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AbstratWe study the global spatial regularity of solutions of elasto-plasti models withlinear hardening. In order to point out the main idea, we onsider a model prob-lem on a ube, where we desribe Dirihlet and Neumann boundary onditions onthe top and the bottom, respetively, and periodi boundary onditions on the re-maining faes. Under natural smoothness assumptions on the data we obtain u ∈
L∞((0, T ); H

3

2
−δ(Ω)) for the displaements and z ∈ L∞((0, T ); H

1

2
−δ(Ω)) for the in-ternal variables. The proof is based on a di�erene quotient tehnique and a re�etionargument.1 IntrodutionIn this note we study the global spatial regularity of solutions of elasto-plasti modelswith linear hardening. The results are in partiular appliable to elasto-plastiity withlinear kinemati hardening. In order to keep the presentation as lear as possible and inorder to point out the main idea, we onsider a model problem on a ube Ω ⊂ R

d, wherewe desribe Dirihlet and Neumann boundary onditions on the top and the bottom,respetively, and periodi boundary onditions on the remaining faes. In a forthomingpaper, we will extend the investigations to bounded domains with smooth boundaries andto more general rate independent models.Let u(t, x) ∈ R
d be the displaement of the point x ∈ Ω at time t, σ(t, x) ∈ R

d×dsymthe Cauhy stress tensor and z(t, x) ∈ R
N the vetor of the internal variables. Assumingsmall strains, the behavior of the body is desribed by the quasistati balane of fores(1.1), Hooke's law (1.2), whih relates the stress with the elasti part of the strain, andthe priniple of maximal plasti work, whih determines the evolution law for the internalvariable z (1.3):

divx σ + f = 0 in (0, T ) × Ω, (1.1)
σ = Ã(ε(u) − B̃z) in (0, T ) × Ω, (1.2)

∂tz ∈ ∂χK(B̃⊤σ − Lz) in (0, T ) × Ω. (1.3)The onvex set K ⊂ R
N is the set of admissible generalized stresses. These equations areompleted with the initial ondition

z(0, x) = z0(x), x ∈ Ω (1.4)1



and with Dirihlet onditions on ΓD, Neumann onditions on ΓN and periodi boundaryonditions on the remaining faes Γper:
u
∣∣
ΓD

= hD on (0, T ) × ΓD, (1.5)
σ~n = hN on (0, T ) × ΓN . (1.6)The funtions f and hN are given volume and surfae fore densities and hD presribesthe displaements on the Dirihlet boundary. The tensor ε(u) = 1

2(∇u + (∇u)⊤) ∈ R
d×dsymis the linearized strain tensor, Ã ∈ Lin(Rd×dsym,Rd×dsym) the fourth order elastiity tensor and

B̃ ∈ Lin(RN ,Rd×dsym) maps the vetor z of internal variables on the plasti strain εp =

B̃z. Moreover, L ∈ Lin(RN ,RN ) is a positive de�nite symmetri tensor desribing thehardening properties.The goal of the paper is to show that under natural smoothness assumptions on the vol-ume fores and the boundary data, we obtain higher spatial regularity for the displaementsand the internal variables. In partiular we prove the following theorem:Theorem 1.1. Let z0 ∈ H1
Γper(Ω), f ∈ W1,1(S; L2(Ω)), hD ∈ W1,1(S; H

3

2per(ΓD)) and
hN ∈ W1,1(S; H

1

2per(ΓN )) and let (u, σ, z) be a solution to (1.1)�(1.6). Then for every δ > 0we have
u ∈ L∞(S; H

3

2
−δ(Ω)), σ ∈ L∞(S; H

1

2
−δ(Ω)), z ∈ L∞(S; H

1

2
−δ(Ω)).Let us give a short overview on regularity results in the literature. To the author'sknowledge, the only global spatial regularity result for elasto-plasti models was derivedreently by Alber and Nesenenko in [AN08℄. Under similar assumptions on the data as inTheorem 1.1 they obtained for C2-smooth domains and with ∂Ω = ΓD the regularity

u ∈ L∞(S; H
4

3
−δ(Ω)), σ ∈ L∞(S; H

1

3
−δ(Ω)), z ∈ L∞(S; H

1

3
−δ(Ω)). (1.7)In a �rst step the authors of [AN08℄ proved a tangential result and showed that this impliesthat u ∈ L∞(S; H

5

4
−δ(Ω)). By an iteration proedure they �nally arrive at (1.7).Loal regularity results for elasto-plastiity with linear hardening and for variants of thismodel, like the Prandtl-Reuss model, were derived by several authors [BF96, Dem, FL07,Shi99, Ser92℄. Here, one typially �nds

σ ∈ L∞(S; H1lo(Ω)).Furthermore, global results are available for time disretized versions of (1.1)�(1.6) andvariants of it, see e.g. [Rep96, KN08℄ and the referenes therein. Here, it is possible toprove for smooth domains
σ(tk) ∈ H1(Ω)2



for every time step tk. But up to now it is unknown how to derive a uniform bound of thetype suptime step τ>0,kτ≤T ‖σ(kτ)‖H1(Ω) ≤ c, whih would allow to arry over the result ofthe disretized model to the ontinuous one.Let us �nally remark that for the stationary Henky model we have the global result
σ ∈ H

