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Abstract

This paper deals with a three-dimensional model for thermal stress-induced
transformations in shape-memory materials. Microstructure, like twined mar-
tensites, is described mesoscopically by a vector of internal variables containing
the volume fractions of each phase. We assume that the temperature variations
are prescribed. The problem is formulated mathematically within the energetic
framework of rate-independent processes. An existence result is proved and
temporal regularity is obtained in case of uniform convexity. We study also
space-time discretizations and establish convergence of these approximations.

1 Introduction

The good performances of shape-memory alloys (SMA) in applications to relative
fields like biomedical, aeronautical or engineering stimulate the interest in the devel-
opment of different models. These alloys have some surprising thermo-mechanical
behavior namely severely deformed materials can recover their original shape after
a thermal cycle (shape-memory effect). In the mathematical literature, many one-
dimensional models are available but multi-dimensional models allowing for multi-
axial loadings and anisotropies are rarely presented. In [MiT99, MTLO02| such models
were introduced for the isothermal setting and a first existence result was provided.

This paper deals with the quasi-static evolution of shape-memory materials in a
small-strain regime under non-isothermal conditions. In [SMZ98, AuS01, AuP04| a
model for polycrystalline shape-memory materials is proposed where phase transfor-
mations are driven by stress or temperature changes, and it is analyzed in [AuS04,
AuS05, MiP07, AMSO08|. In this model the mesoscopic average of the transforma-
tion strain used an internal variable and hence it is restricted to situations where
isotropy and equal elastic constants in austenite and martensite can be assumed.
Here we treat a more advanced model which allows to describe each pure phase in-
dependently, like in the isothermal models considered in [CaP01, MTL02, GMHO02,
KMRO05, RoK06, GHHO7|.

Following [Mie07, MiP07] we assume here that the temperature 6 is given a priori as
an applied load 6 = 0,51 (f, ). This assumption is used in engineering models and
it is acceptable if the body is small in at least one direction. Then, the excessive
or missing heat can be balanced through the environment. While the existence
result will be a direct consequence of the general theory of energetic solutions for
rate-independent processes, we present here an approach which states existence of
solutions as a consequence of convergence of space-time discretizations. Using the



ideas of I'-convergence for rate-independent processes developed in [MRS08| we show
that for arbitrary sequences of partitions of the time interval and for arbitrary finite-
dimensional approximations of the underlying Banach space we obtain sequences of
discrete solutions that are a priori bounded and precompact. Any limit point of
this sequence will be a solution of the full problem. As in general uniqueness of
solutions for the full problem is not true, it cannot be expected that the full sequence
converges. A similar approach, in a more general setting is followed in [MiR06].

Our model is based on a stored-energy density W and a dissipation distance D.
The stored-energy density W (x,e, z,0) depends on the material point x € Q, the
infinitesimal strain e = e(u) = 3(Vu+Vu") for the displacement u : Q — R?, the
prescribed temperature 6 = 0,,,1(¢, ), and the vector of phase fractions z :  —
Z = conv{eéy,...,en}, the convex hull in RY. Here N is the total number of phases,
in an austenite-martensite phase transformation this includes the austenite and all
variants of martensite. In general, z € conv{ey,...,éx} is a phase mixture, and
the vertices z = €j,...,ex correspond to the pure phases such that W (- e,-, )
corresponds to the stored-energy density of a pure phase, which can be adapted to
measured data. The total stored energy takes the following form

5@uszéowaqwmm@»@gm@»+%waﬁ¢p-wwW% o> 0,

where up;, and [ denote the time-dependent Dirichlet boundary data and applied
loading, respectively. To model the dissipation via phase transformations we intro-
duce a dissipation distance D : Q x Z x Z — [0, 00) and define the total dissipation
distance D via

D(z9, 1) d:E’f/QD(x,zo(x),zl(x))dx.

The natural function sets for the unknown ¢ = (u,z) is @ = F x Z with 2 =
HY(Q; Z). As the time-dependent conditions on I'py;, C 99 are incorporated in up,,
we define the space of admissible displacements via

FE{ueH (R |u=0o0nTp;}.

Then, our problem can be posed in the energetic formulation for rate-independent
problems. For a given initial value (u(0),2(0)) € Q, we have to find a function
(u,2) : [0,7] — Q (with T" > 0) such that for all t € [0,T], the global stability
condition (S) and the global energy balance (E) are satisfied, i.e.

(S) Y(u,z) € Q: E(t,u(t),z(t)) < E(t,u,z) + D(z(t),
(E) E(t,u(t), 2(t)) + Varp(z; [0,t]) = £(0,u(0 / 0sE(s,u(s), z(s))ds,

where the dissipation Varp(z;[0,¢]) is defined as the supremum over all finite parti-
tions 0 <tg<t1 <...<t, <t of Z?:l D(Z(t]_l),Z(t]))



The paper is organized as follows. In Section 2, we give a more detailed description
of the mechanical model and the mathematical formulation of the problem within
the energetic formulation theory of rate-independent systems (Q, £, D). In Section
3, we specify the full assumptions and state our existence result by applying the
same techniques as in |[Mie07, MiP07|. More precisely, we show that for any stable
initial data ¢(0), an energetic solution exists. We also provide a series of further
properties of the functional £ that will be used in the later sections.

In Section 4, the temporal smoothness is obtained assuming uniform convexity of
W(z,-,-,0) and D(z,z2p,21) = ¥(x,21—29). Finally in Section 5, we discuss the
convergence of space-time discretizations of the problem. For this we choose a
sequence (II7),~¢ of partitions {0 = tj < t] < --- < t}y = T} of the time interval
[0,7] with max{ ] —¢]_, : k=1,...,N; } <7. Moreover, we choose a sequence
(9Qn)n>0, Qn S Fn X 2y, of finite-dimensional space approximations exhausting Q.
We obtain a sequence ™" : [0,7] — Q of piecewise constant interpolants. The main

theorem states that this sequence has a subsequence (g™""),cy such that for all
t € [0,T] we have g™/ (t) — ¢(t), where ¢ : [0,T] — Q is a solution for (Q, &, D).

In Section 6, we discuss several models for the stored-energy density W, which in
this context is called mizture function [MiT99, Mie00, CaP01, MTLO02]| or free energy
of mizing in [HaG02, GMH02, GHHO7|. In particular, we clarify the assumptions
that are needed to apply the results obtained in the previous sections.

2 Mechanical model and mathematical formulation

We consider a material with a reference configuration Q@ C R¢ with d € {2,3}.
We assume that € is an open bounded set with a 1-regular smooth boundary (see
|[RaT83|). This body may undergo displacements u : Q — R? and phase transforma-
tions. The latter will be characterized by a mesoscopic internal variable z : Q — Z
where Z is the Gibbs simplex, associated with the N pure phases €y,...ex € RV,
where €; is the jth unit vector, i.e.,

N

def o~ o~ def ~

Z = conv{ey,...,ex} = {z = E i€
i—1

N
0SS Y A= 1} cRY.  (21)
i=1

The set of admissible displacements F is chosen as a suitable subspace of H!(2; R?)
by prescribing Dirichlet data on the subset I'py;, of 0€2, i.e.,

F = {ue HY(QGRY | ulry, = 0}.

Note that the physical displacement is u + up;, where up;, : [0, 7] — HY(Q; R?) is
prescribed a priori. Throughout the paper we consider the extension of up;(t) to €,
but actually only the trace on I'p;, would be needed. The internal variable z belongs
to

z= {z e H'(Q;RY) | 2(z) € Z ae. x € Q}.

3
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We will denote the norm in Q@ = F x Z by |||l and ¢ = (u, 2).

We assume also that the material behavior depends on the temperature 6, which
will be considered as a time dependent given parameter. Therefore we will not solve
an associated heat equation but we will treat ¢ as an applied load and we denote
it by Oappr : [0,7] X 2 — [min, Omax]- This approximation for the temperature is
used in engineering models and is justified when the changes of the loading are
slow and the body is small in at least one direction: in such a case, excess of heat
can be transported very fast to the surface of the body and then radiated into the
environment.

