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The nonlinear Schrödinger equation based on the Taylor approximation of the
material dispersion can become invalid for ultrashort and few-cycle optical
pulses. Instead, we use a rational fit to the dispersion function such that the
resonances are naturally accounted for. This approach allows us to derive a
simple non-envelope model for short pulses propagating in one spatial dimen-
sion. This model is further investigated numerically and analytically.
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1. Introduction

The nonlinear Shrödinger equation (NSE) together with
its modifications including higher-order dispersive and
nonlinear terms (higher-order NSE) is a powerful tool
for analysis of optical pulse propagation [1, 2]. In this
model the optical field is described in terms of a com-
plex amplitude, which is slow as compared to the carrier
wave oscillations. The slowly-varying envelope approxi-
mation (SVEA) resulting from the time-scales separation
requires less computational efforts and allows for a simple
treatment of the nonlinear medium response. To account
for the linear medium response the dispersion relation
between the angular frequency ω and the propagation
constant k is replaced by the Taylor expansion of k(ω)
around the carrier frequency ωc, that is why NSE has an
universal form. Higher-order terms are especially impor-
tant near the zero dispersion frequency (ZDF) where the
second-order dispersion vanishes.

Recent achievements in ultrashort pulse generation
[3, 4] require a modification of the standard SVEA. This
is especially true for the extremely short few-cycle pulses
whose spectral width is comparable to the carrier fre-
quency. The complex field envelope can still be intro-
duced in this situation, however the envelope changes
as fast as the carrier field itself. In this case analogies
of the NSE can be derived [5], the variety of possible
models have been intensely discussed in the literature
[6–11]. All these models preserve a simple and intu-
itively clear envelope picture. However, due to the ab-
sence of the time-scales separation, the computational
advantage of such models over the non-envelope ones is
not so obvious. Actually, the modified “fast-envelope”
NSE and non-envelope unidirectional models are closely
related [12, 13].

The invalidity of the SVEA is not the only difficulty
arising in theoretical description of ultrashort pulses. An-
other difficulty is that the traditional representation of
the material dispersion relation as a Taylor expansion
around the pulse carrier frequency can become invalid.
This happens when the pulse spectral width is compara-
ble to the width of the transparency window [14]. Indeed,
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Fig. 1. Real part of the response function (a,c,e,
solid lines) and group velocity (b,d,f, solid lines) ver-
sus sixteenth-order Taylor expansions of ε(ω) (a,c, dotted
lines) and k(ω) (b,d, dotted lines) around the carrier fre-
quency and rational fit (4) (e,f, dotted lines) for the bulk
fluoride glass. The pulse currier frequency equals either
ZDF (a,b, thick point) or 800 nm (c,d, thick point). The
fitting interval (5) is shown for the rational fit (e,f, thick
points).

in the presence of resonances the response function ε(ω)
and consequently the dispersion function k(ω) always
have singularity points in the complex plane. Therefore
the convergence radius of any Taylor expansion is finite
and determined by the singularity nearest to ωc. As it is
seen from Fig. 1a–d, the Taylor expansion and the actual
dispersion function are drastically different outside the
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convergence range. This discrepancy can not be reduced
by increasing the approximation order.

For instance, in Fig. 1a the convergence of the Taylor
expansion breaks up at ω ≈ 2ωc so that neither the sec-
ond nor the higher harmonics of the carrier wave can be
described by NSE. On the other hand, the contribution
of the higher harmonics is important for the few-cycle
pulse dynamics. Higher harmonics can be generated in-
trinsically in the course of pulse evolution, e.g., during
supercontinuum generation when an optical field with ex-
tremely wide spectrum is produced [15]. To overcome the
limitations of the Taylor expansion we consider a ratio-
nal approximation of the dispersion function instead of
the polynomial one. The rational approximation ab ini-
tio accounts for the singularity points and therefore is
able to describe dispersion in a whole transparency win-
dow. Besides, it can reduce the stiffness of the numerical
routine.