1

2
−δ(Ω) on Lipshitz domains, whih satisfy additional onditions near those points,where the type of the boundary onditions hanges, see [Kne06℄.The paper is organized as follows. In Setion 2 we introdue the notation and state themain regularity result, Theorem 2.2. We prove Theorems 1.1 and 2.2 in two steps. In the�rst step (Setion 3) we study a pure periodi problem and derive two global regularityresults depending on di�erent smoothness assumptions on the data. The proof is arriedout with a di�erene quotient tehnique and relies essentially on a priori estimates forsolutions of the elasto-plasti model. In this step we apply tehniques from [AN08, Nes06℄.In the seond step (Setion 4) we prove �rst that the solution pair (∇u, z) of the originalmodel is di�erentiable in diretions whih are tangential to the Dirihlet and Neumannboundary (Theorem 4.1). This result re�nes slightly a result from [AN08℄. The essentialnew idea in this paper is to use a re�etion argument in order to obtain also a resultonerning the di�erentiability of (∇u, z) perpendiular to ΓD and ΓN . We extend theproblem desribed above by re�etion to the periodi ase and derive in this way Theorem1.1 and Theorem 2.2 as speial ases of the results for the pure periodi ase. The righthand side of the extended problem ontains extensions of the data f and z0 and additionalterms, whih inlude partial derivatives of ∇u and z that are taken parallel to ΓD and

ΓN . Theorem 4.1 on tangential regularity of (u, z) guarantees that the data of the ex-tended problem is smooth enough suh that the regularity Theorem 3.4 for purely periodistrutures may be applied. We arry out these onsiderations for vanishing Dirihlet andNeumann data, �rst. In Setion 4.3 we extend the results to the general ase with non-zeroboundary data.Let us remark that the re�etion tehnique applied to the elasti equation (1.1)�(1.2),only, and negleting the oupling with the evolution equation (e.g. by assuming that
B̃ = 0) would lead to u(t) ∈ H2(Ω). We disuss this in more detail in Setion 4.2. Itremains an open question whether the result of Theorem 1.1 is optimal or whether oneshould expet u ∈ L∞(S; H2(Ω)).2 Setting up of the model and main resultFor d > 1 and ℓ > 0 let Ω = (−ℓ, ℓ)d−1 × (0, ℓ) ⊂ R

d be a half ube with side length
2ℓ. Throughout the paper we will use the notation x = (x′, xd) for x ∈ R

d and de�ne the
3



boundary sets
Γ0 = {x ∈ R

d ; x′ ∈ (−ℓ, ℓ)d−1, xd = 0 },
Γ1 = {x ∈ R

d ; x′ ∈ (−ℓ, ℓ)d−1, xd = ℓ },
Γper = ∂Ω\(Γ0 ∪ Γ1).We assume that periodi boundary onditions are presribed on Γper, while for the otherparts of the boundary we assume that ΓD = Γ1 and ΓN = Γ0.We denote by

H1
Γper(Ω,Rn) = {u ∈ H1(Ω,Rn) ; ∃ũ ∈ H1lo(Rd−1 × (0, ℓ)) with u = ũ

∣∣
Ωand ũ(y′, xd) = ũ(x′, xd) ∀y′ ∈ x′+2ℓZd−1}the spae of H1-funtions whih are periodi with respet to Γper. Assuming vanishingDirihlet data on ΓD, the set of admissible displaements is given by

V = {u ∈ H1
Γper(Ω,Rd) ; u|ΓD

=0 },while Z = L2(Ω,RN ) denotes the spae for the internal variables.We will disuss the ase of non-vanishing boundary data in setion 4.3. The redutionof the model with non-zero boundary data to a model with vanishing data leads to moregeneral fore terms than those given in (1.1)�(1.6). We therefore study here an energywhih already inludes these additional fore terms.Given a volume fore density ℓ ∈ W1,1([0, T ];V ′) and F ∈ W1,1(S; L2(Ω)), we onsiderthe energy funtional
E(t, u, z) =

∫

Ω
W (∇u, z) dx− 〈ℓ(t), u〉V +

∫

Ω
F (t) · z dxfor displaement �elds u ∈ V , internal variables z ∈ Z and time t ∈ S = [0, T ].The stored energy density W : R

d×d × R
N → R is assumed to be quadrati with

W (D, z) = 1
2A(D −Bz) : (D −Bz) + 1

2Lz · z (2.1)for D ∈ R
d×d and z ∈ R

N . The tensors A ∈ Lin(Rd×d,Rd×d), B ∈ Lin(RN ,Rd×d) and
L ∈ Lin(RN ,RN ) depend on the material properties. The term Bz an be interpreted asthe plasti strain tensor, while the term 1

2Lz · z leads to an elasto-plasti model with linearhardening. The tensors A and L shall satisfy the following assumptions(A1) A = S∗ÃS, where S : R
d×d → R

d×dsym, S(D) = 1
2 (D + D⊤) maps the displae-ment gradient on the linearized strain tensor, S∗ is the adjoint operator and Ã ∈

Lin(Rd×dsym,Rd×dsym) is symmetri and positive de�nite.(A2) L ∈ Lin(RN ,RN ) is symmetri and positive de�nite.4



The tensor Ã is the usual elastiity tensor.Let K ⊂ R
N be nonempty, losed, onvex with 0 ∈ K. We denote by K ⊂ Z, K =

{ z ∈ Z ; z(x) ∈ K a.e. } the set of the admissible generalized stresses. The harateristifuntional with respet to K is given by χK(z) = 0 if z ∈ K and χK(z) = ∞ otherwise.Finally, ∂χK is the subdi�erential of χK with respet to Z in the sense of onvex analysis.The elasto-plasti problem onsists in determining a displaement �eld u : S → V andinternal variables z : S → Z whih satisfy
z(0) = z0, (2.2)

DuE(t, u(t), z(t)) = 0 for all t ∈ S, (2.3)
∂tz(t) ∈ ∂χK(−DzE(t, u(t), z(t))) for a.e. t ∈ S. (2.4)Here, DuE and DzE denote the variational derivatives of E with respet to V and Z,respetively. Relations (2.2)�(2.4) may equivalently be written as

z(0) = z0, (2.5)
∫

Ω
A(∇u(t) −Bz(t)) : ∇v dx = 〈ℓ(t), v〉V for all v ∈ V, t ∈ S, (2.6)

