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Abstra
tWe study the global spatial regularity of solutions of elasto-plasti
 models withlinear hardening. In order to point out the main idea, we 
onsider a model prob-lem on a 
ube, where we des
ribe Diri
hlet and Neumann boundary 
onditions onthe top and the bottom, respe
tively, and periodi
 boundary 
onditions on the re-maining fa
es. Under natural smoothness assumptions on the data we obtain u ∈
L∞((0, T ); H

3

2
−δ(Ω)) for the displa
ements and z ∈ L∞((0, T ); H

1

2
−δ(Ω)) for the in-ternal variables. The proof is based on a di�eren
e quotient te
hnique and a re�e
tionargument.1 Introdu
tionIn this note we study the global spatial regularity of solutions of elasto-plasti
 modelswith linear hardening. The results are in parti
ular appli
able to elasto-plasti
ity withlinear kinemati
 hardening. In order to keep the presentation as 
lear as possible and inorder to point out the main idea, we 
onsider a model problem on a 
ube Ω ⊂ R

d, wherewe des
ribe Diri
hlet and Neumann boundary 
onditions on the top and the bottom,respe
tively, and periodi
 boundary 
onditions on the remaining fa
es. In a forth
omingpaper, we will extend the investigations to bounded domains with smooth boundaries andto more general rate independent models.Let u(t, x) ∈ R
d be the displa
ement of the point x ∈ Ω at time t, σ(t, x) ∈ R

d×dsymthe Cau
hy stress tensor and z(t, x) ∈ R
N the ve
tor of the internal variables. Assumingsmall strains, the behavior of the body is des
ribed by the quasistati
 balan
e of for
es(1.1), Hooke's law (1.2), whi
h relates the stress with the elasti
 part of the strain, andthe prin
iple of maximal plasti
 work, whi
h determines the evolution law for the internalvariable z (1.3):

divx σ + f = 0 in (0, T ) × Ω, (1.1)
σ = Ã(ε(u) − B̃z) in (0, T ) × Ω, (1.2)

∂tz ∈ ∂χK(B̃⊤σ − Lz) in (0, T ) × Ω. (1.3)The 
onvex set K ⊂ R
N is the set of admissible generalized stresses. These equations are
ompleted with the initial 
ondition

z(0, x) = z0(x), x ∈ Ω (1.4)1



and with Diri
hlet 
onditions on ΓD, Neumann 
onditions on ΓN and periodi
 boundary
onditions on the remaining fa
es Γper:
u
∣∣
ΓD

= hD on (0, T ) × ΓD, (1.5)
σ~n = hN on (0, T ) × ΓN . (1.6)The fun
tions f and hN are given volume and surfa
e for
e densities and hD pres
ribesthe displa
ements on the Diri
hlet boundary. The tensor ε(u) = 1

2(∇u + (∇u)⊤) ∈ R
d×dsymis the linearized strain tensor, Ã ∈ Lin(Rd×dsym,Rd×dsym) the fourth order elasti
ity tensor and

B̃ ∈ Lin(RN ,Rd×dsym) maps the ve
tor z of internal variables on the plasti
 strain εp =

B̃z. Moreover, L ∈ Lin(RN ,RN ) is a positive de�nite symmetri
 tensor des
ribing thehardening properties.The goal of the paper is to show that under natural smoothness assumptions on the vol-ume for
es and the boundary data, we obtain higher spatial regularity for the displa
ementsand the internal variables. In parti
ular we prove the following theorem:Theorem 1.1. Let z0 ∈ H1
Γper(Ω), f ∈ W1,1(S; L2(Ω)), hD ∈ W1,1(S; H

3

2per(ΓD)) and
hN ∈ W1,1(S; H

1

2per(ΓN )) and let (u, σ, z) be a solution to (1.1)�(1.6). Then for every δ > 0we have
u ∈ L∞(S; H

3

2
−δ(Ω)), σ ∈ L∞(S; H

1

2
−δ(Ω)), z ∈ L∞(S; H

1

2
−δ(Ω)).Let us give a short overview on regularity results in the literature. To the author'sknowledge, the only global spatial regularity result for elasto-plasti
 models was derivedre
ently by Alber and Nesenenko in [AN08℄. Under similar assumptions on the data as inTheorem 1.1 they obtained for C2-smooth domains and with ∂Ω = ΓD the regularity

u ∈ L∞(S; H
4

3
−δ(Ω)), σ ∈ L∞(S; H

1

3
−δ(Ω)), z ∈ L∞(S; H

1

3
−δ(Ω)). (1.7)In a �rst step the authors of [AN08℄ proved a tangential result and showed that this impliesthat u ∈ L∞(S; H

5

4
−δ(Ω)). By an iteration pro
edure they �nally arrive at (1.7).Lo
al regularity results for elasto-plasti
ity with linear hardening and for variants of thismodel, like the Prandtl-Reuss model, were derived by several authors [BF96, Dem, FL07,Shi99, Ser92℄. Here, one typi
ally �nds

σ ∈ L∞(S; H1lo
(Ω)).Furthermore, global results are available for time dis
retized versions of (1.1)�(1.6) andvariants of it, see e.g. [Rep96, KN08℄ and the referen
es therein. Here, it is possible toprove for smooth domains
σ(tk) ∈ H1(Ω)2



for every time step tk. But up to now it is unknown how to derive a uniform bound of thetype suptime step τ>0,kτ≤T ‖σ(kτ)‖H1(Ω) ≤ c, whi
h would allow to 
arry over the result ofthe dis
retized model to the 
ontinuous one.Let us �nally remark that for the stationary Hen
ky model we have the global result
σ ∈ H

