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Abstract. We present and analyze novel hierarchical a posteriori error es-
timates for self-adjoint elliptic obstacle problems. Our approach differs from
straightforward, but non-reliable estimators [9] by an additional extra term ac-
counting for the deviation of the discrete free boundary in the localization step.
We prove efficiency and reliability on a saturation assumption and a regularity
condition on the underlying grid. Heuristic arguments suggest that the extra
term is of higher order and preserves full locality. Numerical computations
confirm our theoretical findings.

1. Introduction

Hierarchical a posteriori error estimates are based on the extension of the given
finite element space S by an incremental space V . After discretization of the actual
defect problem with respect to the extended space S +V , the corresponding hierar-
chical splitting and a subsequent localization step give rise to local defect problems
associated with low-dimensional subspaces of V . These local subproblems can be
often solved exactly providing local contributions that finally sum up to the desired
a posteriori estimate of the error. We refer to the pioneering work of Zienkiewicz et
al. [20] and Deuflhard et al. [6] or to the monographs of Verfürth [18] and Ainsworth
& Oden [1].

An attractive feature of hierarchical a posteriori error estimates is their robust-
ness. For linear self-adjoint elliptic problems, the local lower bounds and global
upper bounds (up to higher order terms) do not involve unknown constants weight-
ing different contributions of different nature, like jumps across the edges and inner
residuals. Moreover, the ratio of true and estimated error does not depend on pos-
sible jumps of coefficients resolved by the underlying mesh [19]. The upper bound
is typically proved on the so-called saturation assumption that the extended space
S+V provides a more accurate approximation than the original space S [3, 6]. The
saturation assumption holds, if data oscillation is relatively small [8].

Another advantage of hierarchical error estimation is their intriguing simplicity.
As a consequence, hierarchical concepts have been applied to various non-smooth
nonlinear problems [12], in particular to obstacle problems [9, 11, 13, 17] or two-
body contact problems in linear elasticity [16]. Astonishingly good effectivity rates
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were observed in all these applications. Moreover, the local contributions as result-
ing from the local defect problems provided highly effective and fully local error
indicators in adaptive refinement.

On the other hand, even for obstacle problems the theoretical analysis of hier-
archical error estimates is still in its infancy. Very recently, Siebert and Veeser [17]
derived efficient and reliable hierarchical error estimates for the energy functional
in obstacle problems which were later improved by Kornhuber et al. [13]. However,
straightforward hierarchical error estimates for the discretization error [9] might
fail to provide upper bounds for the discretization error, because reliability is lost
in the localization step (see, e.g., the counterexample at the end of Section 2). Re-
lated versions are more reliable but still no mesh-independent upper bounds are
available [11].

In this paper, we present an extension of straightforward hierarchical error esti-
mates [9] by an additional extra term accounting for the deviation of the discrete
free boundary in course of the localization step. In this way, we are able to prove
mesh-independent lower and upper bounds for the discretization error. To our
knowledge there are no related results in the literature. The proof is carried out
on a convexity condition on the obstacle function, a saturation assumption, and
a regularity condition on the underlying grid. More precisely, we assume that the
off-diagonal elements of the stiffness matrix are non-positive so that a monotonicity
argument can be applied. Numerical computations indicate that this condition is
not necessary for mesh-independence.

The novel extra term is a sum of local residuals associated with certain excep-
tional nodes. The exceptional nodes are always contained in the coincidence set.
Hence, our a posteriori error estimates reduce to well-known results [3, 6], if no
obstacle is present. Heuristic reasoning suggests that for non-degenerate problems
the exceptional nodes are concentrated at the discrete free boundary. This explains
why previous hierarchical error estimates [9] work well in practise. Indeed, the ex-
tra term is of higher order, preserves full locality, and there is no over-estimation of
the error inside of the coincidence set in this case. Our theoretical considerations
are nicely supported by numerical computations.

Throughout this paper, “A . B” means that A can be bounded by B multi-
plied with a generic constant depending only on the shape regularity of the actual
triangulation T , and “A ∼ B” stands for “A . B” and “B . A”.

2. Hierarchical extensions and local defect problems

Let Ω ⊂ R
d, d = 2, 3, be a bounded, polygonal or polyhedral domain with

Lipschitz-continuous boundary ∂Ω and denote H = H1
0 (Ω). We consider the ob-

stacle problem

(2.1) u ∈ K : a(u, v − u) ≥ ℓ(v − u) ∀v ∈ K,

involving the H-elliptic, symmetric bilinear form

(2.2) a(v, w) =

∫

Ω

∇v · ∇w dx, v, w ∈ H,

with the associated energy norm ‖v‖ = a(v, v)
1
2 , and a bounded linear functional

ℓ ∈ H ′. The closed, convex subset

K = {v ∈ H | v ≥ ψ a.e. in Ω} ⊂ H
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is induced by an obstacle function ψ ∈ C(Ω) satisfying ψ ≤ 0 on ∂Ω. It is well-
known [10] that (2.1) admits a unique solution u ∈ K. Hence, the Lagrange multi-
plier σ ∈ H ′,

