
REGULARIZED STATE-CONSTRAINED BOUNDARY OPTIMAL

CONTROL OF THE NAVIER-STOKES EQUATIONS

JUAN CARLOS DE LOS REYES† AND IRWIN YOUSEPT‡

Abstract. The numerical solution of the Dirichlet boundary optimal control problem
of the Navier-Stokes equations in presence of pointwise state constraints is investigated.
Two different regularization techniques are considered. First, a Moreau-Yosida regular-
ization of the problem is studied. Optimality conditions are derived and the convergence
of the regularized solutions towards the original one is proved. A source representation
of the control combined with a Lavrentiev type regularization strategy is also presented.
The analysis concerning optimality conditions and convergence of the regularized solu-
tions is carried out. In the last part of the paper numerical experiments are presented.
For the numerical solution of each regularized problem a semi-smooth Newton method
is applied.

1. Introduction

The introduction of state constraints in optimal flow control problems constitutes a
recent approach in order to reach a desired fluid flow behavior or deal with multiple
optimization objectives.. In particular, the reduction of flow recirculations can be reached
by imposing pointwise box constraints on the state, while the energy needed is minimized.
This approach has been studied analytically for distributed controls in [14, 30, 10] and
numerically in [12, 13]. Despite its practical importance, the boundary control case has
not been treated yet.

Optimal control problems of the Navier-Stokes equations with Dirichlet boundary con-
trols have been studied in [16, 17, 18, 20] in absence of inequality constraints and in [11]
in presence of pointwise control constraints. An important issue in this kind of problems
is the choice of appropriate control spaces and correspondent cost functionals in order to
get existence of an optimal solution and derive optimality conditions. In particular, Lq

tracking type terms in connection with Dirichlet boundary controls have been considered
in [16, 18]. In those contributions a Lq tracking norm, with q ≥ 4, has to be chosen in
order to get existence of an optimal solution. Differently from [16, 18] and thanks to the
presence of pointwise state constraints, we are able to overcome this difficulty and consider
a L2 tracking type term in the cost functional (see Theorem 2.2). For that purpose, an
appropriate a priori estimate is obtained (see Proposition 2.1), which is also needed to get
approximation results.

On the other hand, the numerical treatment of pointwise state constrained optimal
control problems presents important difficulties related to the lack of regularity of the
Lagrange multipliers associated with the state constraints (cf. Casas [5, 6], Alibert and
Raymond [1] and Bergounioux and Kunisch [3]). Moreover, the direct application of
infinite dimensional semismooth Newton methods (cf. [19, 23]) is not possible in this
context.

To overcome the difficulties arising from the low regularity of the multipliers associated
to the state constraints, two regularization concepts were proposed in recent years. First,
Ito and Kunisch [22] suggested the use of a Moreau-Yosida type regularization approach,
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which removes the pointwise state inequality constraints by adding a penalty term to the
objective functional. Hereafter, the penalized problems are solved in an efficient way by
using semi-smooth Newton methods. We also refer to [2, 4, 21]. Secondly, a Lavrentiev
type regularization (cf. [24]) of the pointwise state inequality constraints was introduced
by Meyer, Rösch and Tröltzsch in [25]. This concept is extended to Neumann boundary
control problems in [28, 29] by including a source representation of control data.

In this article we investigate the application of both regularization techniques to the
optimal Dirichlet boundary control of the Navier-Stokes equations. After introducing
an appropriate control space and a tracking type cost functional, a comprehensive study
concerning optimality conditions as well as convergence results of the regularized solutions
is presented. Apart of proving convergence of global optimal solutions of the regularized
problems towards a global solution of the original problem (see [22, 25]), we also show
that any local optimal solution can be approximated by local optimal solutions of the
regularized problems. For this result, a quadratic growth condition on the local optimal
solution has to be assumed. Note that the study of both regularization strategies does not
involve a numerical comparison between them. This would go beyond the scope of this
paper.

Let us remark that, to the authors knowledge, no previous work on Lavrentiev regu-
larization of Dirichlet optimal control problems has been carried out. This is a further
novelty of this article.

The outline of the paper is as follows. In Section 2 the original control problem and the
functional setting are stated. In Section 3 we introduce a Moreau-Yosida type regulariza-
tion of the problem and afterwards the penalized problems are investigated. In Section 4
a source representation of the control and a Lavrentiev type regularization are proposed.
In Section 5, a semi-smooth Newton algorithm for the solution of each Moreau-Yosida
regularized problem is presented and numerical experiments are carried out.

2. Problem statement

Consider a bounded regular domain Ω ⊂ R
2. Further, let Γ1 be an open subset of the

boundary Γ. Our aim is to find a solution of the following optimal control problem:

(2.1)





min J(y, u) := 1
2‖y − zd‖

2
L2(Ω) + α

2 ‖u‖2
U

subject to

−ν∆y + (y · ∇)y + ∇p = f in Ω

div y = 0 in Ω

y|Γ = g + Bu on Γ

a ≤ y ≤ b a.e. in Ω,

where α > 0, ν = 1
Re > 0 stands for the viscosity coefficient and Re for the Reynolds

number of the fluid, zd is the desired state and U is the control space. The operator B is
the extension by zero operator, which will be specified later. The functions f ∈ L2(Ω) and
g ∈ H1/2(Γ), with

∫
Γ g · ~n dΓ = 0 (~n the unit vector normal to the boundary), are given.

Moreover, the lower and upper bounds a, b ∈ C(Ω) satisfy a(x) < b(x) for all x ∈ Ω. The
inequalities in the last line of (2.1) have to be understood componentwise. We denote by
(·, ·)X the inner product in the Hilbert space X and by ‖·‖X the associated norm. The
subindex is suppressed if the L2-inner product or norm are meant. Hereafter, the bold
notation stands for the product of spaces. Additionally, we introduce the solenoidal space
V = {v ∈ H1

0(Ω) : div v = 0}, the closed subspaces H
q
div := {v ∈ Hq(Ω) : div v = 0} and

the trilinear form c : H1
div × H1

div × H1
div → R defined by

c(u,w, v) = ((u · ∇)w, v).(2.2)
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The weak formulation of the Navier-Stokes equations in the control problem (2.1) is then
given by: Find y ∈ H1

div such that

ν (∇y,∇v) + c(y, y, v) = (f, v), for all v ∈ V,(2.3)

γ0y = g + Bu,(2.4)

where γ0 : H1(Ω) → H1/2(Γ). For later use, we define the bilinear form a : H1
div×H1

div → R

with a(y1, y2) = (∇y1,∇y2) and set

(2.5) M(y) := sup
v∈V

|c(v, y, v)|

‖v‖2
V

∀y ∈ H1
div.

