
A new block method for computing the

Hamiltonian Schur form ∗

V. Mehrmann‡, C. Schröder‡, and D. S. Watkins§

September 8, 2008

Dedicated to Henk van der Vorst on the occasion of his 65th birthday

Abstract

A generalization of the method of Chu, Liu and Mehrmann [7] for the
computation of the Hamiltonian real Schur form is presented. The new
method avoids some of the difficulties that may arise when a Hamiltonian
matrix has tightly clustered groups of eigenvalues. A detailed analysis of
the method is presented and several numerical examples demonstrate the
superior behavior of the method.

Key words. linear-quadratic control, H∞ control, Hamiltonian matrix, Hamil-
tonian real Schur form, symplectic matrix, eigenvalue cluster
AMS subject classification. 65F15, 15A21, 93B40.

1 Introduction

The need to compute the Hamiltonian Schur form of a Hamiltonian matrix arises
in several applications in control theory, in particular in the linear-quadratic
control problem [12, 17] and the H∞ control problem [23]. The problem of
developing an O(n3) backward-stable algorithm that preserves the Hamiltonian
structure, which was posed by Paige and Van Loan [18] in 1981, proved difficult
to solve however, so much so that it came to be known as Van Loan’s curse.
In 2004 Chu, Liu, and Mehrmann [7], see also [21], a new method was pro-
posed, which we will call CLM, that seems to lift that curse. In [7] it is shown
that CLM performs well on a wide variety of benchmark problems from control
theory [4]. The method performs well, in particular, for Hamiltonian matrices
with eigenvalues near or on the imaginary axis for which other methods that
∗Partially supported by Deutsche Forschungsgemeinschaft, through the DFG Research

Center Matheon Mathematics for Key Technologies in Berlin.
‡Institut für Mathematik, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin, FRG.

{mehrmann,schroed}@math.tu-berlin.de.
§Department of Mathematics, Washington State University, Pullman, WA 99164-3113,

USA. watkins@math.wsu.edu.

1

do not preserve the structure have difficulties. However, we have found subse-
quently that it is possible to contrive Hamiltonian matrices (not from actual
control problems) that cause CLM to perform badly. These are matrices that
have large tightly-packed clusters of eigenvalues away from the imaginary axis.
Interestingly, these represent “easy” problems from the standpoint of control
theory. In a nutshell, one can say that CLM performs badly on these problems,
because it implicitly performs a swapping of eigenvalues [21] and it is know that
the problem of swapping eigenvalues that are tightly packed may lead to large
errors.

The existence of such difficult problems for the current version of CLM,
demonstrates the need to develop a more general and comprehensive strategy
that is able to deal with this class of extreme problems and perhaps other classes
as well that could arise in applications in the future. In this paper we take a
step in that direction by introducing a generalization of CLM that processes the
eigenvalues in blocks. Eigenvalues belonging to a tight cluster are placed in the
same block, and no attempt is made to distinguish them from one another. This
enables the accurate solution of problems containing tight clusters of eigenvalues.

A second advantage of the block algorithm is that, if the blocks are large, the
bulk of the arithmetic work of the algorithm consists of matrix multiplications
in which the dimensions of the matrices are large enough to make efficient use
of cache memory and obtain thereby high performance [11].

The paper is organized as follows. In Section 2 we introduce the basic
notation and discuss some preliminary results. In Section 3 we present the three
slightly different computational problems associated with Hamiltonian matrices
that we address. The new algorithm is described in Section 4 and in Section 5 we
analyze why the algorithm works, with details in Section 6. Numerical results
are presented in Section 7.

2 Definitions and Preliminary Results

Throughout this paper we restrict our attention to matrices with real entries.
Define J ∈ R2n×2n by

Jn =
[

0 In
−In 0

]
. (1)

We leave off the subscript n if it is clear from the context.
A matrix H ∈ R2n×2n is called Hamiltonian if (JH)T = JH, K ∈ R2n×2n is

called skew Hamiltonian if (JK)T = −JK, and S ∈ R2n×2n is called symplectic
if STJS = J .

A matrix H ∈ R2n×2n is Hamiltonian if and only if

H =
[
A G
C −AT

]
, where GT = G and CT = C.

A subspace S ⊆ R2n is isotropic if xTJy = 0 for all x, y ∈ S. Let for
S1 ∈ R2n×k, S = R(S1) denote the range of S1, then S is isotropic if and only

2

if ST1 JS1 = 0. If S is symplectic and S =
[
S1 S2

]
, where S1, S2 ∈ R2n×n,

then ST1 JS1 = 0 and ST2 JS2 = 0. Thus R(S1) and R(S2) are isotropic. If S is
isotropic and Q is symplectic, then QS is isotropic.

If H is Hamiltonian and x is a (right) eigenvector of H associated with
eigenvalue λ, then (Jx)T is a left eigenvector of H associated with eigenvalue
−λ. Thus the eigenvalues of a Hamiltonian matrix occur in pairs (λ,−λ). If
there are no eigenvalues on the imaginary axis, then there must be exactly n in
the left half plane and n in the right half plane.

The following result is well-known, see e.g. [8].

Theorem 1 Let H ∈ R2n×2n be Hamiltonian, let S ⊆ R2n be a subspace that is
invariant under H, and let Λ be the set of eigenvalues of H associated with the
subspace S. If Λ does not contain any pairs of eigenvalues of the form (λ,−λ),
then S is isotropic.

For example, if in Theorem 1 all elements of Λ have negative real part, then S
is isotropic.

The algorithm discussed in this paper employs similarity transformations.
If H is Hamiltonian (skew-Hamiltonian) and S is symplectic, then S−1HS is
also Hamiltonian (resp. skew Hamiltonian). Thus, Hamiltonian structure is
preserved by symplectic similarity transformations. In the interest of numerical
stability we prefer to work with orthogonal similarity transformations. Thus we
will allow only similarity transformations by matrices that are both orthogonal
and symplectic. These are matrices Q ∈ R2n×2n that satisfy both QTQ = I
and QTJQ = J . Q is orthogonal and symplectic if and only if

Q =
[
Q1 −Q2

Q2 Q1

]
,

where QT1 Q1 +QT2 Q2 = I and QT1 Q2 −QT2 Q1 = 0, in other words, the columns

of
[
Q1

Q2

]
are orthonormal and span an isotropic subspace of R2n. As a special

case, if Q has the form

Q =
[
Q1 0
0 Q1

]
,

where QT1 Q1 = I, then Q is orthogonal and symplectic.
A Hamiltonian matrix H is in Hamiltonian real Schur form if

H =
[
T G
0 −TT

]
, (2)

where T is quasitriangular, that is, T is block upper triangular with 1 × 1 and
2 × 2 blocks on the main diagonal. Each 1 × 1 block is a real eigenvalue of H,
while each 2× 2 block houses a complex conjugate pair of eigenvalues.

Necessary and sufficient conditions for the existence of a Hamiltonian real
Schur form in terms of the Jordan structure of H are well known, see [1, 8, 15,
19].

3

Theorem 2 Let H ∈ R2n×2n be a Hamiltonian matrix, let iα1, . . . , iαν be its
pairwise distinct purely imaginary eigenvalues, and let the columns of Uk ∈
C2n×mk , k = 1, . . . , ν, span the associated invariant subspaces of dimension
mk. Then the following are equivalent:

(i) There exists an orthogonal symplectic matrix U ∈ R2n×2n such that UTHU
is in Hamiltonian real Schur form.