∂tz ∈ ∂χK(−Lz +B⊤A(∇u−Bz) − F (t)) for a.e. t ∈ S. (2.7)The stress tensor an be alulated via σ = A(∇u−Bz). Relations (2.5)�(2.7) are a slightlymore general version of the model (1.1)�(1.6), but with vanishing Dirihlet data. Altogetherthe relations (2.5)�(2.7) desribe small-strain elasto-plastiity with linear hardening. Thismodel omprises kinemati hardening, while pure isotropi hardening is exluded sine inthat ase, the tensor L is positive semide�nite, only.It is shown in [Mie05℄, see also [Ste08℄, that an equivalent formulation for (2.6)�(2.7) isto �nd a displaement �eld u : S → V and internal variables z : S → Z with z(0) = z0,whih for every t ∈ [0, T ] satisfy the following global stability ondition (S) and the energybalane (E)(S) E(t, u(t), z(t)) ≤ E(t, v, ζ) + R(ζ − z(t)) for all v ∈ V, ζ ∈ Z,(E) E(t, u(t), z(t)) +
∫ t

0 R(ż(τ)) dτ = E(0, z0) +
∫ t

0 ∂tE(τ, u(τ), z(τ)) dτ.Here, the dissipation pseudo potential R is de�ned through R(η) = χ∗
K(η), where χ∗

K isthe funtional related with χK by onvex onjugation in Z.For the applied fores ℓ and F and for the initial value z0 of the internal variables weassume(A3) ℓ ∈ W1,1(S;V ′), F ∈ W1,1(S;Z), z0 ∈ Z and there exists u0 ∈ V suh that
DuE(0, u0, z0) = 0 and −DzE(0, u0, z0) ∈ K.Sine, by the assumptions on the oe�ients A, B and L and the hoie of V thefuntional E : V ×Z → R is stritly onvex, oerive and strongly ontinuous the followingexistene theorem is a standard result [DL72, Joh78, HHLN88, HR99, AC04, Bré73℄5



Theorem 2.1. If (A1), (A2) and (A3) are satis�ed, then there exists a unique solutionpair (u, z) ∈ W1,1(S;V )×W1,1(S;Z), whih solves (2.5)�(2.7) and (S) & (E).In order to obtain higher regularity of the solution, more regularity is required for thedata. We assume that the fore term ℓ ∈ W1,1(S;V ′) is of the speial struture
〈ℓ(t), v〉V ≡

∫

Ω
f(t) · v +H(t) : ∇v dx (2.8)for v ∈ V . A su�ient ondition for (A3) to hold is(A3') f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; L2(Ω)), F ∈ W1,1(S;Z), z0 ∈ Z and there exists

u0 ∈ V suh that DuE(0, u0, z0) = 0 and −DzE(0, u0, z0) ∈ K.The next theorem is the main result of this paper.Theorem 2.2. Assume that (A1), (A2) and (A3') are satis�ed. If in addition z0 ∈
H1

Γper(Ω,RN ), f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; H1
Γper(Ω)) and F ∈ W1,1(S; H1

Γper(Ω)),then the solution (u, z) to (2.5)�(2.7) with ℓ(t) as in (2.8) satis�es for every δ > 0

u ∈ L∞(B
3

2

2,∞(Ω)) ⊂ L∞(S; H
3

2
−δ(Ω)), (2.9)

z ∈ L∞(B
1

2

2,∞(Ω)) ⊂ L∞(S; H
1

2
−δ(Ω)). (2.10)Moreover, ∂iu ∈ L∞(S; H1

Γper(Ω)), ∂iz ∈ L∞(S; L2(Ω)) for 1 ≤ i ≤ d− 1.Here, Bs
p,q(Ω) are Besov spaes and we refer to [Tri83℄ for a preise de�nition. Note thatfor s > 0, s /∈ N and for every δ > 0 the following ontinuous embeddings are valid

Hs(Ω) ⊂ Bs
2,∞(Ω) ⊂ Hs−δ(Ω).Furthermore, we reall that v ∈ Bs

2,∞(Ω) for s ∈ (0, 1) if and only if v ∈ L2(Ω) and
sup

eΩ⋐Ω, h∈R\{0}, i∈{1,...,d}

|h|−s ‖△hei
v‖

L2(eΩ)
<∞.Here, ei is the i-th oordinate vetor and △hei

v(x) = v(x + hei) − v(x). This hara-terization of Bs
2,∞ gives the link between estimates of di�erene quotients and regularityproperties.As already disussed in the introdution, the global results (2.9)�(2.10) seem to be new,whereas the tangential result is known for Dirihlet boundaries (see [Nes06℄). We give ithere for ompleteness and sine it is the basis for the global result.For proving Theorem 2.2 we derive in a �rst step a regularity result for a purely periodisituation by estimating di�erene quotients of ∇u and z. These onsiderations will bearried out in Setion 3. In the seond step, Setion 4, we extend the problem desribedabove by re�etion to the periodi ase and derive in this way Theorem 2.2. The righthand side of the extended problem ontains extensions of f and z0 and additional terms,whih inlude partial derivatives of ∇u and z that are taken parallel to ΓD and ΓN . Theregularity of tangential derivatives guarantees that the data of the extended problem issmooth enough suh that the regularity theorem for purely periodi strutures may beapplied. 6



3 A pure periodi model problemIn the whole setion we assume that onditions (A1) and (A2) are satis�ed.3.1 De�nition of the pure periodi modelLet ΩP = (−ℓ, ℓ)d. We denote by H1per(ΩP ) the spae of H1-funtions whih are periodiwith respet to ΩP . The spae of admissible displaements is given by
VP = {u ∈ H1per(ΩP ) ;

∫

ΩP

udx = 0 }.We onsider the same energy as in the previous setion, namely
EP (t, v, ζ) =