Let us now consider the control space associated with (2.1) which is given by

(2.6) U = {u ∈ H1
0(Γ1) |

∫

Γ1

u · ~n dΓ = 0}.

Introducing the functional Φ : H1
0(Γ1) → R with Φ(u) =

∫
Γ1
u · ~n dΓ, the control space U

can also be written as
U = N (Φ),

where N (Φ) ⊂ H1
0(Γ1) denotes the kernel of Φ. Notice that the continuity of Φ immediately

implies that N (Φ) is a closed subspace of H1
0(Γ1). In particular, the control space U is a

Hilbert space with the induced norm. Next, we formulate the operator B which appears
in the control problem (2.1):

B : H1
0(Γ1) → H1(Γ), Bu =

{
u in Γ1

0 in Γ \ Γ1.

In the following theorem, we summarize the main results about existence and uniqueness
of the Navier-Stokes solutions.

Theorem 2.1. Let f ∈ H−1(Ω), g ∈ H1/2(Γ), with
∫
Γ g · ~n dΓ = 0, and u ∈ U . There

exists at least one solution (y, p) ∈ H1
div × L2

0(Ω) for the non-homogeneous stationary
Navier-Stokes equations (2.3)-(2.4), that satisfies the estimate

(2.7) ‖y − ŷ‖V ≤
2

ν
‖F‖V ′ ,

where ŷ ∈ H1
div is a function such that ŷ|Γ = g+Bu and F = f+ν∆ŷ−(ŷ ·∇)ŷ. Moreover,

if

|c(v, ŷ, v)| ≤
ν

2
‖v‖2

V for all v ∈ V

and ν2 > 4N ‖F‖V ′, with N = sup
u,v,w∈V

|c(u,v,w)|
‖u‖V ‖v‖V ‖w‖V

, then the solution is unique.

Proof. For the proof we refer to [27], pp. 178-180. �

Assuming higher regularity on the functions f and g, we establish a priori estimates for
the velocity field y in the space H3/2(Ω).

Proposition 2.1. If additionally to the hypotheses of Theorem 2.1, f ∈ L2(Ω) and g ∈
H1(Γ), then any Navier-Stokes solution satisfies the extra regularity y ∈ H3/2(Ω) →֒ C(Ω̄)
and the following estimate:
(2.8)

‖y‖
H3/2(Ω) + ‖p‖H1/2(Ω)/R

≤ κ
(
‖f‖2

L2(Ω) + ‖g‖H1(Γ) + ‖y‖4
L2(Ω) + ‖y‖4

L∞(Ω) + ‖u‖2
H

1
0(Γ1)

)
,

with a constant κ > 0 depending only on ν and Ω. Moreover, if ν > M(y), then the
following estimate holds:

(2.9) ‖y‖
H3/2(Ω) + ‖p‖H1/2(Ω)/R

≤ κ
(
‖f‖2

L2(Ω) + ‖g‖4
H1(Γ) + ‖y‖4

L2(Ω) + ‖u‖4
H

1
0(Γ1)

)
.
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Proof. The term (y ·∇)y can also be written as
∑

i yi∂iy or, since div y = 0, as
∑

i ∂i(yiy).
Since the continuous embedding H1(Ω) →֒ Lq(Ω) holds for all 1 ≤ q < ∞, we particu-

larly obtain that yi∂iy ∈ L3/2(Ω). Also from Sobolev inequalities, since the embedding

H1/2(Ω) →֒ L3(Ω) is dense and continuous, it follows that yi∂iy ∈ H−1/2(Ω). From the
regularity results for the non-homogeneous Stokes equations we obtain (see [27, Ch.I,
Prop.2.2 and Rem.2.6]) that y ∈ H3/2(Ω), p ∈ H1/2(Ω) and the following estimate holds:

(2.10) ‖y‖
H3/2(Ω) + ‖p‖H1/2(Ω)/R

≤ c0(‖f − (y · ∇)y‖
H−1/2(Ω)) + ‖g + Bu‖H1(Γ)),

where c0 = c0(ν,Ω) ≥ 0.
Let us next consider the term ‖(y · ∇)y‖

H−1/2(Ω). From the properties of the nonlinear

term (see [9, p.50]) it follows that:

(2.11) ‖(y · ∇)y‖
H−1/2(Ω) = sup

z∈H1/2(Ω)

|c(y, y, z)|

‖z‖
H1/2(Ω)

≤ c(Ω)‖y‖2
H1(Ω),

with c(Ω) > 0. In the following, c(Ω) > 0 denotes a generic constant. For the H1-estimate
of the velocity, let us consider the following auxiliary Stokes problem: Find ys ∈ H1

div such
that

ν (∇ys,∇v) = 0, for all v ∈ V,(2.12)

γ0ys = g + Bu.(2.13)

It is well-known that there exists a unique solution ys ∈ H1
div to (2.12)-(2.13). Moreover,

there exists a constant c(Ω) > 0 such that

(2.14) ‖ys‖H1(Ω) ≤ c(Ω)‖g + Bu‖
H1/2(Γ).

Further, we define w := y − ys that satisfies the equation

(2.15)
ν (∇w,∇v) + c(y, y, v) = (f, v), for all v ∈ V

γ0w = 0.

Taking v = w as test function, it immediately follows that

ν‖w‖2
H

1
0(Ω) ≤ c(Ω)

(
‖f‖L2(Ω)‖w‖H

1
0(Ω) + ‖y‖L2(Ω)‖y‖L∞(Ω)‖w‖H

1
0(Ω)

)
.

The latter inequality together with (2.14) implies that

(2.16) ν‖y‖H1(Ω) ≤ c(Ω)(‖f‖L2(Ω) + ν‖g‖
H1/2(Γ) + ν‖u‖

H
1
0(Γ1) + ‖y‖L∞(Ω)‖y‖L2(Ω)).

Using estimates (2.16) and (2.11) in (2.10) yields the existence of a constant κ1 = κ1(ν,Ω) >
0 such that

‖y‖
H3/2(Ω) + ‖p‖H1/2(Ω)/R

≤ κ1(‖f‖
2
L2(Ω) + ‖g‖2

H1(Γ) + ‖y‖4
L2(Ω) + ‖y‖4

L∞(Ω) + ‖u‖2
H1

0(Γ1)
).