(ii) mk is even and UHk JUk is congruent to Jmk/2 for all k = 1, . . . , ν.

In particular, there exists a Hamiltonian real Schur form if H has no purely
imaginary eigenvalues.

Typically in applications one is interested in the case where the eigenvalues
of the matrix T in the Hamiltonian real Schur form are all in the (closed) left
half plane. However, the ordering of the eigenvalues on the block-diagonal can
also be arranged so that T has a mixture of left and right half plane eigenvalues
within certain obvious limits: If λ is an eigenvalue of T , then −λ is an eigenvalue
of −TT . Therefore, if (for example) λ is a simple eigenvalue of H, then T cannot
have both λ and −λ as eigenvalues.

From these preliminary results it is clear that several difficulties may arise if
we want to compute the Hamiltonian real Schur form with a numerical method.
First of all it will become necessary to distinguish between purely imaginary
eigenvalues and those eigenvalues with nonzero real part.

For this it is essential to use structure preserving transformations, since
only these can guarantee that well-conditioned purely imaginary eigenvalues
stay purely imaginary, see [16, 19] for a detailed perturbation analysis. On the
other hand, the existence of a Hamiltonian real Schur form (as described in
Theorem 2) implies that purely imaginary eigenvalues have to occur in either
even sized Jordan blocks or an even number of odd sized Jordan blocks. This
typically means that these eigenvalues are ill-conditioned, i.e. their computation
presents a challenge for numerical methods, because under small (structured)
perturbations (in finite precision arithmetic) this Jordan block will split and lead
almost surely to eigenvalues with small nonzero real parts. Thus, we cannot
distinguish these eigenvalues from those near to the imaginary axis. On the
other hand, well separated simple eigenvalues on the imaginary axis, or those
multiple purely imaginary eigenvalues where the condition (ii) in Theorem 2
does not hold (see [16]) are robust under small perturbations and thus it is
possible to decide whether they are on the axis in finite precision arithmetic.

If we are interested in computing an existing Hamiltonian real Schur form,
however, then those Jordan blocks associated with purely imaginary eigenvalues
that are bound to split into pairs of eigenvalues with nonzero real part may not
cause a problem, since round-off errors will almost surely lead to the existence
of a nearby Hamiltonian real Schur form.

Nevertheless it will make sense to cluster these eigenvalues together with
other nearby eigenvalues.

If there are simple eigenvalues on the imaginary axis or multiple eigenvalues,
where the condition (ii) in Theorem 2 does not hold, then we cannot compute

4

a Hamiltonian real Schur form and thus in this case it makes sense to separate
these parts of the spectrum from the remaining spectrum.

In the next section we summarize this discussion by describing the compu-
tational tasks that we address.

3 Problems that will be addressed

Starting from a Hamiltonian matrix H, we compute a partial Hamiltonian real
Schur form

Hfinal = QTHQ =

T11 T12 G11 G12

0 T22 G21 G22

0 0 −TT11 0
0 C22 −TT12 −TT22

 , (3)

where T11 is block triangular and has eigenvalues that are away from the imag-
inary axis, (typically the block is chosen so that the eigenvalues are in the open
left half plane), and the Hamiltonian block[

T22 G22

C22 −TT22

]
(4)

contains elements that we are unable to reduce further. It may have only purely
imaginary eigenvalues, or it may have eigenvalues that are near the imaginary
axis that cannot be distinguished from purely imaginary eigenvalues, or it may
have some of each.

Based on this form we can solve three slightly different computational prob-
lems. The first is to transform a Hamiltonian matrix to the form (3), where we
might not care whether the eigenvalues of T11 all lie in the left half plane. If this
is the case, then no ordering is necessary, but we note that if the eigenvalues of
T11 appear in some order that is different from what we want, then it is possible
to change the order.

IfH has no eigenvalues on or very near the imaginary axis, then as our second
problem, we consider computing the Hamiltonian real Schur form (2), where the
eigenvalues of T all lie in the left half plane. Then if we let Q =

[
Q1 Q2

]
with Q1 ∈ R2n×n, then HQ1 = Q1T . This shows that R(Q1) is the invariant
subspace under H corresponding to the eigenvalues that lie in the left half plane.
This is called the stable invariant subspace of H, and it is exactly what is needed
in the linear quadratic and H∞ control problems [17, 23]. Note that to compute
the stable invariant subspace it is not strictly necessary that T be in quasi
triangular form; it can be block triangular with some blocks bigger than 2× 2,
and it can even be full. All that is needed is that the eigenvalues of T lie in the
left half plane.

The third problem is the decision whether the Hamiltonian matrix has eigen-
values on the imaginary axis or not. This problem is required in the H∞ control
problem [2, 23] and in the context of passivation algorithms [10, 20]. The crit-
ical situation is in this case if in the Hamiltonian real Schur form eigenvalues

5

are detected that are so near to the imaginary axis that they could have been
moved there by small perturbations that are on the order of the error committed
by the computation of the Hamiltonian real Schur form. It will depend on the
application, what the best strategy is to deal with this case.

4 Description of the algorithm

Consider a Hamiltonian matrix H that is to be transformed to Hamiltonian real
Schur form if it exists or to the form (3). Our algorithm consists of a sequence
of orthogonal symplectic similarity transformations

H ← Q̂THQ̂.

Each of these is accompanied by an update

Q← QQ̂,

where Q was initially I2n. In the end, H will have been transformed either to a
Hamiltonian real Schur form

Hfinal =
[
T C
0 −TT

]
,

where T is quasi triangular or block triangular, depending on the application,
or Hfinal is in the form (3). We have

H = QHfinalQ
T . (5)

The first step of the algorithm, which is the same as the first step of the
CLM method, is to compute a symplectic URV decomposition of H. We recall
the following result [5, 13, 22].

Theorem 3 (Symplectic URV decomposition) Let H ∈ R2n×2n be Hamilto-
nian. Then there exist orthogonal symplectic U , V ∈ R2n×2n, upper-triangular
T ∈ Rn×n, quasitriangular S ∈ Rn×n, and G ∈ Rn×n such that

H = UR1V
T = V R2U

T ,

where

R1 =
[
S G
0 TT

]
and R2 =

[
−T GT

0 −ST
]
.

The eigenvalues of H are the square roots of the eigenvalues of the quasitrian-
gular matrix −ST .

A symplectic URV decomposition can be computed by a backward stable algo-
rithm in O(n3) flops, and it is implemented in HAPACK [3].

The next step is to partition the eigenvalues of H2, which are known once we
have the symplectic URV decomposition. For each pair of eigenvalues (λ,−λ) of

6

H, H2 has a single eigenvalue λ2 of multiplicity two. Thus we are partitioning
a set of n numbers. The numbers we actually work with are the eigenvalues of
−ST , which are the eigenvalues of H2.

The blocks of eigenvalues do not all need to be of the same size. They need to
be big enough that all eigenvalues in a tight cluster are in the same block. Every
pair of complex conjugate eigenvalues needs to be in the same block. We may
also specify a minimum block size in the interest of computational efficiency.
It is not important that all eigenvalues in a block are close together. What
matters is that the eigenvalues in each block are reasonably well separated from
the eigenvalues in the other blocks. In the interest of satisfying this requirement,
it will occasionally happen that all n eigenvalues lie in a single block.