We will denote by ngxrff the space of symmetric dxd tensors endowed with the scalar

product v:w = tr(vTw) and the corresponding norm is given by |v]|? = v:w for all

v,w € R Here (-)7 and tr(-) denote the transpose and the trace of the matrix

(+), respectively. The linearized strain tensor is given by e = e(u) = 3(Vu+VuT) €
]ngxrff. We assume that 02 is smooth enough and that the surface measure fFD- lda
is positive such that Korn’s inequality holds, i.e. there exists ckom > 0 such that

Vue F: Jle(w)lis > cxom|luli- (2.2)

For more details on Korn’s inequality and its consequences, we refer to [KoO88| or

|DuL.76].

The stored-energy potential takes the following form

E(t,u, 2) /Q <W(:E,e(u+uDir(t))(x),z(z),@appl(t,x))+%|Vz(:v)|2> dz
—(I(t), u),

where the stored-energy density W : Q x ]ngxnﬁl X Z X [Omin, Omax] — R describes the
material behavior. Here o is a positive coefficient that is expected to measure some
nonlocal interaction effect for the internal variable z and [(t) denotes an applied

mechanical loading of the form

(I(t),u) o /Q fappi (¢, x)-u(x)dx + /aﬂ Gappl (t, T)-u(x) dy.

(2.3)

The main point in the model is the choice of the stored-energy density W. For
notational simplicity, we will omit any dependence on the material point x € €), as
it is standard to generalize the approach to this case. For the pure phases z = ¢,
it is clear that W (- eg,-) : Rg;nﬁl X [@min, Omax] — R can be adjusted to the measured
elasticity constants of this phase. However, the choice for true mixtures z € Z is not
so obvious. In [MiT99, Mie00, MTL02]| it was suggested to derive W as a mizture

function via cross-quasiconvexification:

Waix(e, 2, 0) = inf{ W (e+e(0)(y), 2(y), 0)dy | © € H' (Tg; RY),
Ta (2.4)
z= /TZ(y)dy, z € LYTy {en, ... en}) }a
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where Ty = (R/Z)? is the d-dimensional torus, i.e., ¥ and Z are periodic functions.

In [HaG02, GMHO02, GHHO7| this function is called free energy of mizing. The
point of this construction is that W (-, z, ) is still quasiconvex, which is an essen-
tial prerequisite for constructing solutions. All this theory was developed for fixed
temperature levels and may be much too difficult to be carried through for given
material models for the pure phases. In [Mie07, Eqn. (3.7)| another modeling idea is
used by interpolating in thermal way, such that for convex W (-, €, 0), k =1,.... N
the resulting function W (-, z, 0) is still convex.

If each W (-, €, ) is a quadratic function and the associated elasticity tensor is the
same for all phases, then it is shown in [Mie00, MTLO02| that W takes the form

WE

Wais(e,2,0) = 3 2[5 (e~ B(6)CO: (e~ El6)) + wl™(0)] + (2, 0) (25)
k=1
_ %(6_ E(z,0)):C(0):(e—E(z,0)) + (=, 6),

where C(#) denotes the elasticity tensor, E(6) is the transformation strain of phase k
with E(z,6) & S°N | 2. E,(A) being the effective transformation strain for a mixture,
and wpix(+,0) : Z — (—o00,0] is convex and satisfies wp(€,8) = 0 for all k =
1,...,N. In [CaP01, HaG02, GMHO02, GHHO7| it was shown that this model can be
used quite effectively in engineering applications. See Section 6 for more discussion
of the mixture function W.

Our functional £ also includes a gradient term §|Vz[*> which is mainly introduced
for mathematical purposes. It will be essential to introduce this term for obtain-
ing the necessary compactness of the abstract theory. After we have averaged the
microstructure by allowing for nontrivial phase mixtures, we have to penalize to
drastic changes in the mixture composition. This has the disadvantage that we can-
not allow for interfaces between the pure austenite and a twined pair of martensite
variants (also called habit plane). However, our theory would work equally well, if
the gradient term would be replaced by a weaker term like

/ o, PW=2@l

|y_x‘d+2s

for s € (0,1), which leads to the Sobolev space H*(f2) instead of H'(Q2) for the
definition of Z. For s < 1/2 piecewise constant functions are contained in H*(Q),
and hence habit planes would have finite energy. For notational convenience we
restrict to the case s = 1.

To model the hysteretic behavior of shape-memory materials, we also have to de-
scribe the dissipation as a constitutive law, since this is largely independent of the
energy landscape, cf. |[Rou02, AGR03, Rou04]. Again, the energy dissipated in a
phase transformation between two pure phases can be measured given the values
D(z,e;,€). It is shown in [MTL02| that from these values there is a canonical way
(via optimal transport theory) to find a function D : Q x Z x Z — [0, 00) such that
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the dissipation between two states zp, z; € Z takes the form
D(x, 20, 21) = (2, 21—20), (2.6)

where the dissipation potential 1(z,-) : RY — R, with RY < {v € RV | Zjvzl v =
0} is convex and positively homogeneous of degree 1, i.e. for all v > 0 and v € R,
U(z, ) = y(x, v).

At the moment, we do not assume that D is defined via ¢, but postulate a dissipation
distance D : Z x Z — [0, 00) satisfying the following two properties which imply

that D is a quasi-distance. (As for W, we suppress the z-dependence of D from now
on.)

D(Zo, Zl) =0 <<= zy=2z, (27&)
vzl,ZQ,Zg S D(Zl,Zg) < D(Zl,Zg)—l—D(Zg,Zg). (27b)

Note that symmetry D(zy,22) = D(z2, 21) is not needed, which may be useful as
the dissipated energy for transforming from austenite to martensite and vice versa
may be different. Finally, the total dissipation distance between two internal states
2o, 21 € Z is defined via

D(zo,21) d:ef/QD(zo(yﬁ),zl(:v))dzv. (2.8)

The evolution is assumed to be governed by the energetic formulation of rate inde-
pendent processes as introduced in [MTL02, MiT04, Mie05, MaM05, FrM06|. More
precisely, a function ¢ : [0,7] — Q is called an energetic solution of the rate-
independent problem associated with £ and D if for all ¢ € [0, T, the global stability
condition (S) and the global energy balance (E) are satisfied, i.e.

(S) Vg=(u,z) € Q: E(t,q(t)) < E(t,q) +D(2(t), 2),

(E) &(t,q(t)) + Varp(z;[0,t]) = / 0:E(s,q(s

The dissipation Varp is defined via
Varp(z; [r, s]) = sup{z D(2(tj_1), 2(t)) )n eNr<ty<ti<...<t, < 5}
=1

for all (r,s) € [0, T]? such that r < s.

As it is detailed in [MiT04, Mie05|, we can interpret the energetic formulation as a
weak form of the associated evolution law defined by elastic equilibrium and the flow
rule for the internal variable z. In particular, if the functional £(¢,-) is convex and
D is given in the form (2.6), then the energetic formulation (S) and (E) is equivalent



to the following doubly nonlinear evolution law:

—divo. W (e(u+upir), 2, Oappl) = fappl 112 €2,

elastic equilibrium U = Up; on I'pip,

W (€(u+upir), 2, Oappl )V = Gappl 0N I'New; (2.9)

flow rule 0 € 0Y(2) + 0, W (e(utupi), 2, Oapp1) + Oxz(2) in Q,

where d without subscript denotes the set-valued subdifferential of a convex function.
In fact, under the assumptions of Section 4 the energetic solutions satisfy (2.9) as
well.

3 The existence result

In this section we collect the assumptions on the constitutive functions W and D
and on the data 0,1, [, and up;, that allow us to apply the abstract existence theory
for energetic solutions to the rate-independent system (Q, &, D). Thus, we will just
check that the assumptions of the result in [FrMO06| are satisfied. In fact, virtually
the same assumptions will be used in Section 5 to obtain the convergence result,
which is again an existence result, as existence is not assumed beforehand. After
stating the existence result, we will collect a number of properties of the energy
functional &£, which will be useful in the later sections.

For the prescribed temperature profile 8,,,1, the external loading [, and the Dirichlet
boundary condition up; we assume

Oappt € C([0, T; L(€2; [Grnin, Ormax))) (3.1a)
L e CH[0, TT; (H' (O RT))), (3.1b)
upi € CH([0, T); HY(Q; RY)). (3.1c)

For the stored-energy density W : ]R‘Siyxrff X Z X [Omin, Omax) — R we impose the
following conditions. In Section 6, we will show that these conditions are satisfied

by some of the functions W introduced in the previous section.

