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Abstra
tThis paper deals with a three-dimensional model for thermal stress-indu
edtransformations in shape-memory materials. Mi
rostru
ture, like twined mar-tensites, is des
ribed mesos
opi
ally by a ve
tor of internal variables 
ontainingthe volume fra
tions of ea
h phase. We assume that the temperature variationsare pres
ribed. The problem is formulated mathemati
ally within the energeti
framework of rate-independent pro
esses. An existen
e result is proved andtemporal regularity is obtained in 
ase of uniform 
onvexity. We study alsospa
e-time dis
retizations and establish 
onvergen
e of these approximations.1 Introdu
tionThe good performan
es of shape-memory alloys (SMA) in appli
ations to relative�elds like biomedi
al, aeronauti
al or engineering stimulate the interest in the devel-opment of di�erent models. These alloys have some surprising thermo-me
hani
albehavior namely severely deformed materials 
an re
over their original shape aftera thermal 
y
le (shape-memory e�e
t). In the mathemati
al literature, many one-dimensional models are available but multi-dimensional models allowing for multi-axial loadings and anisotropies are rarely presented. In [MiT99, MTL02℄ su
h modelswere introdu
ed for the isothermal setting and a �rst existen
e result was provided.This paper deals with the quasi-stati
 evolution of shape-memory materials in asmall-strain regime under non-isothermal 
onditions. In [SMZ98, AuS01, AuP04℄ amodel for poly
rystalline shape-memory materials is proposed where phase transfor-mations are driven by stress or temperature 
hanges, and it is analyzed in [AuS04,AuS05, MiP07, AMS08℄. In this model the mesos
opi
 average of the transforma-tion strain used an internal variable and hen
e it is restri
ted to situations whereisotropy and equal elasti
 
onstants in austenite and martensite 
an be assumed.Here we treat a more advan
ed model whi
h allows to des
ribe ea
h pure phase in-dependently, like in the isothermal models 
onsidered in [CaP01, MTL02, GMH02,KMR05, RoK06, GHH07℄.Following [Mie07, MiP07℄ we assume here that the temperature θ is given a priori asan applied load θ = θappl(t, x). This assumption is used in engineering models andit is a

eptable if the body is small in at least one dire
tion. Then, the ex
essiveor missing heat 
an be balan
ed through the environment. While the existen
eresult will be a dire
t 
onsequen
e of the general theory of energeti
 solutions forrate-independent pro
esses, we present here an approa
h whi
h states existen
e ofsolutions as a 
onsequen
e of 
onvergen
e of spa
e-time dis
retizations. Using the1



ideas of Γ-
onvergen
e for rate-independent pro
esses developed in [MRS08℄ we showthat for arbitrary sequen
es of partitions of the time interval and for arbitrary �nite-dimensional approximations of the underlying Bana
h spa
e we obtain sequen
es ofdis
rete solutions that are a priori bounded and pre
ompa
t. Any limit point ofthis sequen
e will be a solution of the full problem. As in general uniqueness ofsolutions for the full problem is not true, it 
annot be expe
ted that the full sequen
e
onverges. A similar approa
h, in a more general setting is followed in [MiR06℄.Our model is based on a stored-energy density W and a dissipation distan
e D.The stored-energy density W (x, e, z, θ) depends on the material point x ∈ Ω, thein�nitesimal strain e = e(u) = 1
2
(∇u+∇uT) for the displa
ement u : Ω → Rd, thepres
ribed temperature θ = θappl(t, x), and the ve
tor of phase fra
tions z : Ω →

Z = 
onv{ê1, . . . , êN}, the 
onvex hull in RN . Here N is the total number of phases,in an austenite-martensite phase transformation this in
ludes the austenite and allvariants of martensite. In general, z ∈ 
onv{ê1, . . . , êN} is a phase mixture, andthe verti
es z = ê1, . . . , êN 
orrespond to the pure phases su
h that W (·, êk, ·, ·)
orresponds to the stored-energy density of a pure phase, whi
h 
an be adapted tomeasured data. The total stored energy takes the following form
E(t, u, z)

def
=

∫

Ω

(
W (x, e(u+uDir(t)), z, θappl(t)) +

σ

2
|∇z|2

)
dx− 〈l(t), u〉, σ > 0,where uDir and l denote the time-dependent Diri
hlet boundary data and appliedloading, respe
tively. To model the dissipation via phase transformations we intro-du
e a dissipation distan
e D : Ω×Z ×Z → [0,∞) and de�ne the total dissipationdistan
e D via

D(z0, z1)
def
=

∫

Ω

D(x, z0(x), z1(x))dx.The natural fun
tion sets for the unknown q
def
= (u, z) is Q

def
= F × Z with Z

def
=

H1(Ω;Z). As the time-dependent 
onditions on ΓDir ⊂ ∂Ω are in
orporated in uDir,we de�ne the spa
e of admissible displa
ements via
F

def
= { u ∈ H1(Ω; Rd)

∣∣ u = 0 on ΓDir }.Then, our problem 
an be posed in the energeti
 formulation for rate-independentproblems. For a given initial value (u(0), z(0)) ∈ Q, we have to �nd a fun
tion
(u, z) : [0, T ] → Q (with T > 0) su
h that for all t ∈ [0, T ], the global stability
ondition (S) and the global energy balan
e (E) are satis�ed, i.e.(S) ∀(ū, z̄) ∈ Q : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + D(z(t), z̄),(E) E(t, u(t), z(t)) + VarD(z; [0, t]) = E(0, u(0), z(0)) +

∫ t

0

∂sE(s, u(s), z(s))ds,where the dissipation VarD(z; [0, t]) is de�ned as the supremum over all �nite parti-tions 0 ≤ t0 < t1 < . . . < tn ≤ t of ∑n
j=1 D(z(tj−1), z(tj)).2



The paper is organized as follows. In Se
tion 2, we give a more detailed des
riptionof the me
hani
al model and the mathemati
al formulation of the problem withinthe energeti
 formulation theory of rate-independent systems (Q, E ,D). In Se
tion3, we spe
ify the full assumptions and state our existen
e result by applying thesame te
hniques as in [Mie07, MiP07℄. More pre
isely, we show that for any stableinitial data q(0), an energeti
 solution exists. We also provide a series of furtherproperties of the fun
tional E that will be used in the later se
tions.In Se
tion 4, the temporal smoothness is obtained assuming uniform 
onvexity of
W (x, ·, ·, θ) and D(x, z0, z1) = ψ(x, z1−z0). Finally in Se
tion 5, we dis
uss the
onvergen
e of spa
e-time dis
retizations of the problem. For this we 
hoose asequen
e (Πτ )τ>0 of partitions {0 = tτ0 < tτ1 < · · · < tτNτ

= T} of the time interval
[0, T ] with max{ tτk − tτk−1 : k = 1, ..., Nτ } ≤ τ . Moreover, we 
hoose a sequen
e
(Qh)h>0, Qh

def
= Fh × Zh, of �nite-dimensional spa
e approximations exhausting Q.We obtain a sequen
e qτ,h : [0, T ] → Q of pie
ewise 
onstant interpolants. The maintheorem states that this sequen
e has a subsequen
e (qτn,hn)n∈N su
h that for all

t ∈ [0, T ] we have qτn,hn(t) → q(t), where q : [0, T ] → Q is a solution for (Q, E ,D).In Se
tion 6, we dis
uss several models for the stored-energy density W , whi
h inthis 
ontext is 
alledmixture fun
tion [MiT99, Mie00, CaP01, MTL02℄ or free energyof mixing in [HaG02, GMH02, GHH07℄. In parti
ular, we 
larify the assumptionsthat are needed to apply the results obtained in the previous se
tions.2 Me
hani
al model and mathemati
al formulationWe 
onsider a material with a referen
e 
on�guration Ω ⊂ Rd with d ∈ {2, 3}.We assume that Ω is an open bounded set with a 1-regular smooth boundary (see[RaT83℄). This body may undergo displa
ements u : Ω → Rd and phase transforma-tions. The latter will be 
hara
terized by a mesos
opi
 internal variable z : Ω → Zwhere Z is the Gibbs simplex, asso
iated with the N pure phases ê1, . . . êN ∈ RN ,where êj is the jth unit ve
tor, i.e.,
Z

def
= 
onv{ê1, . . . , êN}

def
=

{
z =

N∑

i=1

λiêi

∣∣∣ 0 ≤ λi ≤ 1,
N∑

i=1

λi = 1
}
⊂ R

N . (2.1)The set of admissible displa
ements F is 
hosen as a suitable subspa
e of H1(Ω; Rd)by pres
ribing Diri
hlet data on the subset ΓDir of ∂Ω, i.e.,
F

def
=

{
u ∈ H1(Ω; Rd)

∣∣ u|ΓDir = 0
}
.Note that the physi
al displa
ement is u + uDir, where uDir : [0, T ] → H1(Ω; Rd) ispres
ribed a priori. Throughout the paper we 
onsider the extension of uDir(t) to Ω,but a
tually only the tra
e on ΓDir would be needed. The internal variable z belongsto

Z
def
=

{
z ∈ H1(Ω; RN) | z(x) ∈ Z a.e. x ∈ Ω

}
.3



We will denote the norm in Q
def
= F ×Z by ‖·‖Q and q def

= (u, z).We assume also that the material behavior depends on the temperature θ, whi
hwill be 
onsidered as a time dependent given parameter. Therefore we will not solvean asso
iated heat equation but we will treat θ as an applied load and we denoteit by θappl : [0, T ] × Ω → [θmin, θmax]. This approximation for the temperature isused in engineering models and is justi�ed when the 
hanges of the loading areslow and the body is small in at least one dire
tion: in su
h a 
ase, ex
ess of heat
an be transported very fast to the surfa
e of the body and then radiated into theenvironment.We will denote by Rd×d
sym the spa
e of symmetri
 d×d tensors endowed with the s
alarprodu
t v:w def

= tr(vTw) and the 
orresponding norm is given by |v|2
def
= v:v for all

v, w ∈ Rd×d
sym . Here (·)T and tr(·) denote the transpose and the tra
e of the matrix

(·), respe
tively. The linearized strain tensor is given by e = e(u)
def
= 1

2
(∇u+∇uT) ∈

Rd×d
sym. We assume that ∂Ω is smooth enough and that the surfa
e measure ∫

ΓDir 1dais positive su
h that Korn's inequality holds, i.e. there exists cKorn > 0 su
h that
∀u ∈ F : ‖e(u)‖2

