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Abstract

Three properties of matrices: the spark, the mutual incoherence
and the restricted isometry property have recently been introduced
in the context of compressed sensing. We study these properties for
matrices that are Kronecker products and show how these properties
relate to those of the factors. For the mutual incoherence we also
discuss results for sums of Kronecker products.
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1 Introduction

In this paper we discuss the computation of sparse solutions of underdeter-
mined linear systems

Ax = b,

where A ∈ Rm,n, with m ≤ n is given as a Kronecker product, i.e.

A = A1 ⊗A2 ⊗ . . .⊗AN , Ai ∈ Rmi,ni , i = 1, . . . , N, (1)
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or as a sum of Kronecker products

A =
M∑

j=1

Aj
1 ⊗Aj

2 ⊗ . . .⊗Aj
N Aj

i ∈ Rmi,j ,ni,j . (2)

Since the solution is typically non-unique it is an important topic in many
applications, in particular in optimal signal recovery and in compressed sens-
ing, see e.g. [1, 3, 4, 5, 6, 9, 10, 13, 20] to find the sparsest solution,

min ‖x‖0, s.t. Ax = b, (3)

where ‖x‖0 denotes the number of nonzero entries of a vector x, see Section 2.
In general, the problem of finding the sparsest solution is known to be

NP-hard [22]. However, in the context of compressed sensing, conditions
have been derived on the size of the support of x, i.e. the number of nonzero
elements of x, that allow one to compute the sparsest solution using `1-mini-
mization via the so called basis pursuit algorithm [3, 5, 7, 8, 10, 11, 12], i.e,
by computing

min ‖x‖1, s.t. Ax = b, (4)

where ‖x‖1 =
∑

i|xi|.
Sufficient conditions for this approach to work are that some properties

of the matrix A called spark [10, 25], mutual incoherence [7, 12] or the
restricted isometry property (RIP) [2, 3, 4] are restricted. We will introduce
these properties in Section 2.

For general matrices it is possible (though expensive) to determine the
mutual incoherence, while analyzing the spark or the restricted isometry
property is difficult. If, however, the matrix A has the form (1) then we
show in Section 3 that these properties can be easily derived from the corre-
sponding properties of the factors. For the mutual incoherence we can also
extend these results to matrices of the form (2).

2 Notation and preliminaries

For m,n ∈ N, where N = {1, 2, . . . }, we denote by Rm,n the set of real m×n
matrices, by In the n× n identity matrix, and by 〈·, ·〉 the Euclidean inner
product in Rn. For 1 ≤ p ≤ ∞, the `p-norm of x ∈ Rn is defined by

‖x‖p :=
( n∑

j=1

|xj |p
) 1

p ,
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with the special case
‖x‖∞ := max

j∈{1,...,n}
|xj |,

if p = ∞. Finally, for x ∈ Rn, we introduce the notation

‖x‖0 := # supp(x),

where supp(x) := {j ∈ {1, . . . , n} : xj 6= 0} is the support of x. Note that
‖·‖0 is not a norm, since for α 6= 0 we have ‖αx‖0 = ‖x‖0. We use the term
k-sparse for all vectors x such that ‖x‖0 ≤ k.

Definition 2.1 [19, 21] The Kronecker product of A = [ai,j ] ∈ Rp,q and
B = [bi,j ] ∈ Rr,s is denoted by A⊗B and is defined to be the block matrix

A⊗B :=




a1,1B · · · a1,qB
...

. . .
...

ap,1B · · · ap,qB


 ∈ Rpr,qs.

Let C = [c1 · · · cr] ∈ Rq,r with columns ci ∈ Rq, 1 ≤ i ≤ r. Then,

vec(C) :=




c1
...
cr


 ∈ Rqr.

It is well known [21] that the matrix equation AXB = C, with matrices of
appropriate dimensions, is equivalent to the linear system

(B
T ⊗A)vec(X) = vec(C).

Furthermore, using the perfect shuffle permutation matrices Π1, Π2, we have
that Π1(A⊗B)Π2 = B ⊗A, see [21].

As our first special property we introduce the spark of a matrix.

Definition 2.2 [10, 25] Let A = [a1, . . . , an] ∈ Rm,n, 2 ≤ m ≤ n have
columns ai that are normalized so that ‖ai‖2 = 1, i = 1, . . . , n. The spark
of A, denoted as spark(A) is defined as the cardinality of the smallest subset
of linearly dependent columns of A.

