
Conflict-free Vehicle Routing: Load Balancing

and Deadlock Prevention

Max Klimm, Ewgenij Gawrilow, Rolf H. Möhring, and Björn Stenzel∗

Technische Universität Berlin, Institut für Mathematik, MA 5-1,
Straße des 17. Juni 136, 10623 Berlin, Germany

{klimm,gawrilow,moehring,stenzel}@math.tu-berlin.de

Abstract. We study a so-called static approach for the problem of rout-
ing vehicles conflict-free through a given street network. In fact, we as-
sume that routes are computed without taking time-dependences into
account and collisions are avoided via a particular reservation proce-
dure. In this context, the task is to cope with two arising problems: the
appearance of congestion and detours on the one hand and the risk of
deadlocks on the other.
We provide a two-stage routing approach for that problem. In the first
phase we focus on balancing the load on the edges of the given graph that
models the underlying street network. Therefore, we consider the Online
Load Balancing Problem with Bounded Stretch Factor and give an op-
timal algorithm with respect to a specific performance ratio, the stretch
factor restricted competitive ratio. Furthermore, in a second phase, we
investigate the detection and avoidance of deadlock situations.
For the evaluation of the entire algorithm we consider the routing of
Automated Guided Vehicles (AGVs) at HHLA Container Terminal Al-
tenwerder (CTA).

1 Introduction

We consider an undirected graph G = (V, E). The edge set E denotes the lanes
of the underlying traffic network. Each edge e ∈ E has a certain transit time τ (e)
which indicates the time needed to traverse this edge. The node set V models
the crossings of the lanes.

Transportation tasks are consecutively arriving over time and are modeled
by a sequence σ = r1, . . . , rk of requests. Each request ri = (si, ti) consists of a
start node si and an end node ti. Note that we do consider the assignment of
vehicles to requests. In contrast, we assume that this is done by a higher-level
management system in advance.

∗supported by the DFG Research Center MATHEON “Mathematics for key tech-
nologies”

In a static approach for online disjoint vehicle routing problems one computes
static paths in the network, ignoring their time dependent nature. More precisely,
one computes a standard shortest path, e.g., using Dijkstra’s algorithm, with
respect to arc costs consisting of the transit times τ (e) plus a load dependent
penalty cost which is a function of the number of routes that are already using
this edge.

In such a routing approach the computed paths are, of course, not conflict-
free. Hence, one needs an additional conflict management that, at execution time
of the routes, guarantees that no collisions occur. This can be done by iteratively
allocating to a vehicle the next part of its route (the reserved area) and block it
for all other vehicles (reservation), see Figure 1.

vehicle

reserved
area

Fig. 1. Reservation procedure.
Each vehicle reserves the next
part of the route. Mutual ex-
clusive reservations guarantee a
collision-free execution of com-
puted (static) paths.

In comparison to so-called dynamic routing approaches (see [8]) such an
approach a priori shows various drawbacks. The most alarming one is caused
by the collision avoidance at execution time. The reservation rules can cause
deadlocks, as illustrated in Figure 2, which have a deteriorating effect on the
system performance. Deadlocks appear if a group of vehicles wish to reserve a
set of edges which are already occupied by another vehicle in this group such
that none of them is able to continue its route and thus the system is blocked.
Note that the dynamic routing approach provides deadlock-free routes already
at the time of the route computation.

In addition to deadlocks, another inbuilt drawback in the static setting is the
appearance of detours and high congestion. This results in traveling times that
can be far away from the shortest possible traveling time.

Previous Work. So far only Guan and Moorthy [9] investigated different kinds
of penalty costs for this kind of vehicle routing problem. In fact, they considered
constant additive penalty costs on the one hand and distance-dependent costs on
the other. But, besides they do not give any theoretical performance guarantee
for these approaches, the experimental evaluation does not show any major effect.

The detection and prevention of deadlocks has been investigated by Lee and
Lin [11] who considered petri net approaches. Additionally, there are graph the-
oretic models used [5, 9, 10, 14]. For details concerning these approaches we refer
to Section 3.

Fig. 2. Simplified deadlock
situation. Both vehicles are
trying to occupy the same
portion/edges of the network,
thereby blocking each other.

Our Approach. In order to cope with the problem of congestion and detours
we use a sophisticated routing approach that balances the load on the edges of
the graph such that the resulting paths remain short with respect to the transit
times. In fact, in Section 2, we present an online load-balancing algorithm that
guarantees a minimal load under a given length constraint to the chosen paths.

In a second step we construct so-called reservation schedules to avoid poten-
tial deadlock situations. The corresponding a deadlock detection and prevention
algorithm will be introduced in Section 3.

A
C

D

B

Fig. 3. The figure illus-
trates the polygons that are
claimed by a vehicle that
moves on the indicated edge.
Polygon B and C intersect
each other while polygons A
and D do not intersect an-
other polygon.

For dealing with the physical dimensions of the vehicles we use polygons P(e)
for each edge e, which describe the blocked area when a vehicle (the center of a
vehicle) is located on edge e (Fig. 3). Thus, it is prohibited to use two edges at
the same time if the corresponding polygons intersect. We represent this mutual
exclusion by sets confl(e) of so-called conflicting edges for each edge e.

Algorithm 1: STAT-ROUTE

Data: Directed graph G = (V,E), sequence of requests σ = r1, . . . , rk.
Result: Sequence if static paths P1, . . . , Pk with corresponding deadlock-free

reservation schedules.
begin

foreach request rj do
compute a shortest path w.r.t. a certain load-dependent cost function
(see Section 2.2);
compute a deadlock-free reservation schedule (see Section 3.4);

end

2 Online Load Balancing with Bounded Stretch Factor

2.1 Introduction

In recent years many people did research into the Online Load Balancing Prob-
lem [2, 4]: Consider a directed graph G = (V, E) and a sequence of requests
σ = (r1 = (s1, t1), . . . , rk = (sk, tk)), where si and ti denote the source and
target node of the request i, respectively. Sometimes a certain bandwidth bi,
that possibly also depend on the edges used, is assigned to each request. We will
focus on the case where this bandwidth is equal to one. In this case, the load on
an edge e after the i-th request (loadi(e)) is defined as the number of requests
already routed over e. The task is to minimize the maximum load over all edges,
i.e., min maxe∈E loadk(e), whereas k again denotes the number of requests.

