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Optimal PDE Control Using COMSOL Multi-

physics

Ira Neitzel, Uwe Prüfert and Thomas Slawig

Abstract: We study an optimal control problem (OCP) subject to a PDE of elliptic
type as well as state constraints. The resulting optimality system contains two PDEs,
one algebraic equation and the so called complementary slackness conditions, i.e. dual
products between function spaces. At this point di�erent regularization techniques come
into use. In this paper we introduce a Barrier method as one possible way to regularize
state constraints, which leads to an easily implementable path-following algorithm.
To illustrate this method, we solve �rst a constructed problem with known solution.

Here, we can verify the rate of convergence of the path-following method. Second, a
simpli�ed hyperthermia problem in 3D is solved by using COMSOL Multiphysics.

Keywords: Optimal control, bio heat transfer, Barrier method.

1. Introduction

Optimal PDE control is a challenging �eld of recent research, with growing impact
in medicine, engineering, constructing etc. The following optimal control problem is
topic of project A1 within MATHEON.
Regional hyperthermia is a cancer therapy aiming at heating large, deeply seated

tumors in order to make them more susceptible to an accompanying radio or chemo
therapy. The heat is introduced into the human body by absorption of radio-frequency
electromagnetic waves originating from a phased array applicator. Figure 1 shows a
model of a microwave applicator.

Figure 1. Virtual 3D model of a microwave applicator with a part of a
virtual patient. Picture courtesy of Zuse Institute Berlin.

From the modelers point of view, the problem reads: The tumor should be heated up
to the therapeutic temperature, but the temperature in the healthy tissue should not
be higher than a compatible temperature. The temperature distribution is driven by
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the bio-heat-transfer equation (BHTE), which is of elliptic type. Our aim is to optimize
a source for the BHTE that creates an optimal temperature pro�le in the human body.
The control parameters of the real word problem are actual the amplitudes and phase
delays of the antennas of the microwave applicator. The hyperthermia problem is a
typical task for optimal control.
In general, two antithetic strategies of optimal control are known. First, one can

discretize the problem and optimize it by using e.g. a nonlinear programming software.
The other way is to �nd optimality conditions for the continuous problem. These con-
ditions are systems of PDEs and algebraic and/or integral equations. Here, COMSOL
Multiphysics comes into action.

2. Problem definition

To model the regional hyperthermia, we consider the optimal control problem (HY-
PER):

min
1

2

�
Ω

(T − Td)2 + κu2dx

subject to the elliptic PDE

−∇ · (A∇T ) + a0(T − T37) = u in Ω(1)

~n · (A∇T ) + α0(T − Tb) = 0 on Γ.

Optionally, let point-wise state constraints be given:

Ttherapeutic ≤ T in Ωtumor.

T ≤ Thealthy in Ω\Ωtumor

The domain Ω ⊂ R3 is the human body (or a part of it), Γ is the boundary of Ω, i.e.
the skin, or � if we consider only a part of the body � an intersection.
The temperature T is called the state and has to be from the space of almost ev-

erywhere bounded functions L∞(Ω). A solution of (1) belongs to this space for space
dimensions N ≤ 3.

3. Theoretical preparations

In this section we will use the usual �mathematical� names for the state, i.e. we will
write y instead of T . Later, when we consider the problem of optimal temperature
control again, we will use the �physical� notation.

3.1. The state constrained problem. We consider the problem (OCP)

min
1

2

�

Ω

(y − yd)2 + κu2 dx

subject to the PDE (written as operator equation)

Ay = Bu(2)

and to the state constraints

ya ≤ y ≤ yb a.e. in Ω.