Clusters are identified as follows. With each eigenvalue µ of H2 we associate
an open ball Bµ centered at µ with radius proportional to its condition number as
an eigenvalue of −ST . To be precise, we take the radius to be 10‖S ‖F ‖T ‖Fκ ε,
where κ is the eigenvalue’s condition number, see e.g. [9, 22], and ε = 2.22 ×
10−16 is the “machine epsilon”. Let B =

⋃
Bµ. Then each connected component

of B defines a cluster, except that whenever there are two clusters such that each
has eigenvalues that are the complex conjugates of the eigenvalues of the other
cluster, those two clusters are combined to form a single cluster. Eigenvalues in
the same cluster are always placed in the same block.

It is at this point that purely imaginary eigenvalues can be identified, as
these correspond to real, non-positive eigenvalues of −ST . If there are any such
eigenvalues, they are placed in a block by themselves.

Let us suppose there are s blocks of eigenvalues and denote the ith block by
Λi. We require that the eigenvalues in each block lie in adjacent positions on
the main diagonal of −ST . That is, we require that

−ST = B =

B11 B12 · · · B1s

B22 B2s

. . .
...
Bss

 , (6)

where the spectrum of Bii is Λi, i = 1, . . . , s. If there is a block of purely
imaginary eigenvalues, that block is placed last. This blocking is achieved by a
reordering of the eigenvalues in the symplectic URV decomposition, see [7].

Once we have a symplectic URV decomposition with eigenvalues in the
desired order, our initial transformation is

H ← UTHU,

where U is the orthogonal symplectic matrix of Theorem 3. This new H is a
full Hamiltonian matrix that has no overt additional structure. However, when
one looks at its square, one finds that

H2 = R1R2 =
[
−ST N

0 (−ST)T

]
=
[
B N
0 BT

]
,

7

where N is skew-symmetric and the form of B is given by (6). The block
triangular form of H2 is crucial to the functioning of the algorithm. All of the
transformations of the algorithm are designed to preserve this form of H2. Note,
however, that we never actually compute H2. One additional point is that the
blocks Bii in (6) are themselves quasi-triangular, but we do not propose to use
or preserve this structure. By sacrificing this much structure, we are able to
process clusters of eigenvalues accurately.

Let k (= k1) denote the dimension of the matrix B11. This is the size of the
first block of eigenvalues. Let Ek ∈ R2n×k denote the submatrix of I2n consisting
of the first k columns. Then the form of H2 implies that R(Ek) is invariant
under H2, as H2Ek = EkB11. Therefore, R(

[
Ek HEk

]
) is invariant under

H, i.e. we have

H
[
Ek HEk

]
=
[
Ek HEk

] [0 B11

I 0

]
. (7)

Generically, the dimension of R(
[
Ek HEk

]
) will be 2k, and we will assume

for now that it is. Exceptional cases and other details will be discussed in Sec-
tion 6. The 2k eigenvalues associated with this invariant subspace are therefore
the eigenvalues of [

0 B11

I 0

]
,

which are the 2k square roots of the k eigenvalues in the first block, i.e. the
square roots of the elements of Λ1.

The next step of the algorithm is to pick out a k-dimensional isotropic in-
variant subspace of R(

[
Ek HEk

]
). By Theorem 1 we see that we can do

this by picking out a subspace S such that for each eigenvalue λ associated with
S, −λ is not associated with S. For example, if there are no purely imaginary
eigenvalues, we can take S to be the subspace associated with the k eigenvalues
with negative real part.

We proceed as follows. Compute a QR decomposition[
Ek HEk

]
= QR, (8)

where Q ∈ R2n×2k has orthonormal columns. This gives an orthonormal basis
for the space. Let G = QTHQ. Use the QR algorithm to compute the Schur
decomposition G = Q̃T̃ Q̃T , where Q̃ is orthogonal and T̃ is quasi-triangular.
In this step we include a sorting operation that moves the eigenvalues that we
wish to retain (e.g. the eigenvalues in the left half plane) to the upper left of
T̃ . Let Q̃ =

[
Q̃1 Q̃2

]
, where Q̃1 ∈ R2k×k. Since GQ̃1 = Q̃1T̃11, where T̃11

is the upper-left k× k submatrix of T̃ , the columns of Q̃1 form an orthonormal
basis of the invariant subspace of G associated with the eigenvalues that are to
be retained. Let

X = QQ̃1.

8

Then X is an orthonormal basis of the desired invariant subspace of H. We
have

HX = XF, (9)

where F = T̃11 ∈ Rk×k.
We will obtain a deflation by transforming X to Ek, the matrix consisting

of the first k columns of the identity matrix. That is, we will find an orthogonal
symplectic S such that STX = Ek and make the transformation H ← STHS.
We will build and apply S by stages in such a way that the block triangular
form of H2 is preserved. Notice that the isotropy of R(X) is crucial. Since
the equation STX = Ek is equivalent to SEk = X, R(Ek) is isotropic, and
the symplectic matrix S preserves isotropy. Thus we expect to have to exploit
isotropy at some point in the reduction.

Let k1, . . . , ks denote the sizes of the main-diagonal blocks in (6). These
are exactly the cardinalities of the sets Λ1, . . . , Λs of eigenvalues of H2. Note
that k = k1. Partition X conformably with these blocks as

X =

X1

...
Xs

Xs+1

...
X2s

,

where Xj and Xs+j are kj × k, j = 1, . . . , s.
The first stage of the reduction operates on blocks Xs+1 and Xs+2. Let Š

be an orthogonal matrix of dimension k1 + k2 such that

ŠT
[
Xs+1

Xs+2

]
=
[

0
X̃s+2

]
, (10)

where the zero block occupies k2 rows and X̃s+2 is k1×k1. This can be achieved
by an “upside down” QR decomposition: Let F̃ denote the flip matrix, the
matrix obtained by reversing the columns of the identity matrix. If we take a

QR decomposition
[
Xs+1

Xs+2

]
= QR, then note that QR = (QF̃)(F̃R), we see

that we can take Š = QF̃ and
[

0
X̃s+2

]
= F̃R.

With Ŝ = diag
{
Š, I

}
∈ Rn×n and

S̃ =
[
Ŝ 0
0 Ŝ

]
,

we have that S̃ is orthogonal and symplectic.
Performing the updates

X ← S̃TX and H ← S̃THS̃,

9

we see that equation (9) continues to hold for the new X and H. But the new
X has a k2×k1 block of zeros. We adjust the partition accordingly, i.e. we have

X =

X1

X2

...
Xs

0
Xs+2

...
X2s

,

where Xs+2 and X2 are k1 × k1 and Xs+1 (= 0) and X1 are k2 × k1. All other
blocks are unchanged by this transformation.

The second stage is identical to the first, except that it operates on the
blocks Xs+2 and Xs+3, transforming[

Xs+2

Xs+3

]
to

[
0

X̃s+3

]
,

where the zero block has k3 rows and X̃s+3 is k1 × k1. Building a transforming
matrix and performing a transformation analogous to that of the first stage, we
obtain a new H and X that continue to satisfy (9). This new X has k2 + k3

rows of zeros.
Each subsequent stage introduces another block of zeros into X. After s− 1

stages, the transformed X has the form

X =

X1

...
Xs−1

Xs

0
...
0
X2s

, (11)

where Xs and X2s are k1 × k1, and the other blocks Xj are kj+1 × k1.