Assume now that the solution satisfies ν > M(y). Setting v = w in (2.15), we obtain
that

ν‖w‖2
H1

0(Ω) + c(w, y, w) = (f, w) − c(ys, y, w),

which implies that

(2.17) (ν −M(y))‖w‖
H

1
0(Ω) ≤ c(Ω)(‖f‖L2(Ω) + ‖ys‖L∞(Ω)‖y‖L2(Ω)).

Due to the regularity of the boundary data, we get from (2.12)-(2.13) and the embedding

H3/2(Ω) →֒ L∞(Ω) the Stokes estimate

(2.18) ‖ys‖L∞(Ω) ≤ c(Ω)‖ys‖H3/2(Ω) ≤ c(Ω)(‖g‖H1(Γ) + ‖u‖
H1

0(Γ1)).

Therefore, applying this to (2.17), it holds that

‖y‖H1(Ω) ≤ κ2

(
‖f‖L2(Ω) + ‖y‖L2(Ω)‖g‖H1(Γ) + ‖y‖L2(Ω)‖u‖H

1
0(Γ1) + ‖g‖H1(Γ) + ‖u‖

H
1
0(Γ1)

)

4



with κ2 = κ2(ν,Ω) > 0. Combining (2.10), (2.11) and the latter inequality, we obtain
(2.9). �

For the rest of the paper, let f ∈ L2(Ω) and g ∈ H1(Γ), with
∫
Γ g · ~n dΓ = 0, be fixed.

Consider further the following set:

(2.19) T := {(y, u) ∈ H
3/2
div × U | (y, u) satisfies (2.3) − (2.4)}.

The admissible set associated with (2.1) is defined by

(2.20) Uad := {(y, u) ∈ T | a ≤ y ≤ b a.e. in Ω}.

Next, we show the solvability of (2.1).

Theorem 2.2. Assume that the admissible set Uad is not empty. Then, (2.1) admits a
solution (ȳ, ū) ∈ Uad.

Proof. Since the admissible set Uad 6= ∅, there exists an infimal sequence {yn, un}∞n=1 ⊂
Uad. Since the objective functional in (2.1) is nonnegative, the infimum in (2.1) exists in
R

+
0 . Consequently, there exists a constant c > 0 such that

c ≥ J(yn, un) =
1

2
‖yn − zd‖

2
L2(Ω) +

α

2
‖un‖

2
H

1
0(Γ1)

for all n ∈ N.

This implies the uniformly boundedness of {un}∞n=1 in U and of {yn}∞n=1 in L2(Ω). Since
each yn satisfies the state constraints, the sequence {yn}∞n=1 is also bounded in L∞(Ω).

Therefore, from estimate (2.16), the sequence {yn}∞n=1 is bounded in H
3/2
div . Hence there

exists subsequences {(unk
)}∞k=1 and {(ynk

)}∞k=1 such that

unk
⇀ ū, weakly in U , ynk

⇀ ȳ, weakly in H
3/2
div .

It is well known that the trilinear form c(·, ·, ·) in (2.3) is weakly sequentially continuous,
cf. [15, p.286]. Thus, by the linearity and continuity of a(·, ·) and of the trace operator, it
follows that (ȳ, ū) ∈ T . Moreover, since the set

{y ∈ H
3/2
div | a ≤ y ≤ b a.e. in Ω}

is weakly closed, we get that (ȳ, ū) ∈ Uad. Finally, since the cost functional is weakly lower
semicontinuous,

J(ȳ, ū) ≤ lim inf
k→∞

J(ynk
, unk

) = inf
(y,u)∈Uad

J(y, u).

Thus, (ȳ, ū) ∈ H
3/2
div × U minimizes the control problem (2.1). �

For the derivation of first order necessary optimality conditions of the regularized prob-
lems the differentiability of the control-to-state operator will be needed. This is proven in
the following Lemma.

Lemma 2.1. Let ū ∈ U and let ȳ be a solution to the Navier-Stokes equations such that
ν >M(ȳ). There exists a neighborhood B(ū) around ū in U such that the control-to-state

mapping S : B(ū) → H
3/2
div , that assigns to each u ∈ B(ū) the unique solution y ∈ H

3/2
div

of (2.3)-(2.4), is well-defined. Furthermore, S is twice Fréchet differentiable at ū and its
derivatives wh := S′(ū)h and wh h := S′′(ū)[h]2 are given by the unique solutions of the
systems:

−ν∆wh + (wh · ∇)ȳ + (ȳ · ∇)wh + ∇π = 0

div wh = 0

wh|Γ = Bh

(2.21)
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and

−ν∆wh h + (wh h · ∇)ȳ + (ȳ · ∇)wh h + ∇̺ = −2(wh · ∇)wh

div wh h = 0

wh h|Γ = 0,

(2.22)

respectively. Moreover, there exists a neighborhood B̃(ū) ⊂ B(ū) such that ν > M(S(u))

holds for all u ∈ B̃(ū).

Proof. Let us consider the operator ψ : H
3/2
div ×

(
L2

0(Ω) ∩H1(Ω)
)
×U → V ′×H1(Γ) defined

by

ψ(y, p, u) =

(
−ν∆y + (y · ∇)y + ∇p− f

γ0y − g − Bu

)
,

where γ0 stands for the trace operator. Since (ȳ, ū) is solution of the Navier-Stokes equa-
tions, the triple (ȳ, p̄, ū), satisfies the state equation ψ(ȳ, p̄, ū) = 0. It can be verified that
ψ is of class C∞ (see [7, pp. 5-6]). Its partial derivative with respect to (y, p) at (ȳ, p̄) in
direction (δy, δp) is given by

ψ(y,p)(ȳ, p̄, ū)(δy, δp) =

(
−ν∆δy + (δy · ∇)ȳ + (ȳ · ∇)δy + ∇δp

γ0δy

)
.

