label functions for nodes in V' \ V(Gb).

(8) If a < o0 go to (3.

A.7 Proof of Theorem

Proof. The relation ¢/ .. > ¢* is obvious because at least one edge in a sparsest cut must have congestion

at least ¢* in any b-flow. Thus we have to show that £, < ¢*. Consider the cut s € X & V defined by
X:={veV |t <.} Since the labels of the nodes in X are strictly smaller than the labels of the

nodes not in X, there is no flow on any edge in 6~ (X). Further the congestion of any edge in 67 (X) is

. z(6T(X b(X % % - .
at least £;,.. This leads to {p.x < HEHEX;; = u(gi())()) < ¢* because ¢* is the congestion of a sparsest

cut. O

20

A.8 Proof of Theorem 4.4

Proof. Consider two thin flows z/,7 € RF(E) . We prove by induction on the number nodes that the
corresponding edge labels ¢/, ¢ are identical. Then this must also hold for the corresponding node labels.
If there is only one node s nothing has to be proved. Thus let us assume that there are several nodes.
Lemma 3] shows that the maximum edge label ¢/ . is unique and equal to the congestion of a sparsest
cut. Thus the edges with this maximal label are the same since z/,Z are static flows minimizing the
maximal edge congestion. Thus we know the flow on edges contained in §%(X) where X is a sparsest cut
because the label of such edges must be defined by their congestion, i.e. z,, = T, = £}, Ue.

Now we delete the node set V' \ X. Then, 2’ and & € RF(%) are thin b-flows on the induced subgraph
G[X] according to the new node balances b'(v) := b(v) — 2/(6%, (v) N 6T(X)), v € X. Since the graph
G[X] has less nodes than G, we can apply the induction hypothesis and conclude this part of the proof.

To see that we can compute a thin flow of given flow value in polynomial time, note that the induction
is constructive and results in an algorithm where in any iteration we have to find a sparsest cut for a
b-flow instance. This can be done in polynomial time. Moreover the number of iterations is bounded by
the number of nodes and thus this algorithm is polynomial. O

A.9 A Bad Example

S e’ e? el = el t

Figure 2: An example with an arbitrary high price of anarchy.

The following example shows that the price of anarchy can be arbitrarily large, i.e., the price of anarchy
of the presented example is (m) where m equals the number of edges. The graph of the underlying
instance is shown in Figure 21

For the edge capacities we define uy := u,, and u* := u.x forallk = 1,...,m and assume u* = Zle U;
forall k =1,...,m. The s-t path P is defined by the edge set {e™,e™ 1 ... eF ex} forallk =1,...,m.
Further let 7 := ZeeE(Pk) Te be the free flow transit time of the path Py for each k =1,...,m.

In a dynamic Nash flow the free flow transit times should ensure the following bbehavior At time
zero the first flow particles use only path P; (implying that 7 < 7% for all Kk = 2,...,m). Since
u™ > u™ !t > ... > u! in front of every edge of P; a waiting queue is built, which increase linearly.
Therefore the times for traversing the paths Py, K = 1,..., m increase monotonically with the time when
flow is originated at s and for m > k > [> 1 the slope of the transit time of Py is smaller than the slope of
the transit time of Pj, especially the transit time of P; has the greatest slope. Thus at a certain time « the
time for traversing P; becomes equal to the time for traversing one other path P € {Py | k € {2,...,m}}
for flow particles originated at s at time «. This means that the next flow particles have to choose P;
and P in a dynamic Nash flow. Now the important aspect of this iinstanceis, that at time a not only
the transit time of P becomes equal to the transit time of P, but also the transit times of all other paths
Py, ..., P;. (Note that therefore the free flow transit times 7 of the paths P, must be monotonically
increasing.) This means that from time « flow particles uses the whole network in order to reach ¢.
Summarizing the free flow transit times ensure that the first flow particles use only P; and suddenly from
time a on the whole network is used in a dynamic Nash equilibrium.

Next we model this expected bbehavior precisely For k = 1,...,m let £f(a) be the arrival time using
Py, for flow originated at s at time « by assuming that up to this time all flow units uses only P; in order

21

to reach t. Thus (because of the NAsH FLOW OVER TIME ALGORITHM for constant transit times — first
iteration):

m

o) =15 + Z—k e — umo = (07 (a) — 7p)uF

Because for flow originated at s at time « all s-t-paths must have the same duration we get:

m m

7—1_|_u_1.a:7k+u—k-oz::€t(oz) forall k=2,...,m
u u
1 1
— Tl:rk+uma(—k——1) forallk:Q,...,m
u u

Note that for edge capacities satisfying the conditions of this example there exists edge free flow transit
times ensuring the last equalities. Simply set 7.+ := 0 for all k = 1,...,m. Then we have 7., =7 =0
and 7., = 7. Thus the remaining edge transit times are computable with the last equalities.

Let Fng(f) be the amount of flow arriving at ¢ until time 6 in a Nash flow over time and Fso(6) be
the amount of flow arriving at ¢ until time 6 in a system optimum. It is not hard to see, that in a system
optimum the inflow rate on each path P is equal to uy from time zero on. Thus the path P, contributes
an inflow rate of uy to s from time 7, on. We call this flow an earliest arrival flow. Because a Nash flow
over time has to satisfy the non-overtaking condition we know Fng(¢:(a)) = u™a. The corresponding
value for the earliest arrival flow is Fso ((a)) = Y (€4() — 7%)ug. Thus an lower bound of the price
of anarchy is given by (In fact this is the price of anarchy):

Fso(t(@) _ 2opmy () = mi)u _ i (be(a) = m)ur _ i Uk
Fxp(l(a)) uma =1 ura =1t
This shows that the price of anarchy can increase linearly in the number of edges (set u® := 2F for

example). Further consider the price of anarchy restricted to instances with unit capacities this shows
that the price of anarchy increase logarithmically in the number of edges (Set up = 1 and replace e*
by k parallel edges. Then the right sum is equal to the Harmonic series and the number of edges is
quadratically in m).

A.10 A very bad Multicommodity Example

s3 =1t1

sl =12 s2 =13
Figure 3: A multicommodity example were no measurable amount of flow reaches its sink in a Nash flow.

Consider the network shown in Figure[3 Assume that the free flow transit time of each edge is equal
to 1 and that the capacity is also equal to 1 over the entire time period. Further there are three kinds of
flow particles which want to travel from source s; to sink ¢; for i = 1,2,3. Moreover assume that all flow
particles which wants to traverse the network are present at their corresponding source at time 0. Thus
in front of every edge there is a waiting queue of infinite size at time 0 because all flow units line up at
the tail of the edge they want to traverse first. Since the transit times are 1 every flow particle has to
wait at the end of the waiting queue of the second edge it has to traverse. But the waiting time is equal
to oo because of the infinite length of the queue and the bounded capacities. Thus no flow particle arrive
at their corresponding source.

22

	Introduction
	Model
	Flow Over Time Model
	Definition of Nash Equilibria for Flows over Time

	Analysis of Nash Flows Over Time
	Existence of Nash Flows Over Time
	A Special Class of Static Flows

	Networks with Constant Capacities
	Appendix: Omitted Proofs
	Proof of Lemma 2.1
	Proof of Theorem 2.4
	Proof of Theorem 2.6
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Nash Flow Over Time Algorithm
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	A Bad Example
	A very bad Multicommodity Example