Exploiting Isotropy in stage s

Stage s is special. Here we operate on blocks Xs and X2s to transform X2s to

zero. Specifically, we produce an orthogonal symplectic matrix
[
Q̌1 −Q̌2

Q̌2 Q̌1

]
such that [

Q̌1 −Q̌2

Q̌2 Q̌1

]T [
Xs

X2s

]
=
[
X̃s

0

]
. (12)

10

We describe two ways of doing this. The original space R(X) was isotropic,
and so is the transformed R(X), because symplectic transformations preserve
isotropy, , see e.g. [6]. Because of the zero blocks in X, we have 0 = XTJX =

XT
s X2s − XT

2sXs, which implies that the columns of
[
Xs

X2s

]
∈ R2k×k also

span an isotropic space. However, the columns are not orthonormal. To get an
orthonormal basis, we take a condensed QR decomposition[

Xs

X2s

]
=
[
Q̌1

Q̌2

]
R, (13)

where R is k × k. Then [
Q̌1 −Q̌2

Q̌2 Q̌1

]
(14)

is symplectic and orthogonal and satisfies (12) with X̃s = R.
Let Q̂1 = diag

{
I, Q̌1

}
∈ Rn, Q̂2 = diag

{
I, Q̌2

}
∈ Rn, and

Q̃ =
[
Q̂1 −Q̂2

Q̂2 Q̂1

]
. (15)

Performing the updates

X ← Q̃TX and H ← Q̃THQ̃, (16)

equation (9) continues to hold for the new X and H, and the updated X has
X2s = 0.

This method of annihilating X2s has the following weakness. In cases where
max {‖Xs ‖, ‖X2s ‖} is very small, the QR decomposition (13) amplifies errors.
Even if the space is isotropic to working precision, the isotropy can be lost at
this stage, and the corresponding transformation will not be truly symplectic.
Therefore this approach can fail when max {‖Xs ‖, ‖X2s ‖} is small.

We employ the following remedy. Before making the updates (16), we check

that the space spanned by the columns of Y =
[
Q̂1

Q̂2

]
really is isotropic. If it

fails to be below our isotropy tolerance (which is specified precisely in Section 6),
we abandon Y and use the following alternative procedure.

Initially F̃X2s is upper triangular, so that, in the case k = 4 for example,

[
Xs

X2s

]
=

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

. (17)

11

The transformation X → Q̃TX described in the first method is replaced by
a sequence of symplectic Givens rotations. Thus in the second method the
total transformation matrix becomes a product of transformations that are both
symplectic and orthogonal to working precision. Thus the overall transformation
is symplectic (and orthogonal) to working precision.

The first step of the reduction applies a (symplectic) rotation to rows k and
2k of (17) (which correspond to rows n and 2n in the big matrix) to annihilate
the (k, 1) entry of X2s. The second step applies a symplectic double rotation
that acts on rows 2k−1 and 2k and on rows k−1 and k to annihilate the (k−1, 2)
entry of X2s. By isotropy of the first two columns, this transformation must
also annihilate the (k, 1) entry of Xs. Thus this transformation introduces two
zeros simultaneously. The next step applies another symplectic double rotation.
This one acts on rows 2k − 2 and 2k − 1 and also on rows k − 2 and k − 1 to
annihilate the (k − 2, 3) entry of X2s. By isotropy it must also annihilate the
(k − 1, 1) entry of Xs. We continue in this way, moving up the antidiagonal of
X2s, applying symplectic double rotations that annihilate antidiagonal entries
of X2s while simultaneously producing zeros in the first column of Xs. After k
double rotations, we have

[
Xs

X2s

]
=

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗
∗ ∗

∗ ∗ ∗

.

This is the end of the first major step. The second major step annihilates the
next antidiagonal of X2s by a procedure entirely analogous to the first step.
First a symplectic rotation acting on rows k and 2k eliminates the (k, 2) entry
of X2s. Then a sequence of double rotations is applied to eliminate the entries
(k−1, 3), (k−2, 4), and so on, in X2s, while simultaneously annihilating entries
in the second column of Xs. At the end of the second major step we have

[
Xs

X2s

]
=

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

∗
∗ ∗

.

After k major steps the procedure is finished. X2s has been transformed to zero,
and Xs has been transformed to upper-triangular form.

12

The final stages of the transformation

The next stage operates on blocks Xs−1 ∈ Rks×k1 and Xs ∈ Rk1×k1 . Let Š be
an orthogonal matrix of dimension ks + k1 such that

ŠT
[

Xs−1

Xs

]
=
[
X̃s−1

0

]
,

where X̃s is k1 × k1, and the block of zeros occupies ks rows. This can be
achieved by an ordinary QR decomposition. Let Ŝ = diag

{
I, Š

}
∈ Rn×n and

S̃ = diag{Ŝ, Ŝ}.
Performing the updates

X ← S̃TX and H ← S̃THS̃,

equation (9) continues to hold, and the new X has the form

X =

X1

...
Xs−1

0
0
...
0

,

where Xs−1 is k1 × k1.
The next stage, which is essentially the same, operates on blocks Xs−2 ∈

Rks−1×k1 and Xs−1 ∈ Rk1×k1 and produces another ks−1 rows of zeros.
Each subsequent stage introduces one more block of zeros into X. After

2s− 1 stages we have

X =

X1

0
...
0

 =

I
0
...
0

 = Ek.

This form of X and the equation (9) HX = XF imply that the transformed
H has the form

H =

A11 A12 G11 G12

0 A22 G21 G22

0 0 −AT11 0
0 C22 −AT12 −AT22

 ,
where A11 = F ∈ Rk×k. The zeros in the first column follow from the equation
HX = XF , and the other zeros are implied by Hamiltonian structure. It is now
possible to deflate the problem and work with the Hamiltonian submatrix[

A22 G22

C22 −AT22

]

13

of dimension 2(n− k). In Section 5 we will show the crucial fact that the trans-
formations outlined above preserve the block-triangular structure of H2. The
first step of the algorithm relied on this structure to obtain a low-dimensional
subspace that was invariant under H. After the deflation we want to perform
another step that is just like the first, and for this we need that the block-
triangular structure of H2 has been kept intact.

If no difficulties are encountered along the way (see Section 6 for a discussion
of difficulties), the algorithm terminates after s steps. If no purely imaginary
eigenvalues have been detected, then H will have been transformed to the form

H =
[
A G
0 −AT

]
, (18)

where

A =

A11 A12 · · · A1s

0 A22 A2s

...
. . .

...
0 · · · Ass

is block triangular. Each Aii is ki×ki and has eigenvalues that are square roots
of the elements of Λi.

If some eigenvalues were found that were either purely imaginary or too close
to being purely imaginary, then instead of the block of zeros in (18), there will
be a block

K =

0 0 · · · 0
0 0 0
...

. . .
...

0 · · · Kss

 ,
where the eigenvalues of the Hamiltonian matrix[

Ass Gss
Kss −ATss

]
are on or near the imaginary axis. The code reports whether all of these eigen-
values are all actually on the imaginary axis or merely near the imaginary axis
or a mixture of the two types.