Online Load Balancing Problem

Instance: Directed graph G = (V, E),
sequence of requests σ = (r1, . . . , rk).

Task: Minimize the maximum load over all edges e ∈ E, i.e.,
min maxe∈E loadk(e)

Aspnes et al. [2] gave an O(log(|E|))-competitive algorithm for that prob-
lem and showed, using the lower bound of Azar, Naor and Rom [3] for online
assignment, that their approach is optimal for online load balancing.

This standard load balancing problem has been extended to the case with
transit times τ (e) on edges and a certain constraint to the length of a chosen path
by Gao and Zhang [6]. In fact, they introduced a so-called stretch factor B > 1
that bounds the length of a chosen si-ti-path, i.e., each si-ti-path has to be
shorter than B times the length of a shortest path between si and ti. We call
this problem the Online Load Balancing with Bounded Stretch Factor.

Online Load Balancing Problem

with Bounded Stretch Factor

Instance: Directed graph G = (V, E), transit times τ : E → R, stretch
factor B, sequence of requests σ = (r1, . . . , rk).

Task: Minimize the maximum load over all edges e ∈ E, i.e.,
min maxe∈E loadk(e), subject to length(Pi) < B · length(SPi)
for each chosen si-ti-path Pi, whereas length(SPi) denotes the
length of a shortest path between si and ti.

Gao and Zhang [6] modified the approach of Aspnes et al. [2] and obtained
similar results concerning the competitive ratio for this problem. In particular,
they also provide a O(log(|E|))-competitive algorithm. Note that their algorithm
has an exponential run time since they compute resource-constrained shortest
paths.

We also consider the Online Load Balancing Problem with Bounded Stretch
Factor, but we focus on a different kind of analysis. Instead of comparing the
solution of a particular online algorithm with the optimal solution for that prob-
lem (competitive analysis), we consider the optimal solution of the standard
load balancing problem, i.e., without the given stretch factor constraint. We are
interested in this ratio since an optimal load balancing solution can be seen as
the best choice with respect to generated congestion in our static routing algo-
rithm STAT-ROUTE (Algorithm 1). We refer to it as the stretch factor restricted
(sfr) competitive ratio and transfer the notation from the standard competitive
analysis introduced in [4].

Definition 1. An online algorithm ALG for the Online Load Balancing Prob-
lem with Bounded Stretch Factor is called c-stretch-factor-restricted-competitive
or c-sfr-competitive if, for any problem instance I, it achieves a solution

ALG(I) ≤ c · OPT(I),

where OPT(I) denotes the value of the optimal offline solution for the Online
Load Balancing Problem.

The stretch factor restricted (sfr) competitive ratio of ALG is the infimum
over all c such that ALG is c-competitive.

In addition, we assume that the number of requests k, or at least a good
upper bound, is given in advance. Seiden, Sgall and Woeginger [12] call such
approaches semi-online. In our application, the disjoint vehicle routing, a good
upper bound might be the number of vehicles since there can not be more ’active’
requests than vehicles.

In the next section we give a semi-online algorithm that turns out to be
optimal with respect to the sfr competitive ratio.

2.2 Algorithm

We present an

O(log k
√

B
(max(k, |E|, max

e∈E
τ (e)/ min

e∈E
τ (e))))-sfr-competitive

algorithm (Algorithm 2) for Online Load Balancing with Bounded Stretch Fac-
tor. The algorithm works in phases. In each phase we consider a certain upper
bound UB to the optimal load with respect to the already routed requests in
this phase. This upper bound is adjusted dependent on the current maximum
load produced by the algorithm, i.e., whenever it can not be guaranteed that
UB is still an upper bound, cf. Theorem 1, we enter a new phase (and double
the bound).

Algorithm 2: BAL-BOUND

Data: Directed graph G = (V,E), transit times τ : E → R,
requests σ = r1, . . . , rk, stretch factor B.

Result: Sequence of static paths P1, . . . , Pk.
begin

load(e) = 0 ∀e ∈ E ;
UB = 1;
b = k

√
B ;

foreach ri = (si, ti) do
SP compute a shortest si-ti path Pi w.r.t. the cost function

c(e) = τ(e) · b
load(e)

UB ;

if ∃e ∈ confl(Pi) : load(e) > logb(b
2k · |E| · maxe∈E τ(e)

mine∈E τ(e)
) · UB then

UB = 2 · UB;
load(e) = 0 ∀e ∈ E;
goto line SP ;

else
load(e) = load(e) + 1 ∀e ∈ confl(Pi);
assign path Pi to request ri;

end

For each request the algorithm computes a shortest path with respect to

the cost function c(e) = τ (e) · b
load(e)

UB , where b is the k-th root of the given
stretch factor B. Afterwards the load on all edges that conflict with an edge of
the selected path P , namely the edges in confl(P) :=

⋃

e∈P confl(e), is increased
by one.

In order to show the claimed stretch factor restricted competitive ratio of
Algorithm 2 (BAL-BOUND) we introduce Algorithm 3 (SUB-BAL-BOUND)
which can be viewed as subroutine (phase) of Algorithm 2 since there we assume
that an upper bound UB is given in advance.

Algorithm 3: SUB-BAL-BOUND

Data: Directed graph G = (V,E), transit times τ : E → R,
requests σ = r1, . . . , rk, stretch factor B, upper bound UB ≥ OPT.

Result: Sequence of static paths P1, . . . , Pk.
begin

load(e) = 0 ∀e ∈ E ;
b = k

√
B ;

foreach ri = (si, ti) do
compute a shortest si-ti path Pi w.r.t. the cost function

c(e) = τ(e) · b
load(e)

UB ;
load(e) = load(e) + 1 ∀e ∈ confl(Pi);
assign path Pi to request ri;

end

Theorem 1 gives a performance guarantee for Algorithm 3 that depends on
the given upper bound UB.

