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THE MINIMIZATION OF AN L∞-FUNCTIONAL SUBJECT TO AN

ELLIPTIC PDE AND STATE CONSTRAINTS

UWE PRÜFERT AND ANTON SCHIELA

Abstract. We study the optimal control of a maximum-norm objective functional subjected

to an elliptic-type PDE and pointwise state constraints. The problem is transformed into a

problem where the non-di�erentiable L∞-norm in the functional will be replaced by a scalar

variable and additional state constraints. This problem is solved by barrier methods. We

will show the existence and convergence of the central path for a class of barrier functions.

Numerical experiments complete the presentation.

1. Introduction

In this work we study barrier methods for the solution of PDE constrained optimal control

problems with an L∞-functional. This type of functional is important, if a uniform approxima-

tion on the whole computational domain is desired.

This class of problems is closely related to state constrained optimal control. On the one

hand, the topological structure is similar, on the other hand, these problems can be reduced to

state constrained problems by a simple transformation.

While state constrained optimal control problems have been studied since the early 80's, only

recently e�cient numerical algorithms for their solution have become available, which admit

an analysis in function space. State constrained problems are hard to solve directly. The main

problem is to handle Lagrange multipliers which belong in general to measure spaces. This is

a consequence of the L∞- structure of these problems. To overcome these di�culties, various

regularization and path-following methods have been studied recently.

One way is to weaken the constraints in an L2-sense, which has a regularizing e�ect on the

Lagrange multipliers. Prominent examples are Lavrentiev regularization (cf. e.g. [7]) and

exterior penalty methods (cf. e.g. [5]). The regularization comes at the price that the L∞-

structure of the problem is lost. In general, regularized solutions are infeasible with respect to

the original problem, but converge to the optimal solution of the original problem. However, if

the regularity of the underlying PDE is su�ciently high, then the L∞ structure can be preserved

up to a certain degree.

Under the same regularity assumptions, barrier methods can be used as an alternative ap-

proach, which preserves the L∞-structure completely, and in particular the feasibility of ap-

proximate solutions. They allow a quantitative convergence analysis of the homotopy path and

explicit bounds on its Lipschitz constant [12]. Moreover, for a proper choice of barrier functions

it is possible to construct a Newton path-following method in function space, which provably

converges to the optimal solution of the original state constrained problem [14].

Key words and phrases. Optimal Control, L∞-functional, state constrained optimization, Barrier methods.
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The reduction of optimal control problems with L∞-functional to a state constrained problem

was studied by Grund and Rösch in [3] in the case of boundary control. In their work, they

accepted the lack of regularity and worked with measure valued Lagrange multipliers. For

the numerical solution they used a �rst discretize, then optimize approach. In this paper,

we will apply barrier methods, studied in [12] to an optimal control problem with L∞-norm

functional. This can be done by reduction to a state constrained problem and subsequent

barrier regularization.

This paper is organized as follows. In Section 2, we set up the problem and explain the

transformation into a real valued, state constrained problem. In the following Section, we

con�rm that our problem �ts into the setting of the (abstract) framework from [12]. In Section

4 we discuss optimality conditions for barrier regularizations of our problem class and derive

basic results concerning the associated homotopy path. Finally, in Section 5 we apply our

method to some examples.

2. Problem setting

In this paper we consider the optimal control problem

min J(y, u) = ‖y − yd‖L∞(Ω) +
κ

2
‖u‖2

L2(Ω)

subject to the elliptic PDE∫
Ω

∑
ij

aij(x)∂iv ∂jy + a0(x)yv dx +

∫
Γ

α(s)yv ds =

∫
Ω

vu dx for all v ∈ H1(Ω)(1)

and the state constraints

ya ≤ y ≤ yb a.e. in Ω.

Here, Ω ⊂ RN , N = 1, 2, 3 is a bounded domain with C1,1-boundary Γ. As for the coe�cients

we assume aij ∈ C1,1(Ω), a0 ∈ L∞(Ω) satisfying aij(x) = aji(x) and the condition of uniform

ellipticity
N∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2 ∀ξ ∈ RN .

Moreover, we require a0(x) ≥ 0 and a0(x) > 0 on a non-zero subset of Ω. To render our problem

well de�ned and for the derivation of optimality conditions we assume that ya, yb ∈ C(Ω) and

a Slater condition: there are (û, ŷ) that satisfy the state equation and δ > 0 such that

(2) yb(x)− δ ≥ ŷ(x) ≥ ya(x) + δ.

Remark 2.1. To avoid unnecessary e�ort of notation, in the following we write e.g. 〈·, ·〉(W 1,p′)
∗
×W 1,p

instead of 〈·, ·〉(W 1,p′ (Ω))
∗
×W 1,p(Ω)

.

The left-hand-side of (1) de�nes the operator

A : H1(Ω) →
(
H1(Ω)

)∗
y 7→ Ay : 〈Ay, v〉(H1)∗×H1 :=

∫
Ω

∑
ij

aij(x)∂iv ∂jy + a0(x)yv dx +

∫
Γ

α(s)yv ds.(3)
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For our purpose, however, we have to modify its de�nition slightly, by using Sobolev spaces

W 1,p(Ω) for appropriate ∞ > p > max{2, N}, for which by the Sobolev embedding Theorem

W 1,p(Ω) ↪→ C(Ω) is continuous. In this case, A : W 1,p → (W 1,p′)∗ is still continuous, if

1/p + 1/p′ = 1, cf. [1, Thm 9.2].

For the action of the control, we de�ne the operator

B : L2(Ω) →
(
W 1,p′(Ω)

)∗
u 7→ Bu : 〈Bu, v〉(W 1,p′ )∗×W 1,p′ :=

∫
Ω

uv dx ∀v ∈ W 1,p′ .(4)

Then the state equation can be written as an equation in (W 1,p′)∗:

Ay −Bu = 0.

Theorem 2.2. Under our assumptions the equation Ay = r has a unique solution y ∈ W 1,p

for all r ∈ (W 1,p′(Ω))∗. There is a constant c such that

(5) ‖y‖W 1,p(Ω) ≤ c ‖r‖(W 1,p′ (Ω))∗ .

In particular for N ≤ 3 we have

(6) ‖y‖C(Ω) ≤ ‖y‖W 1,p(Ω) ≤ ‖Bu‖(W 1,p′ (Ω))∗ ≤ c ‖u‖L2(Ω).

