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Abstract

We use the traveling wave model for simulating and analyzing nonlin-

ear dynamics of complex semiconductor ring laser devices. This modeling

allows to consider temporal-spatial distributions of the counter-propaga-

ting slowly varying optical fields and the carriers, what can be important

when studying non-homogeneous ring cavities, propagation of short pulses

or fast switching. By performing numerical integration of the model equa-

tions we observe several dynamic regimes as well as transitions between

them. The computation of ring cavity modes explains some peculiarities

of these regimes.

Keywords: semiconductor ring laser, traveling wave model, switching, al-
ternate oscillations, bistability, unidirectional, optical modes, analysis

1 INTRODUCTION

Semiconductor ring lasers (SRLs) are interesting devices for their applications
in photonic integrated circuits [1, 2, 3]. To simulate the SRL a two-mode ODE
model consisting of a pair of complex equations for the counter-propagating
longitudinal modes and a rate equation for the carrier density is frequently used
[4, 5]. It can give an adequate explanation of different operation regimes such as
alternating oscillations, bidirectional and unidirectional continuous wave (cw)
states or transitions between these regimes. This rather simple model admits
a variety of ODE analysis methods. For example, it can be studied by means
of numerical path-following and bifurcation analysis tools [6], or by means of
asymptotic analysis methods [7].

However, this model can not recover different multi-mode effects of SRLs
such as modelocking [8] or transitions between multiple longitudinal modes [9].
Moreover, it is based on mean-field approximations and does not allow consid-
ering inhomogeneity of laser parameters and dynamical variables along the ring
cavity. That is, its usage for modeling of long SRLs with non-homogeneous pa-
rameters or for description of propagating short pulses along the cavity remains
questionable.

∗Supported by the DFG Research Center Matheon ”Mathematics for key technologies”

1



There exist different approaches allowing to overcome the limitations listed
above. The representation of the optical field as a superposition of several
coupled longitudinal modes yields an ODE model [10] describing multi-mode
dynamics, but not longitudinal inhomogeneities of SRLs. Another approach
allowing to take into account both above mentioned effects can be given by a
DDE model [11], which was successfully used for studying modelocking (ML)
regimes in semiconductor lasers. This model, however, assumes a unidirectional
ring configuration.

In the present paper we discuss a PDE modeling approach with a single
spatial dimension corresponding to the longitudinal direction along the ring
cavity. This model considers the clockwise (CW) and counter-clockwise (CCW)
propagating slowly varying optical fields governed by the traveling wave (TW)
equations [12], which are mutually coupled through linear backscattering terms,
through nonlinear cross- and self- saturations, and are both coupled to the spa-
tially parameterized carrier rate equation. This approach allows simulating ring
structures consisting from differently driven sections, considering longitudinal
distributions of the carriers and of the optical fields, which can be also expressed
as a superposition of the longitudinal optical modes. Moreover, this modeling
can take into account optical injections, localized reflections and, therefore, de-
layed feedbacks of the optical fields.

Comparing to the above listed models, our TW modeling approach is compu-
tationally more demanding and is much more difficult to analyze. Fortunately,
for these reasons we could adapt our own software package LDSL-tool [13], orig-
inally developed to simulate and to analyze [14, 15] different linear multisection
semiconductor lasers.

The main aim of our paper is to introduce the basic structural elements of our
model, to explain the construction of different laser devices from these elements,
to demonstrate the performance of our modeling approach when simulating
SRLs, and to perform a spectral analysis of ring lasers, what is very helpful for
a better understanding of some numerically observed regimes.

Our paper is organized as follows. In Section 2 we introduce the model
equations and the field transmission-reflection conditions at the different inter-
faces of the complex SRL device. Section 3 gives several examples of different
dynamic states. The computation of the optical modes and the explanation of
some dynamical regimes are made in Section 4. Finally, some conclusions are
drawn in Section 5.

2 Model of the SRL

2.1 Laser configuration

For simulation and analysis of the SRLs we apply our own software LDSL-tool

[13] used to investigate the (L)ongitudinal (D)ynamics of multisection (S)emi-
conductor (L)asers. This software allows considering a large variety of laser
devices or coupled laser systems composed from different sections connected to
each other by their edges at some junctions: see Fig. 1, where schemes of SRLs
considered in Refs. [8, 4, 1, 2, 3, 16] are shown. If needed, we can apply one or
several optical injections through free edges of some sections: see thick arrows in
Fig. 1(b). The sections, the junctions of these sections and the optical injections
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are three basic structures of our software.