Theorem 1. For a fixed upper bound UB ≥ OPT and for any problem instance
I it holds that

SUB-BAL-BOUND(I) ≤ logb

(

b2k · |E| · maxe∈E τ (e)

mine∈E τ (e)

)

· UB.

Proof. Let P ∗
i and Pi be the optimal path and the path selected by algorithm

SUB-BAL-BOUND, respectively. Moreover, recall that loadi(e) denotes the load
on edge e after i requests. Since the algorithm chooses the shortest path with
respect to the given costs c(e), it holds that

∑

e∈Pi
c(e) ≤∑e∈P ∗

i
c(e)

⇔∑

e∈Pi
τ (e)b

loadi−1(e)

UB ≤∑e∈P ∗

i
τ (e)b

loadi−1(e)

UB

for all i. Summing up over all requests leads to the following inequality:

∑k

i=1

∑

e∈Pi
τ (e)b

loadi−1(e)

UB ≤∑k

i=1

∑

e∈P ∗

i
τ (e)b

loadi−1(e)

UB

⇔∑

e∈E

∑

i:e∈Pi
τ (e)b

loadi−1(e)

UB ≤∑e∈E

∑

i:e∈P ∗

i
τ (e)b

loadi−1(e)

UB .

Now we multiply both sides by b−1. Then, for the inner sum of the left hand
side, we get

(b − 1) ·
∑

i:e∈Pi

τ (e)b
loadi−1(e)

UB =
∑

i:e∈Pi

τ (e) · (b
loadi−1(e)

UB
+1 − b

loadi−1(e)

UB) (1)

≥
∑

i:e∈Pi

τ (e) · (b
loadi(e)

UB − b
loadi−1(e)

UB) (2)

= τ (e) · (b
loadk(e)

UB − 1). (3)

Here, the telescope sum in (2) is obtained by the observation that the load
on an edge e increases at most by one in a single step (loadi(e) ≤ loadi−1(e)+1).
Additionally, note that UB ≥ 1 holds in each phase of the algorithm.

On the right hand side we get

(b − 1) ·
∑

e∈E

∑

i:e∈P ∗

i

τ (e)b
loadi−1(e)

UB ≤ b(b − 1) ·
∑

e∈E

∑

i:e∈P ∗

i

τ (e) (4)

≤ b(b − 1)k ·
∑

e∈E

τ (e). (5)

Equation (4) holds due to fact that, in an optimal solution, the load on a certain

edge never exceeds the given upper bound (loadi−1(e)

UB ≤ 1 ∀i). Additionally,

since there must be an optimal solution that only contains simple paths (positive
cost function), the number of paths that are routed over a certain edge is bounded
by k which leads to (5).

Using the results from both sides we get the claimed performance guarantee
by simple arithmetic transformations:

∑

e∈E τ (e)(b
loadk(e)

UB − 1) ≤ b(b − 1)k ·∑e∈E τ (e)

⇔∑

e∈E τ (e)b
loadk(e)

UB ≤ (b(b − 1)k + 1) ·∑e∈E τ (e)

⇒∑

e∈E τ (e)b
loadk(e)

UB ≤ b2k ·∑e∈E τ (e)

⇒ mine∈E τ (e)
∑

e∈E b
loadk(e)

UB ≤ b2k · |E| · maxe∈E τ (e)

⇔∑

e∈E b
loadk(e)

UB ≤ b2k · |E| · maxe∈E τ(e)
mine∈E τ(e)

⇒ maxe∈E b
loadk(e)

UB ≤ b2k · |E| · maxe∈E τ(e)
mine∈E τ(e)

⇔ maxe∈E loadk(e) ≤ logb(b
2k · |E| · maxe∈E τ(e)

mine∈E τ(e)) · UB.

Aspnes et al. [2] showed that the approach of adapting the upper bound
accordingly (BAL-BOUND), instead of assuming that such an upper bound is
given (SUB-BAL-BOUND), increases the competitive ratio by at most a factor
of 4. We use their approach to proof Theorem 2.

Theorem 2. BAL-BOUND is 4·logb(b
2k·|E|·maxe∈E τ(e)

mine∈E τ(e))-sfr-competitive. Thus,

the stretch factor restricted competitive ratio is in

O

(

log k
√

B

(

max

(

k, |E|, maxe∈E τ (e)

mine∈E τ (e)

)))

.

Proof. Due to readability we write SUB-BAL-BOUNDUB if we consider Algo-
rithm 3 with given upper bound UB and abbreviate the ratio guaranteed of

SUB-BAL-BOUND by c := logb(b
2k · |E| · maxe∈E τ(e)

mine∈E τ(e)). Moreover, recall that

SUB-BAL-BOUND can be viewed as subroutine of BAL-BOUND.
Let σ(ℓ) denote the subsequence of requests in phase ℓ (upper bound 2ℓ)

of algorithm BAL-BOUND. Then, consider the phase h where the algorithm
terminates. If the algorithm terminates in the first phase (h = 0) it holds that

BAL-BOUND(σ) = BAL-BOUND(σ(0)) ≤ c.

Therefore, it remains to show that the claimed competitive ratio holds for
any h ≥ 1. Consider the subsequence σ(h−1) and the first request rh

1 in phase h.
Note that this is the request that terminates phase h − 1. Thus, it holds that

SUB-BAL-BOUND2h−1(σ(h−1), rh
1) > c · 2h−1.

By Theorem 1 it follows that

OPT(σ) ≥ OPT(σ(h−1), rh
1) > 2h−1.

Then, summing up over all phases leads to the claimed stretch factor restricted
competitive ratio:

BAL-BOUND(σ) =
h
∑

ℓ=1

SUB-BAL-BOUND2ℓ(σ(ℓ))

≤
h
∑

ℓ=1

c · 2ℓ = (2h+1 − 1) · c
≤ 4 · c · 2h−1 ≤ 4 · c · OPT(σ).

Now it remains to show that the stretch factor constraint is respected by
each path that is computed by BAL-BOUND.

