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Abstract. We propose a model reduction method for positive systems that ensures the positivity
of the reduced-order model. In the standard as well as in the descriptor case, for continuous-time
and discrete-time systems, our approach is based on constructing diagonal solutions of Lyapunov
inequalities. These are linear matrix inequalities (LMIs), which are shown to be feasible. Positivity
and stability are preserved and an error bound in the H∞-norm is provided.
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1. Introduction. We consider linear time-invariant positive descriptor systems
in continuous-time

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) + Du(t),
(1.1)

and in discrete-time

Ex(t+1) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) + Du(t),
(1.2)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are real constant coefficient matrices. In
the continuous-time case, the state x, input u and output y are real-valued vector
functions. In the discrete-time case x, u and y are real-valued vector sequences. We
focus on (internally) positive systems. These are systems whose state and output
variables take only nonnegative values at all times t for any nonnegative initial state
and any nonnegative input, [17, 21, 25].

Positive systems arise naturally in many applications such as pollutant transport,
chemotaxis, pharmacokinetics, Leontief input-output models, population models and
compartmental systems, [2, 5, 6, 8, 12, 17, 21]. In these models, the variables represent
concentrations, population numbers of bacteria or cells or, in general, measures that
are per se nonnegative. Positive systems are subject to ongoing research by many au-
thors, [1,13,14,17,21,28–30,32,33]. Recent advances on control theoretical issues have
been made especially in the positive discrete-time case. Yet, there are still many open
problems, in particular for standard positive systems in continuous-time. One such
problem in the continuous-time as well as in the discrete-time case is model reduction
which preserves the positivity of a system. In the present paper, we generalize the
model reduction methods of standard balanced truncation and singular perturbation
balanced truncation such that positivity is preserved. Our technique uses a linear ma-
trix inequality (LMI) approach and we show that stability is preserved and an error
bound in the H∞-norm is provided. Furthermore, we provide a generalization of this
positivity preserving model reduction to the case of positive descriptor systems.
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This paper is organized as follows. In Section 2, we introduce the notation, define
the positivity concept and give a well-known characterization. In Section 3, we in-
troduce positivity-preserving balanced truncation and singular perturbation balanced
truncation for standard systems and thereafter, we generalize the methods to posi-
tive descriptor systems in Section 4. The applicability of the proposed methods is
demonstrated by means of several examples in Section 5.

2. Preliminaries. Throughout the paper Rn×m and Cn×m denote the spaces of
n×m real and complex matrices. The open right half-plane is denoted by C+ and the
complex open unit disc by D. The matrix AT denotes the transpose of A ∈ R

n×m, and
A−T = (A−1)T . An identity matrix of order n is denoted by In or simply by I. The
zero n×m (n×n) matrix is denoted by 0n,m (0n) or simply by 0. By rank(A) we denote
the rank and by im(A) the image of a matrix A. For A = [aij ]i=1,...,n,j=1,...,m ∈ Rn×m

and I = [i1, . . . , ik] ∈ {1, . . . , n}k, J = [j1, . . . , jl] ∈ {1, . . . , m}l, we define the matrix
A(I, J) ∈ Rk×l by

A(I, J) = [airjs
]r=1,...,k,s=1,...,l.

A matrix A ∈ R
m×n is called nonnegative (positive) and we write A ≥ 0 (A > 0)

if all entries are nonnegative (positive). A matrix A ∈ Rn×n is called Z-matrix if
its off-diagonal entries are nonpositive. In the literature, a matrix for which −A is a
Z-matrix sometimes is called L-matrix, Metzler matrix or essentially positive matrix,
see, e.g., [7, 17, 21, 34]. Throughout this paper we will use the term −Z-matrix. Let
B ∈ Rn×n B ≥ 0 with spectral radius ρ(B). A matrix A of the form A = αI − B,
with α > 0, and α ≥ ρ(B) is called M -matrix. If α > ρ(B) then A is a nonsingular
M -matrix, if α = ρ(B) then A is a singular M -matrix. The class of M -matrices is
a subclass of the Z-matrices. Accordingly, a matrix A ∈ R

n×n for which −A is an
M -matrix is called a −M -matrix. Note that for a nonsingular M -matrix A, we have
A−1 ≥ 0 [34]. Further, for Hermitian matrices P, Q ∈ Cn×n, we write P ≻ Q (P � Q)
if P − Q is positive (semi)definite.
Let H∞,d be the space of all transfer functions that are analytic and bounded on
C\D, where D is the closed unit ball around the origin. The continuous-time and
discrete-time H∞-norms are defined by

‖G‖∞,c = sup
s∈C+

‖G(s)‖2, and ‖G‖∞,d = sup
z∈C\D

‖G(z)‖2, (2.1)

respectively, where ‖ · ‖2 denotes the spectral matrix norm.

2.1. Descriptor systems. Let the matrix quintuple [E , A , B , C , D] denote
the system (1.1) or (1.2), respectively. The function G(λ) = C(λE − A)−1B + D

is called transfer function and λ is called frequency variable. Conversely, the quin-
tuple [ E , A , B , C , D] is called realization of G. Note that the frequency variable
is denoted by s in continuous-time and by z in discrete-time. A transfer function
G is called proper if it is bounded on some complex half-plane and strictly proper if
additionally limλ→∞ G(λ) = 0 holds.

A matrix pair (E, A) ∈ Rn×n × Rn×n is called regular if det(λE − A) 6= 0 for
some λ ∈ C. It is called singular otherwise. In this paper we restrict our considera-
tions to square and regular pencils. In this case, the pair (E, A) can be transformed
into Weierstraß canonical form, see e.g. [10, 15, 22], i.e., there exist regular matrices
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W, T ∈ Rn×n such that

(E, A) =

(
W

[
Inf

0
0 N

]
T, W

[
J 0
0 In∞

]
T

)
, (2.2)

where N ∈ Rn∞×n∞ is nilpotent with index of nilpotency ν. The number ν is called
index of the matrix pair (E, A) and is denoted by ind(E, A). The eigenvalues of J are
called the finite eigenvalues of (E, A). By nf and n∞ we denote the dimensions of
the deflating subspaces of (E, A) corresponding to the finite and infinite eigenvalues,
respectively. The matrix

Pr = T−1

[
Inf

0
0 0

]
T, (2.3)

is the spectral projector onto the right deflating subspace of (E, A) corresponding to
the finite eigenvalues.

We call a matrix pair (E, A) c-stable if it is regular and all its finite eigenvalues
have negative real part. We call a matrix pair (E, A) d-stable if its finite spectral ra-
dius, i.e., the largest modulus of a finite eigenvalue, is less than one, i.e., ρf (E, A) < 1.
Note that a matrix A is called c-stable (d-stable) if (I, A) is c-stable (d-stable). We
call a realization of a continuous-time (discrete-time) system [ E, A , B , C , D] stable,
if (E, A) is c-stable (d-stable).