In other words, if all r-dimensional subsets of column vectors of A are
linearly independent, but there exists a subset of r + 1 columns that are
linearly dependent, then spark(A) = r + 1. For convenience, if m = n = 1,
we define spark(A) := 1, and in the case where m = n ≥ 2 and A is
invertible, we set spark(A) := n + 1. In general the spark and the rank of a
matrix A ∈ Rm,n with m ≥ 2, are related via

2 ≤ spark(A) ≤ rank(A) + 1.
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Example 2.3 If

A =
[

1 0 1 1
0 1 1 −1

]
,

then spark(A) = rank(A) + 1 = 3. On the other hand, if

A =
[

1 0 1 −1
0 1 1 0

]
,

then spark(A) = 2.

The quantity spark(A) can be used to derive necessary and sufficient condi-
tions for the existence of sparse solutions.

Lemma 2.4 [10, 16] Consider the linear system Ax = b with A ∈ Rm,n,
m ≤ n. A necessary and sufficient condition for the linear system Ax = b
to have a unique k-sparse solution x is that k ≤ spark(A)/2.

The second property that we study is the mutual incoherence.

Definition 2.5 [12] Let A = [a1, . . . , an] ∈ Rm,n, m ≤ n have columns
ai that are normalized so that ‖ai‖2 = 1, i = 1, . . . , n. Then the mutual
incoherence M(A) is defined by

M(A) := max
i 6=j

|〈ai, aj〉| = max
i6=j

|(AT
A)i,j |.

Note that, since the columns of A are normalized, by the triangle inequality
we always have M(A) ≤ 1. On the other hand, if A has orthonormal
columns, then M(A) = 0.

We have the following lower bound for M(A).

Lemma 2.6 [24] Suppose that A ∈ Rm,n, m ≤ n has columns ai that are
normalized so that ‖ai‖2 = 1, i = 1, . . . , n and suppose further that A has
full row rank. Then

M(A) ≥
√

n−m

m(n− 1)
.

The following lemma relates the sparsest solution as defined in (3) and the
`1-solution as defined in (4) of the linear equation Ax = b in terms of the
mutual incoherence of a matrix A.
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Lemma 2.7 [10, 15] Suppose that A ∈ Rm,n, m ≤ n has columns ai that
are normalized so that ‖ai‖2 = 1, i = 1, . . . , n. If b is a vector such that the
equation Ax = b has a solution satisfying

‖x‖0 <
1 + 1

M(A)

2
,

then the `1-norm minimal solution in (4) coincides with the `0-minimal so-
lution in (3).

Remark 2.8 Consider matrices of the form A = [Φ Ψ], where Φ and Ψ
have orthonormal columns. If the sparsest solution x of Ax = b satisfies

‖x‖0 <

√
2− 1

2

M(A)
,

then it has been shown in [14] that the solutions of the `1-norm minimization
problem and `0-norm minimization problem coincide.

The third quantity that is important in the context of sparse recovery
and compressed sensing is the restricted isometry property.

Definition 2.9 [2, 3, 4, 5] Let A = [a1, . . . , an] ∈ Rm,n, m ≤ n have
columns ai that are normalized so that ‖ai‖2 = 1, i = 1, . . . , n.

The k-restricted isometry constant of A is the smallest number δk such
that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2

for all x ∈ Rn with ‖x‖0 ≤ k.

The k-restricted isometry property requires that every set of columns of
cardinality less than or equal to k approximately (with an error δk) behaves
like an orthonormal basis.

The following lemma gives the relation between the sparsest solution (as
defined in (3)) of a linear system Ax = b and the `1-solution as defined in
(4) in terms of the k-restricted isometry constant.

Lemma 2.10 [2] Let A = [a1, . . . , an] ∈ Rm,n, m ≤ n have columns ai that
are normalized so that ‖ai‖2 = 1, i = 1, . . . , n.

Suppose that
δ2k <

√
2− 1.

Then for all k-sparse solution vectors x of Ax = b the solution of (4) is
equal to the solution of (3).

After introducing the concepts of spark, mutual incoherence and k-
restricted isometry property, in the next section we analyze these concepts
for Kronecker product matrices.
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3 Sparse representation and Kronecker Products
of Matrices

In this section we study sparse solutions for linear system Ax = b, where
the matrix A is given as a Kronecker product (1).