1

2
−δ(Ω) on Lips
hitz domains, whi
h satisfy additional 
onditions near those points,where the type of the boundary 
onditions 
hanges, see [Kne06℄.The paper is organized as follows. In Se
tion 2 we introdu
e the notation and state themain regularity result, Theorem 2.2. We prove Theorems 1.1 and 2.2 in two steps. In the�rst step (Se
tion 3) we study a pure periodi
 problem and derive two global regularityresults depending on di�erent smoothness assumptions on the data. The proof is 
arriedout with a di�eren
e quotient te
hnique and relies essentially on a priori estimates forsolutions of the elasto-plasti
 model. In this step we apply te
hniques from [AN08, Nes06℄.In the se
ond step (Se
tion 4) we prove �rst that the solution pair (∇u, z) of the originalmodel is di�erentiable in dire
tions whi
h are tangential to the Diri
hlet and Neumannboundary (Theorem 4.1). This result re�nes slightly a result from [AN08℄. The essentialnew idea in this paper is to use a re�e
tion argument in order to obtain also a result
on
erning the di�erentiability of (∇u, z) perpendi
ular to ΓD and ΓN . We extend theproblem des
ribed above by re�e
tion to the periodi
 
ase and derive in this way Theorem1.1 and Theorem 2.2 as spe
ial 
ases of the results for the pure periodi
 
ase. The righthand side of the extended problem 
ontains extensions of the data f and z0 and additionalterms, whi
h in
lude partial derivatives of ∇u and z that are taken parallel to ΓD and

ΓN . Theorem 4.1 on tangential regularity of (u, z) guarantees that the data of the ex-tended problem is smooth enough su
h that the regularity Theorem 3.4 for purely periodi
stru
tures may be applied. We 
arry out these 
onsiderations for vanishing Diri
hlet andNeumann data, �rst. In Se
tion 4.3 we extend the results to the general 
ase with non-zeroboundary data.Let us remark that the re�e
tion te
hnique applied to the elasti
 equation (1.1)�(1.2),only, and negle
ting the 
oupling with the evolution equation (e.g. by assuming that
B̃ = 0) would lead to u(t) ∈ H2(Ω). We dis
uss this in more detail in Se
tion 4.2. Itremains an open question whether the result of Theorem 1.1 is optimal or whether oneshould expe
t u ∈ L∞(S; H2(Ω)).2 Setting up of the model and main resultFor d > 1 and ℓ > 0 let Ω = (−ℓ, ℓ)d−1 × (0, ℓ) ⊂ R

d be a half 
ube with side length
2ℓ. Throughout the paper we will use the notation x = (x′, xd) for x ∈ R

d and de�ne the
3



boundary sets
Γ0 = {x ∈ R

d ; x′ ∈ (−ℓ, ℓ)d−1, xd = 0 },
Γ1 = {x ∈ R

d ; x′ ∈ (−ℓ, ℓ)d−1, xd = ℓ },
Γper = ∂Ω\(Γ0 ∪ Γ1).We assume that periodi
 boundary 
onditions are pres
ribed on Γper, while for the otherparts of the boundary we assume that ΓD = Γ1 and ΓN = Γ0.We denote by

H1
Γper(Ω,Rn) = {u ∈ H1(Ω,Rn) ; ∃ũ ∈ H1lo
(Rd−1 × (0, ℓ)) with u = ũ

∣∣
Ωand ũ(y′, xd) = ũ(x′, xd) ∀y′ ∈ x′+2ℓZd−1}the spa
e of H1-fun
tions whi
h are periodi
 with respe
t to Γper. Assuming vanishingDiri
hlet data on ΓD, the set of admissible displa
ements is given by

V = {u ∈ H1
Γper(Ω,Rd) ; u|ΓD

=0 },while Z = L2(Ω,RN ) denotes the spa
e for the internal variables.We will dis
uss the 
ase of non-vanishing boundary data in se
tion 4.3. The redu
tionof the model with non-zero boundary data to a model with vanishing data leads to moregeneral for
e terms than those given in (1.1)�(1.6). We therefore study here an energywhi
h already in
ludes these additional for
e terms.Given a volume for
e density ℓ ∈ W1,1([0, T ];V ′) and F ∈ W1,1(S; L2(Ω)), we 
onsiderthe energy fun
tional
E(t, u, z) =

∫

Ω
W (∇u, z) dx− 〈ℓ(t), u〉V +

∫

Ω
F (t) · z dxfor displa
ement �elds u ∈ V , internal variables z ∈ Z and time t ∈ S = [0, T ].The stored energy density W : R

d×d × R
N → R is assumed to be quadrati
 with

W (D, z) = 1
2A(D −Bz) : (D −Bz) + 1

2Lz · z (2.1)for D ∈ R
d×d and z ∈ R

N . The tensors A ∈ Lin(Rd×d,Rd×d), B ∈ Lin(RN ,Rd×d) and
L ∈ Lin(RN ,RN ) depend on the material properties. The term Bz 
an be interpreted asthe plasti
 strain tensor, while the term 1

2Lz · z leads to an elasto-plasti
 model with linearhardening. The tensors A and L shall satisfy the following assumptions(A1) A = S∗ÃS, where S : R
d×d → R

d×dsym, S(D) = 1
2 (D + D⊤) maps the displa
e-ment gradient on the linearized strain tensor, S∗ is the adjoint operator and Ã ∈

Lin(Rd×dsym,Rd×dsym) is symmetri
 and positive de�nite.(A2) L ∈ Lin(RN ,RN ) is symmetri
 and positive de�nite.4