Since ν > M(ȳ), the operator ψ(y,p)(ȳ, p̄, ū) is invertible; see [11, p.1296]. Utilizing the
implicit function theorem, there exists an open neighborhood B(ū) of ū in U and a control-
to-state operator

ϕ : B(ū) → H
3/2
div ×

(
L2

0(Ω) ∩H1(Ω)
)

u 7→ (S(u), H(u)) = (w(u), p(u))

of class C∞.
To proof that ν >M(S(u)) note that

M(S(u)) = sup
v∈V

|c(v, S(u), v)|

‖v‖2
V

= sup
v∈V

|c(v, S(u) − ȳ, v) + c(v, ȳ, v)|

‖v‖2
V

≤ sup
v∈V

|c(v, S(u) − ȳ, v)|

‖v‖2
V

+ sup
v∈V

|c(v, ȳ, v)|

‖v‖2
V

≤ N‖S(u) − ȳ‖V + M(ȳ).

We recall that N := sup
u,v,w∈V

|c(u,v,w)|
‖u‖V ‖v‖V ‖w‖V

. Invoking the continuity of S, the assump-

tion ν > M(ȳ) together with the latter inequality immediately imply the existence of a

neighborhood B̃(ū) ⊂ B(ū) around ū such that M(S(u)) < ν, for all u ∈ B̃(ū). �

3. Moreau-Yosida type regularization

To cope with the difficulties related to low regular multipliers, we propose in this section
a Moreau-Yosida regularization of (2.1). The basic idea of the Moreau-Yosida regulariza-
tion is to consider alternatively to the state constrained problem, the following penalized
control problem:

(Pγ)





min Jγ(y, u) := 1
2‖y − zd‖

2 + α
2 ‖u‖2

U

+γ
2‖max(0, y − b)‖2 + γ

2‖min(0, y − a)‖2

subject to

−ν∆y + (y · ∇)y + ∇p = f in Ω

div y = 0 in Ω

y|Γ = g + Bu on Γ.
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This regularization approach has been utilized for state constrained control problems in
[22]. Hereafter, the same penalization was applied to different constrained control problems
(see [11, 26]).

3.1. Optimality conditions. We begin the study of the regularized optimal control prob-
lem by obtaining an optimality system that characterizes any regularized local optimal
solution to (Pγ).

Definition 3.1 (Local solution to (2.1)). The pair (y∗, u∗) ∈ Uad is called a local solution
of (2.1) with respect to the U -topology if there exists a positive real number such that

(3.1) J(y∗, u∗) ≤ J(y, u)

for all (y, u) ∈ Uad with ‖u− u∗‖U ≤ c.

Analogously, we introduce the following definition concerning local solutions to the
penalized problem (Pγ)

Definition 3.2 (Local solution to (Pγ)). Let γ > 0. Then (yγ , uγ) ∈ T is called a local
solution of (Pγ) with respect to the U -topology if there exists a positive real number c > 0
such that

(3.2) Jγ(yγ , uγ) ≤ Jγ(y, u)

for all (y, u) ∈ T with ‖u− uγ‖U ≤ c.

Next, a result about the orthogonal decomposition of the control space is stated. The
decomposition is afterwards used for the derivation of the optimality system.

Lemma 3.1. The orthogonal space of U can be characterized as U⊥ = {σf~n : σ ∈ R},
where f~n denotes the Riesz representative of ~n in H1

0(Γ1).

Proof. As previously noted, the space U is a closed subspace of H1
0(Γ1). Therefore, the

space H1
0(Γ1) can be decomposed as H1

0(Γ1) = U⊥ ⊕ U . Hence, taking an arbitrary but
fix y ∈ H1

0(Γ1) we can express it uniquely as y = y1 + y2, with y1 ∈ U and y2 ∈ U⊥. Let
us take the ansatz y2 = σf~n. Then y − σf~n satisfies

(y − σf~n, ~n)L2(Γ1) = (y, ~n)L2(Γ1) − σ(f~n, ~n)L2(Γ1).

Since f~n ∈ U⊥, (f~n, ~n)L2(Γ1) 6= 0. Thus, defining σ :=
(y,~n)

L2(Γ1)

(f~n,~n)
L2(Γ1)

and inserting this in the

above equality, we arrive at

(y − σf~n, ~n)L2(Γ1) = 0.

In particular, the above equality implies that y − σf~n ∈ U , see (2.6), and hence the result
follows, i.e., there exists some σ ∈ R such that y = y1 + σ~n �

In the following, we derive the first-order optimality condition associated with the reg-
ularized problem (Pγ).

Theorem 3.1. Let (yγ , uγ) ∈ T be a local optimal solution of (Pγ) such that M(yγ) < ν.
Then there exist multipliers µ ∈ L2(Ω), λ ∈ V, q ∈ L2

0(Ω) and σ ∈ R such that

−ν∆yγ + (yγ · ∇)yγ + ∇pγ = f

div yγ = 0

yγ |Γ = g + Buγ ,

(3.3)

−ν∆λ− (yγ · ∇)λ+ (∇yγ)Tλ+ ∇q = zd − yγ − µ

div λ = 0

λ|Γ = 0,

(3.4)
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(3.5) −α∆Γuγ = B⋆

(
−ν

∂λ

∂~n
+ q~n

)
+ σ~n in H−1(Γ1)

(3.6) µ =





γ(y − b) in Ab

0 in Ω\(Ab ∪ Aa)

γ(y − a) in Aa,

with Ab := {x ∈ Ω | y(x) > b(x) a.e.} and Aa := {x ∈ Ω | y(x) < a(x) a.e.}, hold in
variational sense.

Proof. Since by Lemma 2.1 the control to state operator is differentiable in a neighborhood
of (yγ , uγ), we obtain the optimality condition

J ′
γ(yγ(uγ), uγ)h = 0, ∀h ∈ U ,

which implies that

(3.7) (yγ − zd, S
′(uγ)h) + α(uγ , h)U + (µ, S′(uγ)h) = 0 ∀h ∈ U .

Here, by virtue of Lemma 2.1, S′(uγ)h = wh is defined by the solution of

ν(∇wh,∇v) + c(wh, yγ , v) + c(yγ , wh, v) = 0 ∀v ∈ V,(3.8)

γ0wh = Bh.(3.9)

Moreover, µ ∈ L2(Ω) in (3.7) is given by

(3.10) µ =





γ(y − b) in Ab

0 in Ω\(Ab ∪Aa)

γ(y − a) in Aa,

where Ab := {x ∈ Ω | y(x) > b(x) a.e.} and Aa := {x ∈ Ω | y(x) < a(x) a.e.}.
Let us now introduce the adjoint equation

−ν∆λ− (yγ · ∇)λ+ (∇yγ)Tλ+ ∇q = zd − yγ − µ

div λ = 0

λ|Γ = 0.