L2 ≥ cKorn‖u‖2
H1. (2.2)For more details on Korn's inequality and its 
onsequen
es, we refer to [KoO88℄ or[DuL76℄.The stored-energy potential takes the following form

E(t, u, z)
def
=

∫

Ω

(
W (x, e(u+uDir(t))(x), z(x), θappl(t, x)) +

σ

2
|∇z(x)|2

)
dx

− 〈l(t), u〉,

(2.3)where the stored-energy density W : Ω × Rd×d
sym × Z × [θmin, θmax] → R des
ribes thematerial behavior. Here σ is a positive 
oe�
ient that is expe
ted to measure somenonlo
al intera
tion e�e
t for the internal variable z and l(t) denotes an appliedme
hani
al loading of the form

〈l(t), u〉
def
=

∫

Ω

fappl(t, x)·u(x)dx+

∫

∂Ω

gappl(t, x)·u(x)dγ.The main point in the model is the 
hoi
e of the stored-energy density W . Fornotational simpli
ity, we will omit any dependen
e on the material point x ∈ Ω, asit is standard to generalize the approa
h to this 
ase. For the pure phases z = êkit is 
lear that W (·, êk, ·) : Rd×d
sym × [θmin, θmax] → R 
an be adjusted to the measuredelasti
ity 
onstants of this phase. However, the 
hoi
e for true mixtures z ∈ Z is notso obvious. In [MiT99, Mie00, MTL02℄ it was suggested to derive W as a mixturefun
tion via 
ross-quasi
onvexi�
ation:

Wmix(e, z, θ) = inf
{∫

Td

W (e+e(ṽ)(y), z̃(y), θ)dy
∣∣∣ ṽ ∈ H1(Td; R

d),

z =

∫

Td

z̃(y)dy, z̃ ∈ L1(Td; {ê1, ..., êN})
}
,

(2.4)4



where Td = (R/Z)d is the d-dimensional torus, i.e., ṽ and z̃ are periodi
 fun
tions.In [HaG02, GMH02, GHH07℄ this fun
tion is 
alled free energy of mixing. Thepoint of this 
onstru
tion is that W (·, z, θ) is still quasi
onvex, whi
h is an essen-tial prerequisite for 
onstru
ting solutions. All this theory was developed for �xedtemperature levels and may be mu
h too di�
ult to be 
arried through for givenmaterial models for the pure phases. In [Mie07, Eqn. (3.7)℄ another modeling idea isused by interpolating in thermal way, su
h that for 
onvex W (·, êk, θ), k = 1, ..., Nthe resulting fun
tion W (·, z, θ) is still 
onvex.If ea
h W (·, êk, θ) is a quadrati
 fun
tion and the asso
iated elasti
ity tensor is thesame for all phases, then it is shown in [Mie00, MTL02℄ that W takes the form
Wmix(e, z, θ) =

N∑

k=1

zk

[1

2
(e−Ek(θ)):C(θ):(e−Ek(θ)) + wtherm

k (θ)
]

+ wmix(z, θ) (2.5)
=

1

2
(e−E(z, θ)):C(θ):(e−E(z, θ)) + w̃(z, θ),where C(θ) denotes the elasti
ity tensor, Ek(θ) is the transformation strain of phase kwith E(z, θ)

def
=

∑N
k=1 zkEk(θ) being the e�e
tive transformation strain for a mixture,and wmix(·, θ) : Z → (−∞, 0] is 
onvex and satis�es wmix(êk, θ) = 0 for all k =

1, . . . , N . In [CaP01, HaG02, GMH02, GHH07℄ it was shown that this model 
an beused quite e�e
tively in engineering appli
ations. See Se
tion 6 for more dis
ussionof the mixture fun
tion W .Our fun
tional E also in
ludes a gradient term σ
2
|∇z|2 whi
h is mainly introdu
edfor mathemati
al purposes. It will be essential to introdu
e this term for obtain-ing the ne
essary 
ompa
tness of the abstra
t theory. After we have averaged themi
rostru
ture by allowing for nontrivial phase mixtures, we have to penalize todrasti
 
hanges in the mixture 
omposition. This has the disadvantage that we 
an-not allow for interfa
es between the pure austenite and a twined pair of martensitevariants (also 
alled habit plane). However, our theory would work equally well, ifthe gradient term would be repla
ed by a weaker term like

∫

Ω×Ω

σ
|z(y)−z(x)|2

|y−x|d+2s
dxdyfor s ∈ (0, 1), whi
h leads to the Sobolev spa
e Hs(Ω) instead of H1(Ω) for thede�nition of Z. For s < 1/2 pie
ewise 
onstant fun
tions are 
ontained in Hs(Ω),and hen
e habit planes would have �nite energy. For notational 
onvenien
e werestri
t to the 
ase s = 1.To model the hystereti
 behavior of shape-memory materials, we also have to de-s
ribe the dissipation as a 
onstitutive law, sin
e this is largely independent of theenergy lands
ape, 
f. [Rou02, AGR03, Rou04℄. Again, the energy dissipated in aphase transformation between two pure phases 
an be measured given the values

D(x, êj, êk). It is shown in [MTL02℄ that from these values there is a 
anoni
al way(via optimal transport theory) to �nd a fun
tion D : Ω×Z ×Z → [0,∞) su
h that5



the dissipation between two states z0, z1 ∈ Z takes the form
D(x, z0, z1) = ψ(x, z1−z0), (2.6)where the dissipation potential ψ(x, ·) : RN

0 → R, with RN
0

def
= {v ∈ RN |

∑N
j=1 vj =

0} is 
onvex and positively homogeneous of degree 1, i.e. for all γ ≥ 0 and v ∈ R
N
0 ,

ψ(x, γv) = γψ(x, v).At the moment, we do not assume thatD is de�ned via ψ, but postulate a dissipationdistan
e D : Z × Z → [0,∞) satisfying the following two properties whi
h implythat D is a quasi-distan
e. (As forW , we suppress the x-dependen
e of D from nowon.)
D(z0, z1) = 0 ⇐⇒ z0 = z1, (2.7a)
∀ z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) +D(z2, z3). (2.7b)Note that symmetry D(z1, z2) = D(z2, z1) is not needed, whi
h may be useful asthe dissipated energy for transforming from austenite to martensite and vi
e versamay be di�erent. Finally, the total dissipation distan
e between two internal states

z0, z1 ∈ Z is de�ned via
D(z0, z1)

def
=

∫

Ω

D(z0(x), z1(x))dx. (2.8)The evolution is assumed to be governed by the energeti
 formulation of rate inde-pendent pro
esses as introdu
ed in [MTL02, MiT04, Mie05, MaM05, FrM06℄. Morepre
isely, a fun
tion q : [0, T ] → Q is 
alled an energeti
 solution of the rate-independent problem asso
iated with E and D if for all t ∈ [0, T ], the global stability
ondition (S) and the global energy balan
e (E) are satis�ed, i.e.(S) ∀q̄ = (ū, z̄) ∈ Q : E(t, q(t)) ≤ E(t, q̄) + D(z(t), z̄),(E) E(t, q(t)) + VarD(z; [0, t]) = E(0, q(0)) +

∫ t

0

∂sE(s, q(s))ds.The dissipation VarD is de�ned via
VarD(z; [r, s])

def
= sup

{ n∑

j=1

D(z(tj−1), z(tj))
∣∣∣n ∈ N, r ≤ t0 < t1 < . . . < tn ≤ s

}for all (r, s) ∈ [0, T ]2 su
h that r < s.As it is detailed in [MiT04, Mie05℄, we 
an interpret the energeti
 formulation as aweak form of the asso
iated evolution law de�ned by elasti
 equilibrium and the �owrule for the internal variable z. In parti
ular, if the fun
tional E(t, ·) is 
onvex and
D is given in the form (2.6), then the energeti
 formulation (S) and (E) is equivalent6



to the following doubly nonlinear evolution law:elasti
 equilibrium 



−div∂eW (e(u+uDir), z, θappl) = fappl in Ω,

u = uDir on ΓDir,
∂eW (e(u+uDir), z, θappl)ν = gappl on ΓNeu;�ow rule 0 ∈ ∂ψ(ż) + ∂zW (e(u+uDir), z, θappl) + ∂χZ(z) in Ω,

(2.9)
where ∂ without subs
ript denotes the set-valued subdi�erential of a 
onvex fun
tion.In fa
t, under the assumptions of Se
tion 4 the energeti
 solutions satisfy (2.9) aswell.3 The existen
e resultIn this se
tion we 
olle
t the assumptions on the 
onstitutive fun
tions W and Dand on the data θappl, l, and uDir that allow us to apply the abstra
t existen
e theoryfor energeti
 solutions to the rate-independent system (Q, E ,D). Thus, we will just
he
k that the assumptions of the result in [FrM06℄ are satis�ed. In fa
t, virtuallythe same assumptions will be used in Se
tion 5 to obtain the 
onvergen
e result,whi
h is again an existen
e result, as existen
e is not assumed beforehand. Afterstating the existen
e result, we will 
olle
t a number of properties of the energyfun
tional E , whi
h will be useful in the later se
tions.For the pres
ribed temperature pro�le θappl, the external loading l, and the Diri
hletboundary 
ondition uDir we assume

θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])), (3.1a)
l ∈ C1([0, T ]; (H1(Ω; Rd))′), (3.1b)

uDir ∈ C1([0, T ]; H1(Ω; Rd)). (3.1
)For the stored-energy density W : R
d×d
sym × Z × [θmin, θmax] → R we impose thefollowing 
onditions. In Se
tion 6, we will show that these 
onditions are satis�edby some of the fun
tions W introdu
ed in the previous se
tion.Assumptions on W . There exist positive 
onstants C, c, CW

0 , CW
1 , Cθ, Cθ

0 , Cθ
1 ,

Ce, Ce
0 , Ce

1 , an exponent p̂ ∈ (0, 2), and a nonde
reasing fun
tion ω : [0,∞) →
[0,∞) with limτ→0+ ω(τ) = 0 su
h that for all e, e1, e2 ∈ Rd×d

sym, z, z1, z2 ∈ Z and
7



θ, θ1, θ2 ∈ [θmin, θmax], we have
W (·, z, θ) is stri
tly 
onvex, (3.2a)
W, ∂θW ∈ C0(Rd×d

sym×Z×[θmin, θmax]; R), (3.2b)
∂eW ∈ C0(Rd×d

sym×Z×[θmin, θmax]; R
d×d
sym), (3.2
)

c
(
|e|2+|z|2

)
− C ≤W (e, z, θ) ≤ C

(
|e|2+|z|2

)
+ C, (3.2d)

|∂eW (e, z, θ)|2 + |∂θW (e, z, θ)| ≤ CW
1

(
W (e, z, θ)+CW

0

)
, (3.2e)∣∣∂θW (e, z, θ1)−∂θW (e, z, θ2)