The tensor Ã is the usual elasti
ity tensor.Let K ⊂ R
N be nonempty, 
losed, 
onvex with 0 ∈ K. We denote by K ⊂ Z, K =

{ z ∈ Z ; z(x) ∈ K a.e. } the set of the admissible generalized stresses. The 
hara
teristi
fun
tional with respe
t to K is given by χK(z) = 0 if z ∈ K and χK(z) = ∞ otherwise.Finally, ∂χK is the subdi�erential of χK with respe
t to Z in the sense of 
onvex analysis.The elasto-plasti
 problem 
onsists in determining a displa
ement �eld u : S → V andinternal variables z : S → Z whi
h satisfy
z(0) = z0, (2.2)

DuE(t, u(t), z(t)) = 0 for all t ∈ S, (2.3)
∂tz(t) ∈ ∂χK(−DzE(t, u(t), z(t))) for a.e. t ∈ S. (2.4)Here, DuE and DzE denote the variational derivatives of E with respe
t to V and Z,respe
tively. Relations (2.2)�(2.4) may equivalently be written as

z(0) = z0, (2.5)
∫

Ω
A(∇u(t) −Bz(t)) : ∇v dx = 〈ℓ(t), v〉V for all v ∈ V, t ∈ S, (2.6)

∂tz ∈ ∂χK(−Lz +B⊤A(∇u−Bz) − F (t)) for a.e. t ∈ S. (2.7)The stress tensor 
an be 
al
ulated via σ = A(∇u−Bz). Relations (2.5)�(2.7) are a slightlymore general version of the model (1.1)�(1.6), but with vanishing Diri
hlet data. Altogetherthe relations (2.5)�(2.7) des
ribe small-strain elasto-plasti
ity with linear hardening. Thismodel 
omprises kinemati
 hardening, while pure isotropi
 hardening is ex
luded sin
e inthat 
ase, the tensor L is positive semide�nite, only.It is shown in [Mie05℄, see also [Ste08℄, that an equivalent formulation for (2.6)�(2.7) isto �nd a displa
ement �eld u : S → V and internal variables z : S → Z with z(0) = z0,whi
h for every t ∈ [0, T ] satisfy the following global stability 
ondition (S) and the energybalan
e (E)(S) E(t, u(t), z(t)) ≤ E(t, v, ζ) + R(ζ − z(t)) for all v ∈ V, ζ ∈ Z,(E) E(t, u(t), z(t)) +
∫ t

0 R(ż(τ)) dτ = E(0, z0) +
∫ t

0 ∂tE(τ, u(τ), z(τ)) dτ.Here, the dissipation pseudo potential R is de�ned through R(η) = χ∗
K(η), where χ∗

K isthe fun
tional related with χK by 
onvex 
onjugation in Z.For the applied for
es ℓ and F and for the initial value z0 of the internal variables weassume(A3) ℓ ∈ W1,1(S;V ′), F ∈ W1,1(S;Z), z0 ∈ Z and there exists u0 ∈ V su
h that
DuE(0, u0, z0) = 0 and −DzE(0, u0, z0) ∈ K.Sin
e, by the assumptions on the 
oe�
ients A, B and L and the 
hoi
e of V thefun
tional E : V ×Z → R is stri
tly 
onvex, 
oer
ive and strongly 
ontinuous the followingexisten
e theorem is a standard result [DL72, Joh78, HHLN88, HR99, AC04, Bré73℄5



Theorem 2.1. If (A1), (A2) and (A3) are satis�ed, then there exists a unique solutionpair (u, z) ∈ W1,1(S;V )×W1,1(S;Z), whi
h solves (2.5)�(2.7) and (S) & (E).In order to obtain higher regularity of the solution, more regularity is required for thedata. We assume that the for
e term ℓ ∈ W1,1(S;V ′) is of the spe
ial stru
ture
〈ℓ(t), v〉V ≡

∫

Ω
f(t) · v +H(t) : ∇v dx (2.8)for v ∈ V . A su�
ient 
ondition for (A3) to hold is(A3') f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; L2(Ω)), F ∈ W1,1(S;Z), z0 ∈ Z and there exists

u0 ∈ V su
h that DuE(0, u0, z0) = 0 and −DzE(0, u0, z0) ∈ K.The next theorem is the main result of this paper.Theorem 2.2. Assume that (A1), (A2) and (A3') are satis�ed. If in addition z0 ∈
H1

Γper(Ω,RN ), f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; H1
Γper(Ω)) and F ∈ W1,1(S; H1

Γper(Ω)),then the solution (u, z) to (2.5)�(2.7) with ℓ(t) as in (2.8) satis�es for every δ > 0

u ∈ L∞(B
3

2

2,∞(Ω)) ⊂ L∞(S; H
3

2
−δ(Ω)), (2.9)

z ∈ L∞(B
1

2

2,∞(Ω)) ⊂ L∞(S; H
1

2
−δ(Ω)). (2.10)Moreover, ∂iu ∈ L∞(S; H1

Γper(Ω)), ∂iz ∈ L∞(S; L2(Ω)) for 1 ≤ i ≤ d− 1.Here, Bs
p,q(Ω) are Besov spa
es and we refer to [Tri83℄ for a pre
ise de�nition. Note thatfor s > 0, s /∈ N and for every δ > 0 the following 
ontinuous embeddings are valid