∫

ΩP

W (∇v, ζ) dx−
∫

ΩP

f(t) · v +H : ∇v dx+

∫

ΩP

F (t) · ζ dxfor v ∈ VP , ζ ∈ Z = L2(ΩP ; RN ) and with W from (2.1). The periodi problem underonsideration is to �nd a displaement �eld u : S → VP and internal variables z : S → Zwith z(0) = z0 and satisfying for a.e. t ∈ S and all v ∈ H1per(ΩP ) the relations
∫

ΩP

A(∇u−Bz) : ∇v dx =

∫

ΩP

f(t) · v +H(t) : ∇v dx, (3.1)
∂tz(t) ∈ ∂χK(−DzEP (t, u(t), z(t))). (3.2)This problem is again equivalent to (S) & (E) formulated with EP and VP instead of E and

V . We assume that(A4) z0 ∈ Z, f ∈ W1,1(S; L2(ΩP )) with ∫ΩP
f dx = 0; H ∈ W1,1(S; L2(ΩP ,R

d×d));
F ∈ W1,1(S; L2(ΩP )) and there exists u0 ∈ VP suh that DuEP (0, u0, z0) = 0 and
−DzE(0, u0, z0) ∈ K.As before, we have the following existene resultTheorem 3.1. If (A1), (A2) and (A4) are satis�ed, then there exists a unique solutionpair (u, z) for problem (3.1)�(3.2) with u ∈ W1,1(S;VP ) and z ∈ W1,1(S;Z).3.2 The redued problem and a-priori estimatesWe introdue the linear, ellipti operator

A : VP → V ′
P with 〈A(u), v〉VP

=

∫

ΩP

A∇u : ∇v dxfor every u, v ∈ VP . Note that A is self adjoint and that there exists a onstant cA > 0suh that for all u ∈ VP we have 〈A(u), u〉VP
≥ cA ‖u‖2

H1(ΩP ). Thus A is an isomorphismand we an de�ne the linear and bounded operator
L : Z → Z, L(z) = Lz +B⊤A

(
∇A−1 divABz +Bz

)
,7



where the operator div : L2(ΩP ,R
d×d) → V ′

P is given by
〈div η, v〉 = −

∫

ΩP

η : ∇v dx,for η ∈ L2(ΩP ,R
d×d) and v ∈ VP .Let Ê(u, z) =
∫
ΩP

W (∇u, z) dx. The operator L is the Shur omplement operatorassoiated with
D(u,z)Ê(u, z) =

(
A divAB(·)

−B⊤A∇(·) L+B⊤AB

)(
u

z

)
.The properties of Ê imply therefore that L is self adjoint and oerive with respet to Z,i.e. we have

〈Lz1, z2〉Z = 〈Lz2, z1〉Z , 〈Lz, z〉Z ≥ cL ‖z‖2
Z (3.3)for every z, z1, z2 ∈ Z and some onstant cL > 0. Finally we de�ne

F̃ (t) = F (t) +B⊤A∇A−1(divH(t) − f(t)). (3.4)Note that f(t), H(t) and F (t) in L2(ΩP ) imply that F̃ (t) ∈ L2(ΩP ).With these de�nitions, problem (3.1)�(3.2) is equivalent to
A(u(t)) = f(t) − divH − divABz(t), (3.5)
∂tz(t) ∈ ∂χK(−L(z(t)) − F̃ (t)), z(0) = z0. (3.6)We will fous the disussion on the redued equation (3.6). Let us remark that onepossibility to prove the existene Theorem 3.1 is to apply Prop. 3.4 of [Bré73℄ to relation(3.6).The following a-priori estimates are the basis for proving our regularity results.Lemma 3.2 (A-priori estimates). Assume that for i ∈ {1, 2} the funtions zi

0 ∈ Z, F̃i ∈
L∞(S;Z) and zi ∈ W1,1(S;Z) satisfy for a.e. t ∈ S the relation

∂tzi(t) ∈ ∂χK(−Lzi(t) − F̃i(t)), zi(0) = zi
0. (3.7)Then there exists a onstant c > 0, whih is independent of the data, suh that for every

t ∈ S we have
c ‖z1(t) − z2(t)‖2

Z ≤
∥∥z1

0 − z2
0

∥∥2

Z
+ ‖z1 − z2‖W1,1(S;Z)

∥∥F̃1 − F̃2

∥∥
L∞((0,t);Z)

. (3.8)If furthermore F̃i ∈ W1,1(S;Z), then there exists c > 0 suh that
‖z1 − z2‖L∞(S;Z) ≤ c

( ∥∥z1
0 − z2

0

∥∥
Z

+
∥∥F̃1 − F̃2

∥∥
W1,1(S;Z)

)
. (3.9)8



Proof. Let zi
0, F̃i and zi be given as in Lemma 3.2. Then relation (3.7) implies that fora.e. t ∈ S we have

〈∂t(z1(t) − z2(t)),L(z1(t) − z2(t))〉Z ≤ −〈∂t(z1(t) − z2(t)), F̃1(t) − F̃2(t)〉Z .Integration with respet to t and using the properties of L from (3.3), we see that there isa onstant c > 0 suh that
c ‖z1(t) − z2(t)‖2

Z ≤
∥∥z1

0 − z2
0

∥∥2

Z
−
∫ t

0
〈∂t(z1(s) − z2(s)), F̃1(s) − F̃2(s)〉Z ds.Partial integration in the last term, Young's inequality and the properties of traes of

W1,1(S;Z)-funtions lead to estimate (3.9), while Hölder's inequality applied to the lastterm results in inequality (3.8).3.3 Regularity in the pure periodi aseBefore we state the regularity result in the periodi ase, we introdue some further nota-tion. For a funtion v : ΩP → R
n we denote by ṽ : R

d → R
n the periodi extension of vto R

d, i.e. ṽ(x+ y) = v(x) for all x ∈ ΩP and y ∈ (2ℓZ)d. Moreover, for h ∈ R
d we de�nethe shift by h as vh : ΩP → R

n, vh(x) = ṽ(x+ h) and set △hv(x) = vh(x) − v(x). Finally
Fi = { v ∈ L2(ΩP ) ; ∂iv ∈ L2(ΩP ) and v is periodi w.r. to the i-th oordinate }with ‖v‖Fi