Postprocessing

The further actions taken at this point depend upon the application and which
of the different problems discussed in Section 3 we want to solve. Suppose H has
no eigenvalues on or close to the imaginary axis and that we want to compute
the stable invariant subspace.

If the isotropic subspace used at each step was chosen so that its eigenvalues
are in the left half plane, then A11, A22, . . . , Ass will contain all of the left-half-
plane eigenvalues and no others. In this case we are done. We have accumulated

14

the transforming matrix Q of (5), and its first n columns are an orthonormal
basis of the stable invariant subspace.

If some of the Aii have eigenvalues from the right half plane, or if our task is
to compute the Hamiltonian real Schur form, then further processing is neces-
sary. Each of the Aii can be transformed to quasi-triangular form by the stan-
dard unstructured QR algorithm: Tii = UTiiAiiUii, where Tii is quasi-triangular
and Uii is orthogonal. Let Û = diag{U11, . . . , Uss} and U = diag{Û , Û}. Then
a similarity transformation by the orthogonal symplectic matrix U transforms
H to real Hamiltonian Schur form.

If the order of the eigenvalues is not of interest, we are done. If the eigenval-
ues need to be reordered, for example to get the left-half-plane eigenvalues to the
top in order to extract the stable invariant subspace, one additional sorting step
is necessary. This can be accomplished by the sorting routine from HAPACK
[3] mentioned earlier.

Extreme cases

The algorithm we have just described reduces to CLM in the extreme case when
the block sizes are made as small as possible, i.e. each real eigenvalue forms a
block of size one by itself and each complex conjugate pair forms a block of size
two.

At the opposite extreme we have the case s = 1, in which there is a sin-
gle block of n eigenvalues. It is instructive to think about what the algorithm
does in this case (provided that a Hamiltonian real Schur form exists.) First
of all, it is not necessary to compute the QR decomposition (8) or the projec-
tion matrix F = QTHQ, because in this case Q is square and the transfor-
mation F = QTHQ is just a similarity transformation. Instead of computing
the Schur decomposition of F , we can just compute the Schur decomposition
of H by the QR algorithm. We then pick out an n-dimensional isotropic in-
variant subspace by moving the eigenvalues that we wish to retain to the top
of the quasi-triangular matrix. Once the sorting has been done, our invariant
subspace R(X) is given by the first n columns of Q in the Schur factorization
H = QTQT . In this case the reduction of X consists of only one step, the one in
which Xs and X2s are modified and X2s is transformed to zero (we have s = 1).
In this case the QR decomposition (13) is not necessary because the columns

of X =
[
X1

X2

]
are already orthonormal. We just take Q̌1 = X1 and Q̌2 = X2.

The matrix (14), which is the same as Q̃ in (15) in this case, is orthogonal and
symplectic because R(X) is isotropic. Then the update H ← Q̃THQ̃ yields a
Hamiltonian block triangular H.

This technique of using an unstructured method (the standard QR algo-
rithm) to effect a structured transformation is commonly known as the Laub
trick [14]. Thus our algorithm just reduces to the Laub trick in the case when
all of the eigenvalues are placed in a single block.

15

5 Why the algorithm works

The main task of this section is to show that the transformations outlined in
the previous section do not disturb the block-triangular structure of H2. We
will also show that eigenvalue swapping takes place at each step. Consider the
point in the computation at which the matrix X ∈ R2n×k satisfying (9) has just
been computed. This matrix has orthonormal columns and spans an isotropic
invariant subspace. Of course this space is also invariant under H2, i.e.

H2X = XF 2. (19)

Making the partition

X =
[
Y
Z

]
and recalling that H2 has the form[

B N
0 BT

]
,

we see that
BTZ = ZF 2.

Since B has the block-triangular form (6), the first two blocks of this equation
yield [

BT11 0
BT12 BT22

] [
Xs+1

Xs+2

]
=
[
Xs+1

Xs+2

]
F 2, (20)

and the first block by itself gives

BT11Xs+1 = Xs+1F
2. (21)

We now make the assumption that the square matrix Xs+1 is nonsingular.
In Section 6 we will address the question of what to do if this assumption is
violated or nearly violated.

Since Xs+1 is nonsingular, (21) shows that F 2 is similar to BT11. Thus the
spectrum of F 2 is just Λ1, the set of eigenvalues of the first block.

We transformX to Ek by stages. The first stage tells the whole story, more or
less. The transformation (10), together with the corresponding transformation
of H implies a transformation of (20) to[

B̃T11 B̃T21
B̃T12 B̃T22

] [
0

X̃s+2

]
=
[

0
X̃s+2

]
F 2. (22)

Recall that X̃s+2 is k1 × k1. We partition B̃ conformably with X̃, i.e. B̃11

is k2 × k2, and B̃22 is k1 × k1. Since Xs+1 is nonsingular, X̃s+2 is certainly
also nonsingular. Indeed, X̃T

s+2X̃s+2 = XT
s+1Xs+1 +XT

s+2Xs+2, so the smallest
singular value of X̃s+2 is no smaller than that of Xs+1. Looking at the first
equation of (22), we find that B̃T21X̃s+2 = 0. Since X̃s+2 is nonsingular, it

16

also follows that B̃T21 = 0. This shows that the block triangular form of B
has been preserved. Notice further that the second equation of (22) yields
B̃T22X̃s+2 = X̃s+2F

2. Thus B̃T22 is similar to F 2, which shows that the spectrum
of B̃22 is Λ1. It follows that the spectrum of B̃11 is Λ2. The blocks of eigenvalues
have been swapped!

The second stage of the reduction works the same as the first. If we now
drop the tildes for notational simplicity and look at the second and third blocks
of the equation BTZ = ZF 2, taking into account that the first block of Z is
now zero, we obtain[

BT22 0
BT23 BT33

] [
Xs+2

Xs+3

]
=
[
Xs+2

Xs+3

]
F 2, (23)

The spectra of B22 and B33 are Λ1 and Λ3, respectively, andXs+2 is nonsingular.
The second transformation turns (23) into[

B̃T22 B̃T32
B̃T23 B̃T33

] [
0

X̃s+3

]
=
[

0
X̃s+3

]
F 2,

where X̃s+3 and B̃T33 are k1×k1 and B̃T22 is k3×k3. Clearly X̃s+3 is nonsingular
(and its smallest singular value is no smaller than that of Xs+2). We then
deduce immediately that B̃T32 = 0 and B̃T33 is similar to F 2. Thus the spectra
of B̃33 and B̃22 are Λ3 and Λ1, respectively. Again the eigenvalues have been
interchanged.

After s − 1 stages, X will be transformed to the form (11). The block
triangular form of B is preserved, but (leaving off the tildes) Bii is ki+1 × ki+1

and has spectrum Λi+1, i = 1, . . . , s−1, and Bss is k1×k1 and has spectrum Λ1.
Extracting block equations s and 2s from the (transformed) equation H2X =
XF 2, we have [

Bss Nss
0 BTss

] [
Xs

X2s

]
=
[
Xs

X2s

]
F 2. (24)

X2s is nonsingular. The transformation of the sth stage turns (24) into[
B̃ss Ñss
K̃ss B̃Tss

] [
X̃s

0

]
=
[
X̃s

0

]
F 2. (25)

It is easy to check that this transformation produces no fill in anywhere in
H2, except possibly in the block that we have labelled K̃ss. Certainly X̃s is
nonsingular. It then follows from the second equation of (25) that K̃ss = 0.
The first equation shows that B̃ss is similar to F 2, so its spectrum is Λ1, as
expected.