(2.3) 〈σ, v〉 = ℓ(v) − a(u, v), v ∈ H,

is well-defined.
Let T be a conforming and shape regular triangulation of Ω with N and E

denoting the set of all interior vertices and edges, respectively. We introduce the
space S ⊂ H of piecewise linear finite elements on T spanned by the nodal basis
{φP | P ∈ N}. Now the finite element discretization of (2.1) reads as

(2.4) uS ∈ KS : a(uS , v − uS) ≥ ℓ(v − uS) ∀v ∈ KS

with discrete constraints

KS = {v ∈ S | v(P ) ≥ ψ(P ) ∀P ∈ N} ⊂ S.

Note that KS ⊂ K, if ψ ∈ S. Of course, (2.4) is also uniquely solvable. In analogy
to (2.3), we introduce the discrete Lagrange multiplier σS ∈ H ′,

〈σS , v〉 = ℓ(v) − a(uS , v), v ∈ H.

Note that 〈σS , φP 〉 ≤ 0 holds for all P ∈ N . Obviously, the error e = u− uS is the
unique solution of the continuous defect problem

(2.5) e ∈ D : a(e, v − e) ≥ 〈σS , v − e〉 ∀v ∈ D

with defect constrains

D = {v ∈ H | v ≥ ψ − uS a.e. in Ω} ⊂ H.

In order to derive a computable approximation of e ∈ H , (2.5) is discretized by
another finite element space Q which should be larger than S. To fix the ideas,
we select the space Q ⊂ H of piecewise quadratic finite elements on T . Note that
each function v ∈ Q is uniquely determined by its nodal values in P ∈ NQ =
N ∪{xE | E ∈ E}, where xE stands for the midpoint of E ∈ E . We emphasize that
Q can be regarded as a hierarchical extension of S, i.e.,

(2.6) Q = S + V , V = span {φE | E ∈ E},

involving the quadratic bubble functions φE ∈ Q characterized by φE(P ) = δxE,P ,
∀P ∈ NQ (Kronecker-δ).

Remark 2.1. Our subsequent analysis carries over to hierarchical extensions as
spanned by other bubble functions. For example, we could as well define φE as the
piecewise linear nodal basis functions associated with the vertices xE ∈ N ′ of the
triangulation T ′ resulting from uniform refinement of T or, equivalently, select Q
to be the space the piecewise linear finite elements on T ′.

We consider the discrete defect problem

(2.7) eQ ∈ DQ : a(eQ, v − eQ) ≥ ρS(v − eQ) ∀v ∈ DQ

with discrete constraints

DQ = {v ∈ Q | v(P ) ≥ ψ(P ) − uS(P ) ∀P ∈ NQ}.

Observe that uQ = uS + eQ ∈ Q is just the piecewise quadratic approximation of
u. It is well-known [1, 2, 3, 11, 12] that the so-called saturation assumption

(2.8) ‖u− uQ‖ ≤ β‖u− uS‖, β < 1,
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implies the a posteriori error estimate

(2.9) (1 + β)−1‖eQ‖ ≤ ‖u− uS‖ ≤ (1 − β)−1‖eQ‖.

In the unconstrained case, it has been shown in [8] that small data oscillation
implies the saturation assumption (2.8).

Of course, the evaluation of eQ is still far too costly to be used as an a posteriori
error estimate. Using the uniquely determined splitting v = vS + vV and w =
wS + wV of v, w ∈ Q into vS , wS ∈ S and vV , wV ∈ V , we define the bilinear form

(2.10) aQ(vQ, wQ) = a(vS , wS) +
∑

E∈E

vV(xE)wV(xE)a(φE , φE)

and the associated energy norm ‖v‖Q = aQ(v, v)
1
2 on Q. Note that aQ(·, ·) is

resulting from decoupling of S and V and further diagonalization on V . The norm
equivalence

(2.11) aQ(v, v) ∼ a(v, v) ∀v ∈ Q

follows from the estimates

(2.12) ‖vS‖ + ‖vV‖ ∼ ‖v‖, ‖vV‖Q =

(

∑

E∈E

vV(xE)2a(φE , φE)

)
1
2

∼ ‖vV‖,

as obtained from related local versions [3, 6]

(2.13) ‖vS‖T + ‖vV‖T ∼ ‖v‖T ,

(

∑

E∈ET

vV(xE)2a(φE , φE)

)
1
2

∼ ‖vV‖T ,

where ET denotes the set of edges of T ∈ T .
It has been shown in [11] that the unique solution εQ of the associated variational

inequality

(2.14) εQ ∈ DQ : aQ(εQ, v − εQ) ≥ 〈σS , v − εQ〉 ∀v ∈ DQ

inherits the norm equivalence (2.11), i.e.,

(2.15) ‖εQ‖Q ∼ ‖eQ‖.