= ‖v‖L2(ΩP ) + ‖∂iv‖L2(ΩP ). For every h ∈ R the mapping Fi → Fi de�nedvia v 7→ vhei
, where ei is a unit vetor of the i-th oordinate diretion, is an isometriisomorphism. Moreover, H1per(ΩP ) = ∩1≤i≤dFi.Theorem 3.3. Let z0 ∈ Fi and F̃ ∈ L∞(S;Fi) for some i ∈ {1, . . . , d} and assume that

z ∈ W1,1(S;Z) satis�es (3.6). Then there exists a onstant c > 0 suh that
sup

t∈S, h∈R\{0}
|h|−

1

2 ‖z(t, · + hei) − z(t, ·)‖L2(ΩP ) ≤ c. (3.10)If furthermore F̃ ∈ W1,1(S;Fi), then
z ∈ L∞(S;Fi). (3.11)This theorem shows that the time regularity of F̃ has a strong in�uene on the spatialregularity of z.Proof. We prove Theorem 3.3 by estimating di�erene quotients of z.Let z ∈ W1,1(S;Z) satisfy (3.6) with data z0 ∈ Fi and F̃ ∈ L∞(S;Fi). Let furthermore

ei denote the orresponding unit vetor. Due to the periodiity assumptions on the datait holds that for every h ∈ R the shifted funtions z0,hei
and F̃hei

have the same regularityas z0 and F̃ . Moreover, z satis�es (3.6) with respet to z0 and F̃ if and only if zhei
satis�es9



(3.6) with respet to the data z0,hei
and F̃hei

. Inequality (3.8) with z1 = z and z2 = zheiimplies that there exists a onstant c > 0, whih is independent of h and t, suh that
c ‖△hei

z(t)‖2
Z ≤ ‖△hei

z0‖2
Z + ‖△hei

z‖W1,1(S;Z)

∥∥△hei
F̃
∥∥

L∞(S;L2(ΩP ))
.From the regularity assumptions on the data we onlude that the right hand side anfurther be estimated as (see e.g. [GT77℄)

r.h.s. ≤ |h|2 ‖z0‖2
Fi

+ 2 |h| ‖z‖W1,1(S;Z)

∥∥F̃
∥∥

L∞(S;Fi)
.This proves estimate (3.10).Assume now that F̃ has the additional temporal regularity F̃ ∈ W1,1(S;Fi). Now,estimate (3.9) implies that

‖△hei
z‖L∞(S;Z) ≤ c |h|

(
‖z0‖Fi

+
∥∥F̃
∥∥

W1,1(S;Fi)

)
.From Lemma 7.24 in [GT77℄ it follows that z ∈ L∞(S;Fi).As a onlusion we obtain the following result for the full periodi problem.Theorem 3.4 (Regularity in the periodi ase).(a) Let the pair (u, z) ∈ L∞(S;VP ) × W1,1(S;Z) satisfy (3.1)�(3.2) with z0 ∈ Fi, f ∈

W1,1(S; L2(ΩP )), ∫ΩP
f(t) dx = 0, H ∈ W1,1(S;Fi) and F ∈ W1,1(S;Fi) for some

i ∈ {1, . . . , d}. Then
∂iu ∈ L∞(S; H1per(ΩP )), z ∈ L∞(S;Fi).(b) Assume that the pair (u, z) ∈ L∞(S;VP )×W1,1(S;Z) satis�es (3.1)�(3.2) with z0 ∈

B
1

2

2,∞(ΩP ), f ∈ L∞(S; L2(ΩP )) with ∫ΩP
f(t) dx = 0, H ∈ L∞(S;Fi) and F ∈

L∞(S;Fi) for some i ∈ {1, . . . , d}. Then there exists a onstant c > 0 suh that
sup

t∈S, h∈R\{0}
|h|−

1

2 ‖△hei
∇u(t)‖L2(ΩP ) ≤ c,

sup
t∈S, h∈R\{0}

|h|−
1

2 ‖△hei
z(t)‖L2(ΩP ) ≤ c.Here, ei is the unit vetor of the i-th oordinate diretion.If the assumptions of part (b) are satis�ed for every i ∈ {1, . . . , d}, then

u ∈ L∞(S; B
3

2

2,∞(ΩP )), z ∈ L∞(S; B
1

2

2,∞(ΩP )).Part (a) of the previous Theorem is losely related to a result in [Nes06℄ for periodistrutures.Proof. Assume that the regularity assumptions of part (a) are valid. Ellipti regularitytheory implies that the funtion F̃ de�ned in (3.4) belongs to W1,1(S;Fi). Thus it followsfrom Theorem 3.3 that z ∈ L∞(S;Fi). The result for u follows again by ellipti regularitytheory on the basis of relation (3.5).If the data has the regularity desribed in Theorem 3.4(b), then F̃ ∈ L∞(S;Fi). Theorem3.3 and ellipti regularity results lead to the results for z and u.10



4 Proof of the regularity properties of the original problemIn this setion we prove regularity theorem 2.2. The tangential regularity of u and zdesribed in Theorem 2.2 follows in the same way as part (a) of Theorem 3.3 and wereformulate the result in Setion 4.1. The essential new idea in this paper is the proof ofthe higher di�erentiability in diretions orthogonal to the Dirihlet and Neumann boundary.This is arried out in Setion 4.2, where we extend the elasto-plasti model by re�etionwith respet to the Dirihlet and Neumann boundary to a problem whih is periodi inthe ed diretion. For deriving the regularity properties with respet to the ed diretion,we apply part (b) of Theorem 3.4. The tangential regularity result from Theorem 4.1guarantees that the extended data satisfy the assumptions of part (b) of Theorem 3.4.4.1 Regularity tangential to Γ0 and Γ1Theorem 4.1 (Tangential regularity). Assume that (A1), (A2) and (A3') are satis-�ed and that z0 ∈ H1
Γper(Ω), f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; H1