Proof. By the Lax-Milgram Theorem the operator A : H1 → (H1)∗ is an isomorphism, which

implies existence and uniqueness of y as a variational solution. Existence of y ∈ W 1,p follows

then from [1, Theorem 9.2]. The estimate (5) can be found in [1, Remark 9.3 (d)], while (6) is

a consequence of the Sobolev embedding theorems: W 1,p(Ω) ↪→ C(Ω) is continuous for p > N

and W 1,p′ → L2 is continuous for 1/p′ = N/(N − 1) > 1/N + 1/2. Both requirements can be

met by an appropriate choice of p = N + ε for N ≤ 3 and for any su�ciently small ε > 0. �

Remark 2.3. From the estimate (5) follows the boundedness ‖S‖L2(Ω)→H1(Ω)∩C(Ω) ≤ cΩ of the

solution operator S : L2(Ω) → H1(Ω) ∩ C(Ω), S : u 7→ y , cf. [9].

By a simple transformation, cf. e.g. [3], we can reduce the non-di�erentiable L∞-norm

problem to a di�erentiable problem by replacing the L∞-norm in the objective functional by a

real-valued unknown d and additional state constraints that depend on d.

From the fact that

‖y − yd‖L∞(Ω ≤ d ⇔ −d ≤ y − yd ≤ d for a.a. x ∈ Ω,

we arrive at the new problem

(P1) min j(d, y, u) = d +
κ

2
‖u‖2

L2(Ω)

subject to the state equation

(P2) Ay −Bu = 0

as de�ned in (1), the state constraints

(P3) −d ≤ y − yd ≤ d a.e. in Ω,
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and our original state constraints

ya ≤ y ≤ yb a.e. in Ω.(P4)

Observe that any feasible d is bounded from below by the following inequality

(7) d ≥ max{max
x∈Ω

{ya(x)− yd(x), 0}, max
x∈Ω

{yd(x)− yb(x), 0}}.

In particular, if yd is infeasible with respect to the state constraints ya and/or yb, d is bounded

from below by a positive number dmin > 0.

Throughout this paper, we refer to the constraints (P3) as the �L∞-constraints� and the

(problem given) constraints (P4) as the �state constraints�. Obviously, j : Z := R ×H1(Ω) ×
L2(Ω) → R is continuous. It is convex by convexity in u and linearity in d and does not depend

on y. Its coercivity on the feasible subset Zad ⊂ Z de�ned by the equality and inequality con-

straints can be shown easily: let (dn, yn, un) be a sequence with ‖(dn, yn, un)‖R×L∞(Ω)×L2(Ω)
n→∞−→

∞. Because d ≥ 0 and ‖u‖L2(Ω) ≥ c‖y‖H1(Ω) we see immediately j(dn, yn, un)
n→∞−→ ∞.

Theorem 2.4. (Existence of an optimal solution ) For all κ > 0 problem (P1) has a unique

solution (y∗, u∗, d∗)> with u∗ ∈ L2(Ω) and y∗ ∈ C(Ω) ∩H1(Ω).

Proof. Elimination of y = Su yields a minimization problem on the re�exive space U ×R with

U = L2(Ω). On the admissible set Sad ⊂ U × R the functional j, which does not depend on y

explicitly, is convex, coercive (note that d ≥ 0), and continuous. It can easily be shown that

Sad is convex and closed. Hence, by the main existence theorem of convex optimization (cf.

e.g. [2], Proposition II.1.2) there exists a minimizer (u∗, d∗) ∈ U × R. By strict convexity of j

in u and because j is non-constant and linear in d this minimizer is unique. The optimal state

is given by y∗ = Su∗ and belongs to C(Ω) ∩H1(Ω) by Theorem 2.2. �

3. L∞-optimization in the framework of barrier methods

To apply the results presented in [12], we have to prove that our problem �ts into the given

abstract framework. Important for the argumentation in [12] (and also in papers related to

logarithmic penalty term methods like [10]) is, that the state is considered in an L∞-setting,

which is provided by our estimate ‖y‖C(Ω) ≤ c‖u‖L2(Ω) in Theorem 2.2.

De�ne Z∞ = R × Y × U and z = (d, y, u)>. Here, Y is the space of states. Because all

admissible states are continuous we may choose Y = C(Ω). U = L2(Ω) is the space of controls.

Further, we de�ne by 〈z1, z2〉 := 〈d1, d2〉R + 〈y1, y2〉L2(Ω) + 〈u1, u2〉L2(Ω) the inner product and

by ‖z‖ = ‖(dn, yn, un)‖ :=
√
|d|2 + ‖y‖2

L2(Ω)
+ ‖u‖2

L2(Ω) a norm on Z∞.

Objective functionals. We have already noted that our modi�ed objective functional j :

Z∞ → R is continuous, coercive, and convex on Z and Z∞. Its sub-di�erential

(8) ∂j(z) = (1, 0, κu)>

is uniformly bounded in Z∗
∞ on bounded subsets of Z∞.

Partial di�erential equations. Next we verify that our partial di�erential equation �ts into

the setting of closed, densely de�ned operators, established in [13]. An operator A : Y ⊃
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domA → R is called closed, if yk → y and Ayk → z implies y ∈ domA and Ay = z. We start

with a Lemma that gives us a general strategy for the choice of the domain of A.

Lemma 3.1. For Banach spaces Y and R let A : Y ⊃ dom A → R be a linear operator. A is

closed and bijective, if and only if A possesses a continuous inverse A−1 : R → Y in the sense

that A−1A = iddom A
and AA−1 = idR.

Proof. Assume that a continuous inverse A−1 exists. Then in particular A is bijective. Let

yk → y and rk = Ayk → r. By surjectivity of A there is a ỹ with Aỹ = r, hence Ayk → Aỹ.

We have to show y = ỹ. Because A−1 is continuous, we conclude yk = A−1Ayk → A−1Aỹ = ỹ,

hence y = ỹ. If in converse, A is closed and bijective, then existence of a continuous inverse

follows from the open mapping theorem, which not only holds for continuous, but also for closed

operators (cf. e.g. [17]). �

Lemma 3.2. The operator A, de�ned in (3) gives rise to a densely de�ned, closed, bijective

linear operator

A : C(Ω) ⊃ W 1,p(Ω) → (W 1,p′(Ω))∗

with domA = W 1,p(Ω). Its adjoint operator

A∗ : W 1,p′(Ω) ⊃ domA∗ → C(Ω)∗

is a di�erential operator in the weak form given by

〈A∗p, v〉C∗×C :=

∫
Ω

∑
ij

aij(x)∂ip ∂jv + a0(x)vp dx +

∫
Γ

α(s)vp ds ∀v ∈ W 1,p′ .(9)

Its domain is de�ned by all p ∈ W 1,p′(Ω) for which this expression has a unique continuous

extension to a functional in C(Ω)∗.