Dropping the tildes again and moving on to the next stage, we now have
H2X = XF 2, where the bottom half of X consists entirely of zeros. Writing

X =
[
Y
0

]
, we have BY = Y F 2. The bottom two blocks of this equation give[

Bs−1,s−1 Bs−1,s

0 Bss

] [
Xs−1

Xs

]
=
[
Xs−1

Xs

]
F 2. (26)

17

Xs and Bss are k1×k1, and Bs−1,s−1 is ks×ks. The spectra of Bss and Bs−1,s−1

are Λ1 and Λs, respectively. Xs is nonsingular. The next transformation turns
(26) into [

B̃s−1,s−1 B̃s−1,s

B̃s,s−1 B̃ss

] [
X̃s−1

0

]
=
[
X̃s−1

0

]
F 2. (27)

X̃s−1 is k1 × k1 and certainly nonsingular. The second equation shows that
B̃s,s−1 = 0. The first shows that B̃s−1,s−1 is similar to F 2. Thus the spectrum
of B̃s−1,s−1 is Λ1, and that of Bs,s is Λs.

After s−2 more transformations, we are done. Leaving off the tildes, we have
H2X = XF 2, where X = Ek. The block triangular structure of B has been
preserved. Each main-diagonal block Bii is ki×ki and has spectrum Λi. We are
back where we started with H2. Meanwhile, however, H has been transformed
into a form that allows a deflation.

6 Computational details

We have already described our method of partitioning the eigenvalues into
blocks. However, this is only a tentative blocking, and we are willing modify it
on the fly if necessary. Certainly we have no objection to combining two blocks
into a single block if needed. As we have already remarked, it will sometimes
be necessary to include all of the eigenvalues in a single block.

The first potential difficulty is that the space R(
[
Ek HEk

]
) (see (7))

may have dimension less than 2k. The most extreme case of this is when R(Ek)
already happens to be invariant under H. To deal with this possibility, write

[
Ek HEk

]
=
[
Ik H11

0 H21

]
,

and notice that the space spanned by the columns of this matrix is the same as
the space spanned by the columns of[

Ik 0
0 H21

]
.

Now take a QR decomposition with column pivoting H21 = URP , where U
has orthonormal columns, R is k × k and upper triangular, and P is a k × k
permutation matrix. This is inexpensive if k � n. Alternatively an SVD or
other rank-revealing decomposition can be used, see [9].

Then the columns of

Q =
[
Ik 0
0 U

]
(28)

are an orthonormal basis of R(
[
Ek HEk

]
), provided that H21 has full rank.

If H21 is rank deficient (or nearly so), the leading columns of (28) are a basis
for R(

[
Ek HEk

]
), and the extraneous columns are at the end. We use the

matrix Q from (28) instead of the matrix from the QR decomposition (8).

18

The next step is to pick out an isotropic invariant subspace of R(Q). To
this end we compute the matrix G = QTHQ and its real Schur decomposition
G = Q̃T̃ Q̃T , as prescribed in Section 4. This includes a sorting step in which
we move the eigenvalues that we wish to retain to the top of T̃ . In some
applications we prefer to keep the eigenvalues with negative real part, but in
practice this is not always an option. Consider an extreme special case in which
R(
[
Ek HEk

]
) = R(Ek) and has dimension k. Suppose further that the

eigenvalues of H associated with the invariant subspace R(Ek) all have positive
real part. In this case we have no choice but to work with eigenvalues with
positive real part.

Because of this and similar examples, the best practical course of action is
simply to take the eigenvalues that the algorithm provides and sort them later
if necessary. Thus our algorithm acts as follows. First the Schur decomposition
with no reordering is computed. We would be happy to take the top k eigen-
values as the ones that we will retain, but we want to make sure that the space
so produced is isotropic. Recall from Theorem 1 that we can ensure isotropy by
not selecting any opposite pair (λ,−λ). Therefore we begin by selecting the top
eigenvalue. Then each subsequent eigenvalue is selected if it is not (equal to or
nearly equal to) the opposite of any eigenvalue that has already been selected.
In this way we move through the entire set of eigenvalues of T , selecting some
and rejecting others. We then reorder the real Schur decomposition so that the
selected eigenvalues are moved to the top.

The subspace built with the selected eigenvalues should be invariant in prin-
ciple, but in practice we must check whether it really is invariant within a
specified tolerance. We will almost never have an invariance failure on the first
step, as the symplectic URV decomposition is fresh, and H2 has the right form
to guarantee that the space R(

[
Ek HEk

]
) is essentially invariant. Invari-

ance of the chosen isotropic subspace then follows. However, after a few steps
and a few deflations, it may be that roundoff errors cause the invariance to be
lost.

To check the invariance of S = R(X), we compute G = XTHX and a
matrix of residuals |HX −XG |. If all entries of this matrix are less than
100
√
n‖H ‖F ε, where ε ≈ 2.22× 10−16 is the “machine epsilon”, we accept the

subspace as invariant. We also check the isotropy by computing the isotropy
residual matrix |XTJX |. If all entries of this matrix are under 100

√
nε, the

space is judged to be isotropic. If either of these tests is failed, action is taken.
Our current codes can be run in either of two modes. In mode 1, if the sub-

space fails to be either invariant or isotropic, the normal action is to perform a
new symplectic URV decomposition on the remaining submatrix. New clusters
and blocks are computed as well.

In the rare cases when we have a failure even though there have been no
deflations since the last symplectic URV decomposition was computed (so that
computing a new one would not help), we merge the current block with the next
one and try again with the bigger block.

In mode 2, if we get a failure of either invariance or isotropy, we first look
for a smaller dimensional subspace by dropping some columns from X until we

19

get a subspace that is both invariant and isotropic to the specified precision.
We then work with a smaller block, merging the rejected columns with the next
block.

In the event that we are unable to get an isotropic invariant subspace of any
dimension, we proceed as in mode 1, either computing a new symplectic URV
decomposition or combining two blocks.

An advantage of mode 2 is that it tends to decrease the total number of
symplectic URV decompositions that have to be performed in the course of
entire computation. A potential disadvantage is that decreasing the block size
can result in splitting up a cluster of eigenvalues.

The nature of the end phase of the algorithm depends upon whether or not
any purely imaginary eigenvalues were detected. First let us suppose that no
purely imaginary eigenvalues were found. Then the final block is processed by
the Laub trick: A real Schur form of the remaining 2ks × 2ks submatrix is
computed, and the left-half-plane eigenvalues are moved to the top. Then the
first ks columns of the transforming matrix span the isotropic subspace that we
use for the final transformation of H.

The space is automatically invariant, so we do not need to test for this.
However, it may fail to be isotropic in practice. We therefore test for isotropy.
In case of failure, we do not complete the last transformation. We return the
form (3), where [

T22 G22

C22 −TT22

]
is the final, unresolved block. The isotropy failure could result from some of the
eigenvalues being too close to the imaginary axis.