Due to the remaining coupling of S and V by the constraints DQ, the unique
solution εQ is still not available in closed form. Hence, we introduce the subset

DV = {v ∈ V | v(xE) ≥ ψ(xE) − uS(xE) ∀E ∈ E} ⊂ DQ

and the corresponding approximate discrete defect problem

(2.16) ε̃V ∈ DV : aQ(ε̃V , v − ε̃V) ≥ 〈σS , v − ε̃V〉 ∀v ∈ DV .

The solution ε̃V ∈ V is explicitly given by

(2.17) ε̃V(xE) =

{

−dE‖φE‖
−1 ∀E ∈ E1 = {E ∈ E | ρE ≤ −dE}

ρE‖φE‖−1 ∀E ∈ E2 = {E ∈ E | ρE > −dE}
,

where we have set

dE = (uS(xE) − ψ(xE))‖φE‖, ρE = 〈σS , φE〉‖φE‖
−1, E ∈ E .

The resulting a posteriori estimate

(2.18) ‖ε̃V‖
2
Q =

∑

E∈E

η2
E , ηE = |ε̃V(xE)|‖φE‖, E ∈ E ,
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for the discretization error ‖u − uS‖2 has been suggested in [9] where the local
contributions ηE have also been used successfully as refinement indicators. In the
unconstrained case, it is easily checked that εQ = ε̃V so that, by (2.9) and (2.15)
the error estimate (2.18) is efficient and reliable on the saturation assumption (2.8).
However, this is no longer true for obstacle problems. The following counterexample
shows that in general ‖εQ‖Q can not be bounded by ‖ε̃V‖Q at all.

Let Ω = (0, 1), a(v, w) =
∫ 1

0
v′w′ dx, ψ = 0, and

ℓ(v) =

∫ 1
4

0

(−3)v(x) dx+

∫ 3
4

1
4

v(x) dx+

∫ 1

3
4

(−3)v(x) dx.

Obviously, the piecewise linear finite element approximation resulting from S =
span {φP }, P = 1

2
, is uS = 0. The corresponding piecewise quadratic finite element

approximation eQ of the error u−uS cannot be zero, because ℓ(φQP )− a(0, φQP ) > 0

holds for the quadratic nodal basis function φQP . On the other hand, it is easily
checked that ε̃V = 0.

One might conclude that the hierarchical error estimate (2.18) needs some ex-
tension accounting for the deviation in the localization step from (2.14) to (2.16).
This will be the subject of the following section.

3. Efficiency and Reliability

For each P ∈ N and E ∈ E , we define

ωP = supp φP , γP = {E′ ∈ E | P ∈ E′}, ωE = supp φE ,

and the piecewise quadratic nodal basis function φQP ∈ Q,

(3.1) φQP = φP −
∑

E∈γP

φP (xE)φE ,

associated with P . We further introduce the subset of exceptional nodes

Nb = {P ∈ N | ρP > 0} ⊂ N ,

denoting

(3.2) ρP = 〈σS , φ̃P 〉‖φP ‖
−1, φ̃P = φP −

∑

E∈γ1
P

φP (xE)φE , γ1
P = γP ∩ E1.

Remark 3.1. Obviously, 〈σS , φ̃P 〉 ≤ 0 and thus P 6∈ Nb holds, if γ1
P = ∅ and

therefore φ̃P = φP . Moreover, for non-degenerate problems the discrete Lagrange
multiplier σQ = σS −a(eQ, ·) associated with the piecewise quadratic approximation

uQ = uS + εQ satisfies 〈σQ, φ̃P 〉 < 0, if uQ is node-wise identical with the obstacle

on ωP and therefore φ̃P = φQP . Hence, we can also expect P 6∈ Nb in this case, as
soon as σS approximates σQ sufficiently well. As a consequence, for well-behaved
problems the set of exceptional nodes Nb can be expected to concentrate along the
continuous free boundary with increasing refinement.

Now we are ready to formulate the main result of this paper.

Theorem 3.2. Assume that the obstacle function ψ satisfies the condition

(3.3) xS(xE) ≥ ψ(xE) ∀E ∈ E
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and that T satisfies the regularity condition

(3.4) a(φP , φP ′) ≤ 0 ∀P, P ′ ∈ N , P 6= P ′.

Then the equivalence

(3.5) ‖eQ‖
2
Q ∼

(

‖ε̃V‖
2
Q +

∑

P∈Nb

ρ2
P

)

of hierarchical error estimates holds.

Obviously, (3.3) is valid, if ψ is piecewise convex along the edges E ∈ E . For
general obstacles, say ψ ∈ H , an equivalent problem with zero obstacle could
be derived by affine transformation. More regular obstacles could be replaced by
piecewise linear approximations which would lead to a corresponding higher order
term in the a posteriori error estimates.

It is well-known that (3.4) is satisfied in d = 2 space dimensions, if (and only if
with some possible rare exceptions near the boundary) T is a Delaunay triangu-
lation [5]. There are counterexamples [14] showing that this is is not the case for
d = 3.