Theorem 3. Each path selected by BAL-BOUND is shorter (with respect to τ)
than B times the shortest path length.

Proof. Let Pi be the path selected by the algorithm for the i-th request and let
SPi be a shortest si-ti-path. Then it holds that

∑

e∈Pi
c(e) ≤∑

e∈SPi
c(e)

⇔∑

e∈Pi
τ (e) · b

loadi−1(e)

UB ≤∑
e∈SPi

τ (e) · b
loadi−1(e)

UB .

Since the cost function is positive, the static shortest path will never contain
a cycle. Thus, it holds that loadi−1(e) < i for all i. This leads to the following
estimate for each i:

∑

e∈Pi
τ (e) · b0 <

∑

e∈SPi
τ (e) · bi

⇔ length(Pi) < bi · length(SPi).

Using b = k
√

B, we get the claimed bound to the path length, i.e.,

length(Pi) < B · length(SPi) ∀i.

2.3 Lower Bound

In order show that no (online) algorithm can achieve a better performance guar-
antee concerning the stretch factor restricted competitive ratio we consider the
following example.

1

B

B

B

s t

Fig. 4. Graph described in Example 1.

Example 1. We consider an instance of the Load Balancing Problem with Bounded
Stretch Factor with stretch factor B and k requests from s to t in the graph il-
lustrated in Figure 4. The graph consists of two nodes, s and t, and k parallel
edges. On k − 1 of these edges the transit time is set to B while the remaining
edge has transit time 1.

In this example only one edge (transit time 1) can be used since routing over
the other edges would violate the stretch factor constraint. Thus, since in an
optimal solution without this constraint, one would assign each request to an
exclusive edge, which leads to a load of 1, the sfr competitive ratio is bounded
from below by

|E| = k = log k
√

B
(B) = log k

√
B

(

maxe∈E τ (e)

mine∈E τ (e)

)

for any online algorithm for the Online Load Balancing Problem with Bounded
Stretch Factor.

This shows that the presented algorithm (Algorithm 2) is (asymptotically)
optimal with respect to that ratio, cf. Theorem 2.

Remark 1. Note that even an offline algorithm that respects the stretch factor
constraint would not be able to perform better in the instance of Example 1.

3 Reservation Schedules and Deadlock Prevention

3.1 Introduction

Although the routes computed by Algorithm 2 (BAL-BOUND) are good in the
sense that they balance the load on the edges of the given graph we need a

mechanism to definitely avoid conflicts. In Section 3.2 we introduce a reservation
schedule that prevents the vehicles from colliding by requesting edges before
occupying them. Such a schedule can be interpreted as an instruction for the
construction of a dynamic path at execution time.

Since this procedure may cause deadlocks, we additionally have to take care
for such situations. Due to the deteriorating effects of deadlocks to logistic pro-
cesses a lot of attention is payed to that research field the recent years. Besides
the investigation of petri net approaches [11, 13] there are also graph theoretic
models used [5, 9, 10, 14].

The first observation concerning most of these approaches is that they use so-
called zone control, i.e., it is assumed that vehicles move between non-intersecting
zones of adequate size. This, obviously, is not a suitable model for our purpose
since it is not possible to partition our traffic network into such zones. Kim et
al. [10] introduce a finer zoning of the network, but, just as the zone control
approaches, their algorithm is not able to deal with large-scale vehicle fleets.

Our deadlock prevention algorithm provides both, a fine discretization (vehi-
cles move on edges of the graph) and a fast routing in large networks with many
vehicles. The algorithm is based on the detection of specific cycles, instead of
standard cycles as in [5, 10, 14], in a graph that is in a one-to-one correspondence
with the considered reservation schedule, the so-called deadlock detection graph.
Moreover, in contrast to Guan and Moorthy [9] we avoid deadlocks already at
the time of the route computation and not during the execution of the route.

The section is structured as follows. After the description of our model we
introduce the deadlock detection graph in Section 3.3 and present the deadlock
prevention algorithm in Section 3.4. Computational results and conclusions are
given afterwards.

3.2 The Model

Assume that a set P = {P1, . . . , Pk} of static paths that have to be scheduled
deadlock free is given. Then, a reservation schedule S(P) = {RP1

, . . . , RPk
}

consists of a set of so-called requested edges RP : E(P) → 2E for each path
P ∈ P. These edge sets RP (e) denote those edges that must be free, i.e., not
occupied by another vehicle, before edge e is left. If this is the case these edges
are reserved and the corresponding vehicle leaves edge e. Note that for each
path P = (e1, . . . , en) the set of requested edges of the last edge, RP (en), is
always empty.

To guarantee a smooth execution of a reservation schedule, especially no
occurrence of conflicts, it is necessary that each edge on a certain path have to
be requested/reserved before it is entered. Such a reservation schedule is-called
valid.

Definition 2 (Valid reservation schedule). A reservation schedule S(P) is
valid if for each
path P = (e1, . . . , en) ∈ P holds:

∀ i ∈ {2, . . . , n} ∃ j ∈ {1, . . . , i − 1} such that ei ∈ RP (ej).

We assume that the first edge of the considered path does not have to be
reserved since it is already occupied by the vehicle before it starts traveling.
Therefore, we can also require that the first edge is not used by another vehicle.

Assumption 1 (Reservation of the first edge) The first edge of each path P ∈
P contained in a reservation schedule S(P) is not used, and therefore not re-
quested, by another path P ′ ∈ P.

A reserved edge is freed when the vehicle leaves that edge. To this end, we
define another edge set, the occupied edges OP (ei). An edge is called occupied if
it has already been reserved and has not been freed, i.e.,

OP (ei) = ei ∪
(

⋃

k<i

{ej ∈ RP (ek)| j > i}
)

. (6)

Note that the edges in RP (e) can only be reserved if the corresponding con-
flicting edges confl(RP (e)) :=

⋃

f∈RP (e) confl(f) are not occupied. Therefore, all
these edges also have to be requested. But note that those edges do not have to
be reserved and are therefore not occupied after the corresponding reservation.
To this end, we will always distinguish between requested edges in RP (e) and
those in confl(RP (e)).