(3.11)

Notice that, by the assumption M(yγ) < ν, the ellipticity of the adjoint operator can
be verified by standard arguments which implies the existence of a unique adjoint state
λ ∈ V . Multiplying the adjoint equation by wh, integrating by parts and then invoking
(3.7), we obtain that

(3.12) ν(∇λ,∇wh) − ν〈
∂λ

∂~n
,Bh〉

H−1/2(Γ),H1/2(Γ) + c(yγ , wh, λ)

+ c(wh, yγ , λ) − α(uγ , h)U+ < q~n,Bh >
H−1/2(Γ),H1/2(Γ)= 0.

Now, setting v = λ in the variational equation (3.8) and inserting the resulting equation
in the above equation, we arrive at

〈−ν
∂λ

∂~n
+ q~n,Bh〉

H−1/2(Γ),H1/2(Γ) = α(∇Γuγ ,∇Γh), for all h ∈ U.

Note that, from Lemma 3.1, if ξ ∈ H−1(Γ1) satisfies 〈ξ, h〉
H−1(Γ1),H1

0(Γ1) = 0, for all h ∈ U ,

then there exists σ ∈ R such that 〈ξ, h〉
H−1(Γ1),H1

0(Γ1) = (xξ, h)H1
0(Γ1) = (σf~n, h)H1

0(Γ1) =
8



〈σ~n, h〉
H−1(Γ1),H1

0(Γ1), for all h ∈ H1
0(Γ1), where xξ denotes the Riesz representative of ξ in

H1
0(Γ1). Therefore, we obtain

(3.13) 〈B⋆

(
−ν

∂λ

∂~n
+ q~n

)
, h〉

H−1(Γ1),H1
0(Γ1) + 〈σ~n, h〉

H−1(Γ1),H1
0(Γ1)

= −α〈∆Γu, h〉H−1(Γ1),H1
0(Γ1), for all h ∈ H1

0(Γ1)

and, consequently, equation (3.5) holds. �

3.2. Convergence analysis. Next, we study the convergence properties of the optimal
solutions of the regularized problem (Pγ) towards solutions of the original control problem.
In particular, existence of a sequence of solutions to (Pγ) approximating any local optimal
solution of (2.1) will be shown under a quadratic growth condition hypothesis.

Theorem 3.2. Let {(yγ , uγ)}γ>0 be a sequence of global solutions to (Pγ). Assume that
ν > M(yγ) holds for all γ > 0 and ν > M(y∗) holds for every global optimal solution

(y∗, u∗) ∈ Uad of (2.1). Then, the sequence {(yγ , uγ)}γ>0 is uniformly bounded in H
3/2
div ×

H1
0(Γ1). Further, every weakly converging subsequence of (yγ , uγ)γ>0 converges strongly in

H
3/2
div × H1

0(Γ1) to a global solution of (2.1) as γ → ∞.

Proof. First of all, let us point out that a global solution (y∗, u∗) of (2.1) is feasible for
(Pγ) for all γ > 0. Hence, we find that

(3.14) Jγ(yγ , uγ) ≤ Jγ(y∗, u∗) = J(y∗, u∗).

Therefore, {uγ}γ>0 is uniformly bounded in H1
0(Γ1) and {yγ}γ>0 is uniformly bounded in

L2(Ω). Since by hypothesis ν >M(yγ) holds for all γ > 0, we obtain from estimate (2.9)

that {yγ}γ>0 is uniformly bounded in H
3/2
div . Consequently, there exists a subsequence, also

denoted by {(yγ , uγ)}γ>0, which converges weakly to a limit point (ŷ, û) ∈ H
3/2
div ×H1

0(Γ1).
An argument analogous to the one in the proof of Theorem 2.2 implies that (ŷ, û) ∈ T .

From the penalized cost functional we also obtain that

(3.15) lim
γ→∞

‖max(0, yγ − b)‖ = lim
γ→∞

‖min(0, yγ − a)‖ = 0,

which, by Fatou’s lemma, implies that ŷ ≤ b and ŷ ≥ a; cf. [11]. For this reason, the weak
limit (ŷ, û) is feasible for (2.1) or equivalently (ŷ, û) ∈ Uad. In addition, invoking the lower
semicontinuous of J and by (3.14), we infer that

(3.16) J(ŷ, û) ≤ lim inf
γ→∞

J(yγ , uγ) ≤ lim sup
γ→∞

Jγ(yγ , uγ) ≤ J(y∗, u∗).

Thus, since (y∗, u∗) is a global solution to (2.1) and since (ŷ, û) ∈ Uad, it follows that

(3.17) J(ŷ, û) = J(y∗, u∗)

or equivalently (ŷ, û) is a global solution to (2.1). We show now that (yγ , uγ) → (ŷ, û)

strongly in H
3/2
div × H1

0(Γ1) as γ → ∞. In view of (3.16)–(3.17), it holds that

(3.18) lim
γ→∞

1

2
‖yγ − zd‖

2 +
α

2
‖uγ‖

2
H1

0(Γ1)
=

1

2
‖ŷ − zd‖

2 +
α

2
‖û‖2

H1
0(Γ1)

.

Invoking the compactness of the embedding H3/2(Ω) →֒ L2(Ω), we obtain yγ → ŷ strongly
in L2(Ω) and hence

lim
γ→∞

1

2
‖yγ − zd‖

2 =
1

2
‖ŷ − zd‖

2.

This together with (3.18) and the weak convergence uγ ⇀ û in H1
0(Γ1) imply that uγ → û

strongly in H1
0(Γ1).
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By the assumption, it holds that ν > M(ŷ). For this reason, Lemma 2.1 implies
the existence of a neighborhood B(û) of û in U such that the control-to-state mapping
associated with (2.3)-(2.4)

S : B(û) → H
3/2
div

is well-defined and twice continuously differentiable. It then follows from the convergence
uγ → û in H1

0(Γ1) that yγ → y∗ strongly in H3/2(Ω). �

Let us point out that in the preceding theorem, assuming existence of global solutions
to (Pγ), the convergence of such solutions towards a global solution of the original control
problem (2.1) is ensured. However, an important question that certainly deserves to be
addressed is the following: if a local solution (y∗, u∗) of (2.1) is given, is it possible to find a
sequence of locally optimal solutions of the penalized problems (Pγ) converging strongly to
(y∗, u∗) as γ → ∞? Such an issue is particularly important since optimization algorithms
generate in general only local solutions. Under some assumption on a quadratic growth
condition (Assumption 3.1), it is in fact possible to establish the existence of the local
solution of (Pγ) which converges to a local solution (y∗, u∗).