Assumptions on W. There exist positive constants C, ¢, C}V, CV, C? C§, C?,
Ce, C§, Cf, an exponent p € (0,2), and a nondecreasing function w : [0,00) —

0,00) with lim, o+ w(7) = 0 such that for all e,eq,e; € R¥4 2 2. 2 € Z and
sym



‘9, ‘91, ‘92 - [Qmin, Hmax], we have

W (-, z,0) is strictly convex, (3.2a)
W, 0gW € CO(REAIX Z X [umin, rnax); R), (3.2b)
W € CORIAIX Z X [Onin, Ormax); Rene), (3.2¢)
c(lel*+|z?) = C < W(e, z,0) < C(le]*+]|z]*) + C, (3.2d)
10.W (e, 2,0)|* + |0,W (e, 2,0)| < C (W(e, z,0)+Cy"), (3.2e)
0sW (e, 2,601)—0pW (e, 2, 62)| < CY (W (e, z,61)+Cf) w(|61—bs), (3.2f)
0.W (e, z,61)—0.W (e, 92)} < CY (W (e, z,0,)+C§) w(]|6h—bs]), (3.2g)
’89 (€1, 21,0)—0gW (eg, zg,ﬁ)} (3.2h)
< C%|er—ea| 4|21 —22| ) (1+|e14-ea| +| 21422,

’86W(61,z1,9)—8eW(62,22,9)’ < Cleg—ea|+|z1—29]), (3.2i)
(W (e, 21,0)=W (e, 22, 0)| < C(1+[e])Pw(|z1—2)). (3.2j)

For the dissipation distance we impose (2.7) and

301,02 >0 \V/Zl,ZQ € Z: Cl|21—22| < D(Zl,Zg) < 02|Zl—22|. (33)

We prove now that the energetic formulation (S) and (E) has at least one solution
q:[0,T] — Q for any given stable initial data gy = (ug, 20) € Q, i.e. gy € Q satisfies
the global stability condition (S) at ¢ = 0. The existence theory for (S) and (E)
has been developed in [MaMO05, FrMO06, Mie05| and is based on the construction
of a sequence of incremental minimization problems. More precisely, for a given
partition II = {0 =t < t; < ... <t, = T}, we define the incremental problems as
follows:
), {for k=1,...,n find

dk d:ef (Uk, Zk) S Argmln{g(tk, q_) + D(Zk—h Z) | q = (,17’7 2) S Q}
Let the piecewise constant interpolant ¢" : [0,7] — Q be defined by ¢"(t) = ¢; for
t € [tj,tj41) for j=0,...,n—1and ¢"(T) = g,. Then one shows that a subsequence
of (¢") has a limit and this limit function satisfies the energetic formulation (S)

and (E).

Note that our statement given here is slightly stronger than the one obtained in the
abstract setting. First, we state that not only the z-component of ¢ converges but

also the u-component. Second, we provide strong convergence in Q, i.e., in the norm
topology of H'(€).

Theorem 3.1 Assume that W and D satisfy (2.7), (3.2), and (3.3) and that the
data upi, [, and Oapp satisfy (3.1). Let qo € Q be stable for t = 0. Then there exists
an energetic solution ¢ = (u,z) : [0,T] — Q such that qo = (u(0), 2(0)) and

u € L¥([0, 7] HY (s RY)),
z € L=([0, T); HY(Q; 2)) N BV([0, T]; LY($2; Z)).

8



Moreover, let T, = {0 = tf < t} < ... < t?vk =T}, k € N, be a sequence of
partitions with fineness A(Il;) < max{t;? — t;?_l : j=1,..., Ny} tending to O for
k — co. Let ¢™ = (4T 2Tk) [0,T] — Q be the piecewise constant interpolants
assoctated with the incremental problems (IP)Hk, then there exist a subsequence g, =
¢ and an energetic solution q : [0,T] — Q such that for allt € [0, T] the following
holds

Gnlt) — (1) in Q, (3.42)
E(t,qn(t)) — E(t.q(1)), (3.4b)
Varp(Z,;[0,t]) — Varp(z; [0, t]). (3.4c)

Proof. We use the abstract result of [FrM06| which relies on the following abstract
assumptions (i)—(v), where F and Z are considered as topological spaces carrying
the weak topology of H(Q).

(1 Vzl, 29,23 € Z D(Zl, 22) =0 21 = 29 and D(Zl, Zg) < D(Zl, Zg)-'-D(Zg, Zg),

)
(ii) D: Z x Z — [0,00) is continuous,

(iii) Yt € [0,7]: E(t,-) : Q — [0,00) has compact sublevels,
(iv) there exists C5,C¢ > 0 such that for all ¢ € O:

E(-,q) € CY(]0,T]) and

E(t,g) <o = {mtg(t’q)‘SCf(S(t,q)ﬂLCog)’

(v) Vp>0Ve >030 >0Vq € QVty,t, €[0,7T):

(£(0,q) <, lti—ta] <0) = [0:E(t1,q)—0E (t2,q)| < €.

Property (i) follows from the definition (2.8) of the dissipation potential D and
the conditions (2.7) and (3.3). The latter condition also implies that D(zq, z5) is
bounded from above and below by the norm of z; — 2, in L'(Q2). Hence, D is strongly
continuous in L}(Q), and the compact embedding of H'(Q2) into L'(Q) provides (ii).

On the one hand, £(t,-) is coercive because of (3.2d) and (2.2). Moreover £(¢,-) is
weakly lower semicontinuous, as the integrand is convex in (Vu, Vz) and continuous
in (u,z,Vu,Vz). This provides (iii). Finally, (iv) and (v) will be obtained in
Proposition 3.3.

Since the assumptions (i)—(v) are fulfilled, |[FrM06, Thm.3.4| or [Mie05, Thm.5.2]
are applicable, and the statement of theorem follows, except for (3.4a), where only
Zp(t) — Z(t) is inferred.

To obtain the convergence of 1, (t) we note that by construction ,(t) minimizes
the energy E(7(n,t),, Z,(t)), where 7(n,t) is the largest point in II;, not exceeding



t. Since we have 7(n,t) — t and z,(t) — Z(t), we may infer Part of Lemma 3.4 to
obtain (3.4a). 0O

Now we collect some properties of £ and D that we will use in the next sections.

Lemma 3.2 Let the assumptions (3.1), (3.2a), (3.2b), (3.2d), (2.7) and (3.3) hold.
Then, the energy functional € : [0,T] x Q — R is weakly lower semi-continuous and
strongly continuous, and coercive:

ACh,co > 0 Y(t,q) € [0,T] x Q: C’0||q||2Q —cg < E(t,q) < co||q||2Q + ¢p. (3.5)

The dissipation distance D : Z x Z — [0,00) is weakly continuous.

Proof. First, let us observe that Korn’s inequality (2.2), Young’s inequality and
(3.2d) lead to

1

g
Gy 1l
CCKorn

2

CCKorn .
E(t ) = 2 ullf +min (e, 2 ) 2] — €12 - (1) sy — elleunie (1) 2

for all (t,q) € [0, 7] x Q. Similarly, (3.2d) implies
et.q) < (2041 ) Julp? O V1120 +-C1 + 2 11 B 42C (i (8)) 12
(t,q) < +3 (| ]| +max '3 2]/ +C| |+2|| (Ol Gy +2C [ e(upic(£)) 125

and, by using (3.1), we may conclude that (3.5) holds.

The weak lower semi-continuity of £(¢,-) : @ — R follows from the convexity of the
integrand in highest derivatives of (u, z), namely (e(u), Vz). Weak continuity of D
is a consequence of the strong continuity of D with respect to the norm in L'(Q)
and the compact embedding of Z C H*(; RY) into L}(Q; RY).