Proof. First of all A is densely de�ned, since W 1,p(Ω) is dense in C(Ω). Theorem 2.2 shows

existence of a continuous inverse A−1. Hence, the conditions of Lemma 3.1 are ful�lled, and we

can conclude closeness and bijectivity of A.

The representation (9) of the adjoint operator A∗ follows directly from the canonical abstract

de�nition of the adjoint of a closed, densely de�ned operator: 〈v, A∗p〉 := 〈Av, p〉∀v ∈ W 1,p.

Here the linear functional 〈Ap, ·〉 is not necessarily continuous on the subset W 1,p ⊂ C(Ω). The

set of all p for which this is the case is called domA∗. By density all p ∈ domA∗ can be extended

uniquely and continuously to a linear functional in C(Ω)∗. �

Hence, A satis�es all assumptions imposed in [12] and its adjoint operator has a straight-

forward representation as a di�erential operator via (9). For N < 4 the Sobolev embedding

theorems imply that B is continuous. Its adjoint is given canonically by

B∗ : W 1,p′ → L2(Ω)

〈B∗p, v〉 =

∫
Ω

pv dx.(10)
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Since A is surjective, also the operator T := (A,−B)Y × U → R is surjective. The following

lemma yields closeness of T .

Lemma 3.3. Let Y, U,R be Banach spaces and assume that the linear operator A : Y ⊃
domA → R is closed and densely de�ned and that the linear operator B : U → R is continuous.

Then

T : U × Y ⊃ domT = domA× U → R

(u, y) 7→ Ay −Bu

is linear, closed and densely de�ned. In particular, V = ker T is closed.

Proof. Linearity and density of T are immediate, so let us show closeness of T . Consider the

convergent sequences (yk, uk) in domT and rk = Ayk − Buk in R. Let (yk, uk) → (y, u) and

rk → r. By continuity of B, Buk → Bu, and thus Ayk = rk + Buk converges to r + Bu.

By closeness of A we conclude y ∈ domA and Ay = r + Bu. Hence, (y, u) ∈ domT and

Ay −Bu = r + Bu−Bu = r, and T is closed. Closeness of ker T is again immediate. �

Inequality constraints. By assumption (2), there is a strictly feasible point (Slater point)

(ŷ, û) such that Aŷ = Bû and the condition

0 < δ := ess inf
x∈Ω

min{ŷ − ya, yb − ŷ}

holds. Thus, with d̂ := ‖yd − ŷ‖∞ + δ the following Slater condition in Z∞ is ful�lled:

0 < δ = ess inf
x∈Ω

min{ŷ − ya, yb − ŷ, d̂ + ŷ − yd, d̂− ŷ + yd}.

Remark 3.4. The feasible set W = R+ ∪ {0} × Yad × Uad is non-empty and convex. By the

choice of topology ‖ · ‖Y = ‖ · ‖C(Ω), ‖ · ‖U = ‖ · ‖L2(Ω) and ‖ · ‖R = | · |, the interior of Yad is

non-empty.

Indicator functions. The indicator function χM(m) on a set M is de�ned by

χM(m) =

0 if m ∈ M

+∞ otherwise
.

Let E be the kernel of Ay − Bu. i.e.. {(d, y, u)|Ay − Bu = 0} and Zad the feasible set, i.e.

z ∈ Z∞ which ful�lls the inequality constraints. We can combine the objective functional and

the constraints to one functional:

(11) F (z) = j(z) + χE(z) + χZad
(z).

It is clear that (11) is equivalent to (P1)�(P4).

Barrier functionals. In the spirit of [12], we will use in this paper barrier functions de�ned

by

φ(v; µ; q) :=


−µ

∑
I

ln(vi) : q = 1

µq
∑

I

1

(q−1)vq−1
i

: q > 1
.
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Setting φ(vi; µ; q) = ∞ for gi(y) ≤ 0 we extend their domain to R. Here, I = [1, ..., n] is a set

of indices associated to a constraint and n is the number of constraints.

In the case q = 1, φ is the standard logarithmic barrier function used by interior point

methods considered in various works like [16] or [10]. Let g be a function that implements the

various constraints, e.g. g(z) = y − ya for the lower state constraint, g(z) = y − yd + d for

the �lower optimality bound�, and so on. In what follows we will always assume this simple

pointwise structure for g.

The theory of barrier methods depends more on the properties of the �rst order derivatives

of the barrier functions than on the functions themselves. We de�ne

Ξ(z) := φ(g(z); µ; q).

If g(z) > 0, then Ξ is di�erentiable and the derivatives of Ξ (w.r.t. z) can be computed as

Ξ
′
(z; µ; q) = −µq

∑
I

τi

g(z)q
g
′
(z)

where g
′
is the derivative of g w.r.t.. z = (d, y, u)>.

Using these barrier functions, we construct barrier functionals by computing the sum of

integrals over φ on Ω. For �xed µ and q we de�ne

b(·; µ; q) : Z → R+ ∪ {+∞}

by

b : (z; µ; q) 7→
∑

I

∫
Ω

φ(gi(z(x)); µ; q) dx

and its formal derivative b′ by

b′(z; µ; q) : δz 7→
∑

I

∫
Ω

φ′(gi(z(x)); µ; q)g
′

i(gi(z(x)); µ; q)δz(x) dx,

if the right hand side is well de�ned.

To be able to distinguish the summands, we write bya , byb
for the barrier functionals cor-

responding to the upper and lower state constraints, respectively, and bd, bd for the barrier

functionals which implement the upper and lower part of the L∞-functional.

We are going to analyze our problem in the framework of convex analysis, and thus the notion

of a derivative of b we will use is the sub-di�erential. Recall that the sub-di�erential ∂f(z0) of

a convex function f : Z → R at z0 ∈Z is de�ned by the set of all linear functionals z∗ ∈ Z∗ that

satisfy f(z)−f(z0) ≥ 〈z∗, z−z0〉. If f is Gâteaux di�erentiable at z0 with derivative f ′(z0), then

∂f(z0) = {f ′(z0)}. In [12] sub-di�erentials of barrier functionals were characterized in Lp(Ω)

for 1 ≤ p < ∞ and C(Ω). We augment these results for barrier functionals that implement

L∞-bounds.