Here, the operator equation is the weak formulation of a PDE in divergence form:
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�
Ω

∇vA∇y + a0yv +

�
Γ

α0yv ds(3)

=

�
Ω

uv dx+

�
Γ

gv ds ∀ v ∈ H1(Ω),

cf. e.g. [2]. Let Y be a function space, e.g. the space H1(Ω) ∩ C(Ω̄) or L2(Ω).
We say a function y ∈ Y is admissible, i� it ful�lls the inequality constraints. The

set of all admissible states is called the admissible set Yad.
The objective functional

(4) J(y, u) :=
1

2

�

Ω

(y − yd)2 + κu2 dx

has some important properties:

• it is continuous for all (y, u) ∈ (H1(Ω) ∩ C(Ω̄)) ⊂ L2(Ω)× L2(Ω)→ R,
• it is strongly convex, i.e. J(θ(y1, u1) + (1 − θ)(y2, u2)) < θJ(y1, u1) + (1 −
θ)J(y2, u2) for all θ ∈ (0, 1), and
• it is coercive, i.e. ‖J(y, u)‖ → ∞ if ‖(y, u)‖ → ∞.

The next theorem provides the existence of an unique solution of (OCP).

Theorem 3.1. If Yad is convex and has non-empty interior, the functional J is con-
tinuous, strongly convex, and coercive, then the problem

min
y∈Yad

J(y, u)

subject to

Ay = Bu

has a unique solution (y∗, u∗) ∈ Yad × L2(Ω).

We can show that our problem ful�ll the assumptions of the last theorem.

Theorem 3.2. Let (y, u)∗ be the solution of the Problem (OCP). Then, there are La-
grange multipliers ηa and ηb from the space of regular Borel measures and an adjoint
state p such that the pair (y∗, u∗) together with p and ηa, ηb ful�lls

• the adjoint equation

A∗p =

�
Ω

(y∗ − yd) v dx

−
�

Ω

v dηa +

�
Ω

v dηb ∀ v ∈ H1(Ω),

• the gradient equation

B∗p+ κ

�
Ω

u∗v dx = 0 ∀ v ∈ L2(Ω),

• the state equation

Ay = Bu,

and
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• the complementary slackness conditions (CSC)�
Ω̄

(y∗ − ya) dηa = 0

�
Ω̄

(yb − y∗) dηb = 0

ηa, ηb, (y
∗ − ya), (yb − y∗) ≥ 0 in Ω.

By setting
�

Ω
uv dx = − 1

κ
B∗p we can eliminate the gradient equation. The right-

hand side of the adjoint equation is measure valued. Consequently, the adjoint state is
less regular than the state. Note, that in the CSC the measures to the integrals are ηa
and ηb resp. That is not the same as e.g.

�
Ω

(y∗ − y)ηa dx. The condition ηa, ηb ≥ 0
means that ηa,ηb are positive measures rather than a point-wise evaluation.
To implement the CSC we regularize it. Here, some di�erent techniques are in use.

We mentioned e.g. the Moreau-Yosida regularization, which makes it necessary to
implement a PDE with a smoothed version of the maximum function on the right-
hand-side in COMSOL Multiphysics. Examples and more references are given in [1].

3.2. The Barrier Method. Another way to solve OCPs with point-wise state con-
straints are Barrier methods. Barrier methods eliminate the constraint(s) by adding a
so called barrier functional, e.g.

b(y;µ) = −µ
�

Ω

ln(y − ya)(5)

+ ln(yb − y) dx+ χYad(y),

to the objective function, which results in optimality systems with nonlinear couplings
between the PDEs. An algorithm to solve this optimality system can now easily be
implemented in COMSOL.
In (5), χ is the indicator function de�ned by

χYad(y) =

{
0 if y ∈ Yad
∞ if y 6∈ Yad

.

The Barrier functional has some remarkable properties:

• b(y) ≤ ∞ if y ∈ Yad and meas{x ∈ Ω | ya(x) = y(x) or yb(x) = y(x)} = 0,
• b(y) =∞ if y 6∈ Yad,.
• b(y)→∞ if y → ∂Yad.
• if y ∈ Yad\∂Yad (i.e. the interior of Yad) then b(y) is directional di�erentiable in
all directions h ∈ L2(Ω) with

b(y)
′
h =

�

Ω

(
µ

yb − y
− µ

y − ya

)
h dx.