Figure 1: Schemes of several ring laser configurations with indication of sections
(S·), junctions (J·, black intervals), optical injections (O·, thick black arrows),
propagation directions of the CW and CCW fields (thin black arrows) and some
field transmission - reflection - outcoupling directions (grey arrows). (a): an all-
active modelocked ring laser with a saturable absorber and (b): a simple ring
laser with optical injections as considered in this paper. (c): some other ring
laser devices [1, 2, 3, 16] which can be also treated by our software.

Each section Sr can be identified by a unique spatial interval (z′r, z
′′
r ), where

z′r and z′′r are the spatial coordinates of the section edges, and z′′r −z′r is the length
of Sr. Within each section the spatial-temporal dynamics of the optical fields
and the carrier density is governed by the TW model [12]. Passive waveguides
and air gaps between different lasers can also be treated as sections. In this
case, one should neglect the carrier rate equations and consider the optical
fields alone.

At each junction we define the field transmission and reflection conditions.
For each edge of all sections we can attribute a unique junction. From the other
hand, each junction has at least one section joining it from one or another side:
see the black intervals in Fig. 1 indicating all junctions. Some typical junctions
of the SRLs considered in this paper are listed below.

First, simple junctions connecting opposite edges of two consequent sections
with, possibly, different material or control parameters (e.g., J3 in Fig. 1a). Sec-
ond, junctions corresponding to a free edge of some section (e.g., J1 in Fig. 1a,b).
Here we describe a field reflectivity, record an outgoing optical field or apply
optical injections. Third, junctions connecting two left and two right edges and
representing a localized coupling of the ring laser to the output waveguide (J2

in Fig. 1a,b).
Finally, each optical injection O(t) is attached to a unique junction (e.g., O1

in Fig. 1(b) is connected to J1).

2.2 Laser sections

Within each laser section the slowly varying complex counter-propagating op-
tical fields E(z, t) = (E+, E−)T , the complex polarization functions p(z, t) =
(p+, p−)T and the real carrier density n(z, t) are governed by the TW model.
Here, E+ and E− denote the CW and CCW propagating fields, respectively.
By proper scaling, |E(z, t)|2 = |E+|2+|E−|2 is the local photon density.
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We consider the Traveling Wave model given in the following form:

∂t E±(z, t) = vgr

([

∓∂z−iβ±
(

n, |E±|2
)]

E±− ḡ
2 (E±−p±)−iκE∓

)

+F±
sp,

∂t p±(z, t) = γ̄(E±− p±) + iω̄p±,

∂t n(z, t) =J (z, t)−R(n)−vgrℜe

[

∑

ν=±
g(n)σν

G|Eν |2−ḡEν∗ (Eν−pν)

]

,

(1)

where β+, β−, R(n), and J (z, t) denote the complex propagation factors of the
CW and CCW fields, the cubic recombination law, and the non-homogeneous
injection model [17]:

β± =
(

δ ± ∆ + ñ(n)σ±
I

)

+ i
2

(

−(α ± ∆α) + g(n)σ±
G

)

,

σ±
G =

[

1+εGs|E±|2+εGc|E∓|2
]−1

, σ±
I =

[

1+εIs|E±|2+εIc|E∓|2
]−1

,

R(n) =
(

n
τN

+Bn2+Cn3
)

, J (z, t) = I
eV +

U ′
F

eV rs

(

1
|S·|

∫

S·
n(z)dz − n

)

.

(2)

The complex factor κ = κc − iκd is used to describe the distributed linear
backscattering of the fields, with κc and κd denoting its conservative and dis-
sipative parts, respectively [4]. Note, that in linear semiconductor lasers this
factor is defining the field coupling by Bragg gratings.