Since we aim at providing a reservation schedule that avoids deadlocks, we
have to identify any potential deadlock situation. Here, ’potential’ means that the
identified situation will possibly not appear but cannot be excluded. The reason
for this vagueness is that both is causal for a deadlock situation, the reservation
schedule and the order vehicles want to pass the conflict points. Note that the
latter cannot be influenced by an reservation schedule. Therefore, we have to
take each possible order of the vehicles into account.

Definition 3. Let S(P) be a reservation schedule. Then, a set of paths
{P1, . . . , Pm} ⊆ P is called deadlock-ridden if, for each i ∈ {1, . . . , m}, there
exists an edge ePi

such that

confl(RPi
(ePi

)) ∩
⋃

j∈{1,...,m}:j 6=i

OPj
(ePj

) 6= ∅.

Accordingly, S(P) is called deadlock-free if the set of paths P does not contain
any deadlock-ridden subset.

Based on the described model we will now concentrate on the detection and
prevention of deadlocks. To this end, we introduce a so-called deadlock detection
graph that represent a reservation schedule in Section 3.3 and give a deadlock
prevention algorithm that makes use of this correlation in Section 3.4.

3.3 Deadlock Detection Graph

The question we will answer in this section is how we can detect a potential
deadlock, i.e., a deadlock-ridden set of paths, in a given reservation schedule.
We will show that this can be interpreted as a cycle with a specific property in
a special kind of graph.

Such a deadlock detection graph GD = (VD, ED) is constructed based on a
reservation schedule S(P). The node set VD consists of all edges of the given lay-
out graph G = (V, E), i.e., VD = E. The edge set ED consists of edges ((e, f), c),
whereas c ∈ C assigns a particular color, that correspond to requests of edges
that have to be made according to the reservation schedule. The color set C
contains a color for each path of the set P. We denote the color of path P by cP .

Definition 4 (Deadlock detection graph). Consider a graph G = (V, E)
and a reservation schedule S(P). Then, the corresponding deadlock detection
graph GD = (VD, ED) is constructed as follows.

1. VD = E.

2. ED = {((e, f), cP)| ∃g ∈ E such that f ∈ confl(RP (g)) and e ∈ OP (g)}.

Figure 5 illustrates the construction of a deadlock detection graph from a
reservation schedule S(P), i.e., from a collection of sets of requested edges. Ob-
viously, since by definition for each edge e ∈ P on a certain path P holds
e ∈ OP (e), each requested edge f ∈ RP (e) in a reservation schedule leads to an
edge ((e, f), cP) in the reservation graph. However, note that there are additional
edges added to the graph.

e fgh confl(f)confl(e)confl(g)

edge requested edges

h e, g
g f
e ∅
f ∅

Fig. 5. Illustration of a deadlock detection graph that corresponds to the reservation
schedule (shown on the right) of a single path P = (h, g, e, f) While the black edges
directly result from the set of requested edges, the red edges are due to the fact that
edge e is in OP (g) and f is requested from g, respectively.

Since we are able to construct a deadlock detection graph from an arbitrary
reservation schedule we are going to use this representation to detect potential
deadlocks. To this end, we introduce so-called colorful paths and cycles according
to [1] where Alon, Yuster, and Zwick considered the corresponding node version.

Definition 5 (Colorful path, colorful cycle). Consider a graph G with col-
ored edges. Then, a colorful path is a static path P in G with the property that
all edges on P are colored different. A colorful cycle is a cycle with the same
property.

We will now use the fact that a colorful cycle in a deadlock detection graph
characterizes a deadlock-ridden set of paths in the corresponding reservation
schedule to show that a reservation schedule is deadlock-free if and only if the
corresponding deadlock detection graph contains no colorful cycle.

Theorem 4. A reservation schedule S(P) based on a graph G = (V, E) is
deadlock-free if and only if the corresponding deadlock detection graph
GD = (VD, ED) contains no colorful cycle.

Proof. By Definition 4 a deadlock detection graph contains an
edge ((e, f), cP) if and only if there is an edge g ∈ E with

f ∈ confl(RP (g)) and e ∈ OP (g). (7)

Firstly, to see necessity, we assume that there is a colorful
cycle ((e1, e2), cP1

), . . . , ((em, em+1 = e1), cPm
) in the deadlock detection graph.

From Eq. 7 we get that there is an edge ePi
∈ E for each path Pi ∈ P (i =

1, . . . , m) such that

ei ∈ confl(RPi
(ePi

)) and ei+1 ∈ OPi
(ePi

).

Therefore, the set of paths {P1, . . . , Pm} ⊆ P is deadlock-ridden (cf. Definition 3)
since

ei+1 ∈ confl(RPi+1
(ePi+1

)) ∩ OPi
(ePi

) ∀i = 1, . . . , m.

To see sufficiency, assume that there is a deadlock-ridden set of paths P1, . . . , Pm ⊂
P, i.e., there is an edge ePi

such that

confl(RPi
(ePi

)) ∩
⋃

j∈{1,...,m}:j 6=i

OPj
(ePj

) 6= ∅ ∀i ∈ {1, . . . , m}.

for each path Pi. Thus, for all i ∈ {1, . . . , m} there is an edge ei with

ei ∈ confl(RPi
(ePi

)) ∩ OPj(i)
(ePj(i)

)

for some j(i) ∈ {1, . . . , m}. Using Eq. 7 we get that there must be an edge
((ei, ej(i)), cPi

) for all i ∈ {1, . . . , m} and a corresponding j(i) ∈ {1, . . . , m} in
the deadlock detection graph since

ej(i) ∈ confl(RPj(i)
(ePj(i)

)) and ei ∈ OPj(i)
(ePj(i)

).

Thus, there must be a colorful cycle in that graph. Note that not any cycle that
is constructed that way must contain an edge for each path in P1, . . . , Pm since
we do not demand in Definition 3 that a deadlock-ridden set of paths is inclusion
minimal.