It remains to show the strong continuity of £. For this assume (¢, ¢,) — (t«, g.). Us-
ing (3.5) the sequence (&€(t,, qn))neN is bounded, and we may choose a subsequence
(tn;, @n;)jen such that

8(tnju an) — &,

Vaa. T €Q: (enj (:E), Zn; (ZE)’ eappl(thI)) - (6*(‘75)> Z*(ZE), eappl(t> ZE))a

Fy € L*(Q) Vj € N: [(en,, 2,)] < v ace. in Q

with e,, = e(unj + uDir(tnj)) for all 7 € N. Thus, we may pass to the limit in
o
g(tnj, qnj) = /Q W(e(unj _l'uDir(tnj))a ana eappl(tng')) dz + 5 ||Vzn] ||%‘.2 - <l(tng)’ unj>’
by applying Lebesgue’s theorem and using (3.1). We obtain &,=1lim;_..c £(ty,, ¢n;) =
E(t., q«) and, by uniqueness of the limit, the whole sequence (£(t,, ¢n))nen converges

to E(ts, ). O
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We check now the last two assumptions (iv) and (v) of the abstract result of [FrM06],
which are needed to obtain Theorem 3.1. To do so, we first observe that the regular-
ity assumptions on W and the data up;, [ and 6,,, imply that (-, q) € C'([0,T7])
for all ¢ € Q and we derive an explicit formula for 9;,£(+, ¢). Then using the assump-
tions (3.2e) to (3.2i) we obtain an estimate of |0;€(t, q)| in terms of £(t,q) and we
establish (v), which can be interpret as an uniform continuity property for 0,€(-, q)
on energy sublevels.

Proposition 3.3 Let us assume that (3.1) and (3.2b) to (3.2i) hold. Then & sat-
isfies the following properties:

(P1) Let q= (u,z) € Q. Then E(-,q) lies in C'([0,T]) and

0E(t, q) :/ O W (e(utupir(t)), 2, Oappl(t)) €(tpi(t)) da
@ (3.6)

+ / 0o W (e(utupic(t)), 2, appi (t)) Oappi (t) dz — (1(F), 1)
Q
(P2) There exist C§,CE > 0 such that |0,E(t, q)| < C§(E(t,q)+C§) for all (t,q) €
0,T] x Q.

(P3) For each ¢ > 0 and E € RT there exists 6 > 0 such that for all (s,t,q) €
0, T]? x Q with £(0,q) < E and |s—t| < § we have |0,E(s,q)—E(t, q)| < €.

Estimate (P2) together with Gronwall’s lemma leads to
E(t,q) < exp(CE|t—s|)(E(s,q)+C5) — C5 for all s,t € [0,T]. (3.7)

This estimate is crucial to derive a priori estimates, also in the time-discrete setting.

Proof. First we infer from (3.1) and (3.2b) to (3.2e) that £(-,q) € C*([0,T]) and
that (3.6) holds.

For (P2), one can see that assumptions (3.1) and Cauchy-Schwarz’s inequality lead
to

1 ~ 1 )
0E(t0)| < 5 [ 107 (1O () P + 5 e (1)
(3.8)
— 1 1 .
+0 [ 1007, 60| o + 3l + 510 -

where © = |05 ()|l coqo.17:1) and W(s,0) & W(e(utupy(s)),z ). Carrying
(3.2e) into (3.8), we have

1 —
10:E(,q)| < <§+@> /QCXV(W(t,eappl(t))JrCOW) dx
1w 1, . >y Lo
+ 5 llulli + 5 le(@ou @)Lz + S IO Iy,
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which implies using (2.3) that

it <(5+C (5+€)) (€0 Hulfur). (3.9)

where O] = (uDlr)HCO(oﬂ r2) + ||l||Co (o1 T ||l||CO(0T} =y) + CJV|9)|. Using
(3.5) in (3.9), the announced result (P2) follows immediately.

To derive estimate (P3) we use the decompositions
10,£(s,q)—0,E(L, q)| < To(s,t) + Ty(s,t) + Ty(s,t), where (3.10a)
T.(s,t) / [0V (5, Oupp(5)) (i) =0 W (£, Ouppi (1)) e(timie(£)) | dz,  (3.10D)
To(s,t) = ]89W(s,93pp1(s))éappl(s)—89W(t, Oapp (1)) Oupp (1) (3.10¢)
<Z< )=i(), )| < i) =il awy ullin < 11()=I(8) [ny /22, (3.10d)

where we used (3.5) for the last estimate.

I (S t)def

Each term on the right hand side of (3.10a) is estimated separately by using the
assumptions on W introduced above. Since £(0,¢q) < E, one deduces from (2.3),
(3.5) and (3.7) that

(s b)) < (B, (3.11)

where p(E) = exp(CET)(E+CE) — CE + supPsepo.ryl11(8) Ity / E+c° Using (3.1) the
right-hand side of (3.11) is bounded independently of s and g. Let us now observe
that

T.(s.1) < / 0.7 (5, Bupp () (el (5))—eliinse (1)) | da + T, (s,8),  (3.12)

Q
where
T (s, 1) & / | (O (5, appi (5)) —0e W (¢, Bappi ())) €(tipir (1)) | dz
Q
+ /Q }(86W(t, Happl(s))—ﬁeﬁ//(t, Happl(t))) e(uDir(t))}dx.

Using Cauchy-Schwarz’s inequality and (3.2e), the first term on the right-hand side
of (3.12) is estimated by

/ }8 W (8, Bappi (s ))( (Upir(s ))—e(ﬂoir(t)))‘dx

(C1F [ W (5.0 + €LY G 101) " o(in(s)) =) o
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Introducing (3.11) in the latter estimate, we deduce that there exists 5{5 > 0 such
that

10775, B (9) (e5) e (1)
< OF lle(iir(s)) —e(inir (1) |12-
For Z¢, we use (3.2i) and Cauchy-Schwarz’s inequality to find

Lia(s,t) < 77(06||f/(UDir(S))—e(uDi£))||L2
+ |0 W (¢, Oappi (5)) =0 W (¢, appi (1)) [|1.2).

(3.13)

(3.14)

where 1 = ||e(ipi ()|l coqo.r2)- By (3-1a) we have

b = u}(||(gaupp1(<‘5)_eappl(t) L)

Vae x €8 W(wappl(svx)_eappl(ta x)\) s
(©s—t]).

(3.15)

<w
<w

Hence, (3.2g) yields the estimate
nwﬂwmmwaﬁw%mm%scﬂ/ﬁw%MWM+%mww
Q
which implies thanks to (3.11) that

10V (2, Bappt(8)) =0V (1, Bappr ()72 < C5 (p(E)+C51Q ) s (3.16)

Carrying (3.16) into (3.14), anfl observing that e(ipi(-)) € CO([0, T]; L?(Q; REX)),
one deduces that there exists C¥ > 0 such that

Tioe(s,1) < CF (lle(unir(s)) —e(upir(t)) 2 +/Bsr) - (3.17)
Finally, we insert (3.13) and (3.17) in (3.12) and obtain

T.(s,1) < CF|le(imir(s)—e (i (1)) |12

~ (3.18)
+ CQE(He(uDir(S)) uDlr HL2+ \V Ws t)
Using the same decomposition for Zy as for Z., we have
To(5.8) < [ 1007 (5, B () G () g ()] e + Th (5.0, (3.19)

where
Ifar dEf/ ‘ aGW (8, Oappi () — aew(taeappl( )) appl }dat

—i-/Q‘ aQW(t,Happl(S))—%W(t,Qappl(t))) appl (1 }dat.
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Using (3.2e), the first term on the right hand side of (3.19) can be estimated as
follows

10077 5 0) G 5) )]

< (e / W (s, bupp(3)) da + Y/ €Y |Q|) 18201 (5)~Fapt ()
which implies using once again (3.11) that there exists 53‘? > 0 such that

/ 05TV (5. Bt (5)) (Bromt(5) —Bapm (1) A < CF [l apsa () —apmr ()]l (3.20)

To estimate Z0,,

and (3.15) that

we first deduce from (3.2f), (3.2h), Cauchy-Schwarz’s inequality

T8, (5,6) < ©(C7I[1-+Hle(upi(s))+e(upin(t)) +2e(u) | +2]] 1
le(unir(5)) —e(upir()) ]|z (3.21)
et / W (L (1) 2+ CEI ) ).