If the isotropy test is passed, we perform the transformation of the final
block to get block Hamiltonian Schur form. If we want the real Hamiltonian
Schur form, each of the blocks can be reduced to real Schur form individually
by the standard QR algorithm. This step respects Hamiltonian structure, as
whatever transformations are done to blocks of T in[

T G
0 −TT

]
,

the same transformations are applied to the blocks of −TT . The overall trans-
formations are both orthogonal and symplectic. If the eigenvalues need further
sorting, this can be done by an algorithm that is provided in HAPACK [3].

In cases in which purely imaginary eigenvalues have been detected, the best
result we can get is the form (3), in which the block[

T22 G22

C22 −TT22

]
(29)

contains the purely imaginary eigenvalues. The worst that can happen is that
while processing the final non-purely-imaginary block, we are unable to obtain
a subspace that is both invariant and isotropic, even though a new symplectic

20

URV decomposition has just been computed. This will not normally happen
unless there are eigenvalues very close to the imaginary axis. In this case we
are unable to process the block, so we end with a form (3) in which the block
(29) contains both purely imaginary eigenvalues and eigenvalues that are nearly
purely imaginary.

One other question needs to be discussed. In the elimination process the
leading block (Xs+1 in (10)) was assumed to be nonsingular in Section 5, in
which we explained why the method works. What should we do in situations
in which Xs+1 is singular or nearly singular? We experimented with a strategy
in which the current block is merged with the next block whenever this occurs,
but in the end we decided to take no special action; we simply proceed with the
elimination. This causes no problem with the current elimination, but it can
cause problems downstream. The preservation of the block-triangular form of
H2 depends upon the nonsingularity of Xs+1, so there is the danger that the
special form of H2 will be lost. This would necessitate the computation of a new
symplectic URV decomposition to restore the form of H2. On the other hand,
there are benign situations in which Xs+1 is singular. For example, suppose

X =

X1

0
...
0

 ,
in which Xs+1 = 0. In this situation H is ready for deflation with no transfor-
mation at all. If we take some special action because Xs+1 is singular, we miss
the opportunity to make a deflation with no work whatsoever. Therefore we
decided to take no special action when Xs+1 is (nearly) singular.

Our numerical experiments suggest that even when Xs+1 is quite ill condi-
tioned, the elimination can usually be carried out without adverse consequences.
By this we mean that a new symplectic URV decomposition is (often) not
needed on the next step or any subsequent step.

7 Numerical Results

Example 1: In [7] the CLM method was used to compute the Hamiltonian
real Schur form and the stable invariant subspace for problems 1–19 of the
benchmark collection [4]. We ran our code on the same problems with the
same choices of parameter values and got comparable results. This is to be
expected, as our method reduces to CLM when the block sizes are small. The
residual r = ‖HQ−QHfinal ‖/‖H ‖ was in the range from 10−13 to 10−16 on all
problems. The only differences between our results and those of CLM were that
on problem 11 with parameter ε = 0 and on problems 13 and 14 with ε = 10−6,
our code reported that the matrix has eigenvalues very near the imaginary axis
and stopped with a partial Schur decomposition. This is a correct conclusion
in all cases, and it was arrived at because of failure to obtain an isotropic

21

subspace on the last step. If the isotropy tests are disabled, our code produces a
Hamiltonian real Schur form in all cases but with somewhat degraded residuals
in two of the cases. On problem 11 with ε = 0 we had r = 4.6×10−9, on problem
13 with ε = 10−6 we had r = 4.5 × 10−16, and on problem 14 with ε = 10−6

we had r = 7.2 × 10−5. These are about the same as the results reported for
CLM in [7]. The relatively poor residuals in the two cases were due to failure
to produce a stable invariant subspace that was isotropic to working precision.

Example 2: The benchmark collection [4] includes a 20th problem that is quite
difficult and is seldom mentioned in the literature. This matrix is of dimension
842 and has ill-conditioned eigenvalues. When we ran our code on this problem,
it clustered all of the eigenvalues into a single block. Thus it reduced to the
Laub trick in this case. Running MATLAB 7.2, our code failed on this problem
because MATLAB’s “schur” command, which is supposed to compute the real
Schur form, failed to converge on this matrix. Thus the Laub trick fails for this
matrix.

We then balanced the matrix using the symplectic balancing routine from
HAPACK [3]. For the balanced matrix the Laub trick was able to compute the
stable invariant subspace but had a somewhat large residual r = 3.2×10−9. This
not-very-good result was again a consequence of a failure to produce an invariant
subspace that is isotropic to working precision. We should have XTJX = 0 in
theory. What we actually got was ‖XTJX ‖ ≈ 10−8, which is above the level of
roundoff error by a factor of about 108. Since the Laub trick’s construction of an
orthogonal symplectic transforming matrix relies upon isotropy of the subspace,
the lack thereof resulted in a bad residual.

When we ran our block CLM code on the balanced matrix, we were able to
extract four quadruples of eigenvalues. The code then decided to lump all of
the remaining eigenvalues into a single block. On this (final) step it found that
the computed invariant subspace did not satisfy the isotropy condition, so it
gave up and returned a partial Hamiltonian Schur form. When we disabled the
isotropy test, the code was able to return a complete Hamiltonian real Schur
decomposition, but the residual was 2.1 × 10−10. This relatively poor residual
is an expected consequence of the lack of isotropy.

The matrices used in the following examples are available from the third
author on request.
Example 3: We built a 40 × 40 Hamiltonian matrix with a cluster of 20 ill-
conditioned eigenvalues around −1. Our code diagnosed the cluster and pro-
cessed it in a single block of size 20. Thus our method reduced to the Laub trick
in this case. We obtained a residual r = ‖HQ−QHfinal ‖/‖H ‖ = 5.6 × 10−15.
In contrast, the residual produced by CLM was r = 8.3× 10−3.

Example 4: We built a 120 × 120 Hamiltonian matrix with the 60 left-half-
plane eigenvalues arranged in five tight clusters of 12. Our code processed them
as five blocks of size 12 and obtained a residual r = 1.3× 10−14. CLM obtained
r = 5.9× 10−1 on this problem.

Example 5: We built a 400× 400 matrix with 10 clusters of varying sizes from

22

6 to 14 in the left half plane, along with many unclustered eigenvalues. Our
code partitioned them into 12 blocks, 11 of size 1 and one of size 189. Thus it
processed 11 real eigenvalues separately and bunched the remaining 189 into a
single block. This was disappointing, as we were hoping that the code would do
a better job of blocking the eigenvalues. On the bright side, our code obtained
a residual r = 1.4× 10−14. CLM gave r = 2.4× 10−1.

Example 6: We built a 20 × 20 Hamiltonian matrix with double eigenvalues
at ±i. Our code computed a partial Hamiltonian real Schur decomposition and
reported that there are four purely imaginary eigenvalues. The residual was
2.2× 10−13.

Example 7: We generated a 1000×1000 Hamiltonian matrix with no eigenvalue
clusters and no eigenvalues on the imaginary axis. We ran our code on this
matrix three times with different parameter settings. On the first run we set
the minimum block size to 1, as we did in all previous examples. Our code built
only blocks of size 1 (corresponding to real eigenvalues) and 2 (corresponding
to complex conjugate pairs). Thus it reduced to CLM in this case. The residual
was r = 2.1×10−14. In spite of the large size of the matrix, only one symplectic
URV decomposition was needed, no supplemental URV decompositions had to
be done along the way.