3.4 Deadlock Prevention Algorithm

Theorem 4 shows that the recognition of colorful cycles is the key ingredient of
any deadlock prevention algorithm that uses the given model. More precisely,
one has to check whether a new reservation closes a colorful cycle in the deadlock
detection graph. To this end, we consider the Colorful Path Problem. Note that,
as mentioned before, Alon, Yuster, and Zwick [1] investigated a node variant of
that problem.

Colorful Path Problem

Instance: Directed graph G = (V, E) with colored edges, color set C,
target node t ∈ V , set of start nodes S ⊂ V .

Task: Is there a colorful path from any s ∈ S to t that does not use a
specific color c ∈ C?

The Colorful Path Problem is NP-complete since the edge version of the
Path with Forbidden Pairs Problem, which is known to be NP-complete [7], can
be reduced to this problem.

Path with Forbidden Pairs [7]

Instance: Directed graph G = (V, E), start node and target node s, t ∈ V ,
collection D = {(a1, b1), . . . , (an, bn)} of disjoint pairs of edges
from E.

Task: Is there a path from s to t in G that contains at most one edge
from each pair in D?

Theorem 5. The Colorful Path Problem is NP-complete.

Proof. Consider an instance I of the Path with Forbidden Pairs Problem with
collection D. We construct an instance I ′ of the Colorful Path Problem by as-
signing each of the two edges of a pair in the collection D the same color and
contracting all edges that are not contained in D. Additionally, we choose a
dummy color that is not contained in the graph as the forbidden color c ∈ C and
set S = {s}.

Then, obviously, a colorful s-t-path in I ′ corresponds to a path with forbidden
pairs in I and vice versa.

Algorithm 4 solves the Colorful Path Problem. The algorithm is related to
the one introduced by Alon, Yuster and Zwick [1] for the corresponding node
version.

It iteratively computes all colorful paths from length 1 to length |C| − 1,
or, more precisely, it maintains the information which nodes can be reached
via a colorful path. Therefore, each label consists of node and a collection of
colors C that contains the colors used on the corresponding path. Note that we
do not propagate labels with redundant information, i.e., we do not add the same
label again. This can be guaranteed by a look up in a table that provides for

Algorithm 4: COLORFUL-PATH

Data: Directed graph G = (V,E) with colored edges, node t ∈ V , set of nodes
S ⊂ V , set of colors C, forbidden color c.

Result: Is there a colorful s-t-path for some s ∈ S that does not use the
forbidden color c?

begin
Qold = {(t, ∅)};
Qnew = ∅;
for i = 1; i < |C|; i++ do

foreach (v, C) ∈ Qold do

if v ∈ S then
return true ;

foreach in-going edge ((u, v), i) do

if i /∈ C ∪ {c} and there is no label (u, C∗) with C∗ = C then
add (u, C ∪ {c}) to Qnew ;

Qold = Qnew;
Qnew = ∅;

return false ;
end

each possible combination of colors the information whether this combination is
already represented by a label on a certain node.

Since we, in contrast to Alon, Yuster and Zwick, consider multiple sources and
only a single target, the graph is traversed backwards, i.e., the algorithm start
from the given target node and considers the ingoing edges for each label taken
from the set Qold, which, in phase i of the algorithm, contains the collection of
possible colorful paths of length i − 1.

The algorithm obviously determines all possible colorful paths that does not
contain the forbidden color and therefore solves the Colorful Path Problem.
For the analysis of the run time we refer to [1] since it is similar to the node
version. In particular, the additional consideration of a forbidden color and a
set of start nodes (instead of a single node) does note change the analysis. The
key observation in their proof is that the number of labels in each node after i
iterations is bounded by

(|C|
i

)

.

Theorem 6. Algorithm 4 solves the Colorful Path Problem in
O(|C| · 2|C| · |E|).

Remark 2 (Additional heuristic). Due to the exponential run time of the al-
gorithm we provide a heuristic for Algorithm 4. In fact, we introduce an upper
bound to the size of the set Qnew. The algorithm is modified such that it returns
true whenever the upper bound is reached.

Now we are able to formulate our deadlock prevention algorithm (Algo-
rithm 5). Given a sequence of (static) paths the algorithm computes a deadlock

free reservation schedule by iteratively inserting these paths, which is done by
Algorithm 6 (INSERT-ROUTE).

The basic concept of INSERT-ROUTE is to provide a deadlock detection
graph that contains no colorful cycle. This is done by calling Algorithm 4 in
line CP. Simultaneously, a corresponding reservation schedule is constructed. By
Theorem 4 we know that such a reservation schedule is deadlock-free. Therefore,
we only have to argue that the deadlock detection graph is constructed correctly
and that the reservation schedule is valid to obtain Theorem 7.

Algorithm 5: DEADLOCK-PREVENTION

Data: Directed graph G = (V,E), sequence of paths P = P1, . . . , Pk.
Result: Deadlock-free reservation schedule S(P).
begin

foreach path Pi do
INSERT-ROUTE (Algorithm 6);

end

Algorithm 6: INSERT-ROUTE

Data: Directed graph G = (V,E), deadlock-free reservation schedule S(P) and
corresponding deadlock detection graph GD = (VD, ED), path
P = (e1, . . . , en).

Result: Deadlock-free reservation schedule S(P ∪ P) and the corresponding
deadlock detection graph GD = (VD, ED).

begin
j = n;
i = n − 1;
while i ≥ 1 do

CP if there is no colorful eℓ-ei-path without color i for any

eℓ ∈ Sj

k=i+1 confl(ek) in GD then

RS RP (ei) =
Sj

k=i+1 ek ;

DG ∀eℓ ∈ Sj

k=i+1 confl(ek) add ((ei, eℓ), cP) to ED;
j = i;

i = i − 1;

end

Theorem 7. The reservation schedule that is constructed by Algorithm 5 is
valid and deadlock-free.