Hs(Ω) ⊂ Bs
2,∞(Ω) ⊂ Hs−δ(Ω).Furthermore, we re
all that v ∈ Bs

2,∞(Ω) for s ∈ (0, 1) if and only if v ∈ L2(Ω) and
sup

eΩ⋐Ω, h∈R\{0}, i∈{1,...,d}

|h|−s ‖△hei
v‖

L2(eΩ)
<∞.Here, ei is the i-th 
oordinate ve
tor and △hei

v(x) = v(x + hei) − v(x). This 
hara
-terization of Bs
2,∞ gives the link between estimates of di�eren
e quotients and regularityproperties.As already dis
ussed in the introdu
tion, the global results (2.9)�(2.10) seem to be new,whereas the tangential result is known for Diri
hlet boundaries (see [Nes06℄). We give ithere for 
ompleteness and sin
e it is the basis for the global result.For proving Theorem 2.2 we derive in a �rst step a regularity result for a purely periodi
situation by estimating di�eren
e quotients of ∇u and z. These 
onsiderations will be
arried out in Se
tion 3. In the se
ond step, Se
tion 4, we extend the problem des
ribedabove by re�e
tion to the periodi
 
ase and derive in this way Theorem 2.2. The righthand side of the extended problem 
ontains extensions of f and z0 and additional terms,whi
h in
lude partial derivatives of ∇u and z that are taken parallel to ΓD and ΓN . Theregularity of tangential derivatives guarantees that the data of the extended problem issmooth enough su
h that the regularity theorem for purely periodi
 stru
tures may beapplied. 6



3 A pure periodi
 model problemIn the whole se
tion we assume that 
onditions (A1) and (A2) are satis�ed.3.1 De�nition of the pure periodi
 modelLet ΩP = (−ℓ, ℓ)d. We denote by H1per(ΩP ) the spa
e of H1-fun
tions whi
h are periodi
with respe
t to ΩP . The spa
e of admissible displa
ements is given by
VP = {u ∈ H1per(ΩP ) ;

∫

ΩP

udx = 0 }.We 
onsider the same energy as in the previous se
tion, namely
EP (t, v, ζ) =

∫

ΩP

W (∇v, ζ) dx−
∫

ΩP

f(t) · v +H : ∇v dx+

∫

ΩP

F (t) · ζ dxfor v ∈ VP , ζ ∈ Z = L2(ΩP ; RN ) and with W from (2.1). The periodi
 problem under
onsideration is to �nd a displa
ement �eld u : S → VP and internal variables z : S → Zwith z(0) = z0 and satisfying for a.e. t ∈ S and all v ∈ H1per(ΩP ) the relations
∫

ΩP

A(∇u−Bz) : ∇v dx =

∫

ΩP

f(t) · v +H(t) : ∇v dx, (3.1)
∂tz(t) ∈ ∂χK(−DzEP (t, u(t), z(t))). (3.2)This problem is again equivalent to (S) & (E) formulated with EP and VP instead of E and

V . We assume that(A4) z0 ∈ Z, f ∈ W1,1(S; L2(ΩP )) with ∫ΩP
f dx = 0; H ∈ W1,1(S; L2(ΩP ,R

d×d));
F ∈ W1,1(S; L2(ΩP )) and there exists u0 ∈ VP su
h that DuEP (0, u0, z0) = 0 and
−DzE(0, u0, z0) ∈ K.As before, we have the following existen
e resultTheorem 3.1. If (A1), (A2) and (A4) are satis�ed, then there exists a unique solutionpair (u, z) for problem (3.1)�(3.2) with u ∈ W1,1(S;VP ) and z ∈ W1,1(S;Z).3.2 The redu
ed problem and a-priori estimatesWe introdu
e the linear, ellipti
 operator

A : VP → V ′
P with 〈A(u), v〉VP

=

∫

ΩP

A∇u : ∇v dxfor every u, v ∈ VP . Note that A is self adjoint and that there exists a 
onstant cA > 0su
h that for all u ∈ VP we have 〈A(u), u〉VP
≥ cA ‖u‖2

H1(ΩP ). Thus A is an isomorphismand we 
an de�ne the linear and bounded operator
L : Z → Z, L(z) = Lz +B⊤A

(
∇A−1 divABz +Bz

)
,7



where the operator div : L2(ΩP ,R
d×d) → V ′

P is given by
〈div η, v〉 = −

∫

ΩP

η : ∇v dx,for η ∈ L2(ΩP ,R
d×d) and v ∈ VP .Let Ê(u, z) =
∫
ΩP

W (∇u, z) dx. The operator L is the S
hur 
omplement operatorasso
iated with
D(u,z)Ê(u, z) =

(
A divAB(·)

−B⊤A∇(·) L+B⊤AB

)(
u

z

)
.The properties of Ê imply therefore that L is self adjoint and 
oer
ive with respe
t to Z,i.e. we have

〈Lz1, z2〉Z = 〈Lz2, z1〉Z , 〈Lz, z〉Z ≥ cL ‖z‖2
Z (3.3)for every z, z1, z2 ∈ Z and some 
onstant cL > 0. Finally we de�ne

F̃ (t) = F (t) +B⊤A∇A−1(divH(t) − f(t)). (3.4)Note that f(t), H(t) and F (t) in L2(ΩP ) imply that F̃ (t) ∈ L2(ΩP ).With these de�nitions, problem (3.1)�(3.2) is equivalent to
A(u(t)) = f(t) − divH − divABz(t), (3.5)
∂tz(t) ∈ ∂χK(−L(z(t)) − F̃ (t)), z(0) = z0. (3.6)We will fo
us the dis
ussion on the redu
ed equation (3.6). Let us remark that onepossibility to prove the existen
e Theorem 3.1 is to apply Prop. 3.4 of [Bré73℄ to relation(3.6).The following a-priori estimates are the basis for proving our regularity results.Lemma 3.2 (A-priori estimates). Assume that for i ∈ {1, 2} the fun
tions zi