Assumption 3.1. Let (y∗, u∗) ∈ Uad be a local solution of (2.1) such that ν > M(y∗).
Moreover, assume that the local solution (y∗, u∗) satisfies the quadratic growth condition:
There exist fixed constants σ, δ > 0 such that

(3.19) J(y∗, u∗) +
σ

2
‖u− u∗‖2

U ≤ J(y, u)

for all (y, u) ∈ Uad satisfying ‖u− u∗‖U ≤ δ.

Relaying on the above assumption for the local solution (y∗, u∗) ∈ Uad, there exists in

fact a sequence {yγ , uγ}γ>0 of local solutions to (Pγ) converging strongly in H
3/2
div ×H1

0(Γ1)
to (y∗, u∗) as γ → ∞. Notice that, in contrast to Theorem 3.2, we do not require the
additional assumption that ν >M(yγ) holds for all γ > 0.

Theorem 3.3. Let (y∗, u∗) ∈ Uad be a local solution of (2.1) satisfying Assumption 3.1.
Then, there exists a sequence {(yγ , uγ)}γ>0 of local solutions of (Pγ) converging strongly

in H
3/2
div × H1

0(Γ1) to (y∗, u∗) as γ → ∞.

Proof. The proof is shown in the following steps:

Step 1: Since ν >M(y∗), Lemma 2.1 implies the existence of a neighborhood B(u∗) of u∗

in U such that the control-to-state mapping associated with (2.3)-(2.4)

(3.20) S : B(u∗) → H
3/2
div

is well-defined and

(3.21) ν >M(S(u)) ∀u ∈ B(u∗).

According to Assumption 3.1, there exist fixed constants σ, δ > 0 such that

(3.22) J(y∗, u∗) +
σ

2
‖u− u∗‖2

U ≤ J(y, u)

for all (y, u) ∈ Uad satisfying ‖u−u∗‖U ≤ δ. Now, consider the following auxiliary control
problem

(Pr
γ)





min Jγ(y, u)

subject to

(y, u) ∈ Ur,γ := {(y, u) ∈ T | ‖u− u∗‖U ≤ r}

with some fixed constant 0 < r ≤ δ such that {u ∈ U | ‖u− u∗‖U ≤ r} ⊂ B(u∗).

Step 2: We show that, for every γ > 0, (Pr
γ) admits an optimal solution. Let γ > 0. Since
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Jγ(y, u) ≥ 0 for all (y, u) ∈ Ur,γ , the infimum inf
(y,u)∈Ur,γ

Jγ(y, u) exists in R
+
0 and is denoted

by j. Now, since the point (y∗, u∗) is feasible for (Pr
γ), there exists an infimal sequence

{yn, un}∞n=1 ⊂ Ur,γ associated with (Pr
γ), i.e., it holds that

lim inf
n→∞

J(yn, un) = j.

In particular, there exists a constant c > 0 such that

c ≥ J(yn, un) =
1

2
‖yn − zd‖

2
L2(Ω) +

α

2
‖un‖

2
H

1
0(Γ1)

for all n ∈ N.

This implies that {yn}∞n=1 and {un}∞n=1 are uniformly bounded in L2(Ω) and H1
0(Γ1),

respectively. Now, since {un}∞n=1 ⊂ B(u∗), it holds that yn = S(un) for all n; cf. (3.20).
Moreover, by (3.21), it satisfies ν >M(yn) for all n ∈ N. Therefore, invoking Proposition

2.1, we immediately obtain the uniformly boundedness of {yn}∞n=1 in H
3/2
div . Hence, there

exists subsequences {(unk
)}∞k=1 and {(ynk

)}∞k=1 such that

unk
⇀ ur

γ , weakly in U , ynk
⇀ yr

γ , weakly in H
3/2
div .

Analogously to the proof of Theorem 2.2, it can be shown that (ur
γ , y

r
γ) is an optimal

solution to (Pr
γ).

Step 3: Let {(ur
γ , y

r
γ)}γ>0 be a sequence of optimal solutions to (Pr

γ). Since (y∗, u∗) is
feasible for (Pr

γ) for all γ > 0, we have

(3.23) Jγ(yr
γ , u

r
γ) ≤ Jγ(y∗, u∗) = J(y∗, u∗) ∀γ > 0.

This implies that {(yr
γ , u

r
γ)}γ>0 is uniformly bounded in L2(Ω) × U . In addition, since

ur
γ ∈ B(u∗), ν > M(yr

γ) holds true for all γ > 0. Therefore, invoking again Proposition

2.1, we obtain the uniform boundedness of {yr
γ}γ>0 in H

3/2
div . For this reason, we may

extract a subsequence of {(yr
γ , u

r
γ)}γ>0, denoted again by {(yr

γ , u
r
γ)}γ>0, converging weakly

in H
3/2
div ×U to a (ȳ, ū) ∈ H

3/2
div ×U . Analogously to the proof of Theorem 3.2, it holds that

(ȳ, ū) ∈ Uad. Further, since the set

{u ∈ U | ‖u− u∗‖U ≤ r}

is weakly closed, we find that

(3.24) ‖ū− u∗‖U ≤ r ≤ δ.

By the latter inequality, (3.22) ensures that

(3.25) J(y∗, u∗) +
σ

2
‖ū− u∗‖2

U ≤ J(ȳ, ū).

In addition, from the lower semicontinuity of J together with (3.23), it follows that

(3.26) J(ȳ, ū) ≤ lim inf
γ→∞

J(yr
γ , u

r
γ) ≤ lim sup

γ→∞
J(yr

γ , u
r
γ) ≤ J(y∗, u∗).