Proof. Firstly, we observe that the constructed reservation schedule is valid. Due
to Assumption 1, the first edge of the considered path does not lie on a colorful

e fgh confl(f)confl(e)confl(g)

edge requested edges

h e, g
g ∅
e f
f ∅

Fig. 6. Construction of a reservation schedule (deadlock detection graph) for path P =
(h, g, e, f) by Algorithm 5. In contrast to the schedule illustrated in Fig. 5 only edges
that directly result from the set of requested edges are inserted in the deadlock detection
graph.

cycle. Therefore, each edge can be requested at least from that edge. Moreover,
by construction of the algorithm (the invariant i < j holds in each iteration),
each edge (and the corresponding set of conflicting edges) is requested from an
preceeding edge.

To obtain that the constructed reservation schedule is deadlock-free it is
sufficient to proof that the deadlock detection graph is constructed correctly,
i.e., to show that it corresponds to the computed reservation schedule, since
we can apply Theorem 4 in this case. To see this, we observe that edges are
requested in blocks (line RS of the algorithm), that is, whenever we insert edges
to a set RP (ei) it is guaranteed that no edges ek with k > i are already (or will
be) requested from an edge eℓ with ℓ < i during the algorithm. Therefore, by
termination of the algorithm, for each edge ei of the given path holds

RP (ei) = ∅ ∨ OP (ei) = {ei}. (8)

Thus, whenever there is an edge ej with

ek ∈ confl(RP (ej)) and ei ∈ OP ′(ej)

it holds: ek ∈ confl(RP (ei)). Hence, by Definition 4, it is sufficient to insert those
reservations to the deadlock detection graph that represent a requests of edges
in the corresponding reservation schedule (line RS), cf. Figure 6. This is done in
line DG of the algorithm.

We conclude that the deadlock detection graph constructed during the al-
gorithm corresponds to the determined reservation schedule. Since the deadlock
detection graph has no colorful cycles by construction (line CP), this completes
the proof.

For the analysis of the run time we observe that Algorithm 4 is called at
most |P | times in Algorithm 6, where |P | denotes the number of edges on that
path.

4 Computational Results

For our experiments we consider the HHLA Container Terminal Altenwerder
(CTA) at Hamburg Harbor which is operated by the Hamburger Hafen und Lo-
gistik AG (HHLA). It is the most modern container terminal worldwide regard-
ing the level of automation. In particular, the containers are transported between
ship and storage area using so-called Automated Guided Vehicles (AGVs).

We investigate a particular real-life scenario (SCEN-A) for the evaluation of
the presented static routing approach (see Figure 7(a)). There, 72 vehicles serve
request between 22 delivery points and 12 pick-up points in a grid-like graph.

(a) SCEN-A (b) BL-A

(c) 2/3L (d) 1/3L

Fig. 7. Illustration of the scenarios investigated for the evaluation of the static routing
approach. Besides the plain scenario SCEN-A we consider scenario BL-A with two
blocked areas and two scenarios with reduced number of horizontal lanes in the grid-
like graph, namely scenario 2/3L and scenario 1/3L.

Additional scenarios, namely BL-A, 2/3L, and 1/3L, are created by exclud-
ing parts of the underlying graph, cf. Figure 7. This is done to measure the
performance under different traffic densities.

BL-A: We consider two blocked areas that cover essential parts of the grid
such that there are only one third of the lanes left in these parts (Figure 7(b)).

2/3L: SCEN-A with two thirds of the horizontal lanes (Figure 7(c)).
1/3L: SCEN-A with one third of the horizontal lanes (Figure 7(d)).

To measure the performance of our approach we investigate the average dura-
tion of the determined paths, i.e., the time needed to serve a request on average.
Moreover, we consder the computation times.∗ Additionally, in order to analyze
the presented load balancing approach (see Section 2), we focus on the (static)
length of the computed paths and the load on the edges of the graph. More-
over, we evaluate the number and the length of the cycles found by the deadlock
detection algorithm.

∗Hardware: Intel Pentium 4 2,8 GHz with 1024 MB RAM.

Due to the results of the first evaluations described in Remark 3 we restrict
the route computation. In fact, we apply directions to the horizontal lanes alter-
natingly and compute the static path in that modified graph.

Remark 3 (Evaluations in the undirected grid-like graph). It turned out that
the static routing algorithm is not competitive in the considered (undirected)
grid-like graph. In fact, the systems almost stalls and therefore we omit detailed
evaluations.

The reason for the bad performance is the frequent appearance of so-called
head-to-head conflicts if two vehicles want to pass a portion of the graph in
opposite directions. Therefore at least one of these vehicles has to reserve to
whole area together. Besides this might lead to enormous reserved areas the
deadlock detection becomes computationally expensive.

The evaluation is divided into two parts. Firstly, we are going to analyze the
performance under variation of the stretch factor B, cf. Section 2, in SCEN-A.
Afterwards we take a look at the impact of the traffic intensity to the performance
using the three additional scenarios.

4.1 Variation of the Stretch Factor

In Section 2 we presented Algorithm 2 (BAL-BOUND) for the route computation
in our static routing approach. The cost function of the algorithm depends on the
given length constraint to the determined paths, the stretch factor B. Tabular 1
illustrates the evaluation of the performance under variation of that value.

average average max. cycle length # cycles comp. time
B duration path length load avg. max. per avg. max.

(in sec.) (in m) request (in sec.)

1.0 209.46 298.43 29 3.79 12 1.27 0.11 1.24
1.1 170.77 299.81 26 2.98 9 0.35 0.09 0.82
1.2 169.01 300.46 25 2.85 9 0.33 0.09 0.70
1.3 172.26 300.99 26 2.84 9 0.40 0.09 0.59
1.4 169.89 304.65 26 2.93 9 0.35 0.10 0.72

Table 1. Evaluation of the static routing approach with respect to different stretch
factors B.