∣∣ ≤ Cθ
1

(
W (e, z, θ1)+C

θ
0

)
ω(|θ1−θ2|), (3.2f)

∣∣∂eW (e, z, θ1)−∂eW (e, z, θ2)
∣∣2 ≤ Ce

1

(
W (e, z, θ1)+C

e
0

)
ω(|θ1−θ2|), (3.2g)∣∣∂θW (e1, z1, θ)−∂θW (e2, z2, θ)

∣∣ (3.2h)
≤ Cθ(|e1−e2|+|z1−z2|)(1+|e1+e2|+|z1+z2|),∣∣∂eW (e1, z1, θ)−∂eW (e2, z2, θ)

∣∣ ≤ Ce(|e1−e2|+|z1−z2|), (3.2i)
|W (e, z1, θ)−W (e, z2, θ)| ≤ C(1+|e|)bpω(|z1−z2|). (3.2j)For the dissipation distan
e we impose (2.7) and

∃ c1, c2 > 0 ∀z1, z2 ∈ Z : c1|z1−z2| ≤ D(z1, z2) ≤ c2|z1−z2|. (3.3)We prove now that the energeti
 formulation (S) and (E) has at least one solution
q : [0, T ] → Q for any given stable initial data q0 = (u0, z0) ∈ Q, i.e. q0 ∈ Q satis�esthe global stability 
ondition (S) at t = 0. The existen
e theory for (S) and (E)has been developed in [MaM05, FrM06, Mie05℄ and is based on the 
onstru
tionof a sequen
e of in
remental minimization problems. More pre
isely, for a givenpartition Π = {0 = t < t1 < . . . < tn = T}, we de�ne the in
remental problems asfollows:(IP)Π {for k = 1, . . . , n �nd

qk
def
= (uk, zk) ∈ Argmin{E(tk, q̄) + D(zk−1, z̄) | q̄ = (ū, z̄) ∈ Q

}
.Let the pie
ewise 
onstant interpolant qΠ : [0, T ] → Q be de�ned by qΠ(t) = qj for

t ∈ [tj, tj+1) for j = 0, . . . , n−1 and qΠ(T ) = qn. Then one shows that a subsequen
eof (qΠ)Π has a limit and this limit fun
tion satis�es the energeti
 formulation (S)and (E).Note that our statement given here is slightly stronger than the one obtained in theabstra
t setting. First, we state that not only the z-
omponent of q 
onverges butalso the u-
omponent. Se
ond, we provide strong 
onvergen
e in Q, i.e., in the normtopology of H1(Ω).Theorem 3.1 Assume that W and D satisfy (2.7), (3.2), and (3.3) and that thedata uDir, l, and θappl satisfy (3.1). Let q0 ∈ Q be stable for t = 0. Then there existsan energeti
 solution q = (u, z) : [0, T ] → Q su
h that q0 = (u(0), z(0)) and
u ∈ L∞([0, T ]; H1(Ω; Rd)),

z ∈ L∞([0, T ]; H1(Ω;Z)) ∩ BV([0, T ]; L1(Ω;Z)).8



Moreover, let Πk = {0 = tk0 < tk1 < . . . < tkNk
= T}, k ∈ N, be a sequen
e ofpartitions with �neness ∆(Πk)

def
= max{tkj − tkj−1 : j = 1, . . . , Nk} tending to 0 for

k → ∞. Let qΠk
def
= (uΠk , zΠk) : [0, T ] → Q be the pie
ewise 
onstant interpolantsasso
iated with the in
remental problems (IP)Πk

, then there exist a subsequen
e q̄n def
=

qΠkn and an energeti
 solution q̂ : [0, T ] → Q su
h that for all t ∈ [0, T ] the followingholds
q̄n(t) → q̂(t) in Q, (3.4a)

E(t, q̄n(t)) → E(t, q̂(t)), (3.4b)
VarD(z̄n; [0, t]) → VarD(ẑ; [0, t]). (3.4
)Proof. We use the abstra
t result of [FrM06℄ whi
h relies on the following abstra
tassumptions (i)�(v), where F and Z are 
onsidered as topologi
al spa
es 
arryingthe weak topology of H1(Ω).(i) ∀z1, z2, z3 ∈ Z : D(z1, z2) = 0 ⇔ z1 = z2 and D(z1, z3) ≤ D(z1, z2)+D(z2, z3),(ii) D : Z × Z → [0,∞) is 
ontinuous,(iii) ∀t ∈ [0, T ] : E(t, ·) : Q → [0,∞) has 
ompa
t sublevels,(iv) there exists CE

0 , C
E
1 > 0 su
h that for all q ∈ Q:

E(t, q) <∞ =⇒

{
E(·, q) ∈ C1([0, T ]) and
|∂tE(t, q)| ≤ CE

1 (E(t, q)+CE
0 ),(v) ∀η > 0 ∀ε > 0 ∃δ > 0 ∀q ∈ Q ∀t1, t2 ∈ [0, T ] :

(
E(0, q) ≤ η, |t1−t2| ≤ δ

)
=⇒ |∂tE(t1, q)−∂tE(t2, q)| < ε.Property (i) follows from the de�nition (2.8) of the dissipation potential D andthe 
onditions (2.7) and (3.3). The latter 
ondition also implies that D(z1, z2) isbounded from above and below by the norm of z1−z2 in L1(Ω). Hen
e, D is strongly
ontinuous in L1(Ω), and the 
ompa
t embedding of H1(Ω) into L1(Ω) provides (ii).On the one hand, E(t, ·) is 
oer
ive be
ause of (3.2d) and (2.2). Moreover E(t, ·) isweakly lower semi
ontinuous, as the integrand is 
onvex in (∇u,∇z) and 
ontinuousin (u, z,∇u,∇z). This provides (iii). Finally, (iv) and (v) will be obtained inProposition 3.3.Sin
e the assumptions (i)�(v) are ful�lled, [FrM06, Thm. 3.4℄ or [Mie05, Thm. 5.2℄are appli
able, and the statement of theorem follows, ex
ept for (3.4a), where only

z̄n(t) ⇀ ẑ(t) is inferred.To obtain the 
onvergen
e of ūn(t) we note that by 
onstru
tion ūn(t) minimizesthe energy E(τ(n, t), ·, z̄n(t)), where τ(n, t) is the largest point in Πkn
not ex
eeding9



t. Sin
e we have τ(n, t) → t and z̄n(t) ⇀ ẑ(t), we may infer Part of Lemma 3.4 toobtain (3.4a). �Now we 
olle
t some properties of E and D that we will use in the next se
tions.Lemma 3.2 Let the assumptions (3.1), (3.2a), (3.2b), (3.2d), (2.7) and (3.3) hold.Then, the energy fun
tional E : [0, T ]×Q → R is weakly lower semi-
ontinuous andstrongly 
ontinuous, and 
oer
ive:
∃C0, c0 > 0 ∀(t, q) ∈ [0, T ] ×Q : C0‖q‖

2
Q − c0 ≤ E(t, q) ≤ c0‖q‖

2
Q + c0. (3.5)The dissipation distan
e D : Z ×Z → [0,∞) is weakly 
ontinuous.Proof. First, let us observe that Korn's inequality (2.2), Young's inequality and(3.2d) lead to

E(t, q) ≥
ccKorn

4
‖u‖2

H1 +min
(
c,
σ

2

)
‖z‖2

H1 −C|Ω| −
1

ccKorn ‖l(t)‖2
(H1)′ −c‖e(uDir(t))‖

2
L2for all (t, q) ∈ [0, T ] ×Q. Similarly, (3.2d) implies

E(t, q) ≤

(
2C+

1

2

)
‖u‖2

H1+max
(
C,
σ

2

)
‖z‖2

H1+C|Ω|+
1

2
‖l(t)‖2

(H1)′+2C‖e(uDir(t))‖
2
L2 ,and, by using (3.1), we may 
on
lude that (3.5) holds.The weak lower semi-
ontinuity of E(t, · ) : Q → R follows from the 
onvexity of theintegrand in highest derivatives of (u, z), namely (e(u),∇z). Weak 
ontinuity of Dis a 
onsequen
e of the strong 
ontinuity of D with respe
t to the norm in L1(Ω)and the 
ompa
t embedding of Z ⊂ H1(Ω; RN) into L1(Ω; RN).It remains to show the strong 
ontinuity of E . For this assume (tn, qn) → (t∗, q∗). Us-ing (3.5) the sequen
e (

E(tn, qn)
)

n∈N
is bounded, and we may 
hoose a subsequen
e

(tnj
, qnj

)j∈N su
h that
E(tnj

, qnj
) → E∗,

∀a.a. x ∈ Ω : (enj
(x), znj

(x), θappl(tnj
, x)) → (e∗(x), z∗(x), θappl(t, x)),

∃γ ∈ L2(Ω) ∀j ∈ N : |(enj
, znj

)| ≤ γ a.e. in Ωwith enj
= e

(
unj

+ uDir(tnj
)
) for all j ∈ N. Thus, we may pass to the limit in

E(tnj
, qnj

) =

∫

Ω

W (e(unj
+uDir(tnj

)), znj
, θappl(tnj

))dx+
σ

2
‖∇znj

‖2
L2 − 〈l(tnj

), unj
〉,by applying Lebesgue's theorem and using (3.1). We obtain E∗= limj→∞ E(tnj

, qnj
) =

E(t∗, q∗) and, by uniqueness of the limit, the whole sequen
e (E(tn, qn))n∈N 
onvergesto E(t∗, q∗). �10



We 
he
k now the last two assumptions (iv) and (v) of the abstra
t result of [FrM06℄,whi
h are needed to obtain Theorem 3.1. To do so, we �rst observe that the regular-ity assumptions on W and the data uDir, l and θappl imply that E(·, q) ∈ C1([0, T ])for all q ∈ Q and we derive an expli
it formula for ∂tE(·, q). Then using the assump-tions (3.2e) to (3.2i) we obtain an estimate of |∂tE(t, q)| in terms of E(t, q) and weestablish (v), whi
h 
an be interpret as an uniform 
ontinuity property for ∂tE(·, q)on energy sublevels.Proposition 3.3 Let us assume that (3.1) and (3.2b) to (3.2i) hold. Then E sat-is�es the following properties:(P1) Let q = (u, z) ∈ Q. Then E(·, q) lies in C1([0, T ]) and
∂tE(t, q) =

∫

Ω

∂eW (e(u+uDir(t)), z, θappl(t)) e(u̇Dir(t))dx

+

∫

Ω

∂θW (e(u+uDir(t)), z, θappl(t)) θ̇appl(t)dx− 〈l̇(t), u〉.