The parameters ḡ, ω̄, and γ̄ are the amplitude, the central frequency, and
the half width at half maximum of the Lorentzian, which fits the material gain
profile in the frequency domain [12]. The index change and gain functions
ñ(n) and g(n) can be defined independently of each other. Accordingly, we use
different notations for the self- and cross-gain saturation (εGs, εGc) and for the
self- and cross-index saturation (εIs, εIc) coefficients. For simplicity, however,
we can assume the commonly used relation ñ(n) = αH

2 g(n), g(n) = g′ (n − ntr),
εGs = εIs, εGc = εIc, with g′, αH and ntr denoting the differential gain, the
linewidth enhancement factor, and the transparency carrier density, respectively.
In the passive sections, where β± is independent of n and |E±|2, we adjust
g(n) = ñ(n) = ḡ = 0.

The real parameters vgr, δ, α, ∆ and ∆α are the group velocity, the frequency
detuning, the mean internal absorption of the fields, the rotation induced fre-
quency detuning between the CW and CCW fields [18], and the asymmetric field
absorption [2], respectively. The parameters τN , B, C, I, V , U ′

F , Rs, and e are
the linear carrier life time, the bimolecular and Auger recombinations, the cur-
rent injection, the volume of the active zone in the considered laser section, the
derivative of the Fermi level separation, the series resistivity, and the electron
charge, respectively. F±

sp represents the amplified spontaneous emission.
The TW model of similar type was successfully used to simulate dynamics of

different multisection semiconductor lasers. In our ring laser case, however, we
allow for different propagation factors β+ and β−. It will be shown in Section
4 how this difference is responsible for different operation regimes.

2.3 Field transmission and reflection conditions

For completing the TW model (1) we still need to describe the fields incoming

into the device sections. That is, we need to define the forward (CW) fields E+

at the left edges z′ and the backward (CCW) fields E− at the right edges z′′
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of all sections. These values are determined by the fields E+(z′′, t), E−(z′, t)
outgoing from all sections and by all applied optical injections O(t).

These relations are defined by the following field transmission-reflection con-
ditions at all junctions. Assume that some junction Js connects the left edges
of sections Ss′

1
, . . . , Ss′

s̄′
, the right edges of sections Ss′′

1
, . . . , Ss′′

s̄′′
, and optical

injections Os1
, . . . , Oss̄

. In addition, the factor so = 1 (or 0) indicates the pres-
ence (or the absence) of the field emission from the laser device at this junction.
Then the field transmission and reflection conditions at this junction can be
defined by the (s̄′ + s̄′′ + so) × (s̄′ + s̄′′ + s̄) complex valued matrix Ts:





~E+
s′

~E−
s′′

Eout



 = Ts





~E+
s′′

~E−
s′

~O−
s



 , where

~E±
s′

def
=









E±(z′s′
1

, t)

...
E±(z′s′

s̄′
, t)









, ~E±
s′′

def
=









E±(z′′s′′
1

, t)

...
E±(z′′s′′

s̄′′
, t)









, ~Os
def
=







Os1
(t)

...
Oss̄

(t)






,

(3)

and Eout represents a possible field emission at this junction. To avoid an
artificial field amplification, the matrix Ts should satisfy the inequality ‖Ts~x‖2 ≤
‖~x‖2.

For the typical junctions J1 and J2 discussed in Subsection 2.1 and shown
in Fig. 1(b) these conditions read as follows:

(

E+(z′2, t)
ECCW,out(t)

)

=

(

−R∗
1 1

T1 0

)(

E−(z′2, t)
O1(t)

)

, |R1|2 ≤ 1,







E+(z′1, t)
E+(z′3, t)
E−(z′′1 , t)
E−(z′′2 , t)






=







T2 T̄2 −R∗
2 0

T̄2 T2 0 0
R2 0 T2 T̄2

0 0 T̄2 T2













E+(z′′1 , t)
E+(z′′2 , t)
E−(z′1, t)
E−(z′3, t)






, |T2|2+|T̄2|2+|R2|2|! ≤1.

The real factors T2 and T̄2 represent the field amplitude transmission and out-

coupling coefficients at J2, respectively. The non-vanishing field reflection fac-
tor R2 allows us to consider the localized linear backscattering of the fields.
In general, the estimation of these coefficients requires some more appropriate
modeling, which takes into account the curvature of the ring cavity, the field
diffraction and the overlapping of the lateral modes in the coupling region [19].