In this paper a rational fitting function is used to con-
struct a simple non-envelope model for the pulse electric
field, which is then used to describe the dynamics of the
few-cycle pulses. The paper is organized as follows. In
the next section an example of the rational approxima-
tion of the response function is given. Sec. III deals with
the derivation of the model equation which is then inves-
tigated in Sec. IV. The results of our studies are summa-
rized in Sec. V.

2. Response function

As a specific example let us consider a one-dimensional
pulse propagation in a bulk fluoride glass. The response
function in the optical transparency window can be pre-
sented by a double resonance Lorentz dispersion model

ε(ω) = 1− b21
ω2 + 2iδ1ω − ω2

1

− b22
ω2 + 2iδ2ω − ω2

2

, (1)

where ω1 = 174.12 THz and ω2 = 9144.8 THz are un-
damped resonance frequencies, b1 = 121.55 THz and b2 =
6719.8 THz are plasma frequencies, and δ1 = 49.55 THz
and δ2 = 1434.1 THz are phenomenological damping con-
stants [14]. To illustrate the behavior of the Taylor ex-
pansion inside and outside the convergence domain the
real part of ε(ω) is shown in Fig. 1a,c together with the
sixteenth-order Taylor expansion for two typical values
of the carrier frequency.

The dispersion function k(ω) corresponding to Eq. (1)
is derived from the dispersion relation

ω2ε(ω) = k2c2. (2)

The pulse group velocity vgr = Re(∂ω/∂k) is compared
to that derived from the Taylor approximation of k(ω) in
Fig. 1b,d. We see that k(ω) is poorly approximated near
ω ≈ 2ωc.

In what follows we use a more general rational approx-
imation

ε(ω) = · · ·+ η−4

ω4
+
η−2

ω2
+ η0 + η2ω

2 + η4ω
4 + · · · , (3)

where η0,±2,±4... are empirical dispersion constants of the
medium [16]. More specifically, we will use a simple trun-
cation of Eq. (3)

ε(ω) ≈ ε̄
(

1− µ2ω
2
0

ω2
+ ν2ω

2

ω2
0

)
, (4)

where ω0 is a suitable reference frequency; ε̄, µ, and ν
are dimensionless fit parameters.

An exemplary fit of the response function (1) by the
expression (4) is shown in Fig. 1e,f. We consider the
spectral interval

250 THz < ω < 5 PHz (5)

with ω0 = 1 PHz and obtain the following values of the
parameters:

ε̄ = 1.5369, µ2 = 0.01115, ν2 = 0.004676, (6)

for the best fit of ε(ω) within the interval (5). The param-
eter values (6) will be later used for numerical solutions
of the field equations.

Let us consider the dispersion relation (2) with the
response function (4), i.e.,

ω2 − µ2ω2
0 +

ν2

ω2
0

ω4 = k2v2
ph, (7)

where vph = c/
√
ε̄ is a typical value of the phase velocity

for the frequency range of interest.
Equation (7) gives two solutions for ω2, positive and

negative. It is helpful to simplify these solutions using the
smallness of µ2 and ν2 in Eq. (6). Since in the frequency
range of interest ω2 ≈ k2v2

ph, the positive solution is given
by the relation

ω2 = k2v2
ph + µ2ω2

0 −
ν2

ω2
0

k4v4
ph + h.o.t.