(3.6)(P2) There exist CE
0 , C

E
1 > 0 su
h that |∂tE(t, q)| ≤ CE

1

(
E(t, q)+CE

0

) for all (t, q) ∈
[0, T ] ×Q.(P3) For ea
h ε > 0 and E ∈ R+ there exists δ > 0 su
h that for all (s, t, q) ∈
[0, T ]2 ×Q with E(0, q) ≤ E and |s−t| ≤ δ we have |∂tE(s, q)−∂tE(t, q)| < ε.Estimate (P2) together with Gronwall's lemma leads to

E(t, q) ≤ exp(CE
1 |t−s|)(E(s, q)+CE

0 ) − CE
0 for all s, t ∈ [0, T ]. (3.7)This estimate is 
ru
ial to derive a priori estimates, also in the time-dis
rete setting.Proof. First we infer from (3.1) and (3.2b) to (3.2e) that E(·, q) ∈ C1([0, T ]) andthat (3.6) holds.For (P2), one 
an see that assumptions (3.1) and Cau
hy-S
hwarz's inequality leadto

|∂tE(t, q)| ≤
1

2

∫

Ω

|∂eW̃ (t, θappl(t))|
2 dx+

1

2
‖e(u̇Dir(t))‖

2
L2

+ Θ

∫

Ω

|∂θW̃ (t, θappl(t))|dx+
1

2
‖u‖2

H1 +
1

2
‖l̇(t)‖2

(H1)′ ,

(3.8)where Θ
def
= ‖θ̇appl(·)‖C0([0,T ];L∞) and W̃ (s, θ)

def
= W (e(u+uDir(s)), z, θ). Carrying(3.2e) into (3.8), we have

|∂tE(t, q)| ≤
(1

2
+Θ

)∫

Ω

CW
1

(
W̃ (t, θappl(t))+C

W
0

)
dx

+
1

2
‖u‖2

H1 +
1

2
‖e(u̇Dir(t))‖

2
L2 +

1

2
‖l̇(t)‖2

(H1)′ ,11



whi
h implies using (2.3) that
|∂tE(t, q)| ≤

(1

2
+CW

1

(1

2
+Θ

))(
E(t, q)+‖u‖2

H1+C1

)
, (3.9)where C1

def
= ‖e(u̇Dir)‖

2
C0([0,T ];L2) + ‖l‖2

C0([0,T ];(H1)′) + ‖l̇‖2
C0([0,T ];(H1)′) + CW

0 |Ω|. Using(3.5) in (3.9), the announ
ed result (P2) follows immediately.To derive estimate (P3) we use the de
ompositions
|∂tE(s, q)−∂tE(t, q)| ≤ Ie(s, t) + Iθ(s, t) + Il(s, t), where (3.10a)
Ie(s, t)

def
=

∫

Ω

∣∣∂eW̃ (s, θappl(s)) e(u̇Dir(s))−∂eW̃ (t, θappl(t)) e(u̇Dir(t))∣∣dx, (3.10b)
Iθ(s, t)

def
=

∫

Ω

∣∣∂θW̃ (s, θappl(s)) θ̇appl(s)−∂θW̃ (t, θappl(t)) θ̇appl(t)
∣∣dx, (3.10
)

Il(s, t)
def
=

∣∣〈l̇(s)−l̇(t), u〉| ≤ ‖l̇(s)−l̇(t)‖(H1)′‖u‖H1 ≤ ‖l̇(s)−l̇(t)‖(H1)′

√
E+c0

C0
, (3.10d)where we used (3.5) for the last estimate.Ea
h term on the right hand side of (3.10a) is estimated separately by using theassumptions on W introdu
ed above. Sin
e E(0, q) ≤ E, one dedu
es from (2.3),(3.5) and (3.7) that ∫

Ω

W̃ (s, θappl(s))dx ≤ ρ(E), (3.11)where ρ(E)
def
= exp(CE

1 T )(E+CE
0 )−CE

0 + sups∈[0,T ]‖l(s)‖(H1)′

√
E+c0

C0
. Using (3.1) theright-hand side of (3.11) is bounded independently of s and q. Let us now observethat

Ie(s, t) ≤

∫

Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t)))∣∣dx+ Ievar(s, t), (3.12)where

Ievar(s, t) def
=

∫

Ω

∣∣(∂eW̃ (s, θappl(s))−∂eW̃ (t, θappl(s))
)
e(u̇Dir(t))∣∣dx

+

∫

Ω

∣∣(∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))
)
e(u̇Dir(t))∣∣dx.Using Cau
hy-S
hwarz's inequality and (3.2e), the �rst term on the right-hand sideof (3.12) is estimated by

∫

Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t)))∣∣dx

≤
(
CW

1

∫

Ω

W̃ (s, θappl(s))dx+ CW
1 CW

0 |Ω|
)1/2

‖e(u̇Dir(s))−e(u̇Dir(t))‖L2.12



Introdu
ing (3.11) in the latter estimate, we dedu
e that there exists C̃E
1 > 0 su
hthat ∫

Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t)))∣∣dx

≤ C̃E
1 ‖e(u̇Dir(s))−e(u̇Dir(t))‖L2 .

(3.13)For Ievar we use (3.2i) and Cau
hy-S
hwarz's inequality to �nd
Ievar(s, t) ≤ η

(
Ce‖e(uDir(s))−e(uDir(t))‖L2

+ ‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖L2

)
,

(3.14)where η def
= ‖e(u̇Dir(·))‖C0([0,T ];L2). By (3.1a) we have

∀a.e. x ∈ Ω : ω(|θappl(s, x)−θappl(t, x)|) ≤ ω̄s,t
def
= ω(‖θappl(s)−θappl(t)‖L∞)

≤ ω
(
Θ|s−t|

)
.

(3.15)Hen
e, (3.2g) yields the estimate
‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖

2
L2 ≤ Ce

1

(∫

Ω

W̃ (t, θappl(t))dx+ Ce
0|Ω|

)
ω̄s,t,whi
h implies thanks to (3.11) that

‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖
2
L2 ≤ Ce

1

(
ρ(E)+Ce

0 |Ω|
)
ω̄s,t. (3.16)Carrying (3.16) into (3.14), and observing that e(u̇Dir(·)) ∈ C0([0, T ]; L2(Ω; Rd×d

sym)),one dedu
es that there exists C̃E
2 > 0 su
h that

Ievar(s, t) ≤ C̃E
2

(
‖e(uDir(s))−e(uDir(t))‖L2+

√
ω̄s,t

)
. (3.17)Finally, we insert (3.13) and (3.17) in (3.12) and obtain

Ie(s, t) ≤ C̃E
1 ‖e(u̇Dir(s))−e(u̇Dir(t))‖L2

+ C̃E
2

(
‖e(uDir(s))−e(uDir(t))‖L2+

√
ω̄s,t

)
.

(3.18)Using the same de
omposition for Iθ as for Ie, we have
Iθ(s, t) ≤

∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx+ Iθvar(s, t), (3.19)where

Iθvar(s, t) def
=

∫

Ω

∣∣(∂θW̃ (s, θappl(s))−∂θW̃ (t, θappl(s))
)
θ̇appl(t)

∣∣dx

+

∫

Ω

∣∣(∂θW̃ (t, θappl(s))−∂θW̃ (t, θappl(t))
)
θ̇appl(t)

∣∣dx.13



Using (3.2e), the �rst term on the right hand side of (3.19) 
an be estimated asfollows
∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx

≤
(
CW

1

∫

Ω

W̃ (s, θappl(s))dx+ CW
1 CW

0 |Ω|
)
‖θ̇appl(s)−θ̇appl(t)‖L∞,whi
h implies using on
e again (3.11) that there exists C̃E

3 > 0 su
h that
∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx ≤ C̃E

3 ‖θ̇appl(s)−θ̇appl(t)‖L∞. (3.20)To estimate Iθvar we �rst dedu
e from (3.2f), (3.2h), Cau
hy-S
hwarz's inequalityand (3.15) that
Iθvar(s, t) ≤ Θ

(
Cθ‖1+|e(uDir(s))+e(uDir(t))+2e(u)|+2|z|‖L2

‖e(uDir(s))−e(uDir(t))‖L2

+ Cθ
1

(∫

Ω

W̃ (t, θappl(t))dx+ Cθ
0 |Ω|

)
ω̄s,t

)
.

(3.21)With Cau
hy-S
hwarz's inequality, (3.5), (2.3), e(uDir(·)) ∈ C0([0, T ]; L2(Ω; Rd×d
sym))we infer that ‖1+|e(uDir(s))+e(uDir(t))+2e(u)|+2|z|‖L2 is bounded independentlyof t, s and q. Hen
e, using (3.11), we dedu
e that there exists C̃E

4 > 0 su
h that
Iθvar(s, t) ≤ C̃E

4

(
‖e(uDir(s))−e(uDir(t))‖L2+ω̄s,t

)
. (3.22)Carrying (3.20) and (3.22) into (3.19), we obtain

Iθ(s, t) ≤ C̃E
3 ‖θ̇appl(s)−θ̇appl(t)‖L∞+C̃E

4

(
‖e(uDir(s))−e(uDir(t))‖L2+ω̄s,t

)
. (3.23)Re
alling that (3.1) assumes that θappl, l and uDir are C1, the 
ompa
tness of [0, T ]implies uniform 
ontinuity of the derivatives. Hen
e, (3.10d), (3.18), (3.23), and

ω̄s,t ≤ ω
(
Θ|s−t|

) lead to the existen
e of a nonde
reasing fun
tion ωE : [0,∞) →
[0,∞) with ωE(τ) → 0 for τ ց 0 su
h that

|∂tE(s, q)−∂tE(t, q)| ≤ ωE(|s−t|),whenever E(0, q) ≤ E. This 
on
ludes the proof. �Next we introdu
e the set of stable states de�ned as follows
S(t)

def
=

{
q ∈ Q

∣∣ ∀q̄ ∈ Q : E(t, q) ≤ E(t, q̄) + D(z, z̄)
}
. (3.24)Let us observe that (S) is equivalent to q(t) = (u(t), z(t)) ∈ S(t).14