Finally, at all simple junctions Js (s = 3, 4, 5, 6 in Fig. 1a) we have s̄′ =
s̄′′ = 1, s̄ = so = 0, and Ts is the 2 × 2 identity matrix. In some cases, when
the heterostructure of these neighboring sections is different, it has sense to
introduce non-vanishing off-diagonal terms representing some field reflection at
this interface.

3 Examples

The spatial distributions of the optical fields and the carrier density can be im-
portant when considering lasers composed from different sections, or when ana-
lyzing propagation of optical pulses significantly shorter then the field roundtrip
time in the ring cavity.
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Modelocked laser. An all-active modelocked ring laser with a saturable ab-
sorber [8] (see Fig. 1a) possess both above mentioned properties, which, nev-
ertheless, can be easily treated by our TW modeling approach. One of the
observed ML regimes is represented in Fig. 2. The field roundtrip time in the
considered laser corresponds to the ∼15 GHz frequency of the ML pulsations.
The switching-on of the ML pulsations and their quality (pulse width, jitter,
amplitude noise, signal to noise ratio, etc.) can be seen from panels (a-d) of
this figure. The field intensity and carrier distributions along the ring cavity
at some fixed time moment are shown in Fig. 2(e) and (f), respectively. Here,
the abscissa axis represents coordinates on the ring cavity, while the left and
right edges of these two diagrams correspond to the position of the localized
coupler. The vertical dotted line indicates the symmetric location of the sat-
urable absorber. The nonuniform and non-monotone carrier distribution is a
consequence of the counter-propagating short optical pulses which are colliding
at the saturable absorber.

Figure 2: ML regime in
the all-active ring laser with
the saturable absorber. (a):
switching-on of the ML pulsa-
tions. (b): sampled pulsating
fields. (c,d): radio-frequency
(rf) and optical spectra. (e,f):
field intensity and carrier dis-
tributions along the ring cav-
ity at the fixed time moment.
Solid grey and black curves
indicate the CW and CCW
propagating fields.

Switching between different stable states. In our next example we con-
sider a simple all-active ring laser [5] schematically represented in Fig. 1(b). It
is known [4] that these lasers can possess two simultaneously stable stationary
states characterized by the dominant contribution of the CW or CCW propa-
gating field (unidirectional bistable regime). We simulate the switching between
the stable stationary states by corresponding optical injections

O(t) = o(t)Aeiωt with ω = −2πc

λ2
0

λ, (4)

where ω, λ, A, o(t), λ0 and c denote the relative optical frequency and the
related wavelength, the amplitude of the injection, the normalized injection
profile, the central wavelength, and the speed of light in vacuum, respectively.
Grey and black curves in Fig. 3 show the evolution of the outgoing CW and CCW
propagating fields. Since we have neglected the linear backscattering, during the
unperturbed operation of the laser one of the fields was totally suppressed: see
the time traces and the optical spectra of the CW and CCW fields at the initial
and the final time intervals, respectively. Within [20, 40]ns time interval we
have injected several nearly resonant 200 ps long optical pulses traveling in CW
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and CCW directions: see middle insert of Fig. 3. All these pulses could induce
switching between both stable states when applied during the dominance of the
opposite field. One can see from Fig. 3 that these switchings can be realized
with at least 1GHz repetition frequency.

Figure 3: Switching between the
CW (grey) and CCW (black)
fields by injecting the corre-
sponding optical pulses (mid-
dle insert). Optical spectra of
the initial and the final states
are shown in the left and the
right inserts, respectively. The
backscattering parameters κ =
R2 = 0. The bistable opera-
tion is induced by the condition
εGc = 2εGs.

Optical frequency of the injection. In the previous example the switching
was imposed by the injection (4) with the optical frequency ω located close to
the resonance of the ring cavity. Three such resonances are represented by three
peaks of the optical spectra at the top of Fig. 5. Let us consider now the impor-
tance of the injection frequency ω for switching between the stationary states.
We have performed a series of simulations applying the optical injection (4)
with the same injection profile o(t) but different intensity A and relative wave-
lengths λ. Our observations are summarized in Fig. 4. We have found, that the
switching can be realized only for near-resonant injections: compare the optical
spectra of the CCW state at the top of Fig. 4 with the injection wavelengths
allowing this switching (panels (a,b) of the same figure). We note also the pres-
ence of several stable states determined by the ring laser modes at different
wavelengths [9]. It is obvious that their presence can not be observed in the
simple two mode model [4].