Our first result characterizes spark(A ⊗ B) in terms of spark(A) and
spark(B). Note that if A, B have normalized columns then A ⊗ B has
normalized columns as well.

Theorem 3.1 Let A = [a1, . . . , aq] ∈ Rp,q and B = [b1, . . . , bs] ∈ Rr,s

be rank-deficient matrices with normalized columns, i.e., ‖ai‖2 = 1, i =
1, . . . , q, ‖bi‖2 = 1, i = 1, . . . , s. Then

spark(A⊗B) = spark(B ⊗A) = min{spark(A), spark(B)}. (5)

If A is an invertible matrix and B is rank-deficient matrix, then

spark(A⊗B) = spark(B). (6)

If both A and B are square and invertible then

spark(A⊗B) = (spark(A)− 1)(spark(B)− 1) + 1 = qs + 1.

Proof. Using the fact that (B ⊗ A)vec(X) = Π1(A ⊗ B)Π2vec(X) and
‖vec(X)‖0 = ‖Π2vec(X)‖0, we have spark(A⊗B) = spark(B ⊗A).

Consider first the case that A and B are rank-deficient. By the definition
of spark(B), there exists a vector y ∈ Rs with ‖y‖0 = spark(B) such that
By = 0. With

X̂ = [ y 0 · · · 0 ],

we have that (A ⊗ B)vec(X̂) = 0 and ‖vec(X̂)‖0 = ‖y‖0 = spark(B). This
means that spark(A⊗B) ≤ spark(B). Using that spark(A⊗B) = spark(B⊗
A) and that also A is rank-deficient, we can apply the same argument as
before and get spark(A⊗B) ≤ spark(A). Therefore,

spark(A⊗B) ≤ min{spark(A), spark(B)}. (7)

Let C = A⊗B, then every column of C has the form cj = auj ⊗ bvj . To
prove equality in (5), we assume w.l.o.g. that

spark(B) ≤ spark(A). (8)

Then by (7) we have spark(A⊗B) ≤ spark(B). Suppose now that

spark(A⊗B) = ` < spark(B). (9)
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This implies, in particular, that any set of ` columns of B is linearly inde-
pendent, while there exist scalars λ1, . . . , λ` not all 0 and indices u1, . . . , u`

where ui 6= uj for all i 6= j, and v1, . . . , v` such that

∑̀

j=1

(auj ⊗ bvj )λj =
∑̀

j=1

(λjauj )⊗ bvj = 0.

In this sum there may occur repeated copies of vectors bj , so without loss
of generality we may assume the indices vi are numbered so that

v1 = · · · = vk1︸ ︷︷ ︸
g1

< vk1+1 = · · · = vk2︸ ︷︷ ︸
g2

< · · · < vkt−1+1 = · · · = vkt︸ ︷︷ ︸
gt

.

Therefore, we have

(
k1∑

j=1

λjauj )⊗ bg1 + (
k2∑

j=k1+1

λjauj )⊗ bg2 + · · ·+ (
kt∑

j=kt−1+1

λjauj )bgt = 0, (10)

where kt = `. Since bg1 , . . . , bgt are linearly independent, it follows that for
all 1 ≤ i ≤ t we have

ki∑

j=ki−1+1

λjauj = 0,

where k0 = 0. This contradicts the assumption in (8) that

` < spark(B) ≤ spark(A),

because the uj are pairwise distinct and at least one of the coefficients λj is
nonzero.

Now suppose that A is invertible and B is rank-deficient. Then with
the same argument as above, we have spark(A ⊗ B) ≤ spark(B). Let X =
[x1, . . . , xq] 6= 0, such that ‖vec(X)‖0 = spark(A⊗B) and (A⊗B)vec(X) =
0. This implies that BXA

T
= 0, and, since A is invertible we have BX = 0,

while on the other hand X 6= 0. Thus there exists at least one index i such
that xi 6= 0 and Bxi = 0. Hence,

spark(B) ≤ ‖xi‖0 ≤ ‖vec(X)‖0 = spark(A⊗B),

and therefore spark(A⊗B) = spark(B).
For the case where both A and B are invertible, A ⊗ B is invertible as

well, see [21]. Therefore,

spark(A⊗B) = rank(A⊗B) + 1 = qs + 1.
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We immediately have the following corollary of Theorem 3.1.