Lemma 3.4 Let the assumptions (3.1), (3.2a) to (3.2e), (3.2j), (2.7) and (3.3) hold.If tn → t∗, zn ⇀ z∗, qn = (un, zn) ∈ S(tn), and sup
n∈N

E(tn, qn) <∞, then
E(tn, qn) → E(t∗, q∗) and qn → q∗ = (u∗, z∗) in Q strongly, (3.25)where u∗ = Argmin E(t∗, · , z∗).Proof. We re
all that by (3.2a) the fun
tional F ∋ u 7→ E(t, u, z) is stri
tly 
onvex.Hen
e, by weak lower semi
ontinuity there is for ea
h pair (t, z) ∈ [0, T ]×Z a uniqueminimizer u = U(t, z).We �rst use the 
oer
ivity (3.5) to see that the sequen
e (un)n∈N is bounded in

F . Thus, there exists a 
onvergent subsequen
e (unj
)j∈N and ũ with qnj

⇀ q̃ =
(ũ, z∗) for j → ∞. Sin
e E is weakly lower semi
ontinuous, we infer E(t∗, q̃) ≤
lim infj→∞ E(tnj

, qnj
).Using the stability of qn and testing with q∗ = (u∗, z∗) we have

E(tn, qn) ≤ E(tn, q∗) + D(zn, z∗)

≤ E(t∗, q∗) +
(
exp(CE

1 |tn−t∗|) − 1
)
(E(t∗, q∗) + CE

0 ) + D(zn, z∗).Passing to the limit n → ∞ gives lim supn→∞ E(tn, qn) ≤ E(t∗, q∗). Sin
e u∗ is theunique minimizer, we have
E(t∗, q∗) ≤ E(t∗, ũ, z∗) ≤ lim inf

j→∞
E(tnj

, qnj
) ≤ lim sup

n→∞

E(tn, qn) ≤ E(t∗, q∗).Thus, we 
on
lude that E(tn, qn) → E(t∗, q∗) and that ũ is equal to the uniqueminimizer u∗. This also shows that the whole sequen
e 
onverges: un ⇀ u∗.It remains to show that the 
onvergen
e must in fa
t be strong, whi
h will fol-low from the 
ru
ial property that the integrand of (e, z, A) 7→ W (e, z, θ) + σ
2
|A|2is stri
tly 
onvex in (e, A). First we employ (3.7) to 
on
lude that we also have

E(t∗, qn) → E(t∗, q∗), sin
e E(tn, qn)−E(t∗, qn) 
an be estimated via C|tn−t∗|. Nextobserve that E(t∗, ·) is the sum of the two weakly lower semi-
ontinuous fun
tionals
I1 : q 7→

∫
Ω
W (e(u + uDir(t∗)), z, θappl(t∗)) dx and I2 : q 7→

∫
Ω

σ
2
|∇z|2 dx and thelinear fun
tional −〈l(t∗), ·〉. Thus, we have Ik(qn) → Ik(q∗) for k = 1, 2. The 
ase

k = 2 yields zn → z∗ in H1(Ω; RN) strongly, sin
e in Hilbert spa
es weak 
onvergen
eplus 
onvergen
e of the norms implies strong 
onvergen
e.To establish strong 
onvergen
e of the u-
omponent, we introdu
e q̂n = (un, z∗) andemploy 
ondition (3.2j) to obtain
|I1(q̂n)−I1(qn)| ≤

∫

Ω

C(1+|e(un + uDir(t∗))|)
bp ω(|zn(x)−z∗(x)|)dx

≤ C2bp/2
(
|Ω| + ‖e(un + uDir(t∗))‖

2
L2

)bp/2
‖ω(|zn−z∗|)‖Lp̄, (3.26)where we used Hölder's inequality with p̄ = 2/(2−p̂) ∈ (1,∞). In (3.26) the �rstfa
tor is bounded be
ause of weak 
onvergen
e. The se
ond fa
tor ‖ω(|zn−z∗|)‖Lp̄15




onverges to 0, sin
e ω(|zn−z∗|) is uniformly bounded by ω(diam(Z)) and sin
e
|zn−z∗| → 0 in L2(Ω). Thus, we 
on
lude

|I1(q̂n)−I1(q∗)| ≤ |I1(q̂n)−I1(qn)| + |I1(qn)−I1(q∗)| → 0.In I1(q̂n) the integrand is x 7→ W (x, e(un(x) + uDir(t∗, x)), z∗(x), θ(t∗, x)) where
W (x, ·, z, θ) : Rd×d

sym → R is stri
tly 
onvex and we 
an apply [Vis84, Thm. 3℄ to
on
lude e(un) → e(u∗) in L2(Ω; Rd×d
sym) strongly, whi
h means un → u∗ in H1(Ω; Rd)strongly.

�The assumptions on the pres
ribed temperature pro�le θappl, the external loading l,the Diri
hlet boundary 
ondition uDir and the stored energy density W given above,allow us to prove that the power ∂tE(t, q) is lo
ally Lips
hitz 
ontinuous with respe
tto q uniformly with respe
t to t. This property will play a key role in the proof ofthe Lips
hitz 
ontinuity of energeti
 solutions, whi
h will be established in the nextse
tion.Lemma 3.5 Assume (3.1), (3.2b) to (3.2e), (3.2h) and (3.2i) hold. Then, for all
R > 0 there exists a 
onstant CR > 0 su
h that

∀t ∈ [0, T ] ∀q1, q2 ∈ Q with ‖q1‖Q, ‖q2‖Q ≤ R :

|∂tE(t, q1)−∂tE(t, q2)| ≤ CR‖q1−q2‖Q.
(3.27)Proof. We let ei

def
= e(ui+uDir(t)) and W̃ (ei, zi)

def
= W (e(ui+uDir(t)), zi, θappl(t)) for

i = 1, 2. Re
alling η def
= ‖e(u̇Dir(·))‖C0([0,T ];L2) and Θ

def
= ‖θ̇appl(·)‖C0([0,T ];L∞) and usingCau
hy-S
hwarz's and Hölder's inequality we infer that

|∂tE(t, q1)−∂tE(t, q2)| ≤ η
(∫

Ω

∣∣∂eW̃ (e1, z1)−∂eW̃ (e2, z2)
∣∣2 dx

)1/2

+ Θ

∫

Ω

∣∣∂θW̃ (e1, z1)−∂θW̃ (e2, z2)
∣∣dx

+ ‖l̇(t)‖(H1)′‖u2−u1‖H1,whi
h, using (3.2h) and (3.2i), implies
|∂tE(t, q1)−∂tE(t, q2)| ≤ CθΘ

(∫

Ω

(|e1−e2|+|z1−z2|)(1+|e1+e2|+|z1+z2|)dx
)

+ Ceη
(∫

Ω

(|e1−e2|+|z1−z2|)
2 dx

)1/2

+ ‖l̇(t)‖(H1)′‖u2−u1‖H1 .

≤
(
Ceη+CθΘK(t, q1, q2)

)(
‖u1−u2‖H1+‖z1−z2‖L2

)

+ ‖l̇(t)‖(H1)′‖u2−u1‖H1 ,where K(t, q1, q2)
def
=

√
|Ω|+ ‖z1‖L2 + ‖z2‖L2 + ‖u1‖H1 + ‖u2‖H1 +2‖uDir(t)‖H1. Using(3.1) the desired estimate is established. �16



4 Temporal regularity via uniform 
onvexityIn this se
tion we study a better 
ase, where E(t, ·) is uniformly 
onvex and D(z0, z1)only depends on the di�eren
e z1 − z0. The arguments follow the method developedin [MiT04, Se
t. 7℄, see also [MiR07℄.We assume thatW is αW -uniformly 
onvex jointly in the �rst two arguments, namelythere exists a modulus of 
onvexity αW > 0 su
h that for all e1, e2 ∈ R
d×d
sym, z1, z2 ∈ Zand λ ∈ [0, 1], we have

∀θ ∈ [θmin, θmax] : W (eλ, zλ, θ) ≤ (1−λ)W (e1, z1, θ) + λW (e2, z2, θ)

−
αW

2
λ(1−λ)

(
|e2−e1|

2+|z2−z1|
2
)
,

(4.1)where eλ
def
= (1−λ)e1 + λe2 and zλ

def
= (1−λ)z1 + λz2. With qλ def

= (1−λ)q1 + λq2, wehave
E(t, qλ) ≤ (1−λ)E(t, q1) + λE(t, q2) −

κ̂

2
λ(1−λ)‖q2−q1‖

2
B,where κ̂ def

= min(αW , σ) and ‖q‖2
B

def
= ‖e(u)‖2

L2 + ‖z‖2
H1 . Using Korn's inequality (2.2),we �nd ‖q‖2

B ≥ min(cKorn, 1)‖q‖2
Q. Hen
e, we dedu
e

∀q1, q2 ∈ Q ∀t ∈ [0, T ] ∀λ ∈ [0, 1] :

E(t, qλ) ≤ (1−λ)E(t, q1) + λE(t, q2) −
κ

2
λ(1−λ)‖q2−q1‖

2
Q,

(4.2)where κ = κ̂min(cKorn, 1). In other words, E(t, · ) is κ-uniformly 
onvex on Q.The next result establishes that in the present setting energeti
 solutions are Lips-
hitz 
ontinuous in time, whi
h essentially relies on the uniform 
onvexity (4.2) of
E(t, ·) and on assumption (2.6) for the dissipation D whi
h implies the 
onvexity ofthe dissipation distan
e D(q, ·) : Q → [0,∞].Noti
e that the dissipation distan
e is 
alled translation invariant, if D satis�es(2.6). Then, D(z0, z1) = Ψ(z1−z0) with Ψ(v) =

∫
Ω
ψ(v(x)) dx and Ψ plays the roleof a (possible unsymmetri
) L1 norm.Theorem 4.1 (Lips
hitz 
ontinuity). Assume that (2.6), (2.7), (3.1), (3.2b)to (3.2e), (3.2h), (3.2i), (3.3) and (4.1) hold. Then, any energeti
 solution q isLips
hitz 
ontinuous. More pre
isely, let R def

= ‖q‖L∞([0,T ];Q) and CR > 0 given by theLemma 3.5 then ‖q̇(t)‖Q ≤ 2CR

κ
for a.e. t ∈ [0, T ] with κ from (4.2).Proof. We �rst prove that uniform 
onvexity allows us to improve the stability (S)into the following stronger statement:

∀ s ∈ [0, T ] ∀ q̂ ∈ Q : E(s, q(s)) +
κ

2
‖q̂−q(s)‖2

Q ≤ E(s, q̂) + Ψ(q̂−q(s)). (4.3)Indeed, �x s ∈ [0, T ] and de�ne the fun
tional J via J (q̂) = E(s, q̂) + Ψ(q̂−q(s))for all q̂ ∈ Q. Sin
e q is an energeti
 solution and hen
e satis�es (S), we know that17



q(s) is a global minimizer of J . Moreover, sin
e Ψ is 
onvex we obtain that J is
κ-uniformly 
onvex on Q by using (4.2). Thus, for q̂ ∈ Q and λ ∈ (0, 1) we let
qλ = (1−λ)q̂ + λq(s) and we obtain

J (q(s)) +
κ

2
λ(1−λ)‖q̂−q(s)‖2

Q ≤ J (qλ) +
κ

2
λ(1−λ)‖q̂−q(s)‖2

Q

≤ (1−λ)J (q̂) + λJ (q(s)).Subtra
ting λJ (q(s)) and dividing by (1−λ) gives J (q(s))+ κ
2
λ‖q̂−q(s)‖2

Q ≤ J (q̂).Now the de�nition of J and the limit λ → 1 lead to the desired estimate (4.3).Hen
e, for all s, t ∈ [0, T ] su
h that s ≤ t, by 
hoosing q̂ = q(t) we get
κ

2
‖q(t)−q(s)‖2

Q ≤ E(s, q(t)) − E(s, q(s)) + D(z(s), z(t))

≤ E(s, q(t)) − E(s, q(s)) + VarD(z, [s, t])

= −

∫ t

s

∂rE(r, q(t))dr +

∫ t

s

∂rE(r, q(r))dr ≤ CR

∫ t

s

‖q(r)−q(t)‖Qdr.The se
ond estimate 
omes from the de�nition of VarD, the third identity followsfrom the energy identity (E) and from the additivity property of the dissipation, i.e.VarD(z, [0, t]) = VarD(z, [0, s]) + VarD(z, [s, t]),and the last one results from (3.27). We 
on
lude by applying the following Lemma4.2. �Lemma 4.2 Let q ∈ L∞([0, T ];Q) and C > 0 be given su
h that, for all s, t ∈ [0, T ]su
h that s ≤ t, we have
κ

2
‖q(t)−q(s)‖2

Q ≤ C

∫ t

s

‖q(r)−q(t)‖Qdr.Then, q ∈ CLip([0, T ];Q) with ‖q̇(t)‖Q ≤ 2C
κ

for a.e. t ∈ [0, T ].The proof is a simple adaptation of the proof of Theorem 7.5 in [MiT04℄.5 Convergen
e of the spa
e-time dis
retizationIn this se
tion we treat the question of 
onvergen
e of spatially and temporallydis
retized problems. As we do not have uniqueness of solutions for the full problem,we 
annot expe
t 
onvergen
e of the whole approximation sequen
e. But, as in theexisten
e theorem 3.1, we will obtain 
onvergen
e of subsequen
es to solutions ofthe full problem. The approa
h here follows the abstra
t Γ-
onvergen
e theorydeveloped in [MRS08℄ and the spe
ialization to general numeri
al approa
hes in18



[MiR06℄. However, for the spe
ial model at hand, we 
an show more than is statedin the above-mentioned general papers. Hen
e, we provide a full independent proofhere.For the time dis
retization we 
onsider τ ∈ (0, T ) and a partition Πτ = {0 = tτ0 <
tτ1 < . . . < tτkτ = T} with

tτk − tτk−1 ≤ τ for k = 1, . . . , kτ .In parti
ular, we do not assume our partitions to be equidistant.For the spatial dis
retization we 
hoose a set of length parameters h > 0 a

umu-lating at h = 0 and let Fh and Vh be 
losed subspa
es of F and V = H1(Ω; RN),respe
tively. Typi
ally, Fh and Vh are �nite dimensional subspa
es of F and V ,like �nite-element spa
es or Galerkin subspa
es. We let Qh
def
= Fh × Zh, with

Zh = {zh ∈ Vh | zh(x) ∈ Z a.e. in Ω} = Z ∩ Vh. We assume that the sets Qhsatisfy the standard density assumption:
∀q ∈ Q ∃(qh)h>0 : qh ∈ Qh and qh → q strongly in Q. (5.1)By 
onvention, let Q0

def
= F0 ×Z0 = F ×Z.To have some spe
i�
 spatial dis
retization in mind, we may assume that Ω is apolyhedral domain and that ΓDir ⊂ ∂Ω is a �nite union of fa
es of Ω. Then, forea
h h > 0 
hoose a triangulation Th of Ω, su
h that all edges have at most length

h. Now, let Vh be the spa
e of fun
tions that are a�ne on ea
h polyhedron of Th.Hen
e Vh ⊂ H1(Ω) and we let Fh = Vh ∩F and Zh = Vh ∩Z. It is then standard in�nite-element theory to show the density property (5.1).We approximate the initial 
ondition q0 by [q0]
h ∈ Qh and we 
onsider the followingin
remental problems:(IP)τ,h

{for k = 1, . . . , kτ �nd
qτ,h
k

def
= (uτ,h

k , zτ,h
k )∈Argmin{E(tτk, q̂

h)+D(zτ,h
k−1, ẑ

h) | q̂h def
= (ûh, ẑh)∈Qh

}
.We de�ne now the approximate solution qτ,h : [0, T ] → Q as the right-
ontinuouspie
ewise 
onstant approximation, namely

qτ,h(t)
def
=

{
qτ,h
k−1 for tτk−1 ≤ t < tτk, k = 1, . . . , kτ ,

qτ,h
kτ for t = T.

(5.2)It is 
onvenient to introdu
e the set of stable states Sh(t) for any t ∈ [0, T ] by simplyrepla
ing Q by Qh in (3.24). Observe that if h = 0 then S0(t) = S(t). Moreover,we de�ne ητ,h
k

def
= E(tτk, q

τ,h
k ) and δτ,h

k

def
= D(zτ,h

k−1, z
τ,h
k ).The next result, whi
h is fundamental for the energeti
 approa
h (
f. [MiT99,MTL02℄), shows that the fully impli
it in
remental minimization problem (IP) issuited perfe
tly for the energeti
 formulation (S) and (E). At the time-dis
rete levelwe again obtain stability and a two-sided energy estimate. This will allow us to de-rive suitable a priori estimates. The essential feature is that D satis�es the triangleinequality. 19



Proposition 5.1 Assume that (2.7), (3.3), (3.1), (3.2b), (3.2
) and (3.2d) hold.Then the in
remental problems (IP)τ,h admit a solution (qτ,h
k )1≤k≤kτ . Moreover wehave dis
rete stability: qτ,h

k ∈ Sh(t
τ
k), (5.3)dis
rete upper energy estimate:

∀k ∈ {1, . . . , kτ} : ητ,h
k − ητ,h

k−1 + δτ,h
k ≤

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k−1)dt, (5.4)dis
rete lower energy estimate:

∀k ∈ {2, . . . , kτ} : ητ,h
k − ητ,h

k−1 + δτ,h
k ≥

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k )dt. (5.5)Proof. The existen
e of minimizers in ea
h in
remental step is a dire
t 
onsequen
eof the 
oer
ivity of E(t, · ) : Q → R, the nonnegativity of D and the weak lowersemi
ontinuity of E and D. Of 
ourse, all these properties remain valid, if theminimization is restri
ted to the 
losed subspa
e Qh ⊂ Q.For the dis
rete stability we use �rst that qτ,h

k , k = 1, . . . , kτ , is a minimizer and that
D satis�es the triangle inequality (see (2.7b) and integrate over Ω): for all q̂h ∈ Qhwe have
E(tτk, q

τ,h
k ) ≤ E(tτk, q̂

h) + D(zτ,h
k−1, ẑ

h) −D(zτ,h
k−1, z

τ,h
k ) ≤ E(tτk, q̂

h) + D(zτ,h
k , ẑh), (5.6)whi
h yields immediately (5.3). Sin
e qτ,h

k ∈ Argmin{E(tτk, q̂
h) + D(zτ,h

k−1, ẑ
h) | q̂h ∈

Qh

} we may 
hoose q̂h = qτ,h
k−1 and �nd

ητ,h
k − ητ,h

k−1 + δτ,h
k ≤ E(tτk, q

τ,h
k−1) − ητ,h

k−1 =

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k−1)dt.On the other hand, we rewrite (5.6) for qτ,h

k−1 
hoose q̂h = qτ,h
k , and obtain

ητ,h
k − ητ,h

k−1 + δτ,h
k ≥ ητ,h

k − E(tτk−1, q
τ,h
k ) =

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k )dt.Thus, (5.4) and (5.5) are established. �To investigate the asymptoti
s when τ and h tend to 0 we need a 
ompa
tnessargument suited for the rate-independent 
ase. The following version of Helly'ssele
tion prin
iple is a simpli�ed version of the abstra
t result given in the Appendixof [MaM05℄.Proposition 5.2 (Helly's sele
tion prin
iple) Let D be given by (2.8) with Dsatisfying (2.7) and (3.3). Let (zn)n∈N with zn : [0, T ] → Z satisfying

∃C > 0 ∀n ∈ N : VarD(zn; [0, T ]) ≤ C and sup
t∈[0,T ]

‖zn(t)‖H1(Ω) ≤ C, (5.7)20



then there exist a subsequen
e (znj
)j∈N, a nonde
reasing fun
tion δ : [0, T ] → R, anda limit pro
ess z : [0, T ] → Z su
h that for all s, t ∈ [0, T ] with s ≤ t, we have

znj
(t) ⇀ z(t) in H1(Ω), δ(t) = lim

j→∞
VarD(znj

; [0, t]),

VarD(z; [s, t]) ≤ δ(t) − δ(s).
(5.8)Our main result states now that the spa
e-time dis
retization de�ned via (IP)τ,hgenerating the approximants qτ,h : [0, T ] → Q has the desirable properties (i) thatthe sequen
e of approximants is pre
ompa
t (whi
h 
an be understood as the �sta-bility of the numeri
al algorithm�) and (ii) that any limit point of the sequen
eof approximants is an energeti
 solution for the rate-independent system (Q, E ,D)(whi
h 
an be understood as �
onsisten
y of the numeri
al algorithm�). It should benoted that we do not need to make any assumptions of the order how the �neness