For regular (E, A) and λ̂ ∈ R such that λ̂E − A is non-singular, we define

Ê = (λ̂E − A)−1E, Â = (λ̂E − A)−1A, B̂ = (λ̂E − A)−1B. (2.4)

Note, that the matrices Ê and Â commute, see, e.g., [11, 22].

Let M ∈ Rn×n have index ν, i.e., ind(M, I) = ν. The Drazin inverse MD ∈ Rn×n

of M , see, e.g., [11, 16], is uniquely defined by the properties:

MDM = MMD, MDMMD = MD, MDMν+1 = Mν . (2.5)

Note that, via the Jordan canonical form, the matrix M ∈ R
n×n has a representation

M = T−1 diag(J, N)T , where J is square and invertible and N is nilpotent. The
Drazin inverse is then given by [11]

MD = T−1

[
J−1 0
0 0

]
T, (2.6)

For Ê, Â as defined in (2.4) and their corresponding Drazin inverses, the following
properties hold, see, e.g., [22]:

ÊÂD = ÂDÊ, ÊDÂ = ÂÊD, ÊDÂD = ÂDÊD. (2.7)

Note that if we form matrix products such as ÊDÊ, ÊDÂ, ÊDB̂, then the terms in λ̂

cancel out, so that these products do not depend on the specific choice of λ̂, [22, 36].
Furthermore, note that ÊDÊ = Pr is the spectral projector defined in (2.3), [26, 36].

From [27], we have that the transfer function G(s) = C(sE −A)−1B + D can be
additively decomposed as G(s) = Gsp(s) + P (s), where Gsp(s) is the strictly proper
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and P (s) is the polynomial part of G(s). By using (2.6), it can be derived [36] that
the strictly proper part Gsp(s) of the transfer function G(s) can be written as

Gsp(s) =

∞∑

k=1

(CPr)(Ê
DÂ)k−1(ÊDB̂)s−k = (CPr)(sI − ÊDÂ)−1(ÊDB̂), (2.8)

and the polynomial part can be written as

P (s) = − C(I − Pr)

ν−1∑

k=0

(ÊÂD)k(I − Pr)Â
DB̂sk + D

=C(I − Pr)(s(I − Pr)ÊÂD − I)−1(I − Pr)Â
DB̂ + D.

(2.9)

2.2. Positive systems. Here we introduce the basic facts about positive stan-
dard and descriptor systems.

Definition 2.1 (Positivity). We call the continuous-time system (1.1) with
ind(E, A) = ν positive if for all t ∈ R+ we have x(t) ≥ 0 and y(t) ≥ 0 for any input
function u ∈ Cν such that u(i)(τ ) ≥ 0 for i = 0, . . . , ν − 1 and 0 ≤ τ ≤ t and any
consistent initial value x0 ≥ 0.
The discrete-time system (1.2) with ind(E, A) = ν is called positive if for all t ∈ N0

we have x(t) ≥ 0 and y(t) ≥ 0 for any input sequence u(τ ) ≥ 0 for 0 ≤ τ ≤ t + ν − 1
and any consistent initial value x0 ≥ 0.

The following theorem states a well-known characterization of positive systems in
the standard case, that is E = I.

Theorem 2.2 ( [17, 21]). The continuous-time system [ I , A , B , C , D ] is pos-
itive if and only if A is a −Z-matrix and B, C , D ≥ 0. The discrete-time system
[ I , A , B , C , D ] is positive if and only if A, B, C, D ≥ 0.

A corresponding characterization of positivity in the descriptor case was given
in [36].

Theorem 2.3. Consider the system [ E , A , B , C , D ] in continuous-time or
in discrete-time with (E, A) regular of ind(E, A) = ν and let Ê, Â, B̂ be defined as
in (2.4). In the continuous-time case, assume that

(i) (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1,
(ii) ÊDÊ ≥ 0,
(iii) D ≥ 0.

Then, the continuous-time system [ E , A , B , C , D ] is positive if and only if

1. there exists a scalar α ≥ 0 such that M̄ := −αI + (ÊDÂ + αÊDÊ) is a
−Z-matrix,

2. ÊDB̂ ≥ 0,
3. C is nonnegative on the subspace X defined by

X := im+[ÊDÊ,−(I − ÊDÊ)ÂDB̂, . . . ,−(I − ÊDÊ)(ÊÂD)ν−1ÂDB̂], (2.10)

where for W ∈ Rn×q, the space im+ W is defined by

im+ W := {w1 ∈ R
n | ∃w2 ∈ R

q, w2 ≥ 0 : Ww2 = w1}.

In the discrete-time case, assume that ÊDÊ ≥ 0. Then, the discrete-time system
[ E , A , B , C , D ] is positive if and only if ÊDÂ, ÊDB̂, D ≥ 0 and C is nonnegative
on X as defined in (2.10).
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To motivate the assumption ÊDÊ ≥ 0 in Theorem 2.3, consider the homogeneous
system Eẋ = Ax. If we require that this system has a nonnegative solution for any
initial value x0 ≥ 0 (instead of any consistent initial value x0 = ÊDÊv ≥ 0), then
ÊDÊ ≥ 0 turns out to be a necessary condition [35]. Moreover, from the point of view
of applications, it is preferable to prescribe an initial condition that is just nonnegative
instead of one that is nonnegative on some special subspace.

3. Balanced truncation for positive standard systems. In this section,
we restrict our considerations to so-called standard systems, that is, a system (1.1)
or (1.2) with E = I. In Section 4, we treat the general descriptor case.

Continuous-time case. Consider the standard system [ I , A , B , C , D ] in
continuous-time and assume that A is c-stable. The method of balanced trunca-
tion is based on Lyapunov equations. It generates c-stable reduced order systems.
However, positivity is not preserved in general. Instead, we consider model reduction
based on Lyapunov inequalities

AP + PAT + BBT � 0, ATQ + QA + CT C � 0, (3.1)

with diagonal matrices P,Q � 0. In the following we show that for positive systems
the equations (3.1) are solvable. Moreover, we show the existence of a positive diagonal
transformation T ∈ Rn×n such that for the transformed system [ I , Ab , Bb , Cb , Db ]
given by

Ab = T−1AT, Bb = T−1B, Cb = CT, and Db = D, (3.2)

the corresponding Lyapunov inequalities

AbPb + PbA
T
b + BbB

T
b � 0, AT

b Qb + QbAb + CT
b Cb � 0, (3.3)

are fulfilled for

Pb = diag(Σ, Σc, 0no
, 0nco

), Qb = diag(Σ, 0no
, Σo, 0nco

) (3.4)

with 0 ≺ Σc ∈ Rnc×nc , 0 ≺ Σo ∈ Rno×no and

Σ = diag(σ1, σ2, . . . , σk) for some σ1 ≥ σ2 ≥ . . . ≥ σk > 0. (3.5)

We will call [ I , Ab , Bb , Cb , Db ] a positive balanced realization.