With Cauchy-Schwarz’s inequality, (3.5), (2.3), e(upi(-)) € C°([0, T]; L*(Q; R¥xd))

Sym

we infer that ||14|e(upi(s))+e(upi(t))+2e(u)|+2|z]||L2 is bounded independently
of t,s and ¢. Hence, using (3.11), we deduce that there exists C¥ > 0 such that

True(s,1) < CF (Jle(unir(s)) —e(upie(1)) |lL24@s,)- (3.22)
Carrying (3.20) and (3.22) into (3.19), we obtain
Zy(5,t) < C3 | Gappi(5)~Oappn (1) 1o+ C (e (upie(5)) —e(upic (6) 124 @s) - (3:23)

Recalling that (3.1) assumes that 6,1, [ and up;, are C*, the compactness of [0, 7]
implies uniform continuity of the derivatives. Hence, (3.10d), (3.18), (3.23), and

wsy < w(O[s—t|) lead to the existence of a nondecreasing function w® : [0,00) —
[0, 00) with w(7) — 0 for 7\, 0 such that
|0E(s.9) =0 E(t,q)] < w™(|s—t]),
whenever £(0,¢) < E. This concludes the proof. O
Next we introduce the set of stable states defined as follows
St E{qeQ|Vge Q: Et,q) <E(t, Q) +D(2,2)}. (3.24)

Let us observe that (S) is equivalent to q(t) = (u(t), 2(t)) € S(¥).
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Lemma 3.4 Let the assumptions (3.1), (3.2a) to (3.2e), (3.2), (2.7) and (3.3) hold.
If t, — te, 20 — 2, Gn = (Up, 2n) € S(ty), and sup E(t,, qn) < 0o, then
neN
E(tn, qn) — E(ts,qs) and G, — ¢ = (U, 24) 0 Q strongly, (3.25)

where u, = Argmin E(t,, -, z,).

Proof. We recall that by (3.2a) the functional F 3 u +— £(t,u, 2) is strictly convex.
Hence, by weak lower semicontinuity there is for each pair (¢, z) € [0,7] x Z a unique
minimizer v = U(t, 2).

We first use the coercivity (3.5) to see that the sequence (uy)neny is bounded in
F. Thus, there exists a convergent subsequence (uy;)jen and u with ¢,, — ¢ =
(U, z,) for j — oo. Since & is weakly lower semicontinuous, we infer £(t,,q) <
liminf; oo E(tn;, gn,)-

Using the stability of ¢, and testing with ¢, = (u., z.) we have

Etn, qn) < E(tn, qx) + D(zn, 24)
< E(tq) + (exp(C[ta—ti]) — 1) (E(te, qu) + CF) + D2, 24).

Passing to the limit n — oo gives limsup,,_, . E(tn, ¢n) < E(ts, qs). Since u, is the
unique minimizer, we have

E(ts, qx) < E(ts, 1, 2) < lminf E(Ly;, gn,) < limsup E(ty, ¢n) < E(Ly, Gi).
J—0o0 n—00
Thus, we conclude that £(t,,q,) — &(t., ¢.) and that @ is equal to the unique
minimizer u,. This also shows that the whole sequence converges: u,, — u,.

It remains to show that the convergence must in fact be strong, which will fol-
low from the crucial property that the integrand of (e, z, A) — W(e, z,0) + Z|A|?
is strictly convex in (e, A). First we employ (3.7) to conclude that we also have
E(teyqn) — E(ts, i), since E(ty, gn)—E(ts, qn) can be estimated via C|t,—t.|. Next
observe that E(t,, -) is the sum of the two weakly lower semi-continuous functionals
Ty i q— [oW(e(u+ upi(ts)), 2, Oappi(ts)) dz and I : ¢ — [, %|Vz|* dz and the
linear functional —(l(¢,),-). Thus, we have Zj(q,) — Zx(q.) for k = 1,2. The case
k = 2 yields z, — z, in H}(€; RY) strongly, since in Hilbert spaces weak convergence
plus convergence of the norms implies strong convergence.

To establish strong convergence of the u-component, we introduce @, = (uy,, z.) and
employ condition (3.2j) to obtain

1Z1(@n) =T ()| S/QC(HIe(un+uDir(t*))I)%(Izn(x)—z*(x)I)dx

> p/2
< OPP (1] + lle(uy + upi(t)[F2)" (=2l (3.26)

where we used Hoélder’s inequality with p = 2/(2—p) € (1,00). In (3.26) the first
factor is bounded because of weak convergence. The second factor ||w(|z,—2.|)||Ls
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converges to 0, since w(|z,—z|) is uniformly bounded by w(diam(Z)) and since
|2,—2] — 0in L?*(Q2). Thus, we conclude

In 7Z,(q,) the integrand is x +— W(x,e(u,(x) + upi(ts, x)), z«(x), 0(t.,x)) where
W(z,-, 2,0) : R4 — R is strictly convex and we can apply |Vis84, Thm. 3| to

sym
conclude e(u,) — e(u,) in L*(Q; R%%) strongly, which means u,, — u, in H'(Q;R?)
strongly.

O

The assumptions on the prescribed temperature profile 8,,,, the external loading [,
the Dirichlet boundary condition up; and the stored energy density W given above,
allow us to prove that the power 0,E(t, q) is locally Lipschitz continuous with respect
to q uniformly with respect to ¢. This property will play a key role in the proof of
the Lipschitz continuity of energetic solutions, which will be established in the next
section.

Lemma 3.5 Assume (3.1), (3.2b) to (3.2e), (3.2h) and (3.2i) hold. Then, for all
R > 0 there exists a constant Cr > 0 such that

Vt € [O,T] Vql,qg c Q with ||q1||Q, ||q2||Q S RZ

3.27
DE(E a)—DE(E 0)] < Crln—allo. (3.27)

Proof. We let ¢; & e(ui+upy(t)) and W(e;, z) = W (e(uitupi(t)), 2, Gappi(t)) for
i = 1,2. Recalling n = |le(upi(-))|coqorpr2) and © = ||fappi()|| oo o) and using

Cauchy-Schwarz’s and Hoélder’s inequality we infer that
— — 1/2
008 (1. 0)-00E 1. 00)| < n( [ 0.7 (e1,20) -0, (ea, )
Q
+ @/ }89%(61, zl)—89/W7(62, 22)‘ dx
Q

1) gy [fwa = [,
which, using (3.2h) and (3.2i), implies

| E(t, q1)—0E(t, q2)| < 09(9(/(|61—62|+|21—22|)(1+|61+62|+|21+22|)dx)
Q

1/2
([ (ler=eal a2l da)
Q
+ 1) ey || 2= |-
< (Cn+CPOK(t, qr, @2)) (lur—ualm+|121 =22 2)
+ 1) ey || 2= |

where K(t, 1, ¢2) % o/ + 1211 + 1 22lls + e e -+ (ol + 2lumie(®) 3. Using
(3.1) the desired estimate is established. O
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4 Temporal regularity via uniform convexity

In this section we study a better case, where E(t, -) is uniformly convex and D(zg, 21)
only depends on the difference z; — 2. The arguments follow the method developed
in [MiT04, Sect. 7|, see also [MiRO7|.

We assume that W is ap-uniformly convex jointly in the first two arguments, namely
there exists a modulus of convexity ay > 0 such that for all e;, e5 € R‘Siyxrff, 21,29 € 4
and A € [0, 1], we have

VO € [Omin, Omax) = Wien, 2, 0) < (1=N)W ey, 21,0) + AW (eq, 22, 0)

«
- TW)\(l—)\)(|62—61\2+|Z2—zl|2),

(4.1)

where e, = (I=X)eg + Xeg and zy, o (1=X)z1 + Azo. With gy, o (1=XN)q1 + Age, we
have

"
E(t,qn) < (1=-N)E(t, q1) + NE(L, q2) — §>\(1—)‘)||Q2—Q1||?3,

where & = min(aw, o) and ||g||3 = |le(w)||?, + ||z]|%:. Using Korn’s inequality (2.2),

we find ||¢||3 > min(ckom, 1)|/q||g. Hence, we deduce
Vq1,q2 € Q Vt € [O,T] VA e [O, 1] :

Et,qn) < (I=NE(t, q1) + AE(L, q2) — gk(l—)\)||q2—q1]|2Q, (4.2)

where k£ = K min(ckom, 1). In other words, (¢, ) is k-uniformly convex on Q.

The next result establishes that in the present setting energetic solutions are Lips-
chitz continuous in time, which essentially relies on the uniform convexity (4.2) of
E(t,-) and on assumption (2.6) for the dissipation D which implies the convexity of
the dissipation distance D(q, ) : @ — [0, o0].