Remark 3.3. In contrast to ‖eQ‖, the error estimate ‖ε̃V‖2
Q +

∑

P∈Nb
ρ2

P consists

of explicitely computable quantities (cf. (2.18) and (3.2)). Moreover, in the light of
Remark 3.1, the extra term

∑

P∈Nb
ρ2

P can be regarded as a higher order term.

We start the proof of Theorem 3.2 by collecting some local properties of solution
εQ of the preconditioned defect problem (2.14).

Lemma 3.4. The inequality εQ(xE) > ψ(xE) − uS(xE) implies

(3.6) aQ(εQ, φE) = 〈σS , φE〉.

Let εQ = εS + εV denote the hierarchical splitting of εQ into εS ∈ S and εV ∈ V.
Then

(3.7) εV(xE) = max{ρE‖φE‖
−1, ψ(xE) − (uS + εS)(xE)}

holds for all E ∈ E.

Proof. Inserting v = εQ + φE ∈ DQ into (2.14), we get

(3.8) aQ(εQ, φE) ≥ 〈σS , φE〉, ∀E ∈ E .

If εQ(xE) > ψ(xE) − uS(xE), then there is a sufficient small α > 0 such that
εQ(xE)−αφE(xE) ≥ ψ(xE)−uS(xE). Inserting v = (εQ(xE)−αφE(xE))φE ∈ DQ

into (2.14), we get

aQ(εQ,−αφE) ≥ 〈σS ,−αφE〉.

This proves (3.6). Now we use the splitting εQ = εS + εV . We write out the
definition of aQ(·, ·) to reformulate (3.8) as

εV(xE) ≥ ρE‖φE‖
−1,

where, as we have have already shown above, equality holds, if εQ(xE) > ψ(xE) −
uS(xE) or, equivalently, εV(xE) > ψ(xE) − (uS + εS)(xE). This concludes the
proof. �
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Note that the inequality εQ(P ) > ψ(P ) − uS(P ) does not imply

aQ(εQ, φP ) = 〈σS , φP 〉.

Indeed, we have εQ − αφP /∈ DQ for all α > 0, if εQ(xE) = ψ(xE) − uS(xE) holds
for some E ∈ γP .

In the next two lemmata we further analyze the components εS ∈ S and εV ∈ V
of the hierarchical splitting εQ = εS + εV ∈ DQ.

Lemma 3.5. Assume that the regularity condition (3.4) is satisfied. Then

εS ≥ 0.

Proof. We decompose εS = ε+S + ε−S into its positive part ε+S ∈ S and its negative

part e−S ∈ S with the nodal values

ε+S (P ) = max(0, εS(P )), ε−S (P ) = min(0, εS(P )), P ∈ N .

Obviously, it is sufficient to show ε−S = 0. Inserting v = εQ + φP ∈ DQ into (2.14)
we get

a(εS , φP ) = aQ(εQ, φP ) ≥ 〈σS , φP 〉 ∀P ∈ N

so that ε−S (P ) ≤ 0 yields

a(εS , ε
−
S ) ≤ 〈σS , ε

−
S 〉.

As either uS(P ) > ψ(P ) implies 〈σS , φP 〉 = 0 or uS(P ) = ψ(P ) leads to ε−S (P ) = 0,
it is easily checked that

(3.9) a(εS , ε
−
S ) ≤ 〈σS , ε

−
S 〉 =

∑

P∈N

e−S (P )〈σS , φP 〉 = 0.

Utilizing the regularity condition (3.4), i.e., a(φP1
, φP2

) ≤ 0 for P1 6= P2 and the
identity ε+S (P1)ε

−
S (P2) = 0 for P1 = P2, we directly obtain

−a(ε+S , ε
−
S ) =

∑

P1,P2∈N

ε+S (P1)(−ε
−
S (P2))a(φP1

, φP2
) ≤ 0.

The above two estimates finally yield

a(ε−S , ε
−
S ) = a(εS , ε

−
S ) − a(ε+S , ε

−
S ) ≤ 0.

This concludes the proof. �

As a direct consequence of the preceding two lemmata, we can now compare the
piecewise quadratic components εV and ε̃V .

Lemma 3.6. Assume that the regularity condition (3.4) is satisfied. Then

(3.10) ρE‖φE‖
−1 ≤ εV(xE) ≤ ε̃V(xE) ∀E ∈ E

and both inequalities hold with equality for all E ∈ E2.

Proof. From Lemma 3.4 it is known that

εV(xE) = max{ρE‖φE‖
−1, ψ(xE) − (uS + εS)(xE)}

while

ε̃V(xE) = max{ρE‖φE‖
−1, ψ(xE) − uS(xE)}

holds by definition (2.17). Now the assertion follows directly from Lemma 3.5. �
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In the light of Lemma 3.6, E2 can be regarded as a (sub-)set of non-contact nodes
in the sense that

(3.11) εQ(xE) > ψ(xE) − uS(xE) ∀E ∈ E2.