We consider now the problem (IP):

min

�
Ω

(y − yd)2 + κu2

− µ ln(y − ya) + ln(yb − y) dx+ χYad(y)
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subject to the PDE
Ay = Bu.

Note that this problem does not have any inequality constraints.
Barrier (or Interior-Point) methods are extensively investigated in some recent papers

as e.g. [3], [4], such that we will summarize here the main results without proof.

Theorem 3.3. (Existence of the Central Path) The Problem (IP) has for every µ > 0
a unique solution (y, u)µ. The state yµ holds yµ = ya or yµ = yb only on subsets of Ω
with measure zero.

Theorem 3.4. (Convergence of the Central Path) Let (y, u)∗ be the unique minimizer
of Problem (OCP). Then for for every µ > 0 the error estimate

‖(y, u)µ − (y, u)∗‖ ≤ c
√
µ

holds for a c > 0.

Theorem 3.5. (Optimality system) Let (yµ, uµ) be the unique minimizer of Problem
(IP). Assume that yµ holds ya(x) < y(x) < yb(x) almost everywhere in Ω. Then there
is an adjoint state pµ such that (yµ, uµ) together with pµ ful�ll

• the adjoint equation

A∗pµ =

�
Ω

(yµ − yd) v dx

−
�

Ω

µ

yµ − ya
v dx+

�
Ω

µ

yb − yµ
v dx,

∀ v ∈ H1(Ω)

• the gradient equation

B∗p+ κ

�
Ω

uµv dx = 0 ∀ v ∈ L2(Ω),

and
• the state equation

Ayµ −Buµ = 0.

One di�erence to Theorem 3.2 is that here no Lagrange multipliers appear, instead
we have two integrals over rational functions. In view of later programming in COM-
SOL, we reformulate the optimality system in terms of Lagrange multipliers. By the
setting (ηa)µ = µ

yµ−ya and (ηb)µ = µ
yb−yµ

we can introduce approximations of the orig-

inal Lagrange multipliers. These approximations are at least from L1(Ω), which is a
better space than the space of Borel measures. We insert (ηa)µ and (ηb)µ in the adjoint
equation. To make this formulation valid, the weak complementary slackness condition�

Ω

(yµ − ya) (ηa)µ dx = µ(6)

�
Ω

(yb − yµ) (ηb)µ dx = µ

together with the claim

(7) (yµ − ya), (yb − y), (ηa)µ , (ηb)µ ≥ 0
5



has to be ful�lled. From the Gradient equation we get again

−Bu = −
�

Ω

uv dx =
1

κ
B∗p.

Note, that this weak CSC is more regular than the original one from Theorem 3.2.
Further, we remark that by changing the role of u and v in (3) the operators A and A∗

as well as B and B∗ have the same integral representation.
We implement the conditions (6) and (7) by the so called (smoothed) Fischer-

Burmeister function

ΦFB(y, yc, ηc;µ) :=

(y − yc) + ηc −
√

(y − yc)2 + η2
c + 2µ.

It is easy to show that ΦFB(y, yc, ηc;µ) = 0 is equivalent to (y − yc)ηc = µ and (y −
yc), ηc ≥ 0. The Fischer-Burmeister function is a so called nonlinear complementary
function (NCP).
By

H(y, p, ηa, ηb) :=


A∗p−B(y − yd

−ηa + ηb)
Ay + 1

κ
B∗p

ΦFB(y, ya, ηa;µ)
ΦFB(yb, y, ηb;µ)

 ,(8)

we can sample the optimality system into a function H. The mapping µ 7→ (y, p, ηa, ηb)µ
is called the Central Path. One can show, cf. e.g. [4], that this mapping is (Lipschitz)
continuous.