Corollary 3.2 Consider rank-deficient matrices {Ai}N
i=1 with normalized

columns. Then

spark(A1 ⊗ . . .⊗AN ) = min
1≤i≤N

{spark(Ai)}.

By combining Lemma 2.4 and Corollary 3.2 we get the following Corollary:

Corollary 3.3 Consider a linear system (A1 ⊗ . . . ⊗ AN )x = b with rank-
deficient matrices Ai ∈ Rpi,qi that have normalized columns. A necessary
and sufficient condition for this linear system to have a unique k-sparse
solution x is that

k ≤
min

1≤i≤N
{spark(Ai)}

2
.

Remark 3.4 Corollary 3.3 is saying that if one of the matrices Aj has
small spark then we can only uniquely recover vectors of the sparsity up to
spark(Aj)/2 in the linear system (A1 ⊗ . . .⊗AN )x = b.

Similar to the analysis of spark(A⊗B), we can also obtain an estimate
of M(A⊗B) in terms of M(A) and M(B).

Theorem 3.5 Consider matrices A = [a1, . . . , an1 ] ∈ Rm1,n1 and B =
[b1, . . . , bn2 ] ∈ Rm2,n2 with normalized columns. Then

M(A⊗B) = max{M(A),M(B)}.

Proof. Suppose that C = A ⊗ B and C = [c1 · · · cn], where ci ∈ Rm,
m = m1m2 and n = n1n2. Then we have M(C) = maxi6=j |〈ci, cj〉|. Since
ci = ap ⊗ bq and cj = ar ⊗ bs for some p, q, r, s, using properties of the
Kronecker product [21], we have

〈ci, cj〉 = 〈ap ⊗ bq, ar ⊗ bs〉 = 〈ap, ar〉 · 〈bq, bs〉. (11)

By Definition 2.5 and (11) we then have

M(C) = M(A⊗B) = max
p,q,r,s

(p,q)6=(r,s)

|〈ap, ar〉 · 〈bq, bs〉|

= max
p,q,r,s

p6=r,q 6=s

{|〈ap, ar〉 · 〈bq, bs〉|, |〈ap, ar〉|, |〈bq, bs〉|}. (12)
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On the other hand, since the matrices A and B have normalized columns,
we have

|〈ap, ar〉 · 〈bq, bs〉| ≤ |〈ap, ar〉|,
and similarly

|〈ap, ar〉 · 〈bq, bs〉| ≤ |〈bq, bs〉|.
Therefore, from (12) we have

M(A⊗B) = max
p,q,r,s

p6=r,q 6=s

{|〈ap, ar〉|, |〈bq, bs〉|}

= max{max
p6=r

|〈ap, ar〉|, max
q 6=s

|〈bq, bs〉|}
= max{M(A),M(B)}.

A direct consequence of this theorem is the following Corollary.

Corollary 3.6 Consider matrices {Ai}N
i=1 with normalized columns and let

A = A1 ⊗ . . .⊗AN . Then,

M(A) = max
1≤i≤n

M(Ai).

Corollary 3.6 shows that if one of the matrices Ai has a large mutual inco-
herence, then it will dominate the mutual incoherence of A, regardless of all
the other factors in the Kronecker product.

We also have a result that relates the k-restricted isometry constant of
δA⊗B
k to those of δA

k and δB
k .

Theorem 3.7 Let A ∈ Rp,q and B ∈ Rr,s have normalized columns. Then

δA⊗B
k = δB⊗A

k ≥ max{δA
k , δB

k }. (13)

Proof. Using the fact that B ⊗ A = Π1(A ⊗ B)Π2, where Π1 and Π2 are
permutation matrices we have

‖vec(X)‖2
2 = ‖Π2vec(X)‖2

2,

and

‖(B ⊗A)vec(X)‖2
2 = ‖Π1(A⊗B)Π2vec(X)‖2

2 = ‖(A⊗B)(Π2vec(X))‖2
2.