However, E ∈ E1 does not imply εQ(xE) = ψ(xE) − uS(xE).
We are now ready to prove the efficiency of our hierarchical error estimate.

Proposition 3.7. Assume that the regularity condition (3.4) is satisfied. Then the
estimate

(3.12)

(

‖ε̃V‖
2
Q +

∑

P∈Nb

ρ2
P

)

. ‖εQ‖
2
Q

holds.

Proof. By Lemma 3.6, we have

|ε̃V(xE)| ≤ |εV(xE)| ∀E ∈ E

and therefore
‖ε̃V‖

2
Q ≤ ‖εV‖

2
Q ≤ ‖εQ‖

2
Q.

It remains to show
∑

P∈Nb
ρ2

P . ‖εQ‖2. Let P ∈ Nb. Note that φ̃P = φQP +
∑

E∈γ2
P
φP (xE)φE . Inserting εQ + φQP ∈ DQ into (2.14), we get

〈σS , φ
Q
P 〉 ≤ aQ(εQ, φ

Q
P )

which, in combination with (3.11) and (3.6), leads to

〈σS , φ̃P 〉 ≤ aQ(εQ, φ̃P ).

Now we write out the definitions of aQ(·, ·) and φ̃P to obtain

0 < 〈σS , φ̃P 〉 ≤ a(εS , φP ) −
∑

E∈γ1
P

φP (xE)εV(xE)a(φE , φE)

≤ ‖εS‖ωP
‖φP ‖ +

∑

E∈γ1
P

|εV(xE)|‖φE‖2

exploiting the Cauchy-Schwarz inequality, the triangle inequality and |φP (xE)| ≤ 1.
Another application of the Cauchy-Schwarz inequality provides

ρ2
P . ‖εS‖

2
ωP

+
∑

E∈γ1
P

|εV(xE)|2‖φE‖
2.

We sum up these estimates for all P ∈ Nb, to get
∑

P∈Nb

ρ2
P .

∑

P∈Nb

‖εS‖
2
ωP

+
∑

P∈Nb

∑

E∈γ1
P

|εV(xE)|2‖φE‖
2

. ‖εS‖
2 + ‖εV‖

2
Q = ‖εQ‖

2
Q

which concludes the proof. �

In preparation of proving reliability we state two further lemmata.

Lemma 3.8. The inequality εQ(P ) > ψ(P ) − uS(P ) implies

(3.13) aQ(εQ, φ
Q
P ) = 〈σS , φ

Q
P 〉, aQ(εQ, φ̃P ) = 〈σS , φ̃P 〉

with φQP and φ̃P defined in (3.1) and (3.2), respectively.
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Proof. As φQP (P ′) = δP,P ′ for all P, P ′ ∈ NQ, the left equality in (3.13) is shown in
a similar way as (3.6). Exploiting (3.11)

aQ(εQ, φ̃P ) = aQ(εQ, φ
Q) +

∑

E∈γP∩E2
φP (xE)aQ(εQ, φE)

= 〈σS , φ
Q
P 〉 +

∑

E∈γP∩E2
φP (xE)〈σS , φE〉 = 〈σS , φ̃P 〉

follows from the left inequality in (3.13) and (3.6). �

Lemma 3.9. The estimate

(3.14) |v(P ) − v(xE)| . ‖v‖ωP
‖φP ‖

−1

holds for all P ∈ N , E ∈ γP and v ∈ Q.

Proof. Let P ∈ N , E ∈ γP and v = vS + vV ∈ Q with vS ∈ S and vV ∈ V . Since

v(xE) = vV(xE) + vS(xE) = vV(xE) +
∑

P ′∈N

vS(P ′)φP ′ (xE),

and
∑

P ′∈N φP ′(xE) = 1, it is clear that

(3.15) v(xE) − v(P ) = vV(xE) +
∑

P ′∈N ,P ′ 6=P

(vS(P ′) − vS(P ))φP ′ (xE).

Note that φP ′(xE) 6= 0, if and only if P ′ ∈ ωP . Select T ∈ T such that P, P ′ ∈ T ⊂
ωP and let hT = diam T . Then the shape regularity of T implies

|vS(P ′) − vS(P )| ≤ hT |∇vS |T | . h
1−d/2

T ‖vS‖ωP
,

because ∇vS |T is constant. It is easily checked that ‖φP ‖ ∼ h
d/2−1

T giving

|vS(P ′) − vS(P )| . ‖φP ‖
−1‖vS‖ωP

.

Now choose T ∈ T such that xE ∈ T ⊂ ωP . Then

|vV(xE)| ≤

(

∑

E′∈ET

vV(xE′ )2

)
1
2

. h
1−d/2

T ‖vV‖T . ‖φP ‖
−1‖vV‖ωP

follows from ‖φE′‖ ∼ h
d/2−1

T and the equivalence (2.13) of local norms. Inserting
these estimates into (3.15), we get

|v(xE) − v(P )| . (‖vV‖ωP
+ ‖vS‖ωP

)‖φP ‖
−1.