Theorem 3.1. Consider the c-stable continuous-time positive standard system
(1.1). Then, there exists a diagonal matrix T ≻ 0 such that the positive system
[ I , Ab , Bb , Cb , Db ] given by (3.2) is positive balanced, i.e. there exist diagonal ma-
trices Pb � 0, Qb � 0 as in (3.4), such that the Lyapunov inequalities in (3.3) hold.

Proof. A −M -matrix is diagonally stable, i.e., there exist diagonal positive definite
matrices X, Y such that

AX + XAT ≺ 0 and AT Y + Y A ≺ 0,

see, e.g. [3, 7]. In particular, there exist diagonal matrices P � 0, Q � 0 such that
(3.1) holds. We define a permutation matrix Π such that

ΠTPΠ = diag(X11, X22, 0no
, 0nco

), ΠTQΠ = diag(Y11, 0nc
, Y33, 0nco

)
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with the additional property that X11 = diag(x1, . . . , xk), Y11 = diag(y1, . . . , yk)

satisfy x1y1 ≥ x2y2 ≥ . . . ≥ xkyk > 0. Setting T̄ = diag((X11Y
−1
11 )

1
4 , Inc

, Ino
, Inco

)
and T = ΠT̄ , we have that Pb = T−1PT−T , Qb = TTQT have the desired form.
The transformed system is given by [ I , Ab , Bb , Cb , Db ] as defined in (3.2). Since
Ab is a −Z-matrix and Bb, Cb, Db ≥ 0, the transformed system is again positive by
Theorem 2.2.

The numbers σ1, . . . , σk play the role of Hankel singular values for standard bal-
anced truncation [20]. Consider a partition

Ab =

[
A11 A12

A21 A22

]
, Bb =

[
B1

B2

]
, Cb =

[
C1 C2

]
, (3.6)

where A11 ∈ R
ℓ×ℓ and either ℓ = k or ℓ < k such that σℓ+1 < σℓ. The matrices B

and C are partitioned accordingly. By means of balanced realizations, reduced-order
models

˙̃x(t) = Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t) + D̃u(t)
(3.7)

can now be constructed, where Ã, B̃, C̃, D̃ are defined by

Ã = A11, B̃ = B1, C̃ = C1, D̃ = D. (3.8)

An alternative method for the construction of reduced-order models is

Ã = A11 − A12A
−1
22 A21, B̃ = B1 − A12A

−1
22 B2,

C̃ = C1 − C2A
−1
22 A21, D̃ = D − C2A

−1
22 B2.

(3.9)

For the reduced-order models, we have the following result.

Theorem 3.2. Let [ I , A , B , C , D ] be a realization of G(s) that is c-stable.
Moreover, let Ab, Bb, Cb, Db be constructed as in (3.2), such that (3.3) holds for

Pb � 0, Qb � 0 as in (3.4). Let [ I , Ã , B̃ , C̃ , D̃ ] be the realization that is either

constructed via (3.8) or (3.9). Then, the system [ I , Ã , B̃ , C̃ , D̃ ] is positive and the

transfer function G̃(s) = C̃(sIℓ − Ã)−1B̃ + D̃ satisfies

‖G − G̃‖∞,c ≤ 2
k∑

i=ℓ+1

σi. (3.10)

Proof. It suffices to show the positivity of the reduced-order systems. For a proof
of the error bound in (3.10), we refer to [24].

The reduced-order system defined in (3.8) is again positive, since B̃ ≥ 0, C̃ ≥ 0,

D̃ ≥ 0 and Ã is a −M -matrix as a submatrix of a −M -matrix.
The positivity of the reduced-order system defined in (3.9) can be seen as follows:

The −M -matrix property of Ã is preserved, since it is a Schur complement of A

[34]. Furthermore, since A22 is also a −M -matrix, we have A−1
22 ≤ 0, and hence,

B̃, C̃, D̃ ≥ 0.

The main difference between the reduced-order models (3.8) and (3.9) is that the

model (3.8) is exact for s = ∞ meaning that G(∞) = G̃(∞), whereas (3.9) is exact
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at s = 0. In balanced truncation based on Lyapunov equations, the first method
is called standard balanced truncation, whereas the second method is called singular
perturbation balanced truncation.
Note that for the computation of positive reduced-order models, there is no need to
compute a balanced realization explicitely. Instead, for solutions

P = diag(p1, . . . , pn) � 0 and Q = diag(q1, . . . , qn) � 0

of (3.1), indices {i1, . . . , in} have to be found such that we have
pi1qi1 ≥ . . . ≥ piℓ

qiℓ
> piℓ+1

qiℓ+1
≥ . . . ≥ pin

qin
. Then, a reduced-order model

(3.7) can be obtained in the following way: Let I1 = [i1, . . . , iℓ], I2 = [iℓ+1, . . . , in]
and

Ā11 = A(I1, I1), Ā12 = A(I1, I2), B̄1 = B(I1, [1, . . . , m]),

Ā21 = A(I2, I1), Ā22 = A(I2, I2), B̄2 = B(I2, [1, . . . , m]),

C̄1 = C([1, . . . , p], I1), C̄2 = C([1, . . . , p], I2).

(3.11)

and either define the reduced-order model by

[ I , Ã , B̃ , C̃ , D̃ ] = [ I , Ā11 , B̄1 , C̄1 , D ] (3.12)

or by

[ I , Ã , B̃ , C̃ , D̃ ]

=[ Ā11−Ā12Ā
−1
22 Ā21 , B̄1−Ā12Ā

−1
22 B̄2 , C̄1−C̄2Ā

−1
22 Ā21 , D−C̄2Ā

−1
22 B̄2 ].

(3.13)

These systems are linked to the reduced-order models (3.8) and (3.9), respectively,
via a positive diagonal state-space transformation. Therefore, the positivity as well
as the error bound (3.10) are still valid.

Discrete-time case. Consider a positive system [ I , A , B , C , D ] in discrete-
time and assume that A is d-stable. We consider model reduction based on discrete-
time Lyapunov inequalities

APAT − P + BBT � 0, ATQA −Q + CT C � 0, (3.14)

which are solved for diagonal P,Q � 0. As in the continuous-time case, we consider a
positive balanced realization, i.e. [ I , Ab , Bb , Cb , Db ] = [ I , T−1AT , T−1B , CT , D ]
with diagonal T � 0, such that the Lyapunov inequalities

AbPbA
T
b − Pb + BbB

T
b � 0, AT

b QbAb −Qb + CT
b Cb � 0 (3.15)

are fulfilled for Pb, Qb as in (3.4).
Consider a partition of the balanced system as in (3.6) and assume that either ℓ = k

or ℓ < k with σℓ+1 < σℓ. A reduced-order model

x̃(t+1) = Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t) + D̃u(t),
(3.16)

can either be constructed via (3.8) or, alternatively, via

Ã = A11 + A12(In−r − A22)
−1A21, B̃ = B1 + A12(In−r − A22)

−1B2,

C̃ = C1 + C2(In−r − A22)
−1A21, D̃ = D + C2(In−r − A22)

−1B2.
(3.17)
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In the case where discrete-time Lyapunov equations are considered instead of inequali-
ties, the reduced-order model constructed via (3.8) is referred to as standard balanced
truncation and (3.17) as singular perturbation [20,24]. For the reduced-order models,
we have an analogous result as in Theorem 3.2.