The second (negative) solution

ω2 = −ω
2
0

ν2
− k2v2

ph + h.o.t.

formally corresponds to exponentially growing oscilla-
tions. These oscillations are unphysical because their
spectrum is located outside the frequency domain (5)
where approximation (4) is valid. They will produce a
numerical instability when solving (in time domain) the
wave equation with the response function (4). To avoid
the instability we regularize Eq. (7) by replacing ω4 with
ω2 · k2v2

ph. The resulting dispersion relation reads

ω2 =
k2v2

ph + µ2ω2
0

1 + ν2k2v2
ph/ω

2
0

> 0. (8)

One can easily check that Eqs. (7) and (8) are practically
identical for the parameter values (6) and frequency do-
main (5).
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Equation (8) can be related to Eq. (2) by defining the
following regularized counterpart of Eq. (4)

ε(ω, k) = ε̄

(
1− µ2ω

2
0

ω2
+ ν2 k

2

k2
0

)
, (9)

where k0 = ω0/vph. In what follows we apply Eq. (9)
to calculate the linear part of the electric displacement
vector.

3. Model derivation

In this section we derive a reduced model equation for
the few-cycle pulses. We consider one-dimensional pulse
propagation in a bulk medium and assume that the ra-
dial dependence of the electric field E = (E(z, t), 0, 0) is
negligible. The field dynamics can then be described by
a (1 + 1) dimensional equation

∂2
tD − c2∂2

zE = 0. (10)

The electric displacement vector D(E) contains both
linear and nonlinear parts. In the spectral domain the
linear part Dlin(z, t) is given as

Dlin
ωk = ε(ω, k)Eωk,

where ε(ω, k) is defined by Eq. (9). In the physical space
this corresponds to the following material relation

∂2
tD

lin = ε̄

(
∂2
tE + µ2ω2

0E −
ν2

k2
0

∂2
t ∂

2
zE

)
.

Inserting D = Dlin + Dnl into Eq. (10) we obtain the
following evolution equation

∂2
tE − v2

ph∂
2
zE + µ2ω2

0E −
ν2

k2
0

∂2
t ∂

2
zE +

1
ε̄
∂2
tD

nl = 0.

Introducing normalized coordinates t̄ = ω0t and z̄ = k0z,
we rewrite the evolution equation in the form

∂2
t̄E − ∂

2
z̄E + µ2E − ν2∂2

t̄ ∂
2
z̄E +

1
ε̄
∂2
t̄D

nl = 0. (11)

Further, we assume an instantaneous self-focusing Kerr
nonlinearity Dnl = 4πχ(3)E3 with positive frequency in-
dependent χ(3). Finally introducing a normalized electric
field

u =

√
4πχ(3)

ε̄
E,

we arrive to the dimensionless model equation

utt − uzz + µ2u− ν2uttzz + ∂2
t (u3) = 0, (12)

where derivatives are denoted by indices and the bars
over t and z are omitted.

Equation (12) is our model equation for the ultrashort
pulses that will be investigated in the reminder of the
paper. Note, that when deriving Eq. (12) neither SVEA
nor the unidirectional approximation was used.

4. Analysis of the model

In this section we discuss properties of the model (12)
and consider its numerical solutions.

A. Lagrangian formulation

In the course of derivation of the model (12) all dissi-
pative effects, e.g., the imaginary part of the response
function, were neglected. As a consequence, one could
expect that Eq. (12) has an intrinsic Lagrangian struc-
ture and integrals of motion which are discussed in this
section.

To obtain conservation laws for Eq. (12) we introduce
the following Lagrangian density

L =
φ2
t

2
− φ2

z

2
− µ2φ2

2
− ν2Φ2

2
+ ν2φzΦt +

φ4
t

4
(13)

for two real scalar fields φ(z, t) and Φ(z, t). The corre-
sponding Lagrangian equations

δ

δφ

∫
L dxdt = 0 and

δ

δΦ

∫
L dxdt = 0

have the form

φtt − φzz + µ2φ+ ν2Φtz + ∂t(φ3
t ) = 0,

Φ + φtz = 0,

or

φtt − φzz + µ2φ− ν2φttzz + ∂t(φ3
t ) = 0. (14)

Now, applying ∂/∂t to Eq. (14) and replacing φt with u
we arrive at Eq. (12). Hence, we conclude that our basic
Eq. (12) is a Lagrangian one.