Now the assertion follows from left estimate in (2.13) and the shape regularity of
T . �

We are now ready to prove the reliability of our hierarchical error estimate.

Proposition 3.10. Assume that condition (3.3) and the regularity condition (3.4)
is satisfied. Then the estimate

(3.16) ‖εQ‖
2
Q .

(

‖ε̃V‖
2
Q +

∑

P∈Nb

ρ2
P

)

.

holds.
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Proof. We write out the definition (2.10) of aQ(·, ·) to obtain

aQ(εQ, εQ) = aQ(εQ, εS) +
∑

E∈E

εV(xE)aQ(εQ, φE).

As a consequence of (3.11) and (3.6) this leads to

aQ(εQ, εQ) = aQ(εQ, εS) +
∑

E∈E1

εV(xE)aQ(εQ, φE) +
∑

E∈E2

ρ2
E .

Utilizing the splitting E1 = E+
1 ∪ E−

1 ,

E+
1 = {E ∈ E1 | εQ(xE) > 0}, E−

1 = {E ∈ E1 | εQ(xE) ≤ 0},

and εV(xE) = εQ(xE) − εS(xE), we rewrite this identity according to

(3.17) aQ(εQ, εQ) = I1 + I2 + I3 +
∑

E∈E2

ρ2
E ,

where

I1 = aQ(εQ, εS) −
∑

E∈E1

εS(xE)aQ(εQ, φE),

and

I2 :=
∑

E∈E+

1

εQ(xE)aQ(εQ, φE), I3 =
∑

E∈E−

1

εQ(xE)aQ(εQ, φE).

Exploiting (3.3), |εQ(xE)| = −εQ(xE) ≤ uS(xE) − ψ(xE) = dE‖φE‖−1 holds for
all E ∈ E−

1 . Hence, the Cauchy-Schwarz inequality, the identity aQ(εQ, φE) =
εV(xE)a(φE , φE), and the right norm equivalence in (2.12) yield

(3.18) I3 ≤
∑

E∈E−

1

dE |εV(xE)|‖φE‖ ≤

(

∑

E∈E1

d2
E

)
1
2

‖εV‖Q.

In the next step, we consider the term I1. Let

N1 = {P ∈ N | γ1
P 6= ∅}.

Note that Nb ⊂ N1, because P ∈ N \N1 implies φ̃P = φP and thus P ∈ N \Nb. Let
us consider some P ∈ N \N1 and assume that εQ(P ) = εS(P ) > 0 ≥ ψ(P )−uS(P ).
Then Lemma 3.8 provides

aQ(εQ, φP ) = 〈σS , φP 〉 ≤ 0.

As, by Lemma 3.5, εS(P ) < 0 does not occur, we have shown

aQ(εQ, εS) =
∑

P∈N

εS(P )aQ(εQ, φP ) ≤
∑

P∈N1

εS(P )aQ(εQ, φP ).

Let us consider the second term of I1. We insert the nodal representation εS(xE) =
∑

P∈NE
εS(P )φP (xE) with NE = {P ∈ N | φP (xE) 6= 0} and rearrange terms to

obtain
∑

E∈E1

εS(xE)aQ(εQ, φE) =
∑

E∈E1

(

∑

P∈NE

εS(P )φP (xE)
)

aQ(εQ, φE)

=
∑

P∈N1

εS(P )aQ

(

εQ,
∑

E∈γ1
P

φP (xE)φE

)

.
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Hence, we have shown

I1 ≤
∑

P∈N1

εS(P )aQ(εQ, φ̃P ).

Now Lemma 3.8 yields

aQ(εQ, φ̃P ) = 〈σS , φ̃P 〉

for all P ∈ N1 ⊂ N satisfying εQ(P ) = εS(P ) > 0 ≥ ψ(P ) − uS(P ). By definition
of Nb ⊂ N1, we have

(3.19) I1 ≤
∑

P∈N1

εS(P )〈σS , φ̃P 〉 ≤
∑

P∈Nb

εS(P )〈σS , φ̃P 〉.

Now let P ∈ Nb. As Nb ⊂ N1, it is clear that γ1
P 6= ∅ so that there is an EP ∈ γ1

P

with the property

εQ(xEP
) = min{εQ(xE) | E ∈ γ1

P }.

By Lemma 3.9, we have

|εQ(P ) − εQ(xEP
)| . ‖εQ‖ωP

‖φP ‖
−1

Either EP ∈ E−
1 leads to

εS(P ) = εQ(P ) ≤ εQ(P ) − εQ(xEP
)

. ‖εQ‖ωP
‖φP ‖

−1,

or EP ∈ E+
1 provides

εS(P ) = εQ(P ) = εQ(P ) − εQ(xEP
) + εQ(xEP

)

. ‖εQ‖ωP
‖φP ‖

−1 + εQ(xEP
).

In any case, we get

εS(P ) ≤ ‖εQ‖ωP
‖φP ‖

−1 + max{0, εQ(xEP
)}.