3.3. Path-following algorithm. A conceptual algorithm in function spaces for our
Barrier method is given by the following lines:

Algorithm 1 Barrier Method
Choose 0 < σ < 1, 0 < eps,
a initial solution (y, p, ηa, ηb)0 such that

ya < y0 ≤ yb. Choose µ0 > 0. Set k = 0.
while µk > eps
{

µk+1 = σµk
dk+1 = −∂H((y, p, ηaηb)k;µk+1)−1H(y, p, ηa, ηb)k;µk+1)
(y, p, ηa, ηb)k+1 = (y, p, ηa, ηb)k + dk+1

k = k + 1
}

Within the while loop we take only one Newton step from (y, p, ηa, ηb)
k in direction

∂H(y, p, ηa, ηb)
k. By this, we construct a polygonal (in function space) that approxi-

mates the Central Path. In Figure 2 we sketch this method.
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(y, p, ηa, ηb)µk

(y, p, ηa, ηb)
k−1

(y, p, ηa, ηb)
∗

(y, p, ηa, ηb)
k

(y, p, ηa, ηb)µk+1

(y, p, ηa, ηb)
k+1

Figure 2. Sketch of Algorithm 1.

4. Applications

4.1. An academical example. For testing our algorithm, we �rst consider the fol-
lowing simple example (cf. e.g. [3]):

min
1

2

�
Ω

(y − yd)2 + u2dx,

such that the pair (y, u) ful�lls the elliptic PDE

−∆y + y = u in Ω

~n · (∇y) = 0 on Γ,

and the point-wise state constraint

ya ≤ y a.e. in Ω.

We set

yd(x1, x2)

= 4−max{−20((x1 − 0.5)2

+ (x2 − 0.5)2) + 1, 0},
ya(x1, x2)

= min{−20((x1 − 0.5)2

+ (x2 − 0.5)2) + 3, 2}.
It can easily be shown that u∗ = 2, p = −2, y∗ = 2, together with

ηa = max
{
−20

(
(x1 − 0.5)2 + (x2 − 0.5)2

)
+ 1, 0

}
ful�ll the optimality system given by Theorem 3.2.
Using (8), we can now easily implement our path-following algorithm in COMSOL.

We use the general form of a PDE. First we de�ne the function H:
fem.equ.ga = { { {'-yx1' '-yx2'}

{'-px1' '-px2'}

{'0' '0'} } };

fem.equ.f = { {'-y-1/kappa*p'...

'-p+y-y_d(x1,x2)-eta'...

7



'eta+(y-y_c(x1,x2)-sqrt(eta^2...

+(y-y_c(x1,x2))^2)-2*mu)'} };

To get an initial solution for Algorithm 1, we solve the problem �rst for µ0 with a high
number (e.g. 50) of possible Newton steps. Next, we compute an adaptively re�ned
mesh by using adaption, where the maximal number of Newton steps is set to 50.
The heart of the program, the path-following loop, can be simply implemented by

mu=1e-1;

while mu>1e-8,

mu = mu*0.85;

fem.const{4} = num2str(mu);

fem.xmesh = meshextend(fem);

fem = femnlin(fem,...

'init',fem.sol,...

'out','fem',...

'Damping','off',...

'Maxiter',1);

end

Note, that we now set the number of Newton steps to one and turn o� the damping of
the Newton method. This implements exactly the method as described in Algorithm 1.
Femnlin returns the warning Returned solution has not converged which we can ignore:
The convergence of the IP-path-following algorithm is ensured by the choice of the
parameter σ. In our program we set σ = 0.85. Further, we chose eps = 10−8.
The following �gures show the computed solutions ỹ = yµeps , p̃ = pµeps and the

Lagrange multiplier η̃a = η
µeps
a .

(a) (b)

Figure 3. Numerically computed optimal state ỹ and adjoint state p̃.
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Figure 4. Lagrange Multiplier η̃a.