Self- and cross- gain saturation. In the next example we consider the
asymmetry of the self- and cross- gain saturations. We have fixed εGs +εGc and
have tuned the relative contribution of these factors in the sum: see Fig. 5(a).
We have observed four different dynamic regimes, which are represented in pan-
els (b-e) of the same figure. The first three regimes occurring with a consequent
increase of the cross-gain saturation are the bidirectional stable stationary state
(b), the alternate oscillations (c), and the unidirectional bistable state (d)1.
These three regimes are well known already from the two-mode ODE model.
The last regime (e) was observed for the dominant cross-gain saturation. Like
ML pulsations it is characterized by large short pulses occurring with the ring
roundtrip frequency. However, in contrast to the modelocking demonstrated
in Fig. 2, this regime is unidirectional and does not require any fast saturable
absorption.

1even though that only one of two available stable stationary states is represented in Fig. 5
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Figure 4: Switching of the ini-
tial CCW field (top) by injecting
a CW propagating and 100 ps
long optical pulse in dependence
on the wavelength and the max-
imal intensity of this pulse. (a):
wavelength of the dominant field
after the propagation of the in-
jected pulse with 200 mW max-
imal intensity. Here and at the
top: grey and black correspond
to the CW and CCW fields. (b):
different grey shadings represent
the wavelength of the CW field
after the successful switching.

Figure 5: Dynamic regimes for
different contributions of the
cross- and self- gain satura-
tions. (a): maximal and min-
imal intensities of the emit-
ted field for different values of
εGc − εGs. (b-e) typical rep-
resentatives of the observed
regimes. Grey and black: CW
and CCW propagating fields.
A small distributed coupling
(κ|S| = (10 + 0.4i) · 10−3, |S|:
length of the ring cavity) was
assumed. εGs + εGc = 20 ·
10−24m3.
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4 Mode analysis

The concept of optical modes plays a big role for understanding laser dynamics
in general. They represent the natural oscillations of the electromagnetic field
and determine the optical frequency and the life time of the photons contained in
the given laser cavity. The instantaneous optical modes of straight multisection
lasers were discussed, e.g., in Ref. [14]. We demonstrate below in this paper
how this concept can be applied for analysis of ring lasers.

Let us consider optical modes of the ring cavity alone. That is, we as-
sume that the ring consists of a single or several consequently joined sections
S1, . . . , Sm: see, e.g., SRLs shown in Fig. 1(a) with m = 5 and (b) with m = 1.
By S = [z′1, z

′′
m] and τ we denote the whole ring cavity and the field roundtrip

time, respectively. We assume that no external optical fields penetrate the ring
cavity, i.e., we have no optical injections nor field reflectivities at the edges of
the coupling waveguide.

Within such ring cavity the field and the polarization equations (1) together
with the field transmission-reflection conditions (3) can be written in following
form:

−i∂tΨ(z, t) = H(β)Ψ(z, t) + F̄sp, z ∈ (z′1, z
′′
m);

{

E+(z′1, t) = TE+(z′′m, t) − R∗E−(z′1, t)
E−(z′′m, t) = TE−(z′1, t) + RE+(z′′m)

.
(5)

Here, Ψ =
(

E
p

)

is the field function, and H is a linear β = (β+, β−)-dependent
4 × 4 operator.

Optical equations (5) imply the following spectral problem:

Ω(β)Θ(z, β) = H(β)Θ(z, β), Θ
def
=

(

ΘE

Θp

)

, ΘE satisfy b.c. from Eq. (5). (6)

The instantaneous modes are some β(z, t)-dependent pairs (Ω(β),Θ(z, β)) solv-
ing the spectral equation (6). The imaginary and the real parts of the complex
eigenvalues Ω are mainly determining the angular frequency and the damping
of the corresponding mode [14].