It turns out that the results of the experiments with stretch factor greater
than 1 are very similar. In fact, they show only minor differences. In contrast,
simply computing a static shortest path for each request (B = 1) leads to signif-
icantly different results. While the static path length is, of course, shorter than
in the other cases, the maximum load on the edges is higher. This leads to a
more complicated deadlock prevention, namely there are much more detected

cycles which generates larger reserved areas since each detected cycle makes an
earlier reservation necessary. Thus, it is not surprising that the average duration
is longer in this case. Moreover, the detected cycles are longer than those in
the more balanced cases which results in larger computation times. Thus, we
conclude that load balancing in the route computation of our dynamic routing
approach makes sense, but, at least in the considered grid-like graph, the stretch
factor does not play an important role.

Since the least average duration is achieved with stretch factor B = 1.2, we
choose this setting for the evaluations in Section 4.2.

4.2 Comparison with the Dynamic Routing Approach

static approach dynamic approach

average computation time average computation time
duration avg. max. duration avg. max.
(in sec.) (in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

SCEN-A 169.01 0.09 0.70 182.26 0.08 0.83
2/3L 186.91 0.12 3.86 190.70 0.08 0.98
BL-A 255.79 0.17 1.84 212.31 0.08 1.14
1/3L 693.14 0.31 4.48 259.72 0.08 1.24

Table 2. Comparison of the static routing approach with the dynamic routing approach
with respect to the average duration and the computation times.

100 200 300 400 500 600 700

SCEN-A

BL-A

2/3L

1/3L

average duration dynamic routing approach (in sec.)

average duration static routing approach (in sec.)

Fig. 8. Illustration of the performance of the static routing approach in comparison to
the dynamic routing approach with respect to the measured average duration.

Now, we focus on the question which routing approach, the static one or
the dynamic one introduced in [8] performs better with respect to the chosen
objective, the average duration.

As illustrated in Tabular 2 and Figure 8, this can not be answered generally. It
highly depends on the traffic density. While the static approach shows a slightly
lower average duration than the dynamic one in the scenarios with a compara-
tively low traffic volume, namely the plain scenario SCEN-A and scenario 2/3L,
it has problems in scenarios with high traffic volume. Especially in the most
narrow scenario 1/3L the static approach performs very bad while the average
duration measured for the dynamic approach is not that high compared with
the other scenarios. Moreover, in the static approach, the computation times
increase with the traffic density which is not the case in the dynamic approach.

cycle length # cycles # upper bound reached
average maximum per request per request

SCEN-A 2.85 9 0.33 0.00
2/3L 3.15 10 0.78 0.23
BL-A 4.72 13 1.24 0.33
1/3L 4.25 14 1.35 8.59

Table 3. Evaluation of the deadlock detection algorithm with respect to different traffic
densities.

The reason for the bad performance of the static routing approach in sce-
narios with high traffic volume becomes clear if we regard the evaluation of the
deadlock detection shown in Tabular 3 and keep in mind that the deadlock pre-
vention algorithm has an exponential run time. The number and length of the
detected cycles increase with the traffic density which leads to large computation
times. To this end, we used the heuristic mentioned in Remark 2 and set the
upper bound to 500 in order to provide suitable computation times. The num-
ber of cases where this bound is reached also increases and becomes immense
in scenario 1/3L. Note that we also tried to evaluate that instance without us-
ing the heuristic, but the performance was even worse since the system almost
stalls. The length of the reservations, obviously, increases with the number of
found cycles and the number of canceled searches for a colorful path (heuristic),
respectively. It is not surprising that this leads to a loss of performance.

But why does the static approach perform better in scenarios with low traffic
density? The cause for this, maybe surprising, result is the greedy reservation
strategy used in this case. The next portion of the route is reserved as soon
as possible disregarding that this may interfere other vehicles, cf. Figure 9. In
contrast, the dynamic routing algorithm does not make use of such gaps since
the reservations are made before the vehicles start traveling and it is forbidden

(a) (b)

(c)

Fig. 9. Illustration of the greedy reservation procedure used in the static routing ap-
proach. Due to the greedy reservation procedure each small time window is used.

to use time windows that can not be left before the next vehicle is scheduled on
that area.

To conclude the evaluation, we remark that the static routing approach is
good as long as there are only a few potential deadlocks that have to be avoided
since the greedy reservation procedure is of value in this case, but if the re-
served areas become larger caused by a more complicated deadlock prevention,
it reaches its limits.

References

1. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995.

2. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of

the ACM, 44:486–504, 1997.

3. Y. Azar, J. Noar, and R. Rom. The competitivness of on-line assignment. In Proc.

3rd ACM-SIAM Symposium on Theory of Computing, 1992.

4. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

5. H. B. Cho, T. K. Kumaran, and R. A. Wysk. Graph theoretic deadlock detection
and resolution for flexible manufacturing systems. IEEE Transactions on Robotics

and Automation, 11(3):413–421, 1995.

6. J. Gao and L. Zhang. Tradeoffs between stretch factor and load balancing ratio in
routing on growth restricted graphs. Proceedings of the twenty-third annual ACM

symposium on Principles of distributed computing, pages 189–196, 2004.

7. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

8. E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel. Dynamic routing of auto-
mated guided vehicles in real-time. Preprint 2007/39, TU Berlin, Inst. Mathematik,
2007.

9. W. H. Guan and K. M. R. L. Moorthy. Deadlock prediction and avoidance in an
AGV system. SMA Thesis, 2000.

10. K. H. Kim, S. M. Jeon, and K. R. Ryu. Deadlock prevention for automated guided
vehicles in automated container terminals. OR Spectrum, 28(4):659–679, 2006.

11. C. C. Lee and J. T. Lin. Deadlock prediction and avoidance based on petri nets
for zone control. International Journal of Production Research, 33(12):3239–3265,
1995.

12. S. Seiden, J. Sgall, and G. J. Woeginger. Semi-online scheduling with decreasing
job sizes. Technical Report KAM-DIMATIA Series 98-410, 1998.

13. N. Q. Wu and M. C. Zhou. Resource-oriented petri nets for deadlock avoidance
in automated manufacturing. Proceedings of 2000 IEEE International Conference

on Robotics and Automation, pages 3377–3382, 2000.
14. M. S. Yeh and W. C. Yeh. Deadlock prediction and avoidance for zone-control

agvs. International Journal of Production Research, 36(10):2879–2889, 1998.