Hence, collecting (3.25)-(3.26), we come to the conclusion that

J(y∗, u∗) +
σ

2
‖ū− u∗‖2

U ≤ J(y∗, u∗)

which implies that u∗ = ū. An argument analogously to the one in the proof of Theorem
3.2 implies that

ur
γ → u∗ strongly in U .

and hence by the continuity of S : B(u∗) → H
3/2
div

yr
γ = S(ur

γ) → S(u∗) = y∗ strongly in H
3/2
div .
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Now, the assertion of the theorem is verified once we show that (yr
γ , u

r
γ) is a local solution

to (Pγ) for almost all γ. For this, let (y, u) ∈ T be any pair with ‖u − ur
γ‖U ≤ r

2 . Since
ur

γ → u∗ strongly in U , there exists γ̄ > 0 such that

‖u− u∗‖U ≤ ‖u− ur
γ‖U + ‖ur

γ − u∗‖U ≤
r

2
+
r

2
= r ∀γ > γ̄.

This implies that (y, u) is feasible for (Pr
γ) for all γ > γ̄. Consequently, for γ > γ̄, we have

Jγ(yr
γ , u

r
γ) ≤ Jγ(y, u).

Therefore, we arrive at the conclusion that for γ > γ̄, (yr
γ , u

r
γ) is a local solution to (Pγ). �

Remark 3.1. Considering the auxiliary control problem (Pr
γ) follows the idea of Casas

and Tröltzsch [8]. In a similar context [26], this idea was also used.

4. Source representation and Lavrentiev’s regularization strategy

In this section we consider an alternative regularization technique for solving (2.1). We
utilize a source representation of the control combined with a Lavrentiev type regulariza-
tion for the pointwise state constraints of (2.1). More presicely, we consider the following
source representation of the boundary control as the image of a ”distributed” control
v ∈ L2(Ω):

(4.1) u = T (v).

Assumption 4.1. On the operator T in (4.1), we impose the following assumption:

(1) The operator T : L2(Ω) → U is surjective or the range T (L2(Ω)) is dense in U .

(2) T is twice continuously differentiable from L2(Ω) to U .

Remark 4.1. The operator T can be chosen according to the specific problem considered.
However, apart of being surjective, it should be easy to compute numerically. In linear
problems the choice T = S⋆ has been used (see [28]).

Hereafter, we convert the state constraints in (2.1) into

ya ≤ εv + y(T (v)) ≤ yb a.e. in Ω, ε > 0,

where we used the new auxiliary control v instead of u. Thus, we regularize (2.1) in the
following way:

(4.2)





min
(v,y)∈L2(Ω)×H

1
2‖y − zd‖

2 + α
2 ‖T (v)‖2

U

subject to

−ν∆y + (y · ∇)y + ∇p = f in Ω

div y = 0 in Ω

y|Γ = g + BT (v) on Γ

a ≤ εv + y ≤ b a.e. in Ω..

To gain coercivity of the cost functional with respect to the new control v, we add to
the objective functional in (4.2) the term β

2 ‖v‖
2, with β > 0. Finally, we arrive at the
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following Lavrentiev type regularized problem:

(4.3)





min
(v,y)∈L2(Ω)×H

J (y, v) := 1
2‖y − zd‖

2 + α
2 ‖T (v)‖2

U + β
2 ‖v‖

2

subject to

−ν∆y + (y · ∇)y + ∇p = f in Ω

div y = 0 in Ω

y|Γ = g + BT (v) on Γ

a ≤ εv + y ≤ b a.e. in Ω..

The admissible set associated with (4.3) is given by

(4.4) U ε
ad := {(y, v) ∈ H1

div × L2(Ω) | (y, v) satisfies the constraints in (4.3)}.

Analogously to (Pγ), the regularization allows the consideration of the constraints in L2(Ω)
and the direct derivation of first order optimality conditions.

4.1. Optimality conditions. Our aim in this section is to present the first order neces-
sary optimality condition for the regularized problem (4.3). We follow basically the lines
of [13]. The idea consists of transforming (4.3) locally around an optimal solution vε into a
problem with pure control-constraints. Thus, the optimality conditions can be derived in
a standard way. First of all, let us introduce the notion of local solutions to the regularized
problem (4.2).

Definition 4.1. Let ε > 0. We say that (yε, vε) ∈ U ε
ad a local solution to the regularized

problem (4.3) with respect to the L2(Ω)-topology if there exists a positive real number
c > 0 such that

J (yε, vε) ≤ J (y, v)

for all feasible (y, v) ∈ U ε
ad satisfying ‖v − vε‖ ≤ c.

Assume in the following that vε ∈ L2(Ω) is a local optimal solution of (4.3) with the
corresponding state yε = yε(T (vε)) satisfying ν > M(yε). By Lemma 2.1, there exists an
open neighborhood B0 of T (vε) in U such that the control-to-state mapping

S : B0 → H

is well-define and twice continuously differentiable. Since T is continuous, we find further
an open neighborhood B1 of vε in L2(Ω) such that T (B1) ⊂ B0. Let us consider a new
”control function” z := εv + S(T (v)). We will show that the mapping v 7→ z is invertible
in a L2 neighborhood of vε. To this aim, we define an operator F : L2(Ω) × B1 → L2(Ω)
by

(4.5) F (z, v) = εv + S(T (v)) − z,

and analyze the solvability of F (z, v) = 0. Since by definition F (zε, vε) = 0, with zε =
εvε + S(T (vε)), the solvability can then be concluded from the properties of Fv(zε, vε) by
using the implicit function theorem.

In order to show the existence of the continuous inverse operator F−1
v (zε, vε) : L2(Ω) →

L2(Ω), we use Fredholm’s theorem. Owing to the continuous differentiability of T , we
have

Fv(zε, vε)h = (εI + S′(T (vε))T
′(vε))h

for all h ∈ L2(Ω). Let us now define the operator S(vε) : L2(Ω) → H
3/2
div by

(4.6) S(vε) := S′(T (vε))T
′(vε).

We consider further S(vε) as a mapping with range in L2(Ω) and hence due to the com-
pactness of the embedding of H3/2(Ω) to L2(Ω), S(vε) : L2(Ω) → L2(Ω) is compact. In
the following, we impose a further assumption on the operator S(vε).
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Assumption 4.2. The operator S(vε) = S′(T (vε))T
′(vε) : L2(Ω) → L2(Ω) does not admit

an eigenvalue −ε, i.e., the equation

(εI + S(vε))v = 0

admits only the trivial solution v = 0.

Based on Assumption 4.2, Fredholm’s theorem ensures that for each φ ∈ L2(Ω), the
equation

(εI + S(vε))v = φ

has a unique solution v ∈ L2(Ω). This implies the bijectivity of Fv(zε, vε) and hence, by
the Banach inverse mapping theorem, Fv(zε, vε) is continuously invertible.