0 ∈ Z, F̃i ∈
L∞(S;Z) and zi ∈ W1,1(S;Z) satisfy for a.e. t ∈ S the relation

∂tzi(t) ∈ ∂χK(−Lzi(t) − F̃i(t)), zi(0) = zi
0. (3.7)Then there exists a 
onstant c > 0, whi
h is independent of the data, su
h that for every

t ∈ S we have
c ‖z1(t) − z2(t)‖2

Z ≤
∥∥z1

0 − z2
0

∥∥2

Z
+ ‖z1 − z2‖W1,1(S;Z)

∥∥F̃1 − F̃2

∥∥
L∞((0,t);Z)

. (3.8)If furthermore F̃i ∈ W1,1(S;Z), then there exists c > 0 su
h that
‖z1 − z2‖L∞(S;Z) ≤ c

( ∥∥z1
0 − z2

0

∥∥
Z

+
∥∥F̃1 − F̃2

∥∥
W1,1(S;Z)

)
. (3.9)8



Proof. Let zi
0, F̃i and zi be given as in Lemma 3.2. Then relation (3.7) implies that fora.e. t ∈ S we have

〈∂t(z1(t) − z2(t)),L(z1(t) − z2(t))〉Z ≤ −〈∂t(z1(t) − z2(t)), F̃1(t) − F̃2(t)〉Z .Integration with respe
t to t and using the properties of L from (3.3), we see that there isa 
onstant c > 0 su
h that
c ‖z1(t) − z2(t)‖2

Z ≤
∥∥z1

0 − z2
0

∥∥2

Z
−
∫ t

0
〈∂t(z1(s) − z2(s)), F̃1(s) − F̃2(s)〉Z ds.Partial integration in the last term, Young's inequality and the properties of tra
es of

W1,1(S;Z)-fun
tions lead to estimate (3.9), while Hölder's inequality applied to the lastterm results in inequality (3.8).3.3 Regularity in the pure periodi
 
aseBefore we state the regularity result in the periodi
 
ase, we introdu
e some further nota-tion. For a fun
tion v : ΩP → R
n we denote by ṽ : R

d → R
n the periodi
 extension of vto R

d, i.e. ṽ(x+ y) = v(x) for all x ∈ ΩP and y ∈ (2ℓZ)d. Moreover, for h ∈ R
d we de�nethe shift by h as vh : ΩP → R

n, vh(x) = ṽ(x+ h) and set △hv(x) = vh(x) − v(x). Finally
Fi = { v ∈ L2(ΩP ) ; ∂iv ∈ L2(ΩP ) and v is periodi
 w.r. to the i-th 
oordinate }with ‖v‖Fi

= ‖v‖L2(ΩP ) + ‖∂iv‖L2(ΩP ). For every h ∈ R the mapping Fi → Fi de�nedvia v 7→ vhei
, where ei is a unit ve
tor of the i-th 
oordinate dire
tion, is an isometri
isomorphism. Moreover, H1per(ΩP ) = ∩1≤i≤dFi.Theorem 3.3. Let z0 ∈ Fi and F̃ ∈ L∞(S;Fi) for some i ∈ {1, . . . , d} and assume that

z ∈ W1,1(S;Z) satis�es (3.6). Then there exists a 
onstant c > 0 su
h that
sup

t∈S, h∈R\{0}
|h|−

1

2 ‖z(t, · + hei) − z(t, ·)‖L2(ΩP ) ≤ c. (3.10)If furthermore F̃ ∈ W1,1(S;Fi), then
z ∈ L∞(S;Fi). (3.11)This theorem shows that the time regularity of F̃ has a strong in�uen
e on the spatialregularity of z.Proof. We prove Theorem 3.3 by estimating di�eren
e quotients of z.Let z ∈ W1,1(S;Z) satisfy (3.6) with data z0 ∈ Fi and F̃ ∈ L∞(S;Fi). Let furthermore

ei denote the 
orresponding unit ve
tor. Due to the periodi
ity assumptions on the datait holds that for every h ∈ R the shifted fun
tions z0,hei
and F̃hei

have the same regularityas z0 and F̃ . Moreover, z satis�es (3.6) with respe
t to z0 and F̃ if and only if zhei
satis�es9



(3.6) with respe
t to the data z0,hei
and F̃hei

. Inequality (3.8) with z1 = z and z2 = zheiimplies that there exists a 
onstant c > 0, whi
h is independent of h and t, su
h that
c ‖△hei

z(t)‖2
Z ≤ ‖△hei

z0‖2
Z + ‖△hei

z‖W1,1(S;Z)

∥∥△hei
F̃
∥∥

L∞(S;L2(ΩP ))
.From the regularity assumptions on the data we 
on
lude that the right hand side 
anfurther be estimated as (see e.g. [GT77℄)

r.h.s. ≤ |h|2 ‖z0‖2
Fi

+ 2 |h| ‖z‖W1,1(S;Z)

∥∥F̃
∥∥

L∞(S;Fi)
.This proves estimate (3.10).Assume now that F̃ has the additional temporal regularity F̃ ∈ W1,1(S;Fi). Now,estimate (3.9) implies that

‖△hei
z‖L∞(S;Z) ≤ c |h|

(
‖z0‖Fi

+
∥∥F̃
∥∥

W1,1(S;Fi)

)
.From Lemma 7.24 in [GT77℄ it follows that z ∈ L∞(S;Fi).As a 
on
lusion we obtain the following result for the full periodi
 problem.Theorem 3.4 (Regularity in the periodi
 
ase).(a) Let the pair (u, z) ∈ L∞(S;VP ) × W1,1(S;Z) satisfy (3.1)�(3.2) with z0 ∈ Fi, f ∈