Note, that yµ, pµ, and ηµ refer to iterates of Algorithm 1 while yµ, pµ, and ηµ are
points on the central path. Note further, the scale of the z-axis in Figure 3 is 10−4. In
Figure 4 some peaks appear on the border of the active set, i.e. the subset of all x ∈ Ω
where ηa > 0. This causes the rather large errors of the Lagrange multiplier, cf. Table
1. One can �nd the in�uence of these peaks also in the adjoint state pµ, cf. Figure
3 (b). Here, by µ → 0 the NCP-function becomes non-di�erentiable in points where
ηa = 0 and (y − ya) = 0.
Having exact optimal solutions at hand, we are able to determine errors between e.g.

yµ and y∗. Table 1 shows the convergence of yµ, pµ, and (ηc)
µ.

µ ‖ỹ − y∗‖L2 ‖p̃− p‖L2 ‖η̃c − ηa‖L2

10−2 2.09 · 10−2 2.09 · 10−2 1.28 · 10−1

10−3 2.12 · 10−3 2.12 · 10−3 5.62 · 10−2

10−4 2.17 · 10−4 2.10 · 10−4 2.06 · 10−2

10−5 2.23 · 10−5 2.23 · 10−5 9.036 · 10−3

10−6 2.29 · 10−6 2.29 · 10−6 8.34 · 10−3

10−7 1.99 · 10−7 2.11 · 10−7 1.18 · 10−2

10−8 2.03 · 10−8 6.94 · 10−8 1.22 · 10−2

Table 1. Results to Example 1.

In Figure 6, the linear convergence in state yµ and adjoint state pµ (and by uµ = 1
κ
pµ

also in uµ) is visible.
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Figure 5. Errors ‖yµ − y∗‖L2(Ω), ‖pµ − p∗‖L2(Ω) and ‖(ηa)µ − ηa‖L2(Ω).
Both axis are scaled logarithmically.

The error in the Lagrange multiplier stagnates for µ < 10−5. This is caused by
the discretization error and the peaks resulting from the numerical destabilization of
the method for very small µ. This is not a drawback of this method, but one task
when using regularizations is to �nd a balance between disturbing the problem and the
improvement for the behavior of the method by the regularization. In this example the
path following should be stopped at eps = 10−5.

4.2. The optimal control of the thermoregularization. In this section we return
to the problem (HYPER). We simplify our patient in the following way: We consider
only the part of the body (e.g. the leg or a part of it) where the tumor is situated.
The cut o�s of the rest of the body are modeled by do-nothing boundary conditions.
We identify the tumor as an ellipsoid inside the muscle tissue. In the di�erent kinds of
tissue we have the following di�usion and perfusion coe�cients.

tissue aii a0

muscle 0.5 3.8
fat 0.2 1.6
bone 0.3 0.05
tumor 0.2 0.5

Table 2. Thermal conductivity and perfusion coe�cients.

The desired temperature and the constraints are de�ned by

Td =

{
45 x ∈ Ωtumor

any x ∈ Ω\Ωtumor

,

Ttherapeutical =

{
45 x ∈ Ωtumor

36 x ∈ Ω\Ωtumor

,
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and

Thealthy =

{
48 x ∈ Ωtumor

41 x ∈ Ω\Ωtumor

.

The lower bound Ta guaranties the e�ect of the hyperthermia, and Tb is a safety bound
to protect the patient. Note, that Td is de�ned only in Ωtumor. Further, we set the
outside temperature Tb = 36 and α0 = 1.2.
By using our algorithm we obtain the optimal temperature provided in Figure 7 (a).

(a) (b)

Figure 6. Optimal temperature T µeps and Optimal control uµeps .

The dark blue colored region is muscle tissue with strong blood perfusion. Note the
relatively hot region in the center. This is caused by the good heat conduction by a
coincidental lack of perfusion inside the bone. Figure 7 (b) presents the optimal heat
distribution. Blue colors mark regions where the patient should be cooled.

5. Conclusion

Having access to the optimality system in PDE form, COMSOLMultiphysics provides
by its capability to solve coupled non-linear systems of PDEs an easily implementable
way to solve optimal control problems. An algorithm based on barrier methods was
successfully tested on an academical problem with known solution as well as on the 3D
hyperthermia model problem. Applicability of this method to other realistic problems
has to be decided depending on the complexity of the problem.
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