Therefore δA⊗B
k = δB⊗A

k . To prove the assertion, it is sufficient to prove
that δA⊗B

k ≥ δB
k , the proof that δA⊗B

k ≥ δA
k follows analogously. We know

that δB
k is the smallest constant such that, for all x with ‖x‖0 ≤ k, we have

(1− δB
k )‖x‖2

2 ≤ ‖Bx‖2
2 ≤ (1 + δB

k )‖x‖2
2.
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For any x with ‖x‖0 ≤ k, we can construct the matrix X = [ x 0 · · · 0 ],
with ‖vec(X)‖0 ≤ k. Since A has normalized columns, we have

‖(A⊗B)(vec(X))‖2
2 =

p∑

i=1

a2
i,1‖Bx‖2

2 = ‖Bx‖2
2, (14)

and
‖vec(X)‖2

2 = ‖x‖2
2. (15)

On the other hand δA⊗B
k is the smallest constant such that

(1− δA⊗B
k )‖vec(X)‖2

2 ≤ ‖(A⊗B)(vec(X))‖2
2 ≤ (1 + δA⊗B

k )‖vec(X)‖2
2,

and for the special class of k-sparse vectors vec(X) from (14) and (15) we
have

(1− δB
k )‖vec(X)‖2

2 ≤ ‖(A⊗B)(vec(X))‖2
2 ≤ (1 + δB

k )‖vec(X)‖2
2,

where δB
k is the smallest constant for this special class of k-sparse vectors.

Therefore, for general k-sparse vectors, we have

δA⊗B
k ≥ δB

k .

Remark 3.8 Note that for k = 2, equality holds in (13), since for a given
normalized matrix A, we have δA

2 = M(A). Therefore, by Theorem 3.5 it
follows that

δA⊗B
2 = max{δA

2 , δB
2 }.

For k ≥ 3, however the inequality may be strict. For example if A = [I2 H2]
and B = [I4 H4], where In is the identity matrix of order n and Hn is
the Hadamard matrix of order n, see e.g. [17, 18], then δA⊗B

3 = 1.0545 >
max{1, 1√

2
}. Here the k-restricted isometry constants of these matrices were

calculated using the singular value decomposition for all submatrices consist-
ing of 3 columns.

We have the obvious corollary.

Corollary 3.9 Suppose that matrices Ai for i = 1, . . . , N have normalized
columns. Then

δA1⊗...⊗AN
k ≥ max

1≤i≤N
{δAi

k }.
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According to Lemma 2.10, if the restricted isometry constant δ2k is small
enough (δ2k <

√
2 − 1), then one can recover all k-sparse solutions using

`1-minimization. On the other hand, Corollary 3.9 implies that if the k-
restricted isometry constant δk of A is small (for example less than 1/2),
then A can not be written as a Kronecker product of matrices Ai with
smaller sizes.

4 Sums of Kronecker products

In many applications, in particular in finite difference or finite element dis-
cretizations of partial differential equations in more than one space dimen-
sion [23], linear systems with matrices that are sums of Kronecker products
arise.

It is then an obvious question whether the spark, the mutual incoherence
and the k-restricted isometry property for sums of Kronecker products can
be related to that of the summands.

Unfortunately, in general we do not have a nice relation between spark(A+
B) and spark(A), spark(B).

Example 4.1 Let En denote the n× n matrix of all ones. If

A =
[

I5 E5

]⊗
[

1 1
1 −1

]
,

and

B =
[

[1 2 3 4 5]
T
[1 2 3 4 5] I5

]
⊗

[
1 1
0 −1

]
,

then 5 = spark(A + B) > spark(A) + spark(B) = 2 + 2.
On the other hand if A = I2 ⊗ I2 and A + B = 1

2(E2 ⊗ E2) then 2 =
spark(A + B) < spark(A) + spark(B) = 5 + 5.

For the mutual incoherence the situation is better. We introduce the
following concept of diagonal and off-diagonal mutual incoherence.

Definition 4.2 Suppose that A = [a1, . . . , an], B = [b1, . . . , bn] ∈ Rm,n,
m ≤ n, have normalized columns. Then the off-diagonal mutual incoherence
MOD(A,B) of A and B is defined via

MOD(A, B) := max
i6=j

|〈ai, bj〉|

and the diagonal mutual incoherence MD(A,B) of A and B is defined via

MD(A,B) := max
i
|〈ai, bi〉|.
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Remark 4.3 Note that in Definition 4.2 the order of the columns is impor-
tant. Note further that in the special case that A = B we have MOD(A,A) =
M(A) and MD(A,A) = 1.