W1,1(S; L2(ΩP )), ∫ΩP
f(t) dx = 0, H ∈ W1,1(S;Fi) and F ∈ W1,1(S;Fi) for some

i ∈ {1, . . . , d}. Then
∂iu ∈ L∞(S; H1per(ΩP )), z ∈ L∞(S;Fi).(b) Assume that the pair (u, z) ∈ L∞(S;VP )×W1,1(S;Z) satis�es (3.1)�(3.2) with z0 ∈

B
1

2

2,∞(ΩP ), f ∈ L∞(S; L2(ΩP )) with ∫ΩP
f(t) dx = 0, H ∈ L∞(S;Fi) and F ∈

L∞(S;Fi) for some i ∈ {1, . . . , d}. Then there exists a 
onstant c > 0 su
h that
sup

t∈S, h∈R\{0}
|h|−

1

2 ‖△hei
∇u(t)‖L2(ΩP ) ≤ c,

sup
t∈S, h∈R\{0}

|h|−
1

2 ‖△hei
z(t)‖L2(ΩP ) ≤ c.Here, ei is the unit ve
tor of the i-th 
oordinate dire
tion.If the assumptions of part (b) are satis�ed for every i ∈ {1, . . . , d}, then

u ∈ L∞(S; B
3

2

2,∞(ΩP )), z ∈ L∞(S; B
1

2

2,∞(ΩP )).Part (a) of the previous Theorem is 
losely related to a result in [Nes06℄ for periodi
stru
tures.Proof. Assume that the regularity assumptions of part (a) are valid. Ellipti
 regularitytheory implies that the fun
tion F̃ de�ned in (3.4) belongs to W1,1(S;Fi). Thus it followsfrom Theorem 3.3 that z ∈ L∞(S;Fi). The result for u follows again by ellipti
 regularitytheory on the basis of relation (3.5).If the data has the regularity des
ribed in Theorem 3.4(b), then F̃ ∈ L∞(S;Fi). Theorem3.3 and ellipti
 regularity results lead to the results for z and u.10



4 Proof of the regularity properties of the original problemIn this se
tion we prove regularity theorem 2.2. The tangential regularity of u and zdes
ribed in Theorem 2.2 follows in the same way as part (a) of Theorem 3.3 and wereformulate the result in Se
tion 4.1. The essential new idea in this paper is the proof ofthe higher di�erentiability in dire
tions orthogonal to the Diri
hlet and Neumann boundary.This is 
arried out in Se
tion 4.2, where we extend the elasto-plasti
 model by re�e
tionwith respe
t to the Diri
hlet and Neumann boundary to a problem whi
h is periodi
 inthe ed dire
tion. For deriving the regularity properties with respe
t to the ed dire
tion,we apply part (b) of Theorem 3.4. The tangential regularity result from Theorem 4.1guarantees that the extended data satisfy the assumptions of part (b) of Theorem 3.4.4.1 Regularity tangential to Γ0 and Γ1Theorem 4.1 (Tangential regularity). Assume that (A1), (A2) and (A3') are satis-�ed and that z0 ∈ H1
Γper(Ω), f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; H1

Γper(Ω)) and F ∈
W1,1(S; H1

Γper(Ω)). Then the solution (u, z) of the partially periodi
 problem (2.5)�(2.7)satis�es for 1 ≤ i ≤ d

∂iu ∈ L∞(S; H1
Γper(Ω)), z ∈ L∞(S;∩1≤j≤d−1Fj(Ω)).Proof. Like in Se
tion 3.2 one 
an derive a redu
ed formulation for the partially periodi
problem and prove Theorem 4.1 in the same way as Theorem 3.4(a).4.2 Proof of higher regularity in normal dire
tionLet (u, z) ∈ W1,1(S;V ×Z) be the solution to (2.5)�(2.7) with data a

ording to Theorem2.2. We re
all that u∣∣

Γ1
= 0.Let ϕ ∈ C∞([0, ℓ]) with ϕ(xd) = 1 in a neighborhood of 0, ϕ(xd) = 0 in a neighborhoodof ℓ and 0 ≤ ϕ ≤ 1. By γ0 we denote the tra
e operator from H1(Ω) to L2(Γ0) and de�ne

û(t, x) := ϕ(xd)(γ0u(t))(x
′) for x = (x′, xd) ∈ Ω, t ∈ S.The tangential regularity of u leads to the following regularity for û:Lemma 4.2. It holds û ∈ L∞(S; H1

Γper(Ω)) and ∂dû ∈ L∞(S; H1
Γper(Ω)).Proof. Sin
e u ∈ W1,1(S;V ) ⊂ L∞(S; H1

Γper(Ω)), the tra
e theorem implies that γ0u ∈
L∞(S; H

1

2per(ΓD)) and therefore û ∈ L∞(S; L2(Ω)). Moreover, from Theorem 4.1 we 
on-
lude that for all h ∈ R, for all i ∈ {1, . . . , d− 1} and a.e. t ∈ S it holds
‖△hei

û(t)‖L2(Ω) ≤
√

2ℓ ‖△hei
γ0u(t)‖L2(Γ0)

≤ c ‖△hei
u(t)‖H1(Ω) ≤ c |h| ‖∂iu(t)‖H1(Ω) .11



In the se
ond inequality we have used the 
ontinuity of the tra
e operator γ0. Sin
e all theestimates are uniform with respe
t to h, it follows that û ∈ L∞(S;∩1≤i≤d−1Fi(Ω)). Obvi-ously, for k ∈ N it holds ∂(k)
d û(t, x) = ϕ(k)(xd)(γ0u(t))(x