Γper(Ω)) and F ∈
W1,1(S; H1

Γper(Ω)). Then the solution (u, z) of the partially periodi problem (2.5)�(2.7)satis�es for 1 ≤ i ≤ d

∂iu ∈ L∞(S; H1
Γper(Ω)), z ∈ L∞(S;∩1≤j≤d−1Fj(Ω)).Proof. Like in Setion 3.2 one an derive a redued formulation for the partially periodiproblem and prove Theorem 4.1 in the same way as Theorem 3.4(a).4.2 Proof of higher regularity in normal diretionLet (u, z) ∈ W1,1(S;V ×Z) be the solution to (2.5)�(2.7) with data aording to Theorem2.2. We reall that u∣∣

Γ1
= 0.Let ϕ ∈ C∞([0, ℓ]) with ϕ(xd) = 1 in a neighborhood of 0, ϕ(xd) = 0 in a neighborhoodof ℓ and 0 ≤ ϕ ≤ 1. By γ0 we denote the trae operator from H1(Ω) to L2(Γ0) and de�ne

û(t, x) := ϕ(xd)(γ0u(t))(x
′) for x = (x′, xd) ∈ Ω, t ∈ S.The tangential regularity of u leads to the following regularity for û:Lemma 4.2. It holds û ∈ L∞(S; H1

Γper(Ω)) and ∂dû ∈ L∞(S; H1
Γper(Ω)).Proof. Sine u ∈ W1,1(S;V ) ⊂ L∞(S; H1

Γper(Ω)), the trae theorem implies that γ0u ∈
L∞(S; H

1

2per(ΓD)) and therefore û ∈ L∞(S; L2(Ω)). Moreover, from Theorem 4.1 we on-lude that for all h ∈ R, for all i ∈ {1, . . . , d− 1} and a.e. t ∈ S it holds
‖△hei

û(t)‖L2(Ω) ≤
√

2ℓ ‖△hei
γ0u(t)‖L2(Γ0)

≤ c ‖△hei
u(t)‖H1(Ω) ≤ c |h| ‖∂iu(t)‖H1(Ω) .11



In the seond inequality we have used the ontinuity of the trae operator γ0. Sine all theestimates are uniform with respet to h, it follows that û ∈ L∞(S;∩1≤i≤d−1Fi(Ω)). Obvi-ously, for k ∈ N it holds ∂(k)
d û(t, x) = ϕ(k)(xd)(γ0u(t))(x

′), and the previous onsiderationsshow that ∂(k)
d û ∈ L∞(S; H1

Γper(Ω)), whih �nishes the proof.Let R = I − 2ed ⊗ ed ∈ R
d×d desribe the re�etion at the boundary Γ0. For funtions

v : Ω → R
d we will use the notation

∇′v(x) := (∂1v(x), . . . , ∂d−1v(x), 0) = 1
2(∇v(x))(R + I) ∈ R

d×d.We onsider the following extensions to ΩP = (−ℓ, ℓ)d:
uP (t, x) =




u(t, x) − û(t, x) x ∈ Ω+ = Ω

−u(t, Rx) + û(t, Rx) x ∈ Ω− = RΩ
.For the internal variable we use an even extension:

zP (t, x) =




z(t, x) x ∈ Ω+

z(t, Rx) x ∈ Ω−

, z0,P (x) =




z0(x) x ∈ Ω+

z0(Rx) x ∈ Ω−

.The extended volume fores are de�ned as
fP (t, x) =




f(t, x) x ∈ Ω+

−f(t, Rx) −
(
div
(
(A(∇u−Bz) −H)(R+ I)

))
◦R x ∈ Ω−

.Note that in the de�nition of fP only tangential derivatives of ∇u, z and H are involved.Finally, we de�ne
θP (t, x) =




∇û(t, x) x ∈ Ω+

−∇(û(t, Rx)) + 2∇′(u(t, Rx)) x ∈ Ω−and set
HP (t, x) = −AθP (t, x) +




H(t, x) x ∈ Ω+

H(t, Rx) x ∈ Ω−

,

FP (t, x) = −B⊤AθP (t, x) +




F (t, x) x ∈ Ω+

F (t, Rx) x ∈ Ω−

.Lemma 4.3. Under the assumptions of Theorem 2.2 the above de�ned funtions have thefollowing regularity
uP ∈ L∞(S;VP (ΩP )),

zP ∈ W1,1(S; L2(ΩP )), z0,P ∈ H1per(ΩP ),

fP ∈ L∞(S; L2(ΩP )),

∫

ΩP

fP (t) dx = 0,

θP ,HP , FP ∈ L∞(S;Fd).12



Proof. The assertions for zP and z0,P are obvious. It follows from Lemma 4.2 that uP

∣∣
Ω±

∈
L∞(S; H1

Γper(Ω±)). Moreover, we have γ0(uP

∣∣
Ω+

) = 0 = γ0(uP

∣∣
Ω−

) and therefore uP ∈
L∞(S;VP (ΩP )).The higher tangential regularity of u and z, see Theorem 4.1, guarantees that fP ∈
L∞(S; L2(ΩP )). By partial integration we onlude that

∫

Ω+

div
(
(A(∇u−Bz) −H)(R + I)

)
dx = 0for a.e. t ∈ S, sine on Γ0∪Γ1 it holds (R+ I)~n = 0 and on Γper we may use the periodiityonditions. Thus, ∫ΩP

fP (t) dx = 0 for a.e. t ∈ S.Lemma 4.2 and Theorem 4.1 imply that ∂dθP

∣∣
Ω±

∈ L∞(S; L2(Ω±)) and we only haveto hek whether the traes on Γ0 oinide and whether θP