Lemma 3.5. Assume that (m∗, d∗) ∈ M(Ω)×R is an element of the sub-di�erential ∂bd(z; µ; q)

at some point z = (y, d). Let SΩ := {x ∈ Ω : y(x) = yd(x) + d}. Then the following assertions
7



hold:

(12) m∗ = b′(z) + m∗
SΩ

,

where m∗
SΩ

is a non-positive measure on SΩ. In particular, m∗ = b′(z) if d + y(x) − yd > 0

everywhere in Ω. Further we have

(13) d∗ = −‖m∗‖M(Ω)

Proof. Let δz := (δy, δd) ∈ C(Ω) × R. Setting δd = 0 we conclude (12) from [12], Proposition

3.5. Setting −δy ≡ 1 = δd we have b(z) = b(z + δz). It follows that ∂b(z)δz = 0, and hence

(13) via non-positivity of m∗ and

0 = 〈m∗, δy〉M(Ω)×C(Ω) + d∗ · δd = ‖m∗‖M(Ω) + d∗.

�

An analogue assertion holds for bd, of course. Then m∗ is non-negative, while d∗ is non-

positive.

Example. For our model-problem we have e.g. for q = 2

b(z, µ, 2) =

∫
Ω

(
µ2

y − ya

+
µ2

d + y − yd

+
µ2

yb − y
+

µ2

d− y + yd

)
dx.

The formal derivative w.r.t. y is given by

〈b′y(z, µ, 2), h〉 = −
∫

Ω

(
µ2

(y − ya)
2 +

µ2

(d + y − yd)
2 −

µ2

(yb − y)2 −
µ2

(d− y + yd)
2

)
h dx.

Lemma 3.5 asserts that ∂b(y) is single valued with its formal derivative as the only element,

if y is strictly feasible. If not, then an additional measure may appear, which is concentrated

at those points, where y touches the bounds. The formal derivative w.r.t. d is given by

〈b′d(z, µ, 2), h〉 = −
∫

Ω

(
µ2

(d + y − yd)
2 +

µ2

(d− y + yd)
2

)
h dx.

Lemma 3.5 asserts that the sub-di�erential coincides with b′d(z, µ, 2) if −d < y − yd < d

everywhere in Ω.

4. Optimality conditions

With the help of the indicator function and the barrier function considered in Section 3, we

de�ne the unconstrained problem as follows:

(14) min Fµ(z) := j(z) + b(z; µ; q) + χE(z) + χZad
(z)

for a by q ≥ 1 given class of barrier functionals. Because b(z; µ; q) = ∞ for z 6∈ Zad we can

drop χZad
and conclude

Fµ(z) = j(z) + b(z; µ; q) + χE(z) for µ > 0.

The following theorem provides existence and uniqueness of the minimizer of (14).
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Theorem 4.1. Let µ0 ∈ R. Problem (14) admits a unique minimizer zµ = (dµ, yµ, uµ) for all

µ ∈ (0, µ0]. Moreover, zµ is strictly feasible almost everywhere in Ω and bounded in Z uniformly

in µ ∈ [0, µ0].

Proof. The proof is the same as in [12]. For the convenience of the reader we recall the main

ideas. By convexity and lower-semi-continuity of b all Fµ are convex and lower-semi-continuous.

By the identity

Fµ(z) = (1− µq/µq
0)F (z) + µq/µq

0Fµ0(z)

for every µ ∈ (0, µ0] we have

(15) min{F (z), Fµ0(z)} ≤ Fµ(z) ≤ max{F (z), Fµ0(z)}.

Since F and Fµ0 are coercive, by (15) all Fµ are coercive and all their level-sets are uniformly

bounded in Z. Thus we can apply the main existence theorem for minimizers of convex op-

timization (cf. [2], Proposition I.1.2.) to obtain the existence and uniqueness of a minimizer

zµ. �

Similar to Theorem 4.3 in [12], we obtain the �rst-order optimality conditions.

Theorem 4.2. Let the assumptions of Section 3 hold. For µ ≥ 0 let z = (d, y, u) be the

unique minimizer of jµ(z). Then there are mya ∈ ∂bya(y), myb
∈ ∂byb

(y), (md, dd) ∈ ∂bd(z),

(md, dd) ∈ ∂bd(z), and p ∈ dom A∗ such that

(16)

mya + myb
+ md + md − A∗p = 0

κ
∫

Ω
u dx + B∗p = 0

1 + dd + dd = 0

Ay −Bu = 0

holds.

Proof. By the generalized Fermat principle in convex analysis it follows for the minimizer z

that 0 ∈ ∂Fµ(z). Now we apply the sum-rule of convex analysis (cf. e.g. [18, Theorem 47.B])

to the problem (14). By our choice of topology for Y and our Slater assumption, there is

ẑ = (d̂, û, ŷ) with Aŷ − Bû = 0 (which means χE(ẑ) = 0), such that j and all Barrier terms

are continuous at ẑ. Hence, the sum-rule of convex analysis, which holds, if there is a point ẑ,

where all summands are �nite and all but one are continuous there, is applicable and yields

0 ∈ ∂Fµ(z) = ∂j(z) + ∂bya(z) + ∂byb
(z) + ∂bd(z) + ∂bd(z) + ∂χE(z).

Now the �rst three equations of (16) follow immediately, taking into account the characteriza-

tion of ∂j(z) via (8) and the characterization ∂χE = ran(A,−B)∗ via Proposition 2.5 [13]. �

Note that the operators A∗ and B∗ have a concrete representation via (9) and (10), respec-

tively.

Lemma 4.3. Let the assumptions of Section 3 hold. Then mya , myb
, md, md are uniformly

bounded in M(Ω), independently of µ as µ → 0.
9



Proof. The fourth equation in (16) reads dd + dd = −1. Because both terms are non-positive,

it follows via (13) ‖md‖ ≤ 1 and ‖md‖ ≤ 1. The remaining system reads

mya + myb
− A∗p = −md −md

κu + B∗p = 0

Ay −Bu = 0

.

We have just shown that the the right hand side of this system is uniformly bounded in M(Ω).

Using this, uniform bounds for the elements of the left hand side follow just as in the proof of

Proposition 4.5 in [12]. �

Lemma 4.4. The functional j(z) is strongly uniformly convex, i.e. there is a constant 0 <

α < κ
4
such for all z1, z2 ∈ Z holds

α‖u1 − u2‖2 ≤ j(z1) + j(z2)− 2j

(
1

2
z1 +

1

2
z2

)
.