Theorem 3.3. Consider the d-stable discrete-time positive standard system (1.1).
Then, there exists a diagonal T ≻ 0 such that the positive system [ I , Ab , Bb , Cb , Db ]
given by (3.2) is positive balanced, i.e. there exist diagonal Pb � 0, Qb � 0 as in (3.4),
such that the Lyapunov inequalities in (3.15) hold.

Let [ I , Ã , B̃ , C̃ , D̃ ] be the realization that is either constructed by (3.8) or (3.17).

Then, the system [ I , Ã , B̃ , C̃ , D̃ ] is positive and the transfer function

G̃(z) = C̃(zIℓ − Ã)−1B̃ + D̃ satisfies

‖G − G̃‖∞,d ≤ 2

k∑

i=ℓ+1

σi. (3.18)

Proof. The existence of a diagonal matrix T ≻ 0 such that [ I , Ab , Bb , Cb , Db ]
given by (3.2) is positive balanced can be obtained analogously to Theorem 3.1.
Moreover, a proof of the error bound (3.10) can be found in [4]. It remains to show
that the reduced-order system is positive.
The reduced-order system defined via (3.8) is positive, since Ã, B̃, C̃, D̃ are sub-
matrices of positive matrices. The positivity of the reduced-order model constructed
via (3.17) can be observed as follows. By the stability assumption, we have that
ρ(A22) ≤ ρ(A) < 1. Hence, In−ℓ − A22 is an M -matrix and (In−ℓ − A22)

−1 ≥ 0.

Therefore, we obtain Ã, B̃, C̃, D̃ ≥ 0.

As in the continuous-time case, the actual transformation to a balanced sys-
tem [ I , Ab , Bb , Cb , Db ] does not have to be performed, but only the submatrices
in (3.11) have to be considered. Reduced-order systems then can be constructed
according to (3.12) or, alternatively, via

[ Ā11+Ā12(In−r−Ā22)
−1Ā21 , B̄1+Ā12(In−r−Ā22)

−1B̄2 ,

C̄1+C̄2(In−r−Ā22)
−1Ā21 , D+C̄2(In−r−Ā22)

−1B̄2 ]

Let us finally give a remark on the Lyapunov inequalities (3.1) and (3.14). It is clear
that their solutions are not unique and one should look for solutions
P = diag(p1, . . . , pn), Q = diag(q1, . . . , qn) such that

√
PQ has a large number of

small diagonal elements. This yields components of the state which are candidates to
truncate. A good heuristic for this is the minimization of the trace of P and Q [9].
For getting even sharper bounds, the Lyapunov inequalities can be solved once more
while now minimizing the sum of those diagonal elements of P and Q corresponding
to the candidates for truncation.

4. Model reduction for positive descriptor systems.

Continuous-time case. In this section, for positive continuous-time descriptor
systems, we first prove the existence of a positive balanced realization. Based on this,
we define a reduced-order system and show that it is positive and that it yields the
usual H∞ error bound in Lemma 3.2. The construction of reduced-order models is
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based on the continuous-time Lyapunov inequalities

(ÊDÂ)X + X(ÊDÂ)T + ÊDB̂B̂T (ÊD)T � 0, (4.1a)

(ÊDÂ)T Y + Y (ÊDÂ) + PT
r CT CPr � 0, (4.1b)

with diagonal matrices X � 0, Y � 0.
Note that if the above relations become equalities and, additionally, the solutions
fulfill X = PrXPT

r and Y = PT
l Y Pl, where Pl is a spectral projector onto the left

deflating subspace of (E, A) corresponding to the finite eigenvalues, then we obtain
the generalized Lyapunov equations in [27]. However, for diagonal solutions of the
corresponding Lyapunov inequalities this will not necessarily be the case.

Theorem 4.1. Consider the c-stable continuous-time system [ E , A , B , C , D ]
that is positive in the sense of Theorem 2.3. Then, there exists a diagonal matrix
T ≻ 0 such that the system [ Eb , Ab , Bb , Cb , Db ] with

Eb = ET, Ab = AT, Bb = B, Cb = CT and Db = D (4.2)

is positive and there exist diagonal matrices Pb � 0, Qb � 0 partitioned as in (3.4)
such that the following Lyapunov inequalities hold

(ÊD
b Âb)Pb + Pb(Ê

D
b Âb)

T + ÊD
b B̂bB̂

T
b (ÊD

b )T � 0, (4.3a)

(ÊDÂb)
TQb + Qb(Ê

D
b Âb) + PT

r,bC
T
b CbPr,b � 0, (4.3b)

where Êb, Âb, B̂b are obtained from the matrices Eb, Ab, Bb as in (2.4) and
Pr,b = T−1PrT .

Proof. From [36, Theorem 4.8], we have that for a positive c-stable system, if
Pr ≥ 0, then there exist diagonal matrices X̃, Ỹ ≻ 0, such that

(ÊDÂ)X̃ + X̃(ÊDÂ)T � 0, (ÊDÂ)T Ỹ + Ỹ (ÊDÂ) � 0,

and the above inequalities are strict on imPr, i.e., for any 0 6= v ∈ imPr, we have

vT (ÊDÂX̃ + X̃ÂT (ÊD)T )v < 0, vT (ÂT (ÊD)T Ỹ + Ỹ ÊDÂ)v < 0.

Since, by assumption, we have ÊDB̂B̂T (ÊD)T ≥ 0 and PT
r CT CPr ≥ 0 and since

both terms are projected onto imPr, we obtain the existence of diagonal matrices
X � 0, Y � 0 such that the Lyapunov inequalities (4.1) hold. By using the same
argument as in the proof of Theorem 3.1, there exist diagonal matrices P � 0, Q � 0
and T ≻ 0 such that by transforming the system matrices as in (4.2), we obtain
(4.3), where Êb, Âb, B̂b are constructed as in (2.4) from the matrices Eb, Ab, Bb and
Pr,b = T−1PrT is the corresponding spectral projector as in (2.3). Since T is diagonal
with positive diagonal entries, the transformed system is again positive.

From now on, we consider the system [ Eb , Ab , Bb , Cb , Db ] from Theorem 4.1.
Since R = EbPr,b + Ab(I − Pr,b is invertible, the state equation of the system can be
scaled by the matrix R−1. Then we obtain an equivalent system [E , A , B , C , D ]
with system matrices E := R−1Eb, A := R−1Ab, B := R−1Bb. The multiplication
with the corresponding spectral projector Pr and its complementary projector (I−Pr),
respectively, leads to an equivalent system of two equations

Prẋ(t) = ÊDÂx(t) + ÊDB̂u(t),

(I − Pr)ÊÂDẋ(t) = (I − Pr)x(t) + (I − Pr)Â
DB̂u(t).