∣∣
Γ1

= θP

∣∣
RΓ1

. Straight forwardalulations, using integration by parts on Ω+ and Ω− separately and taking into aountthat u∣∣
Γ1

= 0, show that for every ψ ∈ C∞per(ΩP ) it holds
∫

ΩP

θP : ∂dψ dx =

∫

Ω−

∂d(2∇′(u ◦R) −∇(û ◦R)) : ψ dx+

∫

Ω+

∂d∇û : ψ dx.This proves the assertions on θP and �nally on HP and FP .Lemma 4.4. For almost all t ∈ S and every v ∈ H1per(ΩP ) the above de�ned funtions
uP ∈ L∞(S;VP ) and zP ∈ W1,1(S;Z) satisfy zP (0) = z0,P and

∫

ΩP

A(∇uP (t) −BzP (t)) : ∇v dx =

∫

ΩP

fP (t) · v +HP (t) : ∇v dx, (4.1)
∂tzP (t) ∈ ∂χK(−LzP (t) +B⊤A(∇uP (t) −BzP (t)) − FP (t)). (4.2)Thus, supt∈S,h∈R\{0} |h|−

1

2

(
‖△hed

∇uP (t)‖L2(ΩP ) + ‖△hed
zP (t)‖L2(ΩP )

)
≤ c .Proof. Relations (4.1)�(4.2) show that the extended funtions uP and zP are solutionsof a pure periodi model. The regularity of uP and zP therefore follows from part (b) ofTheorem 3.4. Due to Lemma 4.3 the extended funtions fP , FP , HP and z0,P have therequired regularity properties for i = d.We prove now that (4.1) and (4.2) are valid.Relation (4.2) follows immediately from the de�nitions taking into aount that theonvex set K does not depend on x.Relation (4.1) an be veri�ed as follows: for every v ∈ VP it holds

∫

ΩP

A(∇uP −BzP ) : ∇v dx =

∫

Ω+

A(∇u−Bz) : ∇(v − v◦R) dx

−
∫

Ω+

A∇û : ∇v dx

+

∫

Ω+

A(∇ûR−∇u(R+ I)) : ∇(v◦R)R dx

+

∫

Ω+

(
A(∇u−Bz)

)
(R+ I) : ∇(v◦R) dx. (4.3)13



Note that (v − v◦R)
∣∣
Ω+

∈ V (Ω+) and therefore we may use relations (2.6) and (2.8) toreplae the �rst term on the right hand side of (4.3). This yields
∫

ΩP

A(∇uP −BzP ) : ∇v dx =

∫

Ω+

f · (v − v◦R) dx

+

∫

Ω+

(
A(∇u−Bz) −H)(R + I) : ∇(v◦R) dx

+

∫

Ω+

H : (∇v + ∇(v◦R)R) dx

−
∫

Ω+

A∇û : ∇v dx

+

∫

Ω−

A(∇(û◦R) −∇(u◦R)(R+ I)) : ∇v dx.Transforming the terms with v◦R bak to Ω− and applying the Gauss Theorem to theseond term on the right hand side �nally proves relation (4.1). Note that the boundaryterms vanish due to the periodiity properties on Γper and sine (R+I)~n = 0 on Γ0∪Γ1.The main regularity theorem, Theorem 2.2, is now an immediate onsequene of theprevious lemma:Corollary 4.5. Let the assumptions of Theorem 2.2 be satis�ed.Then u ∈ L∞(S; B
3

2

2,∞(Ω)) and z ∈ L∞(S; B
1

2

2,∞(Ω)).Proof. Let uP and zP be the extensions of u and z as de�ned above. By Lemma 4.4 wehave
sup

t∈S, eΩ⋐Ω,h∈R\{0}

|h|−
1

2

(
‖△hed

∇u(t)‖
L2(eΩ)

+ ‖△hed
z(t)‖

L2(eΩ)

)
≤ c.Combining this estimate with the tangential regularity in Theorem 4.1 proves Corollary4.5 and Theorem 2.2.Assume that B = 0. Then the problem (2.5)�(2.7) deouples into an ellipti equa-tion (2.6) for u and an evolution inlusion (2.7) for z. If f ∈ W1,1(S; L2(Ω)) and H ∈

W1,1(S; H1
Γper(Ω)), then standard results for linear ellipti systems guarantee that u ∈

W1,1(S; H2(Ω)). This result is usually obtained by �rst proving a tangential result like inTheorem 4.1 and then by solving the equation for the missing derivatives: ∂d(A∇u)d =

−f − divH − 1
2 div((A∇u)(R + I)). Due to the tangential regularity, the right hand sidebelongs to W1,1(S; L2(Ω)), and thus ∂2

du(t) ∈ L2(Ω). For pure ellipti systems this ar-gument is equivalent to the re�etion argument whih we applied in the proof of Lemma4.4.Note �nally that in the deoupled ase, i.e. B = 0, and under the assumptions ofTheorem 2.2 the internal variable has the regularity z ∈ L∞(S; H1
Γper(Ω)). This followssine for B = 0 the extended funtion FP belongs to W1,1(S; L2(ΩP )) and not only to

L∞(S; L2(ΩP )), and therefore part (a) of Theorem 3.4 an be applied.14



4.3 Non-zero boundary onditionsWe onsider now the ase with non-vanishing Dirihlet datum hD ∈ W1,1(S; H
1

2per(Γ1))and Neumann datum hN ∈ W1,1(S; (H
1

2per(Γ0))
′). The task is to �nd a pair (u, z) ∈

W1,1(S; H1
Γper(Ω)×L2(Ω)) with u(t)∣∣

Γ1
= hD(t) and z(0) = z0 suh that for all v ∈ V anda.e. t ∈ S we have

∫

Ω
A(∇u(t) −Bz(t)) : ∇v dx =

∫

Ω
f(t) · v dx− 〈hN (t), v〉Γ0

, (4.4)
∂tz(t) ∈ ∂χK(−Lz(t) +B⊤A(∇u(t) −Bz(t))). (4.5)Assume that

hD ∈ W1,1(S; H
3

2per(Γ1)), hN ∈ W1,1(S; H
1

2per(Γ0)). (4.6)By the trae theorem there exists uD ∈ W1,1(S; H2
Γper(Ω)) with uD