Notice that the dissipation distance is called translation invariant, if D satisfies
(2.6). Then, D(z, z1) = V(z1—2) with ¥(v) = [, (v(x))de and ¥ plays the role

of a (possible unsymmetric) L! norm.

Theorem 4.1 (Lipschitz continuity). Assume that (2.6), (2.7), (3.1), (3.2b)
to (3.2e), (3.2h), (3.2i), (3.3) and (4.1) hold. Then, any energetic solution q is

Lipschitz continuous. More precisely, let R = la||Lee(0,71:0) and Cr > 0 given by the
Lemma 3.5 then [|§(t)]lo < %2 for a.e. t € [0,T] with k from (4.2).

Proof. We first prove that uniform convexity allows us to improve the stability (S)
into the following stronger statement:

Vse(0,T]VGE Q: Es,q(s) + 5 [T-a(s)[3 < (5, + ¥(G—q(s).  (43)

Indeed, fix s € [0,7] and define the functional J via J(q) = £(s,q) + ¥(g—q(s))
for all ¢ € Q. Since ¢ is an energetic solution and hence satisfies (S), we know that
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q(s) is a global minimizer of J. Moreover, since ¥ is convex we obtain that [J is
k-uniformly convex on Q by using (4.2). Thus, for ¢ € Q and A € (0,1) we let
g» = (1=X)g+ Ag(s) and we obtain

(@) + SA-NG-a()][3 < T(a2) + 5A0-N7-a()l5
< (1=NIT @ + AT (a(s)).
Subtracting A7 (¢q(s)) and dividing by (1-X) gives J(q(s)) + 5A[[g—q(s)[5 < T (Q).

Now the definition of J and the limit A — 1 lead to the desired estimate (4.3).
Hence, for all s,t € [0,7T] such that s < t, by choosing ¢ = ¢(t) we get

g HQ(t)—Q(5)||2Q =< 5(87 Q(t)) — &(s,q(s)) + D(z(s), 2(1))
< E(s,q(t)) — E(s,q(s)) + Varp(z, [s, t])

/8€rq d7’+/85rq dr<C’R/||q ()|l dr.

The second estimate comes from the definition of Varp, the third identity follows
from the energy identity (E) and from the additivity property of the dissipation, i.e.

Varp(z, [0,t]) = Varp(z, [0, s]) + Varp(z, [s, t]),

and the last one results from (3.27). We conclude by applying the following Lemma
4.2, [

Lemma 4.2 Let ¢ € L*°([0,T]; Q) and C > 0 be given such that, for all s,t € [0,T]
such that s < t, we have

K
Sl < € [ lat)-alodr
Then, g € CHP([0,T7]; Q) with [|4(t)|o < % for a.e. t € [0,T].

The proof is a simple adaptation of the proof of Theorem 7.5 in [MiT04].

5 Convergence of the space-time discretization

In this section we treat the question of convergence of spatially and temporally
discretized problems. As we do not have uniqueness of solutions for the full problem,
we cannot expect convergence of the whole approximation sequence. But, as in the
existence theorem 3.1, we will obtain convergence of subsequences to solutions of
the full problem. The approach here follows the abstract I'-convergence theory
developed in [MRS08| and the specialization to general numerical approaches in

18



[MiR06]. However, for the special model at hand, we can show more than is stated
in the above-mentioned general papers. Hence, we provide a full independent proof
here.

For the time discretization we consider 7 € (0,7) and a partition II” = {0 = ] <
7 < ... <tl, =T} with

tpy —tey <7 for k=1,... k.
In particular, we do not assume our partitions to be equidistant.

For the spatial discretization we choose a set of length parameters A > 0 accumu-
lating at h = 0 and let F;, and V}, be closed subspaces of F and V = H(;RY),
respectively. Typically, F;, and V}, are finite dimensional subspaces of F and V/,
like finite-element spaces or Galerkin subspaces. We let Q, = F), x Z,, with
Zn, =A{zn € Vii|zn(z) € Zae. in Q} = ZNV,. We assume that the sets Qp,
satisfy the standard density assumption:

Vg € Q Iqn)n>o: qn € Qn and g, — ¢ strongly in Q. (5.1)
By convention, let Qy = Fy x Zy = F x Z.

To have some specific spatial discretization in mind, we may assume that ) is a
polyhedral domain and that I'p;, C 0€) is a finite union of faces of €2. Then, for
each h > 0 choose a triangulation 7;, of 2, such that all edges have at most length
h. Now, let Vj, be the space of functions that are affine on each polyhedron of 7.
Hence V;, C HY(Q) and we let F, =V, NF and Z, = V;, N Z. Tt is then standard in
finite-element theory to show the density property (5.1).

We approximate the initial condition qo by [go)" € Qp, and we consider the following
incremental problems:

(IP)T’h fork=1,...,k" find
" = (ug, 20" eArgmin{E(tF, ) +D (", 2 [T & (@, 2)e Q)

We define now the approximate solution g™" : [0,7] — Q as the right-continuous
piecewise constant approximation, namely

h T T T
_T7h(t)d:ef{q]:7_1 for tk—1§t<tk’k:1""7k 3

q 7,h (52)

qr fort=T.
It is convenient to introduce the set of stable states Sy (t) for any t € [0, T] by simply
replacing Q by Qp, in (3.24). Observe that if h = 0 then Sy(t) = S(¢). Moreover,

h def h h def h h
we define n;" = E(1],q;") and 6" = D(z"}, 2.

The next result, which is fundamental for the energetic approach (cf. |MiT99,
MTLO02|), shows that the fully implicit incremental minimization problem (IP) is
suited perfectly for the energetic formulation (S) and (E). At the time-discrete level
we again obtain stability and a two-sided energy estimate. This will allow us to de-
rive suitable a priori estimates. The essential feature is that D satisfies the triangle
inequality.
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Proposition 5.1 Assume that (2.7), (3.3), (3.1), (3.2b), (3.2¢) and (3.2d) hold.
Then the incremental problems (IP)™" admit a solution (q")1<x<-. Moreover we
have

discrete stability: qp" € Sp(t]), (5.3)
discrete upper enerqgy estimate:
tk
Ve e {1,... K}t =gt 400" < QE(t, g™ dt, (5.4)
th-1

discrete lower energy estimate:
tT

Ve {2, kYt =t ot > | a8 g7 dt. (5.5)

1
Proof. The existence of minimizers in each incremental step is a direct consequence
of the coercivity of £(t,-) : @ — R, the nonnegativity of D and the weak lower
semicontinuity of & and D. Of course, all these properties remain valid, if the
minimization is restricted to the closed subspace Q; C Q.

For the discrete stability we use first that q,:’h, k=1,...,k", is a minimizer and that
D satisfies the triangle inequality (see (2.7b) and integrate over ): for all §" € Qy,
we have

EWT, ™) < EWL, ) + D2, 2" — D", 20" < WG, ) + D", 2", (5.6)

which yields immediately (5.3). Since ¢ € Argmin{&(t],q") + D(z}; A e
Qy} we may choose q" = q,:fl and find

th

771?h 1 + 5Th < E(th, q- 1) 771:f1 = 3t5(t,q£f1)dt-
o1
On the other hand, we rewrite (5.6) for q,:fl choose g = qg’h, and obtain
s, o Th h ' h
et = e =S = [ gt gt dt.
o1
Thus, (5.4) and (5.5) are established. O

To investigate the asymptotics when 7 and A tend to 0 we need a compactness
argument suited for the rate-independent case. The following version of Helly’s
selection principle is a simplified version of the abstract result given in the Appendix
of [MaMO05].

Proposition 5.2 (Helly’s selection principle) Let D be given by (2.8) with D
satisfying (2.7) and (3.3). Let (z,)nen with z, : [0,T] — Z satisfying

3C > 0Vn € N: Varp(z,;[0,7]) < C and sup ||z,(t)[lur) < C, (5.7)

te€[0,T
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then there exist a subsequence (2,,)jen, a nondecreasing function 6 : [0,T] — R, and
a limit process z : [0,T] — Z such that for all s,t € [0, T] with s < t, we have

2, (8) = 2(t) in HY(Q), 6(t) = JIEEO Varp(z,,; [0,1]), 5.8
Varp(z; [s,1]) < 6(t) — 8(s). '

Our main result states now that the space-time discretization defined via (IP)™"

generating the approximants g7" : [0,T] — Q has the desirable properties (i) that
the sequence of approximants is precompact (which can be understood as the “sta-
bility of the numerical algorithm”) and (ii) that any limit point of the sequence
of approximants is an energetic solution for the rate-independent system (Q, &, D)
(which can be understood as “consistency of the numerical algorithm”). It should be
noted that we do not need to make any assumptions of the order how the fineness
7 of the partitions or the fineness h of the spatial discretization tend to 0.