We insert this estimate into (3.19) and apply the Cauchy-Schwarz inequality, to
obtain

(3.20)

I1 ≤
∑

P∈Nb

‖εQ‖ωP
ρP +

∑

P∈Nb

max{0, εQ(xEP
)}〈σS , φ̃P 〉

. ‖εQ‖
(

∑

P∈Nb

ρ2
P

)
1
2

+
∑

P∈Nb,EP∈E+

1

εQ(xEP
)〈σS , φ̃P 〉.

We concentrate on the second term in (3.20). Let EP ∈ E+
1 . Then γ1

P ⊂ E+
1 . As

εQ(xEP
) > 0 ≥ ψ(xE) − uS(xE) holds for all E ∈ E+

1 ⊂ E1 and 〈σS , φE〉 ≤ 0 is
valid for all E ∈ E1, Lemma 3.4 provides

(3.21) aQ(εQ, φE) = 〈σS , φE〉 ≤ 0 ∀E ∈ E+
1 .

Hence, utilizing 〈σS , φP 〉 ≤ 0, we obtain

εQ(xEP
)〈σS , φ̃P 〉 ≤ εQ(xEP

)〈σS ,−
∑

E∈γ1
P

φP (xE)φE〉

≤
∑

E∈γ1
P

εQ(xE)〈σS ,−φP (xE)φE〉

=
∑

E∈γ1
P

εQ(xE)aQ(εQ,−φP (xE)φE).



12 KORNHUBER AND ZOU

Exploiting again (3.21), it is easily checked that
∑

P∈Nb,EP∈E+

1

εQ(xEP
)〈σS , φ̃P 〉 ≤

∑

P∈Nb

∑

E∈E+

1
∩γ1

P

φP (xE)εQ(xE)aQ(εQ,−φE)

≤
∑

E∈E+

1

(
∑

P∈Nb∩NE

φP (xE))εQ(xE)aQ(εQ,−φE)

≤ −
∑

E∈E+

1

εQ(xE)aQ(εQ, φE) = −I2.

In the light of (3.20) and the norm equivalence (2.11), we have shown

I1 + I2 . ‖εQ‖Q
(

∑

P∈Nb

ρ2
P

)
1
2

.(3.22)

In the final step, we insert the inequalities (3.18) and (3.22) into (3.17), to obtain

(3.23) aQ(εQ, εQ) ≤
(

∑

P∈Nb

ρ2
P

)
1
2

‖εQ‖Q +
(

∑

E∈E1

d2
E

)
1
2

‖εV‖Q +
∑

E∈E2

ρ2
E .

Utilizing Lemma 3.6 and the right equivalence in (2.12), we conclude

(

∑

E∈E2

ρ2
E

)
1
2

≤

(

∑

E∈E

εV(xE)2a(φE , φE)

)
1
2

. ‖εV‖Q ≤ ‖εQ‖Q

so that (3.23) takes the form

‖εQ‖Q .
(

∑

P∈Nb

ρ2
P

)
1
2

+
(

∑

E∈E1

ε̃V(xE)2
)

1
2

+
(

∑

E∈E2

ε̃V(xE)2
)

1
2

and the assertion follows from the Cauchy-Schwarz inequality. �

4. Numerical Results

In our numerical experiments, we will consider sequences of triangulations Tj ,
j = 0, 1, . . . , J , as resulting from j local refinement steps of an initial triangulation
T0. The subscript j will always refer to the corresponding triangulation Tj as, for
example, in Nj , Ej , Sj , uSj

, and so on. We either apply uniform refinement, i.e., we
connect the midpoints of all edges E ∈ Ej , or we apply local adaptive refinement
based on the local contributions η2

E , ρ2
P to the hierarchical error estimator

ηj =
∑

E∈Ej

η2
E + ρj , ρj =

∑

P∈Nj,b

ρ2
P ,

as introduced in Theorem 3.2. Here, we use a variant of the refinement strategy
suggested by Dörfler [7] to be described as follows. First, the local contributions
η2

E , ρ2
P are ordered according to their size. Then, proceeding from the largest

to smaller contributions, we collect all entries from this list until they sum up to
(1 − θ)2ηj . Finally, if η2

E or ρ2
P are contained in this collection, then all triangles

in the support of φE or φP are marked for refinement. Like Dörfler [7], we select
θ = 0.2 in our computations. Note that in general this strategy does not preserve
symmetry, because only the first of more than one entry with equal size might be
collected for refinement.
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4.1. Constant Obstacle. Following Nochetto et al. [15], we consider the constant
obstacle ψ ≡ 0, the domain Ω = (0, 1)2, and the radially symmetric right-hand side

ℓ(v) =

∫

Ω

fv dx, f(x) =







−4(2|x|2 + 2(|x|2 − r2)), |x| > r

−8r2(1 − (|x|2 − r2)), |x| ≤ r

,

providing the radially symmetric exact solution

u(x) = (max{|x|2 − r2, 0})2.

with corresponding boundary conditions. Like Nochetto et al. [15], we select r = 0.7
in our numerical computations. In our first experiment, the triangulations Tj ,
j = 1, . . . , 9, are obtained by uniform refinement of an initial triangulation T0

consisting of four congruent triangles.