∣∣
Γ1

= hD. Moreover,there exists uN ∈ W1,1(S;V ∩ H2
Γper(Ω)) with

∫

Ω
A∇uN : ∇v dx = 〈hN (t), v〉Γ0for all v ∈ V . It follows that the pair (u, z) solves (4.4)�(4.5) if and only if u = u0 + uDwith u0(t) ∈ V and the pair (u0, z) satis�es for every v ∈ V

∫

Ω
A(∇u0(t) −Bz(t)) : ∇v dx =

∫

Ω
f(t) · v +A(∇uN (t) −∇uD(t)) : ∇v dx, (4.7)

∂tz(t) ∈ ∂χK(−Lz(t) +B⊤A(∇u0(t) −Bz(t)) +B⊤A∇uD(t)). (4.8)From (4.6) we onlude that
H := A(∇uN −∇uD) ∈ W1,1(S; H1

Γper(Ω)),

F := −B⊤A∇uD ∈ W1,1(S; H1
Γper(Ω)).Thus, the next theorem and Theorem 1.1 follow immediately from Theorem 2.2.Theorem 4.6 (Non-vanishing boundary data). Let z0 ∈ H1

Γper(Ω), f ∈ W1,1(S; L2(Ω)),
hD and hN with (4.6) and assume that the pair (u, z) ∈ W1,1(S; H1

Γper(Ω)×L2(Ω)) satis�es(4.4)�(4.5). Then
u ∈ L∞(S; B

3

2

2,∞(Ω)), z ∈ L∞(S; B
1

2

2,∞(Ω)).Bibliography[AC04℄ H.-D. Alber and K. Cheªmi«ski. Quasistati problems in visoplastiity theoryI: Models with linear hardening. In I. Gohberg et al., editor, Operator theo-retial methods and appliations to mathematial physis. The Erhard Meistermemorial volume, volume 147 of Oper. Theory, Adv. Appl., pages 105�129.Birkhäuser, Basel, 2004. 15



[AN08℄ H.-D. Alber and S. Nesenenko. Loal H1�regularity and H 1

3
−δ�regularity up tothe boundary in time dependent visoplastiity. Tehnial report, DarmstadtUniversity of Tehnology, 2008.[BF96℄ A. Bensoussan and J. Frehse. Asymtoti behaviour of the time dependentNorton-Ho� law in plastiiy theory and H1

loc regularity. Comment. Math. Univ.Carolinae, 37(2):285�304, 1996.[Bré73℄ H. Brézis. Opérateurs maximaux monotones et semi-groupes de ontrationsdans les espaes de Hilbert. North-Holland Mathematis Studies, 1973.[Dem℄ A. Demyanov. Regularity of stresses in Prandtl-Reuss perfet plastiity. Cal.Var. Partial Di�er. Equ. Published online: 19 Marh 2008.[DL72℄ G. Duvaut and J. L. Lions. Les inéquations en méanique et en physique,volume 21 of Travaux et reherhes mathematiques. Dunod, Paris, 1972.[FL07℄ J. Frehse and D. Löbah. Hölder ontinuity for the displaements in isotropiand kinemati hardening with von Mises yield riterion. Preprint SFB611 359,University of Bonn, 2007.[GT77℄ D. Gilbarg and N. S. Trudinger. Ellipti partial di�erential equations of se-ond order, volume 224 of Grundlehren der mathematishen Wissenshaften.Springer-Verlag, Berlin, 1977.[HHLN88℄ J. Haslinger, I. Hlavá£ek, J. Loví²ek, and J. Ne£as. Solution of variational in-equalities in mehanis, volume 66 of Applied Mathematial Sienes. Springer-Verlag, New York, 1988.[HR99℄ W. Han and B. D. Reddy. Plastiity, Mathematial Theorie and NumerialAnalysis. Springer Verlag In., New York, 1999.[Joh78℄ C. Johnson. On plastiity with hardening. J. Math. Anal. Appl., 62:325�336,1978.[KN08℄ D. Knees and P. Ne�. Regularity up to the boundary for nonlinear elliptisystems arising in time�inremental in�nitesimal elasto�plastiity. SIAM J.Math. Anal., 40(1):21�43, 2008.[Kne06℄ D. Knees. Global regularity of the elasti �elds of a power-law model on Lips-hitz domains. Math. Methods Appl. Si., 29:1363�1391, 2006.[Mie05℄ A. Mielke. Evolution of rate-independent systems (h. 6). In C.M. Dafermos andE. Feireisl, editors, Handbook of Di�erential Equations, Evolutionary EquationsII, pages 461�559. Elsevier B.V., 2005.16



[Nes06℄ S. Nesenenko. Homogenization and Regularity in Visoplastiity. PhD thesis,Tehnishe Universität Darmstadt, 2006.[Rep96℄ S. I. Repin. Errors of �nite element method for perfetly elasto-plasti problems.Math. Models Methods Appl. Si., 6(5):587�604, 1996.[Ser92℄ G.A. Seregin. Di�erential properties of solutions of evolutionary variationalinequalities in plastiity theory. Probl. Mat. Anal., 12:153�173, 1992.[Shi99℄ P. Shi. Interior regularity of solutions to a dynami yli plastiity model inhigher dimensions. Adv. Math. Si. Appl., 9(2):817�837, 1999.[Ste08℄ U. Stefanelli. A variational priniple for hardening elastoplastiity. SIAM J.Math. Anal., 2008. to appear.[Tri83℄ H. Triebel. Theory of funtion spaes, volume 78 ofMonographs in Mathematis.Birkhäuser, Basel, 1983.

17