τ of the partitions or the �neness h of the spatial dis
retization tend to 0.Theorem 5.3 (Convergen
e of the approximate solution). Assume that E ,
D and q0 satisfy the same assumptions as in Theorem 3.1. Let [q0]

h ∈ Qh be su
hthat
[q0]

h → q0 in Q. (5.9)Then, there exist a subsequen
e (τn, hn)n∈N tending to (0, 0) and an energeti
 solution
q : [0, T ] → Q for (Q, E ,D) with q(0) = q0 and

u ∈ L∞([0, T ]; H1(Ω; Rd)),

z ∈ L∞([0, T ]; H1(Ω;Z)) ∩ BV([0, T ]; L1(Ω;Z)),su
h that for all t ∈ [0, T ] the following 
onvergen
es hold:
qτn,hn(t) → q(t) strongly in Q, (5.10a)

E(t, qτn,hn(t)) → E(t, q(t)), (5.10b)
VarD(qτn,hn; [0, t]) → VarD(q; [0, t]). (5.10
)Proof. The main steps of the proof are the similar those in [MRS08, MiR06℄, butour energy E is better behaved and thus we are able to obtain more pre
ise results.For t ∈ [0, T ] let us introdu
e the notations

ητ,h(t)
def
= E(t, qτ,h(t)), ηh

0
def
= E(0, [q0]

h), δ
τ,h

(t)
def
= VarD(zτ,h; [0, t]) (5.11)and let us re
all ητ,h

k = E(tτk, q
τ,h
k ) and δτ,h

k = D(zτ,h
k−1, z

τ,h
k ).Step 1: A priori estimates. One 
an observe that (P2) and (3.7) lead to

∀k ∈ {1, . . . , kτ} :

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt ≤

(
exp(Cε

1(t
τ
k−t

τ
k−1))−1

)
(ητ,h

k−1+C
ε
0). (5.12)21



Carrying (5.12) into (5.4), we get
ητ,h

k + δτ,h
k ≤ exp(Cε

1(t
τ
k−t

τ
k−1))(η

τ,h
k−1+C

ε
0) − Cε

0 , (5.13)and observing that δτ,h
k ≥ 0, we obtain by indu
tion

∀k ∈ {1, . . . , kτ} : ητ,h
k + Cε

0 ≤

k∏

j=1

exp(Cε
1(t

τ
j−t

τ
j−1))(η

h
0+Cε

0)

= exp(Cε
1t

τ
k)(η

h
0+Cε

0).

(5.14)Hen
e, with (5.2), (3.5) and (3.7), we dedu
e that
∀t ∈ [0, T ] : −c0 ≤ ητ,h(t) ≤ exp(Cε

1t)(η
h
0+Cε

0) − Cε
0 . (5.15)Next we estimate the dissipated energy δτ,h

(t) by using (5.13), (5.14) and (3.5): forall t ∈ [0, T ]

δ
τ,h

(t) ≤ δ
τ,h

(T ) =
kτ∑

k=1

δτ,h
k

≤ ηh
0 − ητ,h

kτ +

kτ∑

k=1

(
exp(Cε

1t
τ
k)− exp(Cε

1t
τ
k−1)

)
(ηh

0+Cε
0)

≤ exp(Cε
1T )ηh

0 +
(
c0+(exp(Cε

1T ) − 1)Cε
0

)

≤ exp(Cε
1T )

(
ηh

0+ max(c0, C
ε
0)

)
.

(5.16)
Let us 
onsider now the total variation Var(ητ,h; [0, T ]) of ητ,h on [0, T ]. Re
allingthat

ητ,h(t) = E(t, qτ,h(t)) =

{
E(t, qτ,h

k−1) for tτk−1 ≤ t < tτk, k = 1, . . . , kτ ,

E(T, qτ,h
kτ ) for t = T,we obtainVar(ητ,h; [0, T ]) ≤

kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt+

kτ∑

k=1

∣∣ητ,h
k −E(tτk, q

τ,h
k−1)

∣∣

≤
kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt+

kτ∑

k=1

|ητ,h
k −ητ,h

k−1| +
kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt

= I1 + I2 with I1
def
= 2

kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt and I2

def
=

kτ∑

k=1

|ητ,h
k −ητ,h

k−1|.On the one hand, using (5.12), (5.14) and summing for k = 1, . . . , kτ , we obtain
I1 ≤ 2

kτ∑

k=1

exp(Cε
1(t

τ
k − tτk−1) − 1)(ητ,h

k−1 + Cε
0) ≤ 2

(
exp(Cε

1T )−1
)
(ηh

0+Cε
0). (5.17)22



On the other hand, by (5.4) and (5.5), we have
I2 ≤ δ

τ,h
(T ) +

kτ∑

k=1

max
(∫ tτ

k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt,

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k )|dt

)

+ max
(
0, ηh

0−E(tτ1, q
τ,h
1 )

)
.

(5.18)But (P2) and (3.7) lead to
∫ tτ

k

tτ
k−1

|∂tE(t, qτ,h
k )|dt ≤

∫ tτ
k

tτ
k−1

Cε
1(E(t, qτ,h

k )+Cε
0)dt

≤
(
exp(Cε

1(t
τ
k−t

τ
k−1)−1)

)
(E(tτk, q

τ,h
k )+Cε

0)

≤
(
exp(Cε

1(t
τ
k−t

τ
k−1)−1

)
exp(Cε

1(t
τ
k−t

τ
k−1))(η

τ,h
k−1+C

ε
0)

≤
(
exp(Cε

1(t
τ
k−t

τ
k−1)−1

)
exp(Cε

1T )(ητ,h
k−1+C

ε
0)

(5.19)
and thus, with (5.12)

max
(∫ tτ

k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt,

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k )|dt

)

≤
(
exp(Cε

1(t
τ
k−t

τ
k−1)−1

)
exp(Cε

1T )(ητ,h
k−1+C

ε
0).Moreover, we know from (3.5) that E(tτ1, q

τ,h
1 ) ≥ −c0. Hen
e, using (5.17), (5.18)and (5.19), we obtain, for all t ∈ [0, T ],Var(ητ,h; [0, t]) ≤ Var(ητ,h; [0, T ]) ≤

(
exp(Cε

1T )−1
)
(ηh

0+Cε
0)

(
exp(Cε

1T )+2
)

+ δ
τ,h

(T ) + max
(
0, ηh

0+c0
)
.

(5.20)But, with (3.5), we have also
ηh

0 = E(0, [q0]
h) ≤ c0‖[q0]

h‖2
Q+c0, (5.21)and sin
e ([q0]

h)h>0 
onverges to q0 in Q, we infer that ηh
0 is bounded from aboveindependently of h. Hen
e, (5.15), (5.16) and (5.20) imply that |ητ,h(t)|, δτ,h

(t) =
VarD(zτ,h; [0, t]) and Var(ητ,h; [0, t]) are bounded independently of t, τ and h. Usingthe 
oer
ivity (3.5) and (3.3) we have found a 
onstant C > 0 su
h that for all
τ, h > 0 the approximants satisfy the bounds

sup
t∈[0,T ]

‖qτ,h(t)‖H1(Ω) ≤ C, ‖zτ,h‖BV([0,T ],L1(Ω)) ≤ C, Var(ητ,h; [0, T ]) ≤ C. (5.22)Using (P2) of Proposition 3.3 we also have a bound for the power
∀τ, h > 0 ∀t ∈ [0, T ] : |∂tE(t, qτ,h(t))| ≤ C. (5.23)Step 2. Sele
tion of subsequen
es. We have prepared all the assumptions forHelly's sele
tion prin
iple as stated in Proposition 5.2. Hen
e, applying both the23




lassi
al Helly's theorem and Proposition 5.2, we infer that there exists a subsequen
e
(τn, hn)n∈N su
h that for all t ∈ [0, T ], we have

ητn,hn(t) → η(t), δ
τn,hn

(t) → δ(t),

zτn,hn(t) ⇀ z(t) in Z, VarD(z; [0, t]) ≤ δ(t)
(5.24)with η ∈ BV([0, T ]; R), δ : [0, T ] → R a nonde
reasing fun
tion, and z : [0, T ] → Z.We want to show that the u-
omponent also 
onverges along this subsequen
e. Forthis we de�ne

sn(t)
def
= max

{
tτn

j ∈ Πτn
∣∣ tτn

j ≤ t
}
,then we have qτn,hn(t) = qτn,hn(sn(t)) ∈ Sh(s

n(t)). Thus, using sn(t) → t and
zτn,hn(t) ⇀ z(t) we 
an argue as in Lemma 3.4 to 
on
lude that

qτn,hn(t) → q(t) = (u(t), z(t)) strongly in Q,

ητn,hn(t) → η(t) = E(t, q(t)),
(5.25)where u(t) = Argmin E(t, · , z(t)). Indeed, using the stability of qτn,hn(t) at sn(t) andtesting by q̂hn

∈ Qhn
we have

E(sn(t), qτn,hn(t)) ≤ E(sn(t), q̂hn
) + D(zτn,hn(t), ẑhn

)and using (3.7)
E(t, qτn,hn(t)) = ητn,hn(t) ≤ exp

(
Cε

1 |t− sn(t)|
)(
E(sn(t), qτn,hn(t)) + Cε

0

)
− Cε

0

≤ exp
(
Cε

1|t− sn(t)|
)(
E(sn(t), q̂hn

) + D(zτn,hn(t), ẑhn
) + Cε

0

)
− Cε

0 .By the density assumption (5.1) we may 
hoose q̂hn
su
h that q̂hn

→ q(t), and usingthe strong 
ontinuity of E we obtain lim supn→∞ ητn,hn(t) ≤ E(t, q(t)). Then we ob-tain as in Lemma 3.4 that the whole sequen
e (qτn,hn(t))n∈N 
onverges weakly to q(t)in Q. By weak lower semi
ontinuity we again have E(t, q(t)) ≤ lim infn→∞ ητn,hn(t).Thus, the se
ond statement in (5.25) is established. Finally the strong 
onvergen
efollows as in Lemma 3.4 by stri
t 
onvexity.Now we employ Lemma 3.5 and obtain that the power ∂tE(t, qτn,hn(t)) also 
onverges
∂tE(t, qτn,hn(t)) → ∂tE(t, q(t)) for all t ∈ [0, T ]. (5.26)Step 3. Stability of the limit q. To prove that q(t) ∈ S(t) we take an arbitrary

q̂ ∈ Q and have to show E(t, q(t)) ≤ E(t, q̂) + D(z(t), ẑ). To do so, we apply thedensity assumption (5.1) and obtain a sequen
e q̂n ∈ Qhn
with q̂n → q̂. Sin
e

qτn,hn(t) ∈ Shn
(sn(t)) we have

E(sn(t), qτn,hn(t)) ≤ E(sn(t), q̂n) + D(zτn,hn(t), ẑn).Using the 
onvergen
es sn(t) → t, qτn,hn(t) → q(t), and q̂n → q̂, we 
an pass to thelimit and obtain the desired stability. 24