For the second run we set the minimum block size to 40. The actual block
sizes that were chosen by the algorithm were 40, 40, 40, 40, 41, 40, 40, 40, 41,
40, 41, and 57, and the final residual was r = 2.1× 10−13.

This run required additional symplectic URV decompositions. In addition
to the initial decomposition of the 1000× 1000 matrix, a second decomposition
was required on a submatrix of dimension 760, and additional decompositions
were needed at dimensions 518, 358, and 196. This was disappointing and
it looks bad, but it is not as bad as it looks. Since the work required for a
symplectic URV decomposition is O(n3), we can easily check that the amount
of work for the second decomposition is only about 44% of the work for the
initial decomposition. For the third through fifth decompositions it is only
about 14%, 5%, and 1%, respectively. Thus the total amount of work for all five
decompositions was only some 75% more than it was for the first decomposition
alone.

Each of the additional symplectic URV decompositions was triggered by
a slight failure of invariance of the computed subspace. If we had made the
invariant subspace tolerance a bit less stringent, we could have delayed these
decompositions and lowered the total number.

The second run was done in mode 1 (see § 6), in which we strictly enforce the
minimum block size. The third run was done in mode 2 (with minimum block
size 40, as in the second run). In mode 2, if the subspace fails the invariance or
isotropy condition, an attempt is made to find a smaller subspace that satisfies
these conditions, instead of computing a new symplectic URV decomposition
right away. We are willing to violate the specified minimum block size. Running
in this mode we were able to avoid any symplectic URV decompositions beyond
the first one. The code chose block sizes 40, 40, 40, 38, 40, 38, 28, 35, 27, 3, 5,

23

and 166. The residual was r = 1.9× 10−12.
Since our code is written in unoptimized MATLAB, we have not listed run

times in general. However, for this large example we will report a few times.
The computations were done on a computer with a single-core 3.0 GHz Intel
Pentium 4 processor with 1.0 MB cache. The run with the minimum block size
set to 1 took 128 seconds to complete, excluding the time for the symplectic
URV decomposition (27 seconds). This number could undoubtedly be improved
a lot by rewriting the code in Fortran or C. When we changed the minimum
block size to 40 (running in mode 2), the time was reduced to 25 seconds,
again excluding the time for the symplectic URV decomposition. Certainly
this significant improvement is at least partly due to improved cache use. For
comparison, the Laub trick took 47 seconds total, of which 42 seconds were spent
computing an unstructured real Schur decomposition. This is a computation
that is done quickly in MATLAB, as it uses efficient LAPACK code.

8 Conclusions

We have described and implemented a generalization of the CLM method [7]
for computing the Hamiltonian real Schur form of a Hamiltonian matrix. By
processing clusters of eigenvalues in blocks, our algorithm is able to solve prob-
lems on which the original CLM method fails. Our code checks key subspaces
for isotropy and invariance and takes action if these conditions are violated.
It either produces the desired Hamiltonian Schur form and/or stable invariant
subspace or reports that it was unable to do so. If there are eigenvalues on or
very near the imaginary axis, they will be reported. There are many ways in
which the code can be tuned. It could turn out that our current settings are far
from optimal.

References

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank. Matrix Riccati
Equations in Control and Systems Theory. Birkhäuser Verlag, Heidelberg,
2003.

[2] P. Benner, R. Byers, V. Mehrmann, and H. Xu. A robust numerical method
for the γ-iteration in h∞ control. Linear Algebra Appl., 425(2-3):548–570,
2007.

[3] P. Benner and D. Kressner. Fortran 77 subroutines for computing the
eigenvalues of Hamiltonian matrices. ACM Trans. Math. Software, 32:352–
373, 2006. www.tu-chemnitz.de/mathematik/hapack/.

[4] P. Benner, A. J. Laub, and V. Mehrmann. Benchmarks for the numerical
solution of algebraic Riccati equations. IEEE Contr. Syst. Mag., 7:18–28,
1997.

24

[5] P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure
preserving method for computing the eigenvalues of real Hamiltonian or
symplectic pencils. Numer. Math., 78:329–358, 1998.

[6] A. Bunse-Gerstner. Matrix factorizations for symplectic QR-like methods.
Linear Algebra Appl., 83:49–77, 1986.

[7] D. Chu, X. Liu, and V. Mehrmann. A numerically strongly stable method
for computing the Hamiltonian Schur form. Numer. Math., 105:375–412,
2007.

[8] G. Freiling, V. Mehrmann, and H. Xu. Existence, uniqueness and
parametrization of Lagrangian invariant subspaces. SIAM J. Matrix Anal.
Appl., 23:1045–1069, 2002.

[9] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, third edition, 1996.

[10] S. Grivet-Talocia. Passivity enforcement via perturbation of hamiltonian
matrices. IEEE Trans. Circuits and Systems, 51:1755–1769, 2004.

[11] J. Handy. The Cache Memory Book. Academic Press, Second edition, 1998.

[12] T. Kailath. Linear Systems. Information and System Sciences. Prentice-
Hall, 1980.

[13] D. Kressner. Numerical Methods for General and Structured Eigenproblems,
volume 46 of Lecture Notes in Computational Science and Engineering.
Springer-Verlag, 2005.

[14] A. J. Laub. A Schur method for solving algebraic Riccati equations. IEEE
Trans. Automat. Control, 24:913–921, 1979.

[15] W.-W. Lin and V. Mehrmann und H. Xu. Canonical forms for Hamiltonian
and symplectic matrices and pencils. Linear Algebra Appl., 301-303:469–
533, 1999.

[16] V. Mehrmann and H. Xu. Perturbation of purely imaginary eigenvalues
of hamiltonian matrices under structured perturbations. Technical Re-
port 410, DFG Research Center, Matheon, Berlin, Germany, 2007. url:
http://www.matheon.de/ , to appear in SIAM J. Matrix Analysis Appl.
2008.

[17] V. L. Mehrmann. The Autonomous Linear Quadratic Control Problem,
volume 163 of Lecture Notes in Control and Information Sciences. Springer-
Verlag, 1991.

[18] C. C. Paige and C. F. Van Loan. A Schur decomposition for Hamiltonian
matrices. Linear Algebra Appl., 41:11–32, 1981.

25

[19] A.C.M. Ran and L. Rodman. Stability of invariant Lagrangian subspaces
II. In H.Dym, S. Goldberg, M.A. Kaashoek, and P. Lancaster, editors,
Operator Theory: Advances and Applications, volume 40, pages 391–425.
Birkhäuser-Verlag, Basel, Switzerland, 1989.

[20] C. Schröder and T. Stykel. Passivation of LTI systems. Preprint 368, TU
Berlin, Matheon, Germany, 2007.

[21] D. S. Watkins. On the reduction of a Hamiltonian matrix to Hamiltonian
Schur form. Electron. Trans. Numer. Anal., 23:141–157, 2006.

[22] D. S. Watkins. The Matrix Eigenvalue Problem: GR and Krylov Subspace
Methods. SIAM, Philadelphia, 2007.

[23] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-
Hall, Upper Saddle River, NJ, 1995.

26