Proof. We have

j(z1)+j(z2)− 2j

(
1

2
z1 +

1

2
z2

)
= d1 +

κ

2
‖u1‖2 + d2 +

κ

2
‖u2‖2 − 2

(
d1 + d2

2
+

κ

2
‖1

2
u1 +

1

2
u2‖2

)
=

κ

2

(
‖u1‖2 + ‖u2‖2 − 1

2
‖u1 + u2‖2

)
=

κ

4
‖u1 − u2‖2.

Choosing α < κ
4
we have found the constant. �

Lemma 4.5. (Growth condition) Let be z∗ the minimizer of F . Then F satis�es a growth

condition at its minimizer z∗:

(17) α‖u− u∗‖2 ≤ F (z)− F (z∗) ∀z ∈ Zad.

Proof. Let z ∈ Zad be feasible, hence χE(z) = 0 and χG(z) = 0. We can estimate

(18) F (z) + F (z∗)− 2F

(
z + z∗

2

)
≤ F (z) + F (z∗)− 2F (z∗) = F (z)− F (z∗),

where we used that z∗ is the unique minimizer of F . Now we use the result of Lemma 4.4 to

observe

F (z) + F (z∗)− 2F

(
z + z∗

2

)
= j(z) + j(z∗)− 2j

(
z + z∗

2

)
≥ α‖u− u∗‖2

Together with (18) it shows the result (17). �

Lemma 4.6. (cf. [12], Corollary 4.6) Let be b(z; µ; q) a barrier function of order q correspond-

ing to the constraints gi de�ned in Section 3. Then the following bound holds independently of

µ for a minimizer z of the barrier problem:
∥∥∥(

µ
gi(z)

)r∥∥∥
L1(Ω)

≤ c ∀ 0 ≤ r ≤ q.

10



Lemma 4.7. Let be 0 < µ0, and let zµ0 the unique minimizer of Fµ0 and z∗ the unique minimizer

of F . Then it holds

F (zµ0)− F (z∗) ≤ Cµ0.

Proof. We modify the proof of Lemma 5.1, [12]. Let q ≥ 1 and µ0 > 0 be given. Then

∂b(z; µq
0; q) = µ0∂b(z; µq−1

0 ; q). By convexity of F we have

F (zµ0) ≤ F (z∗) + 〈v, zµ0 − z∗〉(19)

for every v ∈ ∂F (zµ0). Because zµ0 is a minimizer of Fµ0 it holds by the sum-rule of sub-

di�erential calculus 0 ∈ ∂Fµ0(zµ0) = ∂F (zµ0) + µ0m, hence −µ0m ∈ ∂F (zµ0) for all m ∈
∂b(zµ0 ; µ

q−1
0 ; q). Using again the sum-rule, m can be expressed as the summ = (mya + myb

+ md + md + dd + dd),

where md is a sub-gradient associated with the upper L∞-constraint, md is associated with the

lower L∞-constraint, etc. Further, all sub-gradients associated with lower bounds are negative,

and sub-gradients associated with upper bounds are positive, hence −md,−myb
are negative,

−md,−mya ,−dd, and −dd are positive. Therefore, we get the estimate (note, that we consider

−m,)

µ0〈−m, zµ0 − z∗〉 = µ0(〈−mya , yµ0 − y∗〉+ 〈−myb
, yµ0 − y∗〉

+〈−md, yµ0 − y∗〉+ 〈−md, yµ0 − y∗〉

+〈−dd, dµ0 − d∗〉+ 〈−dd, dµ0 − d∗〉)

≤ µ0(〈−mya , yµ0 − y∗〉|y∗<yµ0
+ 〈−myb

, yµ0 − y∗〉|y∗>yµ0

+(〈−md, yµ0 − y∗〉+ 〈−dd, dµ0 − d∗〉)|y∗+d∗<yµ0+dµ0

+(〈−md, yµ0 − y∗〉+ 〈−dd, dµ0 − d∗〉)|y∗−d∗>yµ0−dµ0
),

where we included only those regions that contribute positively to the integrals. On those

sub-regions the potential measure valued parts of the sub-gradients disappear. For example, if

y∗ − d∗ > yµ0 − dµ0 , then, since y∗ ≥ yd + d∗, it follows yµ0 < yd + dµ0 . Thus the subset of Ω,

where this inequality holds, is the complement to the set SΩ in Lemma 3.5.

(20) µ0 〈−m, zµ0 − z∗〉 ≤ µ0

 ∫
y∗<yµ0

µq−1
0

(yµ0 − ya)q
(yµ0 − y∗) dx +

∫
y∗>yµ0

µq−1
0

(yb − yµ0)
q
(y∗ − yµ0) dx

+

∫
yµ0+dµ0>y∗−d∗

µq−1
0

(dµ0 + yµ0 − yd)q
((yµ0 + dµ0)− (y∗ + d∗)) dx

+

∫
y∗−d∗>yµ0−dµ0

µq−1
0

(dµ0 − yµ0 + yd)q
((y∗ − d∗)− (yµ0 − dµ0)) dx

 .

Now, we estimate the integrals in (20), starting with the terms associated to the state

constraints ya ≤ y ≤ yb. First, we observe due to the feasibility of y∗ that
yµ0−y∗

yµ0−ya
< 1

and
y∗−yµ0

yb−yµ0
< 1 for all x ∈ Ω. Hence

∫
y∗<yµ0

µq−1
0

(yµ0−ya)q (yµ0 − y∗) dx <
∫

y∗<yµ0

µq−1
0

(yµ0−ya)q−1 dx and

11



∫
y∗>yµ0

µq−1
0

(yb−yµ0 )q (y
∗− yµ0) dx <

∫
y∗>yµ0

µq−1
0

(yb−yµ0 )q−1 dx. By Lemma 4.6, both integrals are �nite, and

we obtain uniform bounds for these terms, say by a constant Ca,b.

Similarly we estimate the remaining two integrals. Since yd−d∗ ≤ y∗ we conclude (yµ0+dµ0)−
(y∗+d∗) ≤ yµ0 +dµ0 +yd and since y∗ ≤ yd +d∗ it follows (y∗−d∗)−(yµ0−dµ0) ≤ dµ0−yµ0 +yd.

Hence,

∫
Ω

µq−1
0

(dµ0 + yµ0 − yd)q
((yµ0 + dµ0)− (y∗ + d∗) dx

≤
∫

Ω

µq−1
0

(dµ0 + yµ0 − yd)q
(yµ0 + dµ0 − yd) dx =

∫
Ω

µq−1
0

(dµ0 + yµ0 − yd)q−1
dx

Again, from Lemma 4.6 we get the boundedness
∫

Ω

µq−1
0

(dµ0+yµ0−yd)q−1 dx ≤ Cd. Similarly, we obtain

the bound∫
Ω

µq−1
0

(dµ0 − yµ0 + yd)q
((yµ0 − dµ0)− (y∗ − d∗)) dx ≤

∫
Ω

µq−1
0

(dµ0 − yµ0 + yd)q−1
dx ≤ Cd.

where we used again Lemma 4.6.