(4.4)
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Consider a partitioning as in (3.6) but for the matrices ÊDÂ, ÊDB̂, CPr:

ÊDÂ =

[
[ÊDÂ]11 [ÊDÂ]12
[ÊDÂ]21 [ÊDÂ]22

]
, ÊDB̂ =

[
[ÊDB̂]1
[ÊDB̂]2

]
, CPr =

[
[CPr]1 [CPr]2

]
,

(4.5)
where [ÊDÂ]11 ∈ Rℓ×ℓ and ℓ is chosen as in the standard case in (3.6). The matrices
ÊDB̂ and CPr are partitioned accordingly.

Our aim is to construct a reduction method that allows to obtain an H∞ error
bound as in the standard case. This is possible, for instance, if the polynomial part
P (s) of the transfer function G(s) remains unchanged, whereas the strictly proper
part Gsp(s) is reduced as in the standard case [31]. In this case, the polynomial parts
of the original and the reduced transfer functions cancel out in the H∞ norm and
we obtain the usual H∞ error bound. Note that, since (E, A) was assumed to be
c-stable, we have that ÊDÂ has only stable eigenvalues except for possibly several
eigenvalues zero that correspond to the eigenvalue ∞ of (E, A) [36]. To obtain an H∞

error bound, these must not be reduced and, hence, we have to make sure that the
block [ÊDÂ]22 is regular.

We partition the spectral projector Pr and the matrices ÊÂD, ÂDB̂ conformably
with the partitioning of the matrix ÊDÂ,

Pr =

[
[Pr]11 [Pr]12
[Pr]21 [Pr]22

]
, ÊÂD =

[
[ÊÂD]11 [ÊÂD]12
[ÊÂD]21 [ÊÂD]22

]
, ÂDB̂ =

[
[ÂDB̂]1
[ÂDB̂]2

]
. (4.6)

The following Lemma 4.2, in particular, states that [Pr]22 is regular whenever [ÊDÂ]22
is regular.

Lemma 4.2. Let the matrix ÊDÂ and the nonnegative projector Pr be partitioned
as in (4.5) and (4.6), respectively, such that [ÊDÂ]22 is regular. Then, [Pr]22 is a
(regular) diagonal matrix with positive diagonal entries.

Proof. We have that Pr ≥ 0 is a projector. Hence, there exists a permutation
matrix Q ∈ Πn such that QPrQ

T is in the following canonical form [18,19]

QPrQ
T =




π11 0 . . . 0 π1k 0

0 π22
. . .

... π2k

...
...

. . .
. . . 0

...
...

...
. . . πk,k πk,k+1 0

0 . . . . . . 0 0 0
πk+2,1 . . . . . . . . . πk+2,k+1 0




. (4.7)

We use the permutation matrix Q to obtain a corresponding permutation of ÊDÂ

and partition it accordingly

QÊDÂQT =




A11 A12 . . . A1,k+2

A21
. . .

...
...

. . .
...

Ak+2,1 . . . Ak+2,k+2




. (4.8)

Since PrÊ
DÂ = ÊDÂ and πk+1,k+1 = 0, we have that πk+1,k+1Ak+1,i = Ak+1,i = 0

for i = 1, . . . , k + 2. Furthermore, since ÊDÂPr = ÊDÂ and πk+2,k+2 = 0, we
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have that Ai,k+2πk+2,k+2 = Ai,k+2 = 0 for i = 1, . . . , k + 2. This implies that

whenever we choose a regular part of ÊDÂ, then the corresponding part of Pr will
have a positive diagonal by construction. Furthermore, since ÊDÂPr = ÊDÂ we
have that Aiiπii = Aii for i = 1, . . . , k − 1 and hence, rank(Aii) ≤ rank(πii) = 1.
Since rank(ÊDÂ) = rank(Pr) we conclude that rank(Aii) = rank(πii) = 1. Hence,
for a regular part of ÊDÂ, we can pick at most one row/column from each block
row/column in (4.8). By construction, the corresponding part of Pr will be also
regular. Moreover, this part will be diagonal with positive diagonal entries.

The following Lemma 4.3 states the special structure of the matrices in (4.4)
induced by the characterization of positivity in Theorem 2.3 [35].

Lemma 4.3. Consider the system matrices in (4.4) and let ν be the index of
nilpotency of (I −Pr)(ÊÂD). Then, assuming that Pr is in canonical form (4.7), for
i = 0, . . . , ν − 1, we have

(I − Pr)(ÊÂD)iÂDB̂ =




0
...
0
∗1

∗2



≤ 0, (4.9)

where ∗1, ∗2 denote some unspecified entries.

The special structures of (I − Pr)Â
DB̂ and (I − Pr)(ÊÂD)iÂDB̂ given in (4.9)

lead to the following facts. Let

(I − Pr)Â
DB̂ =

[
[(I − Pr)Â

DB̂]1
[(I − Pr)Â

DB̂]2

]

be partitioned according to ÊDÂ in (4.5). Since the part [(I −Pr)Â
DB̂]2 corresponds

to the regular part P22, by considering the canonical form (4.7) of Pr and the cor-
responding form of (I − Pr)Â

DB̂ in (4.9), the term [(I − Pr)Â
DB̂]2 must be zero.

By (4.9), we have that

(ÊÂD)i(I − Pr)Â
DB̂ =

[
[ÊÂD]11 [ÊÂD]12
[ÊÂD]21 [ÊÂD]22

] [
[(I − Pr)Â

DB̂]1
0

]
=

[
∗
0

]
, (4.10)

and we conclude that [ÊÂD]21[(I − Pr)Â
DB̂]1 = 0.

Since (I − Pr)ÊÂD is nilpotent, the second equation of (4.4) has the solution

(I − Pr)x(t) = −
ν−1∑

i=1

(ÊÂD)i(I − Pr)Â
DB̂u(i)(t),

and by (4.10) is equivalent to

[
(I − P11)[ÊÂD]11 0

0 0

]
ẋ(t) = (I − Pr)x(t) +

[
[(I − Pr)Â

DB̂]1
0

]
u(t). (4.11)

System (4.4) is therefore equivalent to the following decoupled system

ẋf (t) = Afxf (t) + Bfu(t), E∞ẋ∞(t) = x∞(t) + B∞u(t), (4.12)
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where

xf (t) :=Prx(t), Af :=ÊDÂ, Bf :=ÊDB̂,

x∞(t) :=(I − Pr)x(t), E∞ :=

[
(I − P11)[ÊÂD]11 0

0 0

]
, B∞ :=

[
[(I − Pr)Â

DB̂]1
0

]
.

(4.13)
Furthermore, we set

Cf := CPr, C∞ := C(I − Pr). (4.14)

Using (2.8) and (2.9), we have G(s) = Gsp(s) + P (s) with

Gsp(s) =Cf (sI − Af )−1Bf , P (s) =C∞(sE∞−I)−1B∞+D.