Using the Lagrangian (13) one immediately derives an
energy density

e =
∂L

∂φt
φt+

∂L

∂Φt
Φt−L =

φ2
t

2
+
φ2
z

2
+
µ2φ2

2
+
ν2Φ2

2
+

3φ4
t

4
,

and a momentum density

p =
∂L

∂φt
φz +

∂L

∂Φt
Φz = φtφz + ν2φzΦz + φ3

tφz.

Finally, the energy and the momentum are given by

E =
∫ (

φ2
t

2
+
φ2
z

2
+
µ2φ2

2
+
ν2φ2

tz

2
+

3φ4
t

4

)
dz,

P =
∫ (

φtφz + ν2φzzφtz + φ3
tφz
)
dz.

These integrals of motion have been used to test the qual-
ity of numerical solutions. They are completely expressed
in terms of the potential φ so that Eq. (14) is a useful
reformulation of the basic model (12).
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Fig. 2. Numerical solution of Eq. (12) with the parameter
values (6) and initial pulse shape (15). A = 0.15, κ =
1, and L = 5. Left: pulse shape in a suitably shifted
coordinate frame. Right: pulse spectrum. Solutions are
shown at times: 0 fs (a,b); 2 fs (c,d); 5 fs (e,f); 10 fs (g,h).

B. Numerical solutions

In this section we discuss numerical solutions of the
model (12). The values of the parameters µ and ν are
specified in Eq. (6). The solutions are calculated on the
spatial domain |z| < 100π corresponding to 152µm for
the system parameters from Fig. 1. Periodic boundary
conditions are used. The initial pulse shape is given by
the expression

u|t=0 =
A sinκz

cosh(z/L)
, (15)

where the dimensionless parameter A determines the am-
plitude, κ is the wave vector, and L is the duration of
the pulse. The carrier frequency ωc is given by Eq. (8)
with k = k0κ. To a good approximation ωc is equal to
κ · 1 PHz. The initial condition for the first derivative of
the electric field ut is specified in such a way that

(ut + uz)|t=0 = 0,

so that the pulse moves along z-axis. The total sim-
ulation time is 10 fs (Fig. 2 and 4, total pulse path
≈ 2.42 mm) and 30 fs (Fig. 3).
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Fig. 3. Numerical solution of Eq. (12) with the parameter
values (6) and initial pulse shape (15). A = 0.05, κ =
0.7, and L = 6. Left: pulse shape in a suitably shifted
coordinate frame. Right: pulse spectrum. Solutions are
shown at times: 0 fs (a,b); 10 fs (c,d); 20 fs (e,f); 30 fs
(g,h).

The carrier frequency for the initial pulse in Fig. 2
corresponds to the ZDF which is equal to 0.98 PHz for
the dispersion law (1). As we see from Fig. 2d,f, the
spectrum quickly becomes considerably brighter. The
pulse splits in two parts corresponding to normal (ω >
ZDF) and anomalous (ω < ZDF) dispersion domains. A
considerable part of the pulse spectrum is located at ω >∼
2ωc. Therefore the NSE based on the Taylor expansion
around ωc can not describe pulse splitting adequately. A
similar splitting of the pulse spectrum was also observed
in simulations of the full Maxwell system coupled with
the instantaneous Kerr nonlinearity (see, e.g., [17]).