All in all we have shown µ0〈−m, zµ0 − z∗〉 ≤ µ0(Ca,b + Cd + Cd). Because −µ0m ∈ ∂F (zµ0)

we can insert this estimate into (19), which completes the proof. �

Theorem 4.8. (Convergence of the central path) Denote by zµ the minimizer of jµ and by z∗

the minimizer of j. Under the assumptions of Section 3 there are constant cu, cy > 0 such that

holds

‖uµ − u∗‖ ≤ cu
√

µ

‖yµ − y∗‖C(Ω) ≤ cy
√

µ

for all µ > 0. . In particular, ∣∣∣‖yµ − yd‖C(Ω) − d∗
∣∣∣ ≤ cy

√
µ

Proof. Combining Lemma 4.5 and Lemma 4.7, we can estimate

α‖uµ − u∗‖2 ≤ F (zµ)− F (z∗) ≤ Cµ,

where α is the constant from Lemma 4.5 and C is the constant from Lemma 4.7. Division by

α and applying the root yields

‖uµ − u∗‖ ≤ cu
√

µ.

where cu =

√
C

α
. By the convergence uµ → u∗ in L2(Ω), and by the linearity and boundedness

of the solution operator S, we obtain

‖yµ − y∗‖C(Ω) = ‖Suµ − Su∗‖C(Ω) = ‖S(uµ − u∗)‖C(Ω)

≤ ‖S‖L2(Ω)→C(Ω)‖uµ − u∗‖ ≤ cu‖S‖L2()→C(Ω)

√
µ,

where cy = cu‖S‖L2(Ω)→C(Ω).
12



Our last assertion follows from the convergence of the states yµ, and d∗ = ‖y∗ − yd‖C(Ω):

cy
√

µ ≥ ‖y∗ − yµ‖C(Ω) = ‖y∗ − yd + yd − yµ‖C(Ω) ≥ |‖y∗ − yd‖C(Ω) − ‖yµ − yd‖C(Ω)|.

�

5. Numerical realization

In this section we will discuss a numerical realization of our method and illustrate our theory

by some numerical experiments.

5.1. Discrete optimality conditions. In Section 4, Theorem 4.2, we gained the optimality

conditions in abstract form. Now, we will bring it in a form that is implementable as a coupled

set of PDEs, algebraic- and integral equations. In the following we assume that additional

state constraints ya ≤ y ≤ yb are given. In the case of a problem without state constraints, the

related terms disappear.

First, from Ay −Bu = 0 we obtain the state equation (1). The adjoint equation is given by

(9) and by the derivative of b as

(21)

∫
Ω

∑
ij

aij(x)∂iv ∂jp + a0(x)pv dx +

∫
Γ

α(s)pv ds

=

∫
Ω

(
− µq

(y − ya)q
− µq

(d + y − yd)q
+

µq

(yb − y)q
+

µq

(d− y + yd)q

)
v dx for all v ∈ H1(Ω).

Note, that in the case of problems without state constraints the �rst and the third summand

is absent. In our numerical experiments, the degree of the barrier function will be chosen �xed

as q = 2.

By 〈u, B∗p〉 =
∫

Ω
up dx we obtain via κ

∫
Ω

uv+pv dx = 0 for all v ∈ H1 the gradient equation

(22) κu + p = 0 in Ω.

The integral relation

(23) 1−
∫
Ω

µq

(d + y − yd)
q +

µq

(d− y + yd)
q dx = 0.

follows directly from Theorem 4.2.

Remark 5.1. In the spirit of barrier approximation, the functions ηa(µ) := µq

(d+y−yd)q and ηb(µ) :=
µq

(d−y+yd)q can be seen as approximations on the Lagrange multipliers to Problem (P1) with the

constraints (P3)�(P4). By Equation (23), the integral is equal to one for optimal (d, y). Hence,

in sloppy words: at least one multiplier is always active. For the original problem we observe∫
Ω

d(ηa + ηb) = 1, cf. [3].

We aim now for a discrete formulation of these four equations. To discretize the PDEs we

use MATLABs PDE toolbox [15]. Let Vh ⊂ V the space of linear �nite elements over the grid

Ωh with base (φi)i∈I . Approximating y by yh(x) =
∑

i∈I yiφi(x) and testing with φi for all i ∈ I
13



we obtain the system of equations

∑
j∈I

∫
Ω

(A∇φj) · ∇φi + a0φjφi dx +

∫
Γ

αφjφi ds

 yj

=

∫
Ω

ujφjφi dx i ∈ I.

Using the notion in [15, p. 4-6] for the matrices, we arrive at the discrete equation

(K + Ma0 + Q)y = Ay = Mu,

where bold letters as y denote the coe�cient vectors yi of discrete functions yh(x) =
∑
i∈I

yiφi(x),

y = (y1, ..., yn)>. The Matrix Ma0 is the mass matrix associated with the function a0(x), while

M is the mass matrix associated with the constant one. The matrix A = K + Ma0 + Q can be

seen as a discrete version of the operator A, while M can be seen as discrete version of B. If

r ∈ R, we also write r for the vector r = (r, ..., r)>. Analogously, we get a discrete version of the

adjoint equation. We reduce the dimension of the problem by setting u = − 1
κ
p and eliminate

the equation (22). The integral relation (23) can be simply written as

1− e · M̃
(

µq

(d + y − yd)q +
µq

(d− y + yd)q

)
= 0,

where e = (1, ..., 1). The matrix M̃ is a diagonal matrix resulting from the evaluation of the

integral in (21) and (23) by the trapezoidal-rule. This simpli�cation has been justi�ed in [4] in

the context of state constrained problems. In summary, we have to solve the (control reduced)

discrete optimality system H(d, y, p; µ) = 0 with

H(d, y, p; µ) =


A∗p + M̃

(
µq

(y−ya)q + µq

(d+y−yd)q − µq

(yb−y)q − µq

(d−y+yd)q

)
Ay + 1

κ
Mp

1− e · M̃
(

µq

(d+y−yd)q + µq

(d−y+yd)q

)

 .(24)

5.2. Algorithm and program. To solve problem (P1) numerically, we use a step-size con-

trolled, damped Newton-step method, cf. Algorithm 1.