The first equation of the system in (4.12) is a standard system on the subspace
imPr. Requiring that [ÊDÂ]22 = [Af ]22 is regular, we can apply the reduction
scheme in (3.9) to the system [ I , Af , Bf , Cf , 0 ]. We obtain a reduced-order sys-

tem [ I , Ãf , B̃f , C̃f , D̃f ]. Since Af is c-stable on im Pr and [ I , Af , Bf , Cf , 0 ] is

balanced on imPr, we have that G̃sp(s) = C̃f (sI − Ãf )−1B̃f + D̃f satisfies the error
bound in Lemma 3.2.

The second equation of (4.12) corresponds to the system [ E∞ , I , B∞ , C∞ , D ].
Assuming the same partitioning as for [ I , Af , Bf , Cf , 0 ], we can apply the standard
balanced truncation reduction scheme in (3.8). We obtain the reduced-order system

[ Ẽ∞ , I , B̃∞ , C̃∞ , D ].

That P̃ (s) = C̃∞(sẼ∞−I)−1B̃∞+D satisfies P̃ (s) = P (s) can be verified as follows.
By (4.9) we know that if Pr is in canonical form and the matrices ÊÂD, ÂDB̂ are
permuted and partitioned accordingly, we have that

(ÊÂD)k(I − Pr)Â
DB̂ =




0
...
0
∗
∗




.

Therefore, if we consider a partitioning as in (4.11) and, furthermore, use (2.9), we
obtain that

P (s) = − C(I − Pr)

ν−1∑

k=0

(ÊÂD)k(I − Pr)Â
DB̂sk + D

= −
[
C∞1

C∞2

] [
[E∞B∞]1

0

]
= −C∞1

[E∞B∞]1 = P̃ (s).

Note that, in particular, this proves that Assertion (i) of Theorem 2.3 still holds for
the reduced-order system.

We obtain a corresponding descriptor system [ Ẽ , Ã , B̃ , C̃ , D̃ ] of ind(Ẽ, Ã) =
ind(E, A) = ν, which is equal to the degree of the polynomial P (s), by setting the

reduced-order spectral projector P̃r to

P̃r := [Pr]11 − [Pr]12[Pr]
−1
22 [Pr]21, (4.15)
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and

Ẽ := P̃r + Ẽ∞, Ã := Ãf + (I − P̃r), B̃ := B̃f + B̃∞,

C̃ := C̃f + C̃∞, D̃ := D̃f + D.
(4.16)

For the transfer function G̃(s) of the reduced-order system we obtain

G̃(s) = G̃sp(s) + P̃ (s) = C̃(sẼ − Ã)−1B̃ + D̃,

and since P (s) = P̃ (s) we have ‖G− G̃‖∞,c = ‖Gsp − G̃sp‖∞,c. Therefore, the error
bound (3.10) holds true.

We still have to show that the thus obtained reduced-order system in (4.16) is
again positive in the sense of Theorem 2.3.

The matrix P̃r is again a nonnegative projector [19]. Furthermore, the projector

P̃r has the following properties that are essential for the positivity of the reduced-order
system.

Lemma 4.4. Let P̃r be defined as in (4.15) and the reduced-order system matrices
as in (4.16). Then, the following relations hold:

1. P̃rÃf = Ãf P̃r = Ãf ;

2. P̃rB̃f = B̃f ;

3. C̃f P̃r = C̃f .

Proof. For Relation 1. we have to take into account that Af = ÊDÂ and
use the relations for the partitioned block matrices that arise from the property
PrÊ

DÂ = ÊDÂPr = ÊDÂ, i.e.,

[
[Af ]11 [Af ]12
[Af ]21 [Af ]22

]
=

[
[Pr]11[Af ]11+[Pr]12[Af ]21 [Pr]11[Af ]12+[Pr]12[Af ]22
[Pr]21[Af ]11+[Pr]22[Af ]21 [Pr]21[Af ]12+[Pr]22[Af ]22

]

=

[
[Af ]11[Pr]11+[Af ]12[Pr]21 [Af ]11[Pr]12+[Af ]12[Pr]22
[Af ]21[Pr]11+[Af ]22[Pr]21 [Af ]21[Pr]12+[Af ]22[Pr]22

]
.

(4.17)

Exemplarily, we prove the relation P̃rÃf = Ãf , since the other relations follow anal-
ogously, see [35, 36] for details. We have

P̃rÃf =([Pr]11 − [Pr]12[Pr]
−1
22 [Pr]21)([Af ]11 − [Af ]12[Af ]−1

22 [Af ]21)

=[Pr]11[Af ]11 − [Pr]12[Pr]
−1
22 [Pr]21[Af ]11 − [Pr]11[Af ]12[Af ]−1

22 [Af ]21

+ [Pr]12[Pr]
−1
22 [Pr]21[Af ]12[Af ]−1

22 [Af ]21,

where plugging in the relations from (4.17), we obtain

P̃rÃf =[Pr]11[Af ]11 − [Pr]12[Pr]
−1
22 [Af ]21 + [Pr]12[Af ]21 − [Af ]12[Af ]−1

22 [Af ]21

+ [Pr]12[Af ]21 + [Pr]12[Pr]
−1
22 [Af ]21 − [Pr]12[Af ]21

=Ãf ,

where for the last equality we have used that [Pr]11[Af ]11 +[Pr]12[Af ]21 = [Af ]11.

Due to E∞ = (I − Pr)ÊÂD and PrE∞ = 0 we have P̃rẼ∞ = Ẽ∞P̃r = 0. There-

fore, Lemma 4.4 implies that the matrices Ẽ and Ã commute. Using the properties
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of P̃r we therefore have that Ẽ ˙̃x(t) = Ãx̃(t) + B̃u(t) is equivalent to the decoupled
system

P̃r
˙̃x(t) = Ãf x̃(t) + B̃fu(t), Ẽ∞

˙̃x(t) = (I − P̃r)x̃(t) + B̃∞u(t).

We have already shown that Assumptions (i)-(ii) of Theorem 2.3 hold for the
reduced-order system. It remains to show Relations 1.-3. in Theorem 2.3.

To this end, note that by Lemma 4.2, [Pr]22 is a diagonal matrix with a strictly
positive diagonal. Hence, from the relation

Af + αPr = ÊDÂ + αPr ≥ 0

we conclude that [Af ]22 must be a −Z-matrix. Since Af = ÊDÂ has only stable
eigenvalues except for the eigenvalue 0 that corresponds to the eigenvalue ∞ of (E, A)
and since [Af ]22 is regular, it must be c-stable and therefore, a −M -matrix and we

have [Af ]−1
22 ≤ 0. By using Lemma 4.4 and the relations P̃r[Pr]11 = [Pr]11P̃r = P̃r

and P̃r[Pr]12 = [Pr]21P̃r = 0 that can be verified by direct calculation, we obtain

Ãf + αP̃r =P̃r(Ãf + αP̃r)P̃r

=P̃r([Af ]11 + α[Pr]11 − [Af ]12[Af ]−1
22 [Af ]21 − α[Pr]12[Pr]

−1
22 [Pr]21)P̃r

=P̃r([Af ]11 + α[Pr]11 − ([Af ]12 + α[Pr]12)[Af ]−1
22 ([Af ]21 + α[Pr]21))P̃r ≥ 0,

since Af + αPr ≥ 0.