Then we have the following theorem.

Theorem 4.4 Let A = [a1, . . . , an], B = [b1, . . . , bn] ∈ Rm,n be matrices
with normalized columns and suppose that MD(A,B) 6= 1. Then,

M(A + B) ≤ M(A) + 2MOD(A,B) +M(B)
2(1−MD(A, B))

. (16)

Proof. For i 6= j, by the triangle inequality we have that

|〈ai + bi, aj + bj〉| ≤ |〈ai, aj〉|+ |〈ai, bj〉|+ |〈bi, aj〉|+ |〈bi, bj〉|

≤ M(A) + 2MOD(A,B) +M(B)
(17)

and

‖ai + bi‖2
2 = 2 + 2〈ai, bi〉 ≥ 2(1− |〈ai, bi〉|) ≥ 2(1−MD(A,B)). (18)

Combining (17) and (18), we get

M(A + B) = max
i6=j

|〈ai + bi, aj + bj〉|
‖ai + bi‖2‖aj + bj‖2

≤ M(A) + 2MOD(A,B) +M(B)
2(1−MD(A,B))

.

Note that the inequality (16) also holds if MD(A,B) = 1, if we define
the right side to be infinite in this case.

Remark 4.5 The bound in Theorem 4.4 is sharp. For example if

A =
[

0 1
1 0

]
, B = I2

then
M(A + B) = 1, M(A) = M(B) = MD(A,B) = 0

and
MOD(A,B) = 1.

Theorem 4.4 immediately extends to more than one summand.
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Corollary 4.6 Consider matrices Ai ∈ Rm,n, 1 ≤ i ≤ M with normalized
columns. If

M − 2
∑

1≤i<j≤M

MD(Ai, Aj) > 0,

then

M(
M∑

i=1

Ai) ≤
∑M

i=1M(Ai) + 2
∑

1≤i<j≤M MOD(Ai, Aj)
M − 2

∑
1≤i<j≤M MD(Ai, Aj)

.

In order to apply these results to sums of Kronecker products of the form
A =

∑M
j=1 Aj

1 ⊗ . . .⊗Aj
N , we introduce the abbreviation

U(
M∑

j=1

Aj) :=

∑M
j=1M(Aj) + 2

∑
1≤i<j≤M MOD(Ai, Aj)

M − 2
∑

1≤i<j≤M MD(Ai, Aj)
.

We have the following Corollary.

Corollary 4.7 Consider a linear system of the form

(
M∑

j=1

Aj
1 ⊗ . . .⊗Aj

N )x = b,

where the matrices Aj
i are of appropriate dimensions and have normalized

columns. Suppose that there exists a solution x with the sparsity

‖x‖0 <
1
2

(
1 +

1

U(
∑M

j=1 Aj
1 ⊗ . . .⊗Aj

N

)
.

Then this is the unique solution with this sparsity which can be recovered
using `1-minimization as defined in (4).

Proof. By applying Lemma 2.7 and Corollary 4.6, we have that

‖x‖0 <
1
2

(
1 +

1

U(
∑M

j=1 Aj
1 ⊗ . . .⊗Aj

N

)

implies that

‖x‖0 <
1
2

(
1 +

1

M(
∑M

j=1 Aj
1 ⊗ . . .⊗Aj

N

)

and therefore by Lemma 2.7 the sparse solution is unique.
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Example 4.8 Consider a sum of Kronecker products C = I ⊗ A + A ⊗ I
as they for example arise in the finite difference approximation of boundary
value problems for 2D elliptic PDEs. Then it is easy to see that

M(C) ≤ U(C) =
2M(A) + 2MOD(I ⊗A,A⊗ I)

2− 2MOD(I ⊗A,A⊗ I)
.

Especially, if A is a 1D finite difference matrix, e.g.

A =




2 −1 0
−1 2 −1

0 −1 2


 ,

then we have
0.4237 = M(C) ≤ U(C) = 0.5615.

For the k-restricted isometry property it is an open problem to establish
relationships between that of a sum of Kronecker products and the sum-
mands.

5 Conclusion

We have analyzed the recently introduced concepts of the spark, the mutual
incoherence and the k-restricted isometry property of matrix in Kronecker
product form to that of the Kronecker factors.
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