Remark 5.2. For comparison with a standard solver we implemented a ��rst discretize, then

optimize solver� based on the MOSEK Optimization Software [8]. MOSEK provides a interface

to MATLAB that replaces the quadprog function from MATLABs optimization toolbox. It

solves problems of the form

min
1

2
z′Hz + f ′z s.t. Cz ≤ c

Dz = d

lc ≤ z ≤ uc(25)

14



Algorithm 1 Path following with damped Newton method as inner loop.

Set z = (d, y, p)>. Let H(z; µ) be the discretized optimality system.
Choose µ0 > 0,0 < µterm < µ0, σ < 1.
Compute (d, y, p)0 feasible e.g. by solving the inverse problem p0 =
−κAy0 for y0 = 1

2
(ya + yb),

set z = (d, y, p)>0
while µ > µterm

solve H(z; µ) = 0 up to a sufficiently small tolerance, e.g. ε <
10−2µ by a damped Newton method:

δz = −DH−1(z; µ)H(z; µ)

z = z + sδz

if z is strictly feasible
accept the solution: (y, u, p) = z
if σ > σmin

decrease σ
end
decrease µ by µ = σµ

else
discard the step
increase σ

end
if σ > σmax

return (no further path reduction possible)
end

end

Here we discretized our problem by z = (y>, u>, d)> ,

H =


0 0 0

0 M̃ 0

0 0 0

 , f =


0

M̃

1

 , D =

(
K + Ma0 + Q −M 0

)
, d = 0,

and

C =



−E 0 −e

E 0 −e

−E 0 0

E 0 0


, c =



−yd

yd

−ya

yb


,

where K, Ma0 , M , and Q are the matrices de�ned above, E is the identity matrix and e is a

column vector of ones of suitable length. The explicit inequality constraints (25) is unused in

our case. Note, that H is not positive de�nite, but positive semi de�nite.

The numerical realization of our method was done by object-oriented programming in MAT-

LAB, where we used some functionality of the PDE-toolbox. The advantage of this approach

is that the data is encapsulated and the functions are bound to the data. For details see
15



[6], Chapter 9, Classes and Objects and [11]. We implemented a class ocp (optimal control

problem) that contains all necessary data, and some additionally subclasses like grid, pde etc.

As methods of the class ocp, we implemented a class constructor, a set and a get method to

manipulate the data, a de�ne method that assembles all matrices etc, a solve method that calls

the specialized solvers (depends on the value of ocp.type, pde.type and ocp.method), and

a plot method that overwrites the standard plot method. Listing 1 gives a impression of a

program that de�nes, solves, and post-processes the problem given in Example 5.5.

1 % mesh gene ra t i on by pde−too lbox :
2 [ b , g ] = unitsquare_robin ; [ p , e , t ] = in i tmesh (g , ' hmax ' , i n f ) ;

3 % c a l l o f c l a s s g r i d con s t ruc to r and i n i t i a l i s i n g the g r id

4 gt = gr id ; gt = s e t ( gt , ' p ' , p , ' e ' , e , ' t ' , t ) ;

5 % c l a s s ocp cons t ruc to r :

6 o = ocp ;

7 % s e t t i n g up the problem :

8 o = se t ( o , ' y_d ' , 0 , 'mu_e' , 1 e−5 , ' type ' , ' L8T ' , . . .

9 ' lambda ' , 1 e−8 , ' gr id ' , gt , ' b ' , b , ' g ' , g , ' r e f i n e ' , 6 , . . .

10 ' c ' , 1 , ' a ' , 0 . 0 , ' debug ' , true , 'mu_a' , 0 . 5 , . . .

11 'y_a' ,−20 , 'method ' , ' b a r r i e r ' ) ;

12 % de f i n i n g the problem , assembl ing e t c . :

13 o = de f i n e ( o ) ;

14 % de f i n e the upper c on s t r a i n t and r e d e f i n e ocp . bounds . y_b

15 y_b = 0.85− check_funct ion (@eta_6 , get ( get ( o , ' gr id ' ) , ' p ' ) ) ;

16 o = se t ( o , ' y_b ' , y_b ) ;

17 % so l v e the problem

18 o = so l v e ( o ) ;

19 % post−pro c e s s i ng
20 f i g u r e ( 1 ) ; p l o t ( o , ' y ' ) ; f i g u r e ( 2 ) ; p l o t ( o , ' u ' ) ;

21 f i g u r e ( 3 ) ; p l o t ( o , 'm_y_b' ) ; f i g u r e ( 4 ) ; p l o t ( o , 'm_ud' ) ;

The function check_function (line 15) is a so called friend function which is not a method

of the class ocp. Actually, it is an add-on to feval that accepts the point vector of a pde-mesh

as parameter.

5.3. Examples.

Example 5.3. A problem without (additional) state constraints.

We consider the unbounded optimal control problem

(26) min
(y,u)∈H1(Ω)×L2(Ω)

j(y, u) = ‖y − yd‖L∞(Ω) +
κ

2
‖u‖2

L2(Ω)
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subject to ∫
Ω

〈A∇y,∇v〉+ a0yv dx +

∫
Γ

yv ds =
∫

Ω
uv ∀v ∈ H1(Ω).(27)

with A = I and a0 = 1. The domain Ω is the unit square.

Further, we choose yd = max {−20 ((x1 − 0.5)2 + (x2 − 0.5)2) + 1, 0} .

The grid is generated by using initmesh from the Matlab pdetool-box where the initial mesh

size is set to in�nity, what results after six re�nements in a Friedrichs-Keller triangulation with

inner-circle diameter 2.288 · 10−3, 16 641 grid points, 512 edges and 32 768 triangles.

By setting q = 2 we choose rational barrier functions of second order. In the de�nition of an

object of ocp, we set the method-switch to 'barrier', cf. Listing 1.

In Figure 1 we show the numerically computed optimal state yh at κ = 10−3, κ = 10−5,

together with (for comparison) the given desired state yd .
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Figure 1. Desired function yd (a), the computed optimal state yh at κ = 10−3

(b) and at κ = 10−5 (c). Of course, the quality of the approximation of yd

increases by increasing the �dedicated energy� by decreasing the Tikhonov pa-
rameter κ .

In this example we only have Lagrange multipliers associated with the L∞-constraints. In

Figure 2 we present the numerically computed approximation on the Lagrange multipliers.
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Figure 2. Approximation on the Lagrange multipliers with respect to the lower
(a) and the upper (b) L∞-constraint at Tikhonov-parameter κ = 10−3.