Assume for simplicity2 a vanishing distributed backscattering factor κ =
0 . Then the optical fields within the ring cavity are coupled only indirectly
through the propagation factor β. Suppose that for a fixed β we have a complex
frequency Ω(β) solving the spectral problem (6). Then we can easily find [14, 15]
the field ΘE and the polarization Θp parts of the eigenvector Θ(z, β):

ΘE(z, β) =

(

m(Ω, β̄; z, z′′m)m∆(∆β ; z, z′′m)s+

m−1(Ω, β̄; z, z′1)m∆(∆β ; z, z′1)s
−

)

,

Θ±
p (z, β) = γ̄(z)

γ̄(z)+i(Ω−ω̄(z))Θ
±
E(z, β), where

m(Ω, β̄; y, x)
def
= exp

(

−i
∫ y

x

[

β̄(ζ) + Ω
vgr

+ χ(Ω, ζ)
]

dζ
)

,

m∆(∆β ; y, x)
def
= e

−i
∫

y

x
∆β(ζ)dζ

,

(

s+

s−

)

def
=

(

Θ+
E(z′′m, β)

Θ−
E(z′1, β)

)

,

β̄
def
= β+(z)+β−(z)

2 , ∆β
def
= β+(z)−β−(z)

2 , χ
def
= − iḡ(z)

2
i(Ω−ω̄(z))

γ̄(z)+i(Ω−ω̄(z)) .

(7)

2If κ 6= 0, many analytic expressions are no more available, and we need to solve the arising
problems numerically.
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The complex mode scaling factors s± represent the incoming into the coupler
CW and CCW components of ΘE .

By our assumption Ω and Θ±(z, β) satisfy the spectral problem (6), which
can be substituted by the system

{

m∆(∆β ; z′1, z
′′
m) − m(Ω, β̄; z′′m, z′1)T s+ + m(Ω, β̄; z′′m, z′1)R

∗ s− = 0
−m(Ω, β̄; z′′m, z′1)R s+ + m∆(∆β ; z′′m, z′1) − m(Ω, β̄; z′′m, z′1)T s− = 0

, (8)

having a nontrivial solution (s+, s−)T , i.e., a nonzero eigenfunction Θ(z, β), if
only

e−iΩτe−i〈χ(Ω)〉 = F±(〈∆β〉, |R|) ei〈β̄〉, where 〈y〉 def
=

∫

S
y(z)dz,

F±(〈∆β〉, |R|) def
= T

T 2+|R|2

[

cos (〈∆β〉) ± i
(

sin2 (〈∆β〉) + |R|2

T 2

)1/2
]

.
(9)

In the case of a vanishing R we have a simple expression F± = 1
T exp (±i〈∆β〉).

A set of all complex numbers Ω solving Eq. (9) coincide with the set of
all eigenvalues of the spectral problem (6). Assuming that the gain dispersion
function χ(Ω) is small we can get the approximations

Ωkν ≈

[

2πk − 〈β̄〉 − arg (Fν(〈∆β〉, |R|)) + i log
∣

∣

∣Fν(〈∆β〉, |R|)
∣

∣

∣

]

τ
, ν = ±, k ∈ Z,

(10)
of the most important eigenvalues3 which we can later improve numerically [14]:
see Fig. 6.

-400 -200 0 200 400
frequency (Re         )   [GHz]

0

1
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4
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m
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 (
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) 

 [
1/
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]

Ω/2π

Ω
/2

π

-10 0 10

0

0.002

0.004

-0.2 0 0.2

0

1e-06

2e-06
Figure 6: Main roots Ω of
Eq. (9) (black bullets) and
their initial approximations
given by Eq. (10) (grey tri-
angles) for some fixed β(z)
with 〈β̄〉 = 0. Inserts: the
vicinity of the zero frequency
showing closely located pairs
(Ωk+ ,Ωk−). Parameters κ, ∆,
∆α, εIs, εIc, ω̄ are set to zero.
εGs = εGc 6= 0, R = 0.1,
T =

√
0.7.

Formula (10) shows that the eigenvalues Ωkν are appearing in pairs (ν = ±),
and the different pairs are separated by the roundtrip frequency 2π

τ . A less obvi-
ous separation of the eigenvalues Ωk+ and Ωk− can be understood by considering
the expression of F± given in Eq. (9). The nontrivial factor ℑm〈∆β〉 (induced
by non-vanishing ∆α or εGs − εGc) is mainly responsible for the separation of
the imaginary parts (gain thresholds) of Ωk± . Similarly, the separation of the
real parts (frequencies) of Ωk± is mainly due to non-vanishing R or ℜe〈∆β〉 (i.e.,
non-vanishing ∆ and εIs − εIc).