′), and the previous 
onsiderationsshow that ∂(k)
d û ∈ L∞(S; H1

Γper(Ω)), whi
h �nishes the proof.Let R = I − 2ed ⊗ ed ∈ R
d×d des
ribe the re�e
tion at the boundary Γ0. For fun
tions

v : Ω → R
d we will use the notation

∇′v(x) := (∂1v(x), . . . , ∂d−1v(x), 0) = 1
2(∇v(x))(R + I) ∈ R

d×d.We 
onsider the following extensions to ΩP = (−ℓ, ℓ)d:
uP (t, x) =




u(t, x) − û(t, x) x ∈ Ω+ = Ω

−u(t, Rx) + û(t, Rx) x ∈ Ω− = RΩ
.For the internal variable we use an even extension:

zP (t, x) =




z(t, x) x ∈ Ω+

z(t, Rx) x ∈ Ω−

, z0,P (x) =




z0(x) x ∈ Ω+

z0(Rx) x ∈ Ω−

.The extended volume for
es are de�ned as
fP (t, x) =




f(t, x) x ∈ Ω+

−f(t, Rx) −
(
div
(
(A(∇u−Bz) −H)(R+ I)

))
◦R x ∈ Ω−

.Note that in the de�nition of fP only tangential derivatives of ∇u, z and H are involved.Finally, we de�ne
θP (t, x) =




∇û(t, x) x ∈ Ω+

−∇(û(t, Rx)) + 2∇′(u(t, Rx)) x ∈ Ω−and set
HP (t, x) = −AθP (t, x) +




H(t, x) x ∈ Ω+

H(t, Rx) x ∈ Ω−

,

FP (t, x) = −B⊤AθP (t, x) +




F (t, x) x ∈ Ω+

F (t, Rx) x ∈ Ω−

.Lemma 4.3. Under the assumptions of Theorem 2.2 the above de�ned fun
tions have thefollowing regularity
uP ∈ L∞(S;VP (ΩP )),

zP ∈ W1,1(S; L2(ΩP )), z0,P ∈ H1per(ΩP ),

fP ∈ L∞(S; L2(ΩP )),

∫

ΩP

fP (t) dx = 0,

θP ,HP , FP ∈ L∞(S;Fd).12



Proof. The assertions for zP and z0,P are obvious. It follows from Lemma 4.2 that uP

∣∣
Ω±

∈
L∞(S; H1

Γper(Ω±)). Moreover, we have γ0(uP

∣∣
Ω+

) = 0 = γ0(uP

∣∣
Ω−

) and therefore uP ∈
L∞(S;VP (ΩP )).The higher tangential regularity of u and z, see Theorem 4.1, guarantees that fP ∈
L∞(S; L2(ΩP )). By partial integration we 
on
lude that

∫

Ω+

div
(
(A(∇u−Bz) −H)(R + I)

)
dx = 0for a.e. t ∈ S, sin
e on Γ0∪Γ1 it holds (R+ I)~n = 0 and on Γper we may use the periodi
ity
onditions. Thus, ∫ΩP

fP (t) dx = 0 for a.e. t ∈ S.Lemma 4.2 and Theorem 4.1 imply that ∂dθP

∣∣
Ω±

∈ L∞(S; L2(Ω±)) and we only haveto 
he
k whether the tra
es on Γ0 
oin
ide and whether θP

∣∣
Γ1

= θP

∣∣
RΓ1

. Straight forward
al
ulations, using integration by parts on Ω+ and Ω− separately and taking into a

ountthat u∣∣
Γ1

= 0, show that for every ψ ∈ C∞per(ΩP ) it holds
∫

ΩP

θP : ∂dψ dx =

∫

Ω−

∂d(2∇′(u ◦R) −∇(û ◦R)) : ψ dx+

∫

Ω+

∂d∇û : ψ dx.This proves the assertions on θP and �nally on HP and FP .Lemma 4.4. For almost all t ∈ S and every v ∈ H1per(ΩP ) the above de�ned fun
tions
uP ∈ L∞(S;VP ) and zP ∈ W1,1(S;Z) satisfy zP (0) = z0,P and

∫

ΩP

A(∇uP (t) −BzP (t)) : ∇v dx =

∫

ΩP

fP (t) · v +HP (t) : ∇v dx, (4.1)
∂tzP (t) ∈ ∂χK(−LzP (t) +B⊤A(∇uP (t) −BzP (t)) − FP (t)). (4.2)Thus, supt∈S,h∈R\{0} |h|−

1

2

(
‖△hed

∇uP (t)‖L2(ΩP ) + ‖△hed
zP (t)‖L2(ΩP )

)
≤ c .Proof. Relations (4.1)�(4.2) show that the extended fun
tions uP and zP are solutionsof a pure periodi
 model. The regularity of uP and zP therefore follows from part (b) ofTheorem 3.4. Due to Lemma 4.3 the extended fun
tions fP , FP , HP and z0,P have therequired regularity properties for i = d.We prove now that (4.1) and (4.2) are valid.Relation (4.2) follows immediately from the de�nitions taking into a

ount that the
onvex set K does not depend on x.Relation (4.1) 
an be veri�ed as follows: for every v ∈ VP it holds

∫

ΩP

A(∇uP −BzP ) : ∇v dx =

∫

Ω+

A(∇u−Bz) : ∇(v − v◦R) dx

−
∫

Ω+

A∇û : ∇v dx

+

∫

Ω+

A(∇ûR−∇u(R+ I)) : ∇(v◦R)R dx

+

∫

Ω+

(
A(∇u−Bz)