Figure 3 shows the pulse evolution in the anomalous
dispersion regime where ordinary envelope solitons exist
[1, 2]. The parameters A and L in Eq. (15) are chosen
in such a way that the pulse envelope A/ cosh(z/L) coin-
cides with one of the exact NSE solitary solutions. The
pulse has a clear tendency to survive during the evolu-
tion. Nevertheless, it splits in three parts (Fig. 3c). A tail
containing oscillations in the normal dispersion domain
still appears. This tail and the corresponding localized
solution moving behind the main pulse (Fig. 3e,g) can
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Fig. 4. Numerical solution of Eq. (12) with the parameter
values (6) and initial pulse shape (15). A = 0.05, κ =
1.3, and L = 8. Left: pulse shape in a suitably shifted
coordinate frame. Right: pulse spectrum. Solutions are
shown at times: 0 fs (a,b); 2 fs (c,d); 5 fs (e,f); 10 fs (g,h).

not be described by NSE.
Figure 4 illustrates propagation of a short pulse in the

normal dispersion regime when ordinary envelope soli-
tons do not exist. The dominating dynamical process is
permanent pulse broadening. Note, that the pulse enve-
lope evolves smoothly but a sudden jump at the pulse
front. This jump can be interpreted as an optical shock
wave.

C. Traveling-wave solutions

In this section we demonstrate that Eq. (12) does not
have localized traveling-wave solutions of the form u =
u(z−st) where a constant parameter s determines soliton
velocity. To this end we apply a variational approach
based on the potential formulation (14). Introducing an
ansatz

φ(z, t) =
1
s2
f(ξ) with ξ = z − st,

we reduce Eq. (14) to an ordinary differential equation
for f(ξ)

(s2 − 1)f ′′ + µ2f − s2ν2f ′′′′ + (f ′3)′ = 0,

where the derivative with respect to ξ is denoted by a
prime. This equation can be reformulated as an ex-
tremum condition δI[f ]/δf = 0, where the functional

I =
∫ [

(1− s2)(f ′)2 + µ2f2 − (sνf ′′)2 − (f ′)4

2

]
dξ

is related with the Lagrangian (13).
Assume that f = h(ξ) is a localized solitary solution

in question. Inserting into I[f ] a scaled test function
f = h(σξ)/

√
σ with a free positive scaling parameter σ,

we rewrite the result as

I =
∫ [

(1− s2)(h′)2 +
µ2h2

σ2
− (sνσh′′)2 − σ(h′)4

2

]
dξ.

Since for σ = 1 the test function is equal to the solitary
solution, I(σ) should have an extremum at this point.
However, this contradicts to the fact that

dI(σ)
dσ

∣∣∣∣
σ=1

= −
∫ [

2µ2h2 + 2(sνh′′)2 +
(h′)4

2

]
dξ < 0.

Hence, the localized solitary solution h(ξ) can not ex-
ist. In other words, all solitary solutions of Eq. (12) are
non-stationary in the comoving frame of reference. Such
solutions are usually referred to as breathers. At present,
explicit expressions for breathers are known only for sim-
ple special cases of Eq. (12) (see [18–21] and also the next
section).

D. Limiting cases of Eq. (12)

In this section we investigate relations between Eq. (12)
and some other reduced models derived earlier to de-
scribe propagation of short optical pulses. We recall that
Eq. (12) was obtained without any assumptions on pulse
duration. When the pulse spectrum is sufficiently nar-
row, Eq. (12) can be reduced to the envelope equation,
which is nothing else but NSE. To derive it we insert a
standard plane-wave ansatz u ∼ ei(κz−Ωt) into the linear
part of Eq. (12) and obtain the dispersion relation

Ω2 − κ2 − µ2 + ν2Ω2κ2 = 0 (16)

which coincides with Eq. (8) after the back-
transformation to the dimensional ω = Ωω0 and
k = κk0 [see Eqs. (4) and (9)]. We now introduce the
SVEA by writing

u(z, t) =
1
2
ψ(z, t)ei(κz−Ωt) + c.c., (17)

where Ω and κ obey Eq. (16) and the complex amplitude
ψ(z, t) is slow. Inserting Eq. (17) into Eq. (12) in the
first order of the perturbation theory we obtain

ψt + v̄grψz = 0,

where

v̄gr =
∂Ω
∂κ

= 1− µ2

2κ2
− 3ν2κ2

2
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is the dimensional group velocity vgr = ∂ω/∂k normal-
ized by vph = ω0/k0 = c/