Next, we show that B̃f ≥ 0. By Lemma 4.4 we know that P̃rB̃f = B̃f . Then, by

using P̃r[Pr]12 = 0, we obtain

B̃f =P̃r([Bf ]1 − [Af ]12[Af ]−1
22 [Bf ]2) = P̃r([Bf ]1 − ([Af ]12 + α[Pr]12)[Af ]−1

22 [Bf ]2) ≥ 0.

Similarly, by Lemma 4.4 and since [Pr]21P̃r = 0 we have that

C̃f =([Cf ]1 − X[Cf ]2[Af ]−1
22 [Af ]21)P̃r = ([Cf ]1 − X[Cf ]2[Af ]−1

22 ([Af ]21 + α[Pr]21))P̃r

≥0.

Finally, D̃ = D̃f + D ≥ 0 holds, since D ≥ 0 and D̃f = −[Cf ]2[Af ]−1
22 [Bf ]2 ≥ 0.

We have shown that the reduced-order system as defined in 4.16 is again positive.
The strictly proper part Gsp(s) of the transfer function G(s) is reduced as in the
standard case, whereas the polynomial part P (s) remains unchanged, which leads to
the usual H∞ error bound as for standard balanced truncation in Lemma 3.2.

Discrete-time case. For d-stable discrete-time descriptor systems which satisfy
the assumptions of Theorem 2.3, we consider positivity-preserving model reduction
based on Lyapunov inequalities of the form

(ÊDÂ)P(ÊDÂ)T − P + ÊDB̂B̂T (ÊD)T � 0,

(ÊDÂ)TQ(ÊDÂ) −Q + PT
r CT CPr � 0.

(4.18)

with diagonal matrices P � 0, Q � 0. If Pr ≥ 0 then, by Theorem 2.3, we have
ÊDÂ ≥ 0. Since (E, A) is d-stable, we also have that ρ(ÊDÂ) < 1. Hence, as in the
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standard discrete-time case in Theorem 3.3, there exists a positive realization with
Pb and Qb as in (3.4)

From now on, we assume that P and Q of the form (3.4) solve the Lyapunov
inequalities (4.18). Scaling the system by R−1 = (EPr + A(I − Pr))

−1 as in the
continuous-time case, and further multiplying the state equation with Pr and (I−Pr),
respectively leads to the equivalent system

Prx(t+1) = ÊDÂx(t) + ÊDB̂u(t),

(I − Pr)ÊÂDx(t+1) = (I − Pr)x(t) + (I − Pr)Â
DB̂u(t).

(4.19)

By using the conditions for (I−Pr)Â
DB̂ and (I−Pr)(ÊÂD)ÂDB̂ derived in Sec-

tion 3, for the continuous-time case, we deduce that the system in (4.19) is equivalent
to

xf (t+1) = Afxf (t) + Bfu(t),

E∞x∞(t+1) = x∞(t) + B∞u(t),
(4.20)

where the systems [ I , Af , Bf , Cf , 0 ] for Gsp(s) and [ E∞ , I , B∞, C∞, D ] for P (s)
are given by the matrices in (4.13) and (4.14).

As in the continuous-time case, we reduce the strictly proper part Gsp(s) of G(s)
using standard singular perturbation balanced truncation, whereas the polynomial
part P (s) remains unchanged. We show that we obtain a reduced-order positive
descriptor system that approximates the original system with the usual H∞ error
bound in Lemma 3.3.

Consider a partitioning as in (4.5) and (4.6). As in the continuous-time case
we choose the block [Af ]22 regular and therefore, ρ([Af ]22) < 1 and we have that
(I − [Af ]22) is an M -matrix with (I − [Af ]22) ≥ 0.

The first equation of the system in (4.20) is a standard system on the subspace
imPr. If the block [Pr]22 contains ones on the diagonal, we first apply the balanced
truncation scheme in (3.8) to the corresponding part of the system. The truncated
projector is again a nonnegative projector and also the system is again positive. There-
fore, without loss of generality, we may assume that the diagonal entries of [Pr]22 are
strictly less than 1.

We apply the reduction scheme in (3.17) and obtain a reduced-order system

[ I , Ãf , B̃f , C̃f , D̃f ] with G̃sp(s) = C̃f (sI − Ãf )−1B̃f + D̃f .

Since Af is d-stable on imPr and [ I , Af , Bf , Cf , 0 ] is balanced on imPr we have

that G̃sp(s) yields the error bound in Lemma 3.3.

As in the continuous-time case, we partition the system [ E∞ , B∞ , C∞ , D ] ac-
cording to [ I , Af , Bf , Cf , 0 ] and reduce it by standard balanced truncation in (3.8).
We obtain the reduced-order system

[ Ẽ∞ , B̃∞ , C̃∞ , D ] with P̃ (s) = C̃∞(sẼ∞ − I)−1B̃∞ + D = P (s).

To obtain a corresponding descriptor system we set the reduced-order spectral
projector to

P̃r := [Pr]11 + [Pr]12(I − [Pr]22)
−1[Pr]21. (4.21)
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Fig. 5.1. System of n water reservoirs

In [19] it was shown that P̃r is again a projector and that P̃r ≥ 0 if Pr ≥ 0.

The reduced-order descriptor system [ Ẽ , Ã , B̃ , C̃ , D̃ ] is then given by the matrices
in (4.16).

We still have to show that the thus obtained reduced-order system is again positive
in the sense of Theorem 2.3. As in the standard case we have that I − [Af ]22 is an

M -matrix and hence, Ãf , B̃f , C̃f , D̃f ≥ 0.

For the reduced-order discrete-time descriptor system defined by the matrices
in (4.16), we can obtain an equivalent system of two decoupled equations by using the

properties of the projector P̃r given in the following result whose proof is analogous
to the proof of Lemma 4.4.

Lemma 4.5. Let P̃r be defined as in (4.21) and Ãf , B̃f be the reduced-order
matrices from singular perturbation balanced truncation. Then, we have

1. P̃rÃf = Ãf P̃r = Ãf ;

2. P̃rB̃f = B̃f .

By using Lemma 4.5, we obtain that Ẽ and Ã commute and the reduced-order
state equation Ẽ ˙̃x(t+1) = Ãx̃(t)+ B̃u(t), is equivalent to P̃rx̃(t+1) = Ãf x̃(t)+ B̃u(t),

Ẽ∞x̃(t+1) = (I − P̃r)x̃(t) + B̃∞u(t).

We have shown that the discrete-time reduced-order system as defined in (4.16) is
again positive. The strictly proper part Gsp(s) of the transfer function G(s) is reduced
as in the standard case, whereas the polynomial part P (s) remains unchanged, which
leads to the usual H∞ error bound as for standard balanced truncation in Lemma 3.3.