)
(R+ I) : ∇(v◦R) dx. (4.3)13



Note that (v − v◦R)
∣∣
Ω+

∈ V (Ω+) and therefore we may use relations (2.6) and (2.8) torepla
e the �rst term on the right hand side of (4.3). This yields
∫

ΩP

A(∇uP −BzP ) : ∇v dx =

∫

Ω+

f · (v − v◦R) dx

+

∫

Ω+

(
A(∇u−Bz) −H)(R + I) : ∇(v◦R) dx

+

∫

Ω+

H : (∇v + ∇(v◦R)R) dx

−
∫

Ω+

A∇û : ∇v dx

+

∫

Ω−

A(∇(û◦R) −∇(u◦R)(R+ I)) : ∇v dx.Transforming the terms with v◦R ba
k to Ω− and applying the Gauss Theorem to these
ond term on the right hand side �nally proves relation (4.1). Note that the boundaryterms vanish due to the periodi
ity properties on Γper and sin
e (R+I)~n = 0 on Γ0∪Γ1.The main regularity theorem, Theorem 2.2, is now an immediate 
onsequen
e of theprevious lemma:Corollary 4.5. Let the assumptions of Theorem 2.2 be satis�ed.Then u ∈ L∞(S; B
3

2

2,∞(Ω)) and z ∈ L∞(S; B
1

2

2,∞(Ω)).Proof. Let uP and zP be the extensions of u and z as de�ned above. By Lemma 4.4 wehave
sup

t∈S, eΩ⋐Ω,h∈R\{0}

|h|−
1

2

(
‖△hed

∇u(t)‖
L2(eΩ)

+ ‖△hed
z(t)‖

L2(eΩ)

)
≤ c.Combining this estimate with the tangential regularity in Theorem 4.1 proves Corollary4.5 and Theorem 2.2.Assume that B = 0. Then the problem (2.5)�(2.7) de
ouples into an ellipti
 equa-tion (2.6) for u and an evolution in
lusion (2.7) for z. If f ∈ W1,1(S; L2(Ω)) and H ∈

W1,1(S; H1
Γper(Ω)), then standard results for linear ellipti
 systems guarantee that u ∈

W1,1(S; H2(Ω)). This result is usually obtained by �rst proving a tangential result like inTheorem 4.1 and then by solving the equation for the missing derivatives: ∂d(A∇u)d =

−f − divH − 1
2 div((A∇u)(R + I)). Due to the tangential regularity, the right hand sidebelongs to W1,1(S; L2(Ω)), and thus ∂2

du(t) ∈ L2(Ω). For pure ellipti
 systems this ar-gument is equivalent to the re�e
tion argument whi
h we applied in the proof of Lemma4.4.Note �nally that in the de
oupled 
ase, i.e. B = 0, and under the assumptions ofTheorem 2.2 the internal variable has the regularity z ∈ L∞(S; H1
Γper(Ω)). This followssin
e for B = 0 the extended fun
tion FP belongs to W1,1(S; L2(ΩP )) and not only to

L∞(S; L2(ΩP )), and therefore part (a) of Theorem 3.4 
an be applied.14



4.3 Non-zero boundary 
onditionsWe 
onsider now the 
ase with non-vanishing Diri
hlet datum hD ∈ W1,1(S; H
1

2per(Γ1))and Neumann datum hN ∈ W1,1(S; (H
1

2per(Γ0))
′). The task is to �nd a pair (u, z) ∈

W1,1(S; H1
Γper(Ω)×L2(Ω)) with u(t)∣∣

Γ1
= hD(t) and z(0) = z0 su
h that for all v ∈ V anda.e. t ∈ S we have

∫

Ω
A(∇u(t) −Bz(t)) : ∇v dx =

∫

Ω
f(t) · v dx− 〈hN (t), v〉Γ0

, (4.4)
∂tz(t) ∈ ∂χK(−Lz(t) +B⊤A(∇u(t) −Bz(t))). (4.5)Assume that

hD ∈ W1,1(S; H
3

2per(Γ1)), hN ∈ W1,1(S; H
1

2per(Γ0)). (4.6)By the tra
e theorem there exists uD ∈ W1,1(S; H2
Γper(Ω)) with uD

∣∣
Γ1

= hD. Moreover,there exists uN ∈ W1,1(S;V ∩ H2
Γper(Ω)) with

∫

Ω
A∇uN : ∇v dx = 〈hN (t), v〉Γ0for all v ∈ V . It follows that the pair (u, z) solves (4.4)�(4.5) if and only if u = u0 + uDwith u0(t) ∈ V and the pair (u0, z) satis�es for every v ∈ V

∫

Ω
A(∇u0(t) −Bz(t)) : ∇v dx =

∫

Ω
f(t) · v +A(∇uN (t) −∇uD(t)) : ∇v dx, (4.7)

∂tz(t) ∈ ∂χK(−Lz(t) +B⊤A(∇u0(t) −Bz(t)) +B⊤A∇uD(t)). (4.8)From (4.6) we 
on
lude that
H := A(∇uN −∇uD) ∈ W1,1(S; H1

Γper(Ω)),

F := −B⊤A∇uD ∈ W1,1(S; H1
Γper(Ω)).Thus, the next theorem and Theorem 1.1 follow immediately from Theorem 2.2.Theorem 4.6 (Non-vanishing boundary data). Let z0 ∈ H1

Γper(Ω), f ∈ W1,1(S; L2(Ω)),
hD and hN with (4.6) and assume that the pair (u, z) ∈ W1,1(S; H1

Γper(Ω)×L2(Ω)) satis�es(4.4)�(4.5). Then
u ∈ L∞(S; B

3

2

2,∞(Ω)), z ∈ L∞(S; B
1

2
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