√
ε̄. In the second order order

of the perturbation theory one obtains a classical NSE

i(ψz + v̄−1
gr ψt) +

µ2 − 3ν2κ4

2κ3
ψtt +

3κ
8
|ψ|2ψ = 0, (18)

where the factor in front of ψtt is proportional to ∂v̄gr/∂κ

and changes its sign at the ZDF point κ2 = µ/(
√

3ν). A
solitary solution of Eq. (18) for parameter values (6) and
κ = 0.7 was used as an initial condition in the numerical
solution shown in Fig. 3.

It is also of interest to compare Eq. (12) with the sim-
plified unidirectional models reported in the literature.
In the case when the fit parameters µ and ν are small,
we first introduce the scaling parameter ε� 1 such that
Eq. (12) becomes

utt − uzz + ε2(a2u− b2uttzz) + ∂2
t (u3) = 0, (19)

where both a = µ/ε and b = ν/ε are of order 1. Next, we
introduce a suitable unidirectional scaling

u(z, t) = εU(ζ, τ) = εU(ε2z, t− z)

and evaluate

utt − uzz = 2ε3Uτζ +O(ε5),

ε2uttzz = ε3Uττττ +O(ε5),

∂2
t (u3) = ε3∂2

τ (U3).

Finally, keeping terms of the leading (cubic) order in ε,
we transform Eq. (19) into

2Uζτ + a2U − b2Uττττ + ∂2
τ (U3) = 0, (20)

which is identical to the unidirectional model first derived
in [22].

Even more simple unidirectional equations can be ob-
tained when the pulse spectrum is situated entirely ei-
ther on the left or on the right side from the ZDF. Let us
start with the pulse propagation in the normal dispersion
regime where the µ2 term in Eq. (12) can be neglected.
Without loss of generality one can take a = 0 and b = 1
and rewrite Eq. (20) as a modified Korteweg de-Vries
equation [20, 23–25]

2Uζ − Uτττ + 3U2Uτ = 0. (21)

Equation (21) is completely integrable by the inverse
scattering technique and has localized solutions in the
form of breathers [26].

Another limiting case corresponds to the pulse prop-
agation in the anomalous dispersion regime where the
ν2 term in Eq. (12) can be neglected. Taking a = 1 and
b = 0 we transform Eq. (20) into the so-called short pulse
equation [27, 28]

2Uζτ − U + ∂2
τ (U3) = 0. (22)

Similar to Eq. (21), Eq. (22) is completely integrable
and has localized solutions in the form of breathers
[29, 30]. However, unlike Eq. (21), pulse evolution within
the framework of Eq. (22) can lead to shock formation.
Thereafter the higher-order derivative term can not be
ignored and the more general Eq. (20) should be used
instead of Eq. (22).

5. Conclusions

Theoretical analysis of ultrashort pulse propagation re-
quires a modification of standard envelope models not
only because of the invalidity of the SVEA. When the
pulse spectral width is comparable to that of the trans-
parency window, the usual dispersion description in
terms of Taylor expansion of the dispersion relation k(ω)
becomes invalid as well. The reason is a resonant nature
of the medium response function ε(ω) which contains sin-
gularity points in the complex plane.

In this paper we replace a polynomial dispersion op-
erator with a rational one and derive a simple non-
envelope model Eq. (12) for the electric field. This model
does not assume unidirectional propagation and in this
sense it generalizes several previously reported unidirec-
tional equations. We reveal the Lagrangian structure
of the model and derive the integrals of motion. Using
these results we demonstrate that all solitary solutions of
Eq. (12) are breathers oscillating in the comoving frame
of reference. Numerical analysis of the model equation
reveals various dynamical effects, such as spectral broad-
ening, pulse splitting near the zero-dispersion frequency,
and formation of optical shocks.
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