3Other roots of Eq. (9) are due to the non-vanishing nonlinear function χ(Ω, z). However,
all these roots have large positive imaginary parts [20], and the corresponding modes are well
damped.
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Mode beating. Fig. 6 gives an illustration of this statement. The mode
splitting here is imposed by R 6= 0, while 〈∆β〉 = 0. Since the thresholds of
the modes k+ and k− are similar one can expect both of them contributing
to the dynamics of the optical fields producing beating type pulsations with
the beat frequency fslow ≈ |ℜe (Ωk+ − Ωk−)| /2π. And indeed, this type of
dynamics was observed: see Fig. 7. Panels (a) and (b) of this figure indicate the
presence of two characteristic frequencies of this regime. The slow frequency
fslow coincides perfectly with the mode pair frequency separation formula given
a few lines above. This agreement is also illustrated in Fig. 7(c,d): compare the
mode separation in (c) and the separation of the spectral peaks in (d). The less
pronounced fast frequency ffast in Fig. 7(b) corresponds to the field roundtrip
time in the ring cavity, i.e., to the frequency separation of the neighboring mode
pairs: |Ωk± − Ω(k−1)± |/2π.

Figure 7: A dynamic regime
induced by beating of differ-
ent modes. (a): intensity of
the outgoing CCW (grey) and
CW (black) field. (b): rf spec-
tra of the outgoing CW field
(note the logarithmic scale of
the frequency axis). (c): four
main eigenvalues Ω(β(t)) at
several time instants t. (d,e):
optical spectra. Parameters as
in Fig. 6.

Stability of unidirectional states. The mode spectra can also explain the
stability or the instability of stationary (rotational wave) states determined by
some modes with real eigenvalues Ω:

(Ψ(z, t), n(t)) =
(

Θ(z, β)eiωt, n̄
)

, where Ω(β) = ω ∈ R.

To make the explanation more transparent, let us consider a simple case with
R = χ(ω) = ∆α = 0.

Let us assume the complex factor s+ 6= 0 (we have a non-vanishing emission
of the CW field). As it follows from Eqs. (8,10), the angular frequency ω of
this state can be identified with some eigenvalue Ωk+ . In the same manner,
the assumption s− 6= 0 (a non-vanishing emission of the CCW field) implies
ω = Ωk− . Thus, both non-vanishing fields are available if only Ωk+ = Ωk−

what can be realized only for 〈∆β〉 = 0mod(π).
In the unidirectional stationary state determined by, for example, k+-th

mode we have s+ 6= 0, s− = 0, Ωk+ = ω and Ωk− = ω +
2〈∆β〉

τ . The dom-
inance of the cross-gain saturation over the self-saturation (εGc > εGs) and
notations (2) imply the inequalities ℑm〈∆β〉 > 0, ℑmΩk− > 0, what indicate
damping of this neighboring k−-th mode. Thus, one can expect a stable op-
eration at this unidirectional stationary state: see Fig. 5(d), where we could
demonstrate such regime even in the presence of some small backscattering fac-
tor κ. In the opposite (εGc < εGs) case we have ℑm〈∆β〉 > 0 > ℑmΩk− ,
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what implies the growth of k−-th mode and, therefore, the instability of this
unidirectional stationary state.

We admit, however, that this mode analysis gives only hints, whether some
state can be stable or not. The performance of the accurate stability analysis
is much more demanding problem and is out of the scope of the present paper.

5 Conclusions

The traveling wave model can be used for simulating and analyzing the nonlinear
dynamics in various semiconductor ring laser devices. This model could recover
Typical operation regimes such as bistable unidirectional and stable bidirec-
tional stationary states, or alternate oscillations known from experiments and
modeling with a simple two-mode ODE model can also be recovered by the TW
model. Moreover, our model can also reproduce typical multi-mode regimes
such as multiple stable states, mode jumping or modelocking pulsations, which
are not accessible to the simple ODE model. In addition, we have shown how
computation of optical modes may help us for understanding the observed dy-
namical regimes.
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