Step 4. Upper energy estimate. The upper energy estimate on [0, t] followsfrom the dis
rete upper energy estimate obtained above for the solutions of thein
remental problems. Using (3.7) and (5.14) we �nd that there exists C > 0 su
hthat
E(t, qτ,h(t)) + VarD(zτ,h; [0, t]) ≤ ητ,h

k−1 + VarD(zτ,h; [0, tτk−1]) + C(exp(CE
1 τ)−1),if tτ,h

k−1 ≤ t < tτ,h
k , whi
h implies thanks to (5.4) that

ητ,h(t) + δ
τ,h

(t) ≤ ηh
0 +

∫ t

0

∂tE(s, qτ,h(s))ds+ C(exp(CE
1 τ)−1).Noti
e that (5.9) and (5.25) imply that limh→0 η

h
0 = E(0, q0) = η(0). Then, with(5.23), (5.24) and (5.26), we get at the limit

E(t, q(t)) + VarD(z; [0, t]) ≤ η(t) + δ(t) ≤ E(0, q0) +

∫ t

0

∂tE(s, q(s))ds. (5.27)Step 5. Lower energy estimate. Let us prove now the lower energy estimate.As it has been observed in [MTL02, MiT04℄, it will be derived dire
tly from thestability property and not from the dis
rete lower energy inequality. See also [Mie05,Prop. 5.7℄ for an abstra
t result.With (5.23) we infer that t 7→ ∂tE(t, q(t)) belongs to L∞([0, T ]). Thus, using a
lassi
al result about Lebesgue's integral (see [FrM06℄), for ea
h t ∈ (0, T ] thereexists a sequen
e of partitions Πn def
= {0 = tn0 < tn1 < . . . < tnNn

= t} of [0, t] with�neness ∆(Πn)
def
= max{tnj −t

n
j−1 | j = 1, . . . , Nn} tending to 0, su
h that

∫ t

0

∂tE(s, q(s)) ds = lim
n→∞

Nn∑

j=1

∂tE(tnj , q(t
n
j ))(tnj −t

n
j−1).For j ∈ {1, . . . , Nn} we have q(tnj−1) ∈ S(tnj−1), and by 
hoosing q̄ = q(tnj ) we obtain

E(tnj−1, q(t
n
j−1)) ≤ E(tnj−1, q(t

n
j )) + D(q(tnj−1), q(t

n
j ))

= E(tnj , q(t
n
j )) + D(q(tnj−1), q(t

n
j )) −

∫ tnj

tnj−1

∂tE(s, q(tnj ))ds.After summation over j = 1, . . . , Nn, we �nd
E(t, q(t))−E(0, q(0))+VarD(q; [0, t]) ≥

Nn∑

j=1

∫ tnj

tnj−1

∂tE(s, q(tnj ))ds

≥
Nn∑

j=1

∂tE(tnj , q(t
n
j ))(tnj −t

n
j−1)+

Nn∑

j=1

µn
j ,

(5.28)
25



where µn
j

def
=

∫ tnj
tnj−1

(
∂tE(s, q(tnj ))−∂tE(tnj , q(t

n
j ))

)
ds. Then (P3) implies that thereexists a nonde
reasing fun
tion ωE : [0,∞) → [0,∞) with ωE(τ) → 0 for τ ց 0 and

E ≥ supt∈[0,T ] c0‖q(t)‖
2
Q + c0 su
h that

|µn
j | ≤ (tnj −t

n
j−1)ω

E(tnj −t
n
j−1) ≤ (tnj −t

n
j−1)ω

E(∆(Πn)). (5.29)Then passing to the limit in (5.28) as ∆(Πn) tends to zero, we obtain
E(t, q(t)) − E(0, q(0)) + VarD(q; [0, t]) ≥

∫ t

0

∂tE(s, q(s))ds.Now, let us re
all that VarD(q; [0, t]) = VarD(z; [0, t]) ≤ δ(t) with (5.24) and that
E(t, q(t)) = η(t). Then, the lower and upper energy estimates imply

η(0) +

∫ t

0

∂tE(s, q(s))ds ≤ E(t, q(t)) + VarD(q; [0, t])

≤ η(t) + δ(t) ≤ η(0) +

∫ t

0

∂tE(s, q(s))ds.Hen
e, all inequalities are in fa
t equalities and we dedu
e that δ(t) = VarD(q; [0, t]).Thus, all assertions in (5.10) are established. �Remark 5.4 Let us observe that, with the 
hoi
e Fh = F and Vh = V for all h > 0,we obtain dire
tly the existen
e of an energeti
 solution q = (u, z) of (S) and (E).6 Dis
ussion of stored-energy densitiesHere we address some possible stored-energy densities W : Rd×d
sym ×Z× [θmin, θmax] →

R, that ful�ll the assumptions made in the previous se
tions. Ex
ept for somegrowth bounds for the di�erent partial derivatives the 
ru
ial assumptions are thestri
t 
onvexity of W (·, z, θ) : Rd×d
sym → R in (3.2a) or the mu
h more restri
tiveassumption of uniform 
onvexity of W (·, ·, θ) : Rd×d

sym × Z → R from (4.1).In [MiT99, Mie00, MTL02℄ the mixture fun
tion Wmix (see (2.4)) was introdu
edand further analyzed. Using the theory developed in [MTL02, Se
tion 4℄ it followsthat starting from 
onvex pure phases W (·, êk, θ) the resulting Wmix(·, z, θ) is still
onvex for ea
h z ∈ Z. Moreover, if all W (·, êk, θ) are quadrati
 and have the sameelasti
 tensor, then Wmix take the quadrati
 form given in (2.5). However, it shouldbe noted that even in this simple 
ase the fun
tion Wmix(·, ·, θ) is in general notjointly 
onvex in (e, z). The general theory states that wmix(·, θ) : Z → R is 
onvex,but the desired 
onvexity of Wmix(·, ·, θ) in (2.5) needs that
w̃(·, θ) : z 7→wmix(z, θ) +

1

2

( N∑

k=1

zkEk(θ):C(θ):Ek(θ) − E(z, θ):C(θ):E(z, θ)
)

+

N∑

k=1

zkw
therm
k (θ) 26



is 
onvex. For N = 2 
onvexity holds if and only if E1 and E2 are symmetri
allyrank-1-
onne
ted, see [Mie00, GMH02℄. Clearly, we have 
onvexity of Wmix withrespe
t to e ∈ Rd×d
sym in all these 
ases. If additionally w̃ is uniformly 
onvex in z,then also Wmix de�ned in (2.5) is uniformly 
onvex with respe
t to (e, z).In the next lemma, we 
larify the assumptions on wmix, C and E whi
h imply that

Wmix satis�es the assumptions (3.2). Then, we may dedu
e that all the results givenabove are also valid in the parti
ular 
ase where W = Wmix. The veri�
ation is leftto the reader.Lemma 6.1 Assume that wmix, C, Ej and wtherm
j satisfy wmix, ∂θwmix ∈ C0(Z ×

[θmin, θmax]; R), C ∈ C1([θmin, θmax]; Lin(Rd×d
sym; Rd×d

sym)), Ej ∈ C1([θmin, θmax]; R
d×d
sym) and

wtherm
j ∈ C1([θmin, θmax]) for j = 1, . . . , N . Further assume that there exist Cθ

mix and
αC > 0 su
h that for all z1, z2 ∈ Z, e ∈ Rd×d

sym and θ ∈ [θmin, θmax] we have
∣∣∂θwmix(z1, θ)−∂θwmix(z2, θ)

∣∣ ≤ Cθ
mix|z1−z2| and e:C(θ):e ≥ αC|e|

2.Then Wmix de�ned in (2.5) satis�es the assumptions (3.2).If additionally, there exists αmix > 0 su
h that w̃(·, θ) is αmix-uniformly 
onvex forall θ ∈ [θmin, θmax], then the joint uniform 
onvexity (4.1) for W = Wmix also holds.In general, it is mu
h too di�
ult to 
al
ulateWmix expli
itly. Hen
e, it is ne
essaryto model suitably. The general theory in [MTL02℄ states that ∇u 7→Wmix(e(u), z, θ)is always quasi
onvex and that z 7→ Wmix(e, z, θ) is always 
onvex. Of 
ourse,
ross-quasi
onvexity is even stronger, but very di�
ult to 
hara
terize. So we needto interpolate between the pure phases Wk(·, θ) = W (·, êk, θ) by making suitableassumptions. Throughout we assume that ea
h Wk is stri
tly 
onvex with respe
tto e. Here, we are now able to treat mu
h more general fun
tions Wk. Again wemay take an a�ne interpolation plus a mixture term
Wmix(e, z, θ) =

N∑

k=1

zkWk(e, θ) + wmix(z, θ) for z =
N∑

k=1

zkêk.Clearly, we keep stri
t 
onvexity with respe
t to e.In [Mie07℄ a more general interpolation is suggested in the form
Wmix(e, z, θ) =

1

β(θ)
ln

( N∑

k=1

zk exp
(
β(θ)Wk(e, θ)

))
+ wmix(z, θ),where the limit β ց 0 
orresponds to the a�ne interpolation given in the formula be-fore. It is simple to see that upper and lower bounds like c|e|2−C ≤ Wk ≤ C|e|2+Cdire
tly 
arry over to Wmix. The good message is that also (stri
t) 
onvexity in e ismaintained. To prove this it is su�
ient to show that s 7→ w(s) = Wmix(e+sẽ, z, θ)27



is 
onvex in s ∈ R for all e, ẽ ∈ R
d×d
sym . We let wk(s) = Wk(e+sẽ, θ) and assume, forsimpli
ity, that all wk are twi
e di�erentiable, then we obtain

w′′ = exp(−β(w−wmix))
N∑

k=1

zk exp(βwk)w
′′
k + β exp(−2β(w−wmix))

(( N∑

k=1

zk exp(βwk)
)( N∑

k=1

zk exp(βwk)(w
′
k)

2
)
−

( N∑

k=1

zk exp(βwk)w
′
k

)2
)
.Obviously the �rst sum is nonnegative, and the last term in big parentheses isnonnegative as well by a simple appli
ation of the Cau
hy-S
hwarz inequality.The above dis
ussion shows that there is a wide variety of possible mixture fun
tions

Wmix : Rd×d
sym×Z×[θmin, θmax] → R for whi
h the above existen
e theory is appli
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