The functions md and md are positive on regions where yh touches the bounds.
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In Table 5.3 we present snapshots of the key-values jµ(d, u; µ), j(d, u), ‖u‖L2 , and ‖y−yd‖L∞

along the central path together with values computed by the quadprog(mosek) solver.

µ jµ(d, u) j(d, u) ‖u‖L2(Ω) ‖y − yd‖L∞(Ω)

0.10006000 13.2581 0.34206 12.6950 0.24130

0.01001200 0.73639 0.30879 15.7525 0.18424

0.00100180 0.32857 0.30723 16.1689 0.17646

0.00010023 0.30850 0.30712 16.1985 0.17592

1.0029e-05 0.30723 0.30712 16.1992 0.17591

1.0035e-06 0.30713 0.30712 16.1992 0.17591

quadprog(mosek)

� � 0.30191∗ 16.2345 0.17820

Table 1. Example 5.3:Values of J(d, u; µ) and ‖y − yd‖L∞(Ω), depending on µ
for κ = 10−3 computed by the rb-solver. For comparison, we present the values
computed by quadprog. ∗Value returned by quadprog. quadprog solution status:
NEAR_OPTIMAL.

Example 5.4. State constrained problem (i): ya < yd.

We consider the problem given in Example 5.3, but now with a given additional lower state

constraint ya ≡ −0.1. This choice of the state constraint gives us:

• the constraint should be active, and

• ya < yd for all x ∈ Ω. This ensures that yd ∈ Yad.

We present in Figures 3 and 4 snapshots along the central path of the computed optimal state

and the Lagrange multipliers related to the state constraint ya at κ = 10−3.
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Figure 3. Optimal state y depending on µ. Snapshots at µi = 10−i i = {1, 2, 3}.
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Figure 4. Approximation on the Lagrange multiplier mya depending on µ.
Snapshots at µi = 10−i i = {1, ..., 4}. Note that the z-axes are di�erently scaled.

As in Example 5.3, we present in the following table the results of our computations.

µ jµ(d, u) j(d, u) ‖u‖L2(Ω) ‖y − yd‖L∞(Ω)

0.10006 19.5633 0.36092 10.8617 0.28019

0.010012 0.90147 0.31064 15.2612 0.19371

0.0010018 0.3383 0.30844 15.6929 0.18526

0.00010023 0.31014 0.3083 15.7313 0.18456

1.0029e-05 0.30843 0.30829 15.7341 0.18451

1.0035e-06 0.3083 0.30829 15.7342 0.18451

quadprog(mosek)

� � 0.30307 15.8295 0.18583

Table 2. Example 5.2. Values of J(d, u; µ) and ‖y − yd‖L∞(Ω), depending on µ
for κ = 10−3 .

Example 5.5. State constrained problem (ii): yd > yb

We consider now the problem

min J(y, u) = ‖y‖C(Ω) +
κ

2
‖u‖2

L2(Ω)

subject to the PDE (27) and the state constraints

y(x1, x2) ≤ 20
(
(x1 − 0.5)2 + (x2 − 0.5)2

)
− 0.15 in Ω.
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Figure 5 shows the computed optimal state and associated control, where Figures 6 present

some snapshots along the central path. Note that the in�uence of the barrier terms related to

the constraints d + y − yd and d− y + yd, is decreasing by decreasing µ.
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Figure 5. Computed optimal state yh and control uh of Example 5.5 at κ = 10−3.
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Figure 6. Path following: Iterates yµ at µ = 10−2 (a), at µ = 10−3 (b) , and at
µ = 10−4 (c), Tikhonov parameter was set to κ = 10−3.

The Figure 7 show the approximation of the Lagrange multipliers md = µ
d−y+yd

and myb
=

µ
y−yb

.
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Figure 7. Approximations on the Lagrange multipliers md (a) and myb
(b), here

at κ = 10−3.
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At x = (0.5, 0.5) the upper L∞-multiplier md and the lower state multiplier mya both are

active. The constraint yb almost touches the optimal state in this point as well. Here the

distance between the optimal state y and yd becomes minimal, cf. Figure 8.
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Figure 8. Cut through Ω at (0, 1) × 0.5. Optimal state, y and upper state
constraint yb. at µ ≈ 10−2 (a) and at µ ≈ 10−5 (b). In x = (0.5, 0.5) the upper
state constraint yb and the lower L∞-constraint (yd − d) are active. One can see
that d is �xed by max{yd − yb} = 0.15. The optimal solution is the one with
the minimal control cost measured in the L2-norm that ful�lled the PDE and the
condition y ≤ yb.

In the following tables we present the results of our computations for Example 5.5.

µ jµ(d, u) j(d, u) ‖u‖L2(Ω) ‖y − yd‖L∞(Ω)

0.10006 16.5615 0.17661 3.1438 0.15818

0.010012 0.44810 0.15090 1.2118 0.15008

0.0010018 0.15874 0.15018 0.57969 0.15001

0.00010023 0.15038 0.15016 0.56264 0.15

1.0029e-05 0.15017 0.15016 0.56258 0.15

1.0035e-06 0.15016 0.15016 0.56258 0.15

quadprog(mosek)

� � 0.15016 0.56117 0.14938

Table 3. Example 5.5: Values of J(d, u; µ) and ‖y − yd‖L∞(Ω), depending on µ
for κ = 10−3 computed by the rb-solver. Reference-solution obtained by quad-
prog(mosek) is NEAR_OPTIMAL. The solution returned by quadprog is slightly
infeasible.

Conclusions and Outlook

We have analyzed L∞-optimal control problems considered in the framework of [12]. Ex-

istence and convergence of the associated central path have been derived for a class of bar-

rier functions. The optimality conditions can be implemented easily as a system of coupled
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PDEs, algebraic, and integral equations. Our numerical investigations have shown that the

L∞-optimization works very well and yields results as expected. In the case that yd > yb or

yd < ya, a lower bound on d is given by max{yd−yb} or max{ya−yd}. Then, only the L2-norm

of the control will be minimized, what results in optimal controls (and optimal states) inde-

pendent of the Tikhonov parameter κ. In the case ya < yd < yb, the problem setting is more

accordant to real world applications. The bounds work now as �safety bounds�, cf. Example

5.4.

While the main analytic structure of our method and a working algorithm have been es-

tablished, there are many re�nements and extensions conceivable. A straightforward idea is

to combine ideas of this work with those of [14]. In particular, a structure exploiting point-

wise damping step, which has been applied successfully in the state constrained case, may be

considered.
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