10
0

10
2

10
4

10
6

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 

 

estimated error
true error
extra term

Figure 1. Comparison of the squared error ‖u− uSj
‖2 with the

hierarchical estimator ηj , and distribution of the exceptional nodes
N9,b.

The left picture in Figure 1 shows the squared discretization error ‖u−uSj
‖2, the

hierarchical estimator ηj , and the extra term ρj over the number of unknowns nj.
Obviously, the true error is approximated quite well. More precisely, for j = 1, . . . , 9
the effectivity indices ‖u − uSj

‖2/ηj are ranging from 0.63 to 0.79 and seem to
saturate at 0.79. This behaviour is in perfect agreement with saturation (2.8) and
preconditioning (2.11). Like the squared error, the estimator ηj is proportional

to n−1
j = O(h2

j ) with hj denoting the mesh size of Tj . Moreover, we observe

ρj = O(n
−3/2

j ) = O(h3
j ), i.e., the extra term ρj is of higher order, as predicted in

Remark 3.3. On the other hand, the distribution of exceptional nodes P ∈ N9,b, as
illustrated in the right picture of Figure 1, is partly surprising at first sight. A subset
of the exceptional nodes is concentrated at the circular free boundary of uSj

which
is supporting the heuristic reasoning in Remark 3.1. However, there is another
subset of exceptional nodes located along the diagonals which seems to contradict
our expectation that there are no exceptional nodes inside of the coincidence set.
The simple reason is the inherent instability of quadratic finite elements: In this
example, piecewise quadratic approximation uQ9

creates a spurious free boundary
along the diagonals! As the exceptional nodes are intended to account for the
deviation of ε̃Vj

from the piecewise quadratic approximation eQj
= uQj

− uSj
of

the error and not from the true error u − uSj
, it is natural that the exceptional



14 KORNHUBER AND ZOU

nodes Nj,b cluster along the spurious free boundary as well. This is exactly what
we observe. Note that the spurious contributions ρ2

P at the diagonals are by several
magnitudes smaller than the others. We emphasize that such instability effects can
be easily avoided by selecting a stable hierarchical extension V as obtained, e.g.,
from piecewise linear finite elements associated with triangulation T ′

j as obtained
from Tj by uniform refinement. Recall that efficiency, reliability and all our other
theoretical considerations carry over to this case (cf. Remark 2.1).

Figure 2. Adaptively refined triangulations T6, T10, T12.

In order to illustrate the locality of the hierarchical error estimator ηj , Figure 2
shows the triangulations Tj , j = 6, 10, 12, as resulting from the adaptive refinement
strategy described above. Note that the quadratic instability hardly influences the
refinement process, because the corresponding local contributions are very small.
However, effects of quadratic instability become slightly visible with increasing
refinement. Though the adaptively refined triangulations no longer fulfill the regu-
larity condition (3.4), we observe that the effectivity indices ‖u− uSj

‖2/ηj are still
quite satisfying, ranging from 0.63 to 0.82, and that the extra term ρj is still of
higher order.

4.2. Lipschitz Obstacle. Following Nochetto et al. [15] again, we consider the
domain Ω = {x ∈ R

2 | |x1| + |x2| < 1}, the right hand side ℓ(v) = −5
∫

Ω
v(x) dx,

the Lipschitz obstacle

ψ(x) = dist(x, ∂Ω) − 1

5
,

and homogeneous Dirichlet boundary conditions. The triangulations Tj , j = 1, 2,
. . . , 12, are resulting from local adaptive refinement of the initial triangulation T0

consisting of four congruent triangles. The final approximate solution u12 is de-
picted in the left picture of Figure 3 while the right picture shows the corresponding
approximate free boundary. Observe the cusps approximated by ”antennas“ of sole
edges. Note that this effect can be regarded as a lack of regularity of the dis-
crete coincidence set [4]. As no exact solution is available, we cannot compare our
estimator with the true error. However, as in the first example, we still observe
ηj = O(n−1

j ) and extra terms ρj of higher order. In contrast to the first example the
exceptional nodes Nj,b are now concentrated along the approximate free boundary.
In order to illustrate the strong locality of our hierarchical error estimator, Figure 4
shows T6, T9 and a zoom into the upper corner of T12. Observe that there is no
refinement within the coincidence set, where the obstacle ψ is exactly resolved by
the underlying mesh. The triangulation is locally refined in the neigborhood of
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Figure 3. Approximate solution u12 with obstacle function ψ
and associated free boundary

Figure 4. Adaptively refined triangulations T6, T9 and a zoom
into the upper corner of T12.

the free boundary which is in agreement with the corresponding lack of regularity.
Finally, strong local refinement takes place at the cusps which perfectly reflects the
corresponding singularity of the solution.
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