Theorem 5.3 (Convergence of the approximate solution). Assume that &,
D and qy satisfy the same assumptions as in Theorem 3.1. Let [qo]" € Qp, be such
that

[0)" — @0 in Q. (5.9)

Then, there exist a subsequence (T, hy)nen tending to (0,0) and an energetic solution

q:[0,T] — Q for (Q,&,D) with q(0) = qo and

u € L([0, T); H' (O RY)),
2 € L=([0, T]; H'( Z)) n BV([0, T); L'(%; 2)),

such that for all t € [0,T] the following convergences hold:

g (t) — q(t) strongly in Q, (5.10a)
Et. g (1)) — E(t,q(t)), (5.10Db)
Varp (g™ " [0,¢]) — Varp(g; [0,1]). (5.10¢)

Proof. The main steps of the proof are the similar those in [MRS08, MiR06|, but
our energy & is better behaved and thus we are able to obtain more precise results.
For t € [0,77] let us introduce the notations

7,h def

T () E ET" (X)), my = E(0, [qo]"), 67 (t) = Varp(z™"; [0, 1)) (5.11)

and let us recall 0" = £(t7,¢7") and 6" = D(20",, 20").

Step 1: A priori estimates. One can observe that (P2) and (3.7) lead to

8
VEe{l,... .k} : 10,£(t, g™ dt < (exp(C5(t—t7_1))—1) (n"+C5). (5.12)
.
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Carrying (5.12) into (5.4), we get
"+ 57" < exp(C5 (t—th1)) (" +C5) = G, (5.13)

and observing that 5Z’h > 0, we obtain by induction

k
Vke {1, k7 g+ C5 < [ exp(C5 (5 —7_1)) (i +C5)

o (5.14)
= exp(City) (n+C5)-
Hence, with (5.2), (3.5) and (3.7), we deduce that
Vt € [0,T]: —co <7 (t) < exp(Ct)(nh+CE) — CE. (5.15)

Next we estimate the dissipated energy ST’h(t) by using (5.13), (5.14) and (3.5): for
all ¢ € [0, 7]

kT

7y <y =S ap"
k=1
k.T
<nf =+ > (exp(Citg)— exp(City_,)) (g +C5) - (5.16)
k=1

< exp(CiT)ng + (cot(exp(CIT) = 1)Cp)
< exp(C5T) (nf+ max(co, Cf)).

Let us consider now the total variation Var(n™";[0,T]) of 77" on [0,T]. Recalling
that

B B €(tq Yfort] [ <t<tl k=1,... k"
7'7ht gt Tht — k—1 k—1 k> )
T = E T = § g ) o

we obtain

Var(77"; 0, T]) <Z "o 1\dt+2\n2h E(tr, ai"y)]

A
<Z/ 0, tqk1|dt+2|n ! 1|+Z/ D&t )|

= T, +1, with L‘*—“zZ/ 10,E(t, qp")| At and Ififzh; |
k=1

On the one hand, using (5.12), (5.14) and summing for £ = 1,... k7, we obtain

k.‘l'
T, <2 exp(Ci(t — toy) = DOy + C5) < 2(exp(CiT)=1) (G +Cg)- - (5.17)
k=1
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On the other hand, by (5.4) and (5.5), we have

t
I, < 5" —I—Zmax(/ |8t (t,qr™)| dt, /

O.E(, )] dt)

- (5.18)
+ max (0, nj —E(¢], Th)).
But (P2) and (3.7) lead to
g 7
[ s atias [ i aticp
< (exp(C5 (tr—ti) =) (E(tF, &™) +Cp) (5.19)

<

< (exp(C5 (t7—th_1)—1) exp(CF (.5 1)) (m;” "1 +C5)
< (exp(Cf (tp—t5_1)—1) exp(C;T) (n;” " +C5)

and thus, with (5.12)

t th
max / 0.t g )] dt, / Dt a7") dt)
tr T,

k-1

< (exp(C’ (th—th 1)_1) exp(CTT)(n;.” 1“’06)

Moreover, we know from (3.5) that £(¢7,¢7") > —co. Hence, using (5.17), (5.18)
and (5.19), we obtain, for all ¢ € [0, 7],

Var(7™"; [0,1]) < Var(7™"; [0,T]) < (exp(C’l )—1) (n+C5) (exp(C{T)+2)
(5.20)
+07MT) + max (0, 7g+¢o).

But, with (3.5), we have also

= €(0,a0]") < colllgo]"[&+co, (5.21)

and since ([qo]")n>0 converges to go in Q, we infer that i is bounded from above
independently of h. Hence, (5.15), (5.16) and (5.20) imply that [ (t)], 3" () =
Varp(z™"; [0, ¢]) and Var(7™"; [0, t]) are bounded independently of ¢, 7 and h. Using
the coercivity (3.5) and (3.3) we have found a constant C' > 0 such that for all
7,h > 0 the approximants satisfy the bounds

SEJ.p]HaT’h(t)HHl(Q) < C, ||ET7h||BV([0,T},L1(Q)) < C, Var(ﬁT’h; [0, T]) < C. (5.22)
t€[0,T

Using (P2) of Proposition 3.3 we also have a bound for the power

V1, h >0Vt e [0,T): [0,£(t,7"(t))| < C. (5.23)

Step 2. Selection of subsequences. We have prepared all the assumptions for
Helly’s selection principle as stated in Proposition 5.2. Hence, applying both the
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classical Helly’s theorem and Proposition 5.2, we infer that there exists a subsequence
(Tns i )nen such that for all ¢ € [0, T], we have

arhn () — (1), 57 (t) — 8(1), (5.24)

(t) in Z, Varp(z;[0,t]) < ()

with n € BV([0,T];R), 6 : [0,7] — R a nondecreasing function, and z : [0,7] — Z.

We want to show that the u-component also converges along this subsequence. For
this we define
s"(t) = max { " € I™ | 17" <t },

then we have g™ (t) = ™" (s"(t)) € Su(s"(t)). Thus, using s"(t) — t and
Z™hn (1) — 2(t) we can argue as in Lemma 3.4 to conclude that
— q(t) = (u(t), 2(t)) strongly in Q,

7o) = 0(t) = £ a(0),

where u(t) = Argmin £(¢, -, 2(¢)). Indeed, using the stability of g™ (¢) at s"(t) and
testing by @i, € Qp, we have

(5.25)

E(s"(8), g (1)) < E(s"(1), @) + D(Z™"(t), )

and using (3.7)

Et, g (1)) =nm"(t) < exp(Cjlt — 5" )(39
t

7" (1) + Cy) — G
< exp(Ci[t — s™(1)]) (E(s™ (), Gn,) + DE™""(

s"
2 )+C€) Cs.

By the density assumption (5.1) we may choose g, such that g,, — ¢(t), and using
the strong continuity of £ we obtain limsup,, 77" (t) < £(t,q(t)). Then we ob-
tain as in Lemma 3.4 that the whole sequence (™" (t)),en converges weakly to ()
in Q. By weak lower semicontinuity we again have £(t,q(t)) < liminf, o, 77" (¢).
Thus, the second statement in (5.25) is established. Finally the strong convergence
follows as in Lemma 3.4 by strict convexity.