5. Examples. In this section we present some numerical examples to demon-
strate the properties of the discussed model reduction approaches for positive systems.

Example 5.1 (Continuous-time). Consider a system of n water reservoirs such
as schematically shown in Figure 5.1. All reservoirs R1, . . . , Rn are assumed to be
located on the same level. The base area of Ri and its fill level are denoted by ai and
hi, respectively. The first reservoir R1 has an inflow u which is the input of the system,
and for each i ∈ {1, . . . , n}, Ri has an outflow fo,i through a pipe with diameter do,i.
The output of the system is assumed to be the sum of all outflows. Furthermore, each
Ri and Rj are connected by a pipe with diameter dij = dji ≥ 0. The direct flow from
Ri to Rj is denoted by fij. We assume that the flow depends linearly on the difference
between the pressures on both ends. This leads to the equations

fij(t) = d2
ij · c · (hi(t) − hj(t)), fo,i(t) = d2

o,i · c · (hi(t) − hj(t)),
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where c is a constant that depends on the viscosity and density of the medium and
gravity. The fill level of Ri thus satisfies the following differential equation

ḣi(t) =
c

ai


−d2

o,ihi(t) +
n∑

j=1

d2
ij(hj(t) − hi(t))


 + fIi(t)

1

ai

δ1ifI(t),

where δ1i denotes the Kronecker symbol, and fI(t) denotes the inflow, i.e.
fI(t) = u(t). We assume that the state is composed of the fill levels and the inflow. For
our illustrative computation, we have constructed the presented compartment model
with ten states. We assume that we have two well connected substructures each con-
sisting of five reservoirs, where each reservoir is connected with every other reservoir
by a pipe of diameter 1. The substructures are connected with each other by a pipe
of diameter 0.01 between reservoirs one and ten. For simplicity reasons, we set all
base areas of the reservoirs to 1 and also c = 1. This leads to a descriptor system
[ E , A , B , C , D ] with E, A ∈ R11,11, B, CT ∈ R11,1 and D = 0.

The reduced-order system obtained by the procedure as described in Section 4 is
given by Ẽ = diag(I4, 01) and

Ã=




−5.01 1.32 1.32 1.32 1.32 0
0.76 −5 1 1 1 0
0.76 1 −5 1 1 0
0.76 1 1 −5 1 0
0.76 1 1 1 −5 0
0 0 0 0 0 1



, B̃=




0.45
0
0
0
0
−1



, C̃ =




2.22
2.90
2.90
2.90
2.90
1




T

, D̃ = 0.

and D = 01. The frequency responses, i.e., the transfer function G(s) at values
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Fig. 5.2. Frequency plot showing original and reduced-order models.

s = jω, for ω ∈ [0, 3], of the original and of the reduced-order models are depicted in
the upper diagram of Figure 5.2. The lower diagram shows the frequency response of
the error system along with the error bound 0.0162.
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As an example in discrete-time, we consider the well-known Leslie model [23],
which describes the time evolution of age-structured populations.

Example 5.2 (Discrete-time). Let the time t ∈ N0 describe the reproduction
season (year) and let xi(t), i = 1, . . . , n, represent the number of individuals of age
i at time t. We assume constant survival rates si, i = 0, . . . , n − 1, i.e., the frac-
tion of individuals of age i that survive for at least one year, and fertility rates fi,
i = 1, . . . , n, i.e., the mean number of offspring born from an individual at age i.
For purely illustrative purposes of this example, we use the estimated data given
in [17, p. 118] for squirrel reproduction. Furthermore, we assume that immigra-
tion into the considered tribe can only happen at birth, i.e., the input is a positive
multiple of the first unit vector, and as the output we take the total population, i.e.,
the sum of the population numbers over all ages. Thus, the aging process is described
by the following difference equations

xi+1(t+1) = sixi(t), i = 1, . . . , n − 1, (5.1)

and the first state equation takes into account reproduction and immigration

x1(t+1) = s0(f1x1(t) + f2x2(t) + . . . + fnxn(t) + fI(t)). (5.2)

where fI(t) = u(t). The system matrices for squirrel reproduction in [17, p. 118] are
given by E = diag(I10, 01) and

A =




0.24 0.48 0.76 0.76 0.76 0.76 0.76 0.76 0.72 0.64 0.4
0.24 0 0 0 0 0 0 0 0 0 0
0 0.30 0 0 0 0 0 0 0 0 0
0 0 0.33 0 0 0 0 0 0 0 0
0 0 0 0.34 0 0 0 0 0 0 0
0 0 0 0 0.33 0 0 0 0 0 0
0 0 0 0 0 0.30 0 0 0 0 0
0 0 0 0 0 0 0.28 0 0 0 0
0 0 0 0 0 0 0 0.24 0 0 0
0 0 0 0 0 0 0 0 0.27 0 0
0 0 0 0 0 0 0 0 0 0 −1




, B =




0
0
0
0
0
0
0
0
0
0
1




,

C =
[
1 1 1 1 1 1 1 1 1 1 0

]
, D = 0.

The reduced-order system obtained by the procedure as described in Section 4 is
given by Ẽ = diag(I5, 01)

Ã =




0.24 1.25 3.74 5.32 10.41 0
0.092 0 0 0 0 0

0 0.16 0 0 0 0
0 0 0.23 0 0 0
0 0 0 0.25 0 0
0 0 0 0 0 1



, B̃ =




0.19
0
0
0
0
−1



, C̃ =




2.16
5.61
10.61
15.1
29.54

1




T

, D̃ = 0.

The frequency responses, i.e., the transfer function G(z) at values z = ejω, for
ω ∈ [0, 2π], of the original and of the reduced-order models are depicted in Figure 5.3.
The lower diagram shows the frequency response of the error system along with the
error bound.
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Fig. 5.3. Frequency plot showing original and reduced-order models.

6. Conclusion. In this paper, we have presented a model reduction approach
that preserves the positivity of continuous-time as well as of discrete-time systems in
the standard and in the descriptor case. In particular, we first have extended standard
balanced truncation and singular perturbation balanced truncation methods to pre-
serve positivity of standard systems. The proposed approach is based on the existence
of a diagonal solution of Lyapunov inequalities, which may be used instead of Lya-
punov equations in the classical approach. In this method, along with positivity, also
stability is preserved and an error bound in the H∞ norm is provided. Furthermore,
we have generalized this positivity preserving model reduction technique to positive
descriptor systems. The additive decomposition of the transfer function into a strictly
proper and a polynomial part allows to use the results established for the standard
case. The strictly proper part may be reduced as in the standard case, whereas the
polynomial part remains unchanged. This guarantees the same H∞ error bound as
in the standard case. A corresponding descriptor system, obtained via recomposition
the two reduced parts, is shown to be positive. The functionality of the proposed
method has been illustrated by some numerical examples.
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