Now we employ Lemma 3.5 and obtain that the power 9,€ (t, ™" (t)) also converges

QE(t, 7" (1)) — 9,E(t, q(t)) for all t € [0, 7). (5.26)

Step 3. Stability of the limit ¢q. To prove that ¢(t) € S(t) we take an arbitrary
g € Q and have to show &(t,¢(t)) < £(t,q) + D(2(t),z). To do so, we apply the
density assumption (5.1) and obtain a sequence ¢, € Q, with ¢, — ¢. Since
g (t) € Sy, (s"(t)) we have

E(s"(1), g™ (1)) < E(s"(t), @) + D(E™""(t), Z0)-

Using the convergences s"(t) — t, 77" (t) — q(t), and g, — @, we can pass to the
limit and obtain the desired stability.
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Step 4. Upper energy estimate. The upper energy estimate on [0,¢] follows
from the discrete upper energy estimate obtained above for the solutions of the
incremental problems. Using (3.7) and (5.14) we find that there exists C' > 0 such
that

E(t, 7" (1)) + Varp(z™"; [0, ¢]) < iy + Varp (27 [0, 17_,]) + Clexp(C{7) 1),

if 7", <t < t7" which implies thanks to (5.4) that

t
() + 5 ) <l + / O (5,77 (5)) s + Clexp(CE)—1).
0

Notice that (5.9) and (5.25) imply that lim, o0t = £(0,q) = 7(0). Then, with
(5.23), (5.24) and (5.26), we get at the limit

E(t,q(t)) + Varp(z; [0, 1)) < n(t) +0(t) < £(0, ) +/0 (s, q(s))ds.  (5.27)

Step 5. Lower energy estimate. Let us prove now the lower energy estimate.
As it has been observed in [MTL02, MiT04|, it will be derived directly from the
stability property and not from the discrete lower energy inequality. See also [Mie05,
Prop. 5.7] for an abstract result.

With (5.23) we infer that ¢t — 0,E(t,q(t)) belongs to L>(]0,7]). Thus, using a
classical result about Lebesgue’s integral (see [FrMO06|), for each ¢ € (0,7 there
exists a sequence of partitions II" = {0 = t§ < ¢ < ... < % =t} of [0,#] with

e

fineness A(II") = max{t;—t7_,|j=1,..., Ny} tending to 0, such that
t Nn
[ ot ate) s = lim > a1
0 n—00 =
For j € {1,..., N,} we have q(t} ;) € S(t}_,), and by choosing ¢ = ¢(t}) we obtain
E(t7 1, q(tj 1)) < E( 1, q(t})) + D(q(t-1), a(t}))

= (67 (1) + Dlg(t} ). (1)) / 0.€ (s,q(t})) ds,

After summation over j =1,..., N,, we find

Nn

E(t, q(t))—E(0, q(0))+ Varp (g; [0, 1) >Z/ O (s, q(t7)) s

>Z(9t 7q(th) +Zu],

(5.28)
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where p7 = ﬁn ( (s,q(t?))—0:E(t7,q(t7))) ds. Then (P3) implies that there
exists a nondecreasmg function w? : [0, 00) — [0, 00) with w?(7) — 0 for 7\, 0 and
E > supepo ) collq(t)[|g + co such that

] < (= P (=) < (6t )P (AT)) (5.29)
Then passing to the limit in (5.28) as A(II") tends to zero, we obtain

E(t,q(t)) — £(0,¢(0)) + Varp(q; [0, ) > / € (s, q(s)) ds.

Now, let us recall that Varp(g;[0,t]) = Varp(z;[0,¢]) < () with (5.24) and that
E(t,q(t)) =n(t). Then, the lower and upper energy estimates imply

n /Ot 8iE(s,q(s))ds < E(t,q(t)) + Varp(g; [0,1])

< () +6(t) /at 5,4(s

Hence, all inequalities are in fact equalities and we deduce that 6(¢) = Varp(g; [0, t]).
Thus, all assertions in (5.10) are established. O

Remark 5.4 Let us observe that, with the choice Fr, = F and V), =V for all h > 0,
we obtain directly the existence of an energetic solution ¢ = (u, z) of (S) and (E).

6 Discussion of stored-energy densities

Here we address some possible stored-energy densities W : ngxrff X Z X [Omin, Omax] —
R, that fulfill the assumptions made in the previous sections. Except for some
growth bounds for the different partial derivatives the crucial assumptions are the
strict convexity of W (-, 2,6) : R — R in (3.2a) or the much more restrictive
assumption of uniform convexity of W(-,-,6) : R&:S x Z — R from (4.1).

In [MiT99, Mie00, MTLO02| the mixture function W, (see (2.4)) was introduced
and further analyzed. Using the theory developed in [MTL02, Section 4] it follows
that starting from convex pure phases W (-, €, 6) the resulting Wyx(-, 2, 0) is still
convex for each z € Z. Moreover, if all W (-, €, 0) are quadratic and have the same
elastic tensor, then W, take the quadratic form given in (2.5). However, it should
be noted that even in this simple case the function Wy (+,-,0) is in general not
jointly convex in (e, z). The general theory states that wpy(+,0) : Z — R is convex,
but the desired convexity of Wiix(+,,0) in (2.5) needs that

N

w(+,0) : 2z —wnix(z,0) + %(Z 2B (0):C(0):Ex(0) — E(2,0):C(0):E(z, 9))

k=1
+ § 2k wtherm
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is convex. For N = 2 convexity holds if and only if E; and E5 are symmetrically
rank-1-connected, see [Mie00, GMHO02|. Clearly, we have convexity of Wy, with
respect to e € ngxrff in all these cases. If additionally w is uniformly convex in z,
then also Wi defined in (2.5) is uniformly convex with respect to (e, 2).

In the next lemma, we clarify the assumptions on wy;, C and E which imply that
Winix satisfies the assumptions (3.2). Then, we may deduce that all the results given
above are also valid in the particular case where W = W ;.. The verification is left
to the reader.

Lemma 6.1 Assume that wyiy, C, E; and w™ satisfy wmix, Jpwmix € C°(Z x
[emina emax]; R); C S Cl([emina emax]; Lln(Rg;n[fv Rs;nil)); Ej S Cl([emina emax]; Rg;n[f) (I,’I?,d

wPe ™ € CY([Opin, Omax)) for j = 1,..., N. Further assume that there exist C°, and

7 mix

ac > 0 such that for all 21,2 € Z, e € RY4 and 0 € [Dmin, Omax] we have

Sym
lagwmix(zl,9)—8gwmix(22,9)’ < CY |zi—2z| and e:C(0):e > aclel*.

Then Whix defined in (2.5) satisfies the assumptions (3.2).

If additionally, there exists amix > 0 such that w(-,0) is amix-uniformly convex for
all 0 € [Omin, Omax|, then the joint uniform convexity (4.1) for W = Wiy also holds.

In general, it is much too difficult to calculate W ,;, explicitly. Hence, it is necessary
to model suitably. The general theory in [MTLO02| states that Vu — Wi (e(u), z, 0)
is always quasiconvex and that z — Wy(e, z,0) is always convex. Of course,
cross-quasiconvexity is even stronger, but very difficult to characterize. So we need
to interpolate between the pure phases Wy(-,0) = W(-, €, 0) by making suitable
assumptions. Throughout we assume that each W, is strictly convex with respect
to e. Here, we are now able to treat much more general functions Wjy. Again we
may take an affine interpolation plus a mixture term

N N

Whix(e, z,0) = Z 2Wi(e, 0) + wix(z,0) for z = Z 21 €.

k=1 k=1
Clearly, we keep strict convexity with respect to e.

In [Mie07]| a more general interpolation is suggested in the form

Whix(e, z,0) = ﬁ In <; zexp (B(0)Wi(e, 9))) + Wmix(2, 0),

where the limit 5\, 0 corresponds to the affine interpolation given in the formula be-
fore. It is simple to see that upper and lower bounds like c|e|*~C < W, < Cle|*+C
directly carry over to Wi,. The good message is that also (strict) convexity in e is
maintained. To prove this it is sufficient to show that s — w(s) = Wi (e+s€, 2, 0)
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is convex in s € R for all e,& € Ry We let wy(s) = Wy (e4s€, 0) and assume, for

simplicity, that all w, are twice differentiable, then we obtain
N
w" = exp(—B(w—wnix) sz exp(Bwi)wy + B exp(—28(w—wmpix))

N N
<( Z 21, exp(Pwy)) ( Z 2, exp( Sy ) (wy,)? Z 21, exp(Swy )wy,) ) :
k=1

=1

Obviously the first sum is nonnegative, and the last term in big parentheses is
nonnegative as well by a simple application of the Cauchy-Schwarz inequality.

The above discussion shows that there is a wide variety of possible mixture functions
Wanix : RE 5 7 X [Onin, Omax]) — R for which the above existence theory is applicable.

sym
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