By the implicit function theorem, there existBr1(zε) := {z ∈ L2(Ω) | ‖z−zε‖ ≤ r1}, r1 >
0, and Br2(vε) := {v ∈ L2(Ω) | ‖v − vε‖ ≤ r2}, with r2 > 0, such that Br2(vε) ⊂ B1 and
for every z ∈ Br1(zε) there exists a unique K(z) = v ∈ Br2(vε) solving the equation

F (z,K(z)) = 0.

Notice that by the implicit function theorem, the twice continuous Fréchet differentiability
of F ensures the twice continuous Fréchet differentiability of the operator

K : Br1(zε) → Br2(vε).

Therefore, locally around vε, problem (4.3), is equivalent to the following optimal control
problem with box constraints:





min
z∈Br1(zε)

J̃ (z) := J (S(T (K(z))),K(z))

subject to:

a ≤ z ≤ b a.e. in Ω.

Next, we obtain the first order optimality conditions for (4.3).

Theorem 4.1. Let vε ∈ L2(Ω) be a local optimal solution of (4.3) with the associated

state yε = S(T (vε)) ∈ H
3/2
div such that ν >M(yε). Then under Assumption 4.2, there exist

Lagrange multipliers λ ∈ V, q ∈ L2
0(Ω) and µa, µb ∈ L2(Ω) such that

−ν∆yε + (yε · ∇)yε + ∇pε = f

div yε = 0

yε|Γ = g + BT (vε),

(4.7)

−ν∆λ− (yε · ∇)λ+ (∇yε)
Tλ+ ∇q = zd − yε + µa − µb

div λ = 0

λ|Γ = 0,

(4.8)

(4.9) βvε + (T ′(vε))
⋆(−α∆ΓT (vε) − ϕ) = ε(µa − µb) in L2(Ω),

(4.10) ϕ = B⋆ (−ν∂nλ+ q~n) in H−1(Γ1),

a ≤ εvε + yε ≤ b,

µa ≥ 0, µb ≥ 0,

(µai , ai − εvε,i − yε,i) = (µbi
, bi − εvε,i − yε,i) = 0, for i = 1, 2,

(4.11)

hold in variational sense.
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Proof. Due to the local optimality of vε, we obtain for some r > 0 that

J (vε) ≤ J (v),

for all v ∈ Br(vε) ⊂ B1 with a ≤ εv + S(T (v)) ≤ b. Equivalently, since v = K(z) holds
locally,

J̃ (zε) ≤ J̃ (z),

for all z ∈ Br0(zε) with a ≤ z ≤ b, and for an appropriate constant r0 > 0.
Thus, zε satisfies the following first order necessary condition

(4.12) J̃ ′(zε)(z − zε) ≥ 0, for all a ≤ z ≤ b.

Using the chain rule, the derivative of J̃ (zε) in any direction ζ ∈ L2(Ω) is given by

(4.13) (J̃ ′(zε), ζ) = (yε − zd,S(vε)K
′(zε)ζ)

+ α(uε, T
′(vε)K

′(zε)ζ)H1
0(Γ1) + β(vε,K

′(zε)ζ),

where S(vε) is as defined in (4.6). Denoting by h := K ′(zε)ζ, the latter equality yields

(4.14) (J̃ ′(zε), ζ) = (yε − zd,S(vε)h) + α(∇uε,∇(T ′(vε)h))Γ + β(vε, h).

Denoting by µ ∈ L2(Ω) the Riesz representative of −J̃ ′(zε) and using explicitly the de-
rivative of K we obtain

(µ, ζ) = (µ, (ε+ S(vε))h) = ε(µ, h) + (µ,S(vε)h).

Therefore, equation (4.14) is equivalent to

(4.15) (yε − zd,S(vε)h) + (µ,S(vε)h) + α(∇uε,∇(T ′(vε)h))Γ + β(vε, h) + (εµ, h) = 0,

which, integrating by parts, yields

(4.16) (yε − zd,S(vε)h) + (µ,S(vε)h)−α < ∆Γuε, T
′(vε)h >U∗,U +β(vε, h) + (εµ, h) = 0,

Let us now introduce the adjoint system of equations

−ν∆λ− (yε · ∇)λ+ (∇yε)
Tλ+ ∇q = zd − yε − µ

div λ = 0

λ|Γ = 0.

(4.17)

Since, by hypothesis ν > M(yε), the adjoint operator is bijective and, therefore, for
zd − yε − µ ∈ L2(Ω), there exists a unique solution λ ∈ V for system (4.17).

Using the adjoint equations and introducing φ := S(vε)h = S′(T (vε))T
′(vε)h, we obtain

that

(4.18) (zd − yε − µ, φ) = −(ν∆λ, φ) − c(yε, λ, φ) + c(φ, yε, λ) + (∇q, φ),

which by applying integration by parts yields

(4.19) (zd − yε − µ, φ) = −(ν∇φ,∇λ) + c(yε, φ, λ)+

c(φ, yε, λ)− < ν∂nλ, φ >H−1/2(Γ),H1/2(Γ) + < q~n, φ >
H−1/2(Γ),H1/2(Γ) −(q, div φ).

Since S′(T (vε))T
′(vε)h = φ is, according to Lemma 2.1, given by the solution of

−ν(∇φ,∇v) + c(φ, yε, v) + c(yε, φ, v) = 0 ∀v ∈ V

div φ = 0

φ|Γ = BT ′(vε)h,

equation (4.19) immediately implies

(4.20) (zd − yε − µ, φ) = 〈−ν∂nλ+ q~n,B T ′(vε)h〉H−1/2(Γ),H1/2(Γ).
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Introducing the variable ϕ := B⋆(−ν∂nλ+ q~n) and inserting the latter equality in (4.16),
we arrive at

(4.21) (T ′(vε))
⋆(−α∆Γuε − ϕ) + βvε = −εµ.

Utilizing the decomposition µ = µb − µa, with

µb := µ+ =
1

2
(µ+ |µ|)

µa := µ− =
1

2
(−µ+ |µ|),

where |µ| = (|µ1|, |µ2|)T , the optimality condition (4.12) can be rewritten as

(J̃ ′(zε), zε) = min
a≤z≤b

(µa − µb, z) = min
a≤z≤b

{(µa,1, z1) − (µb,1, z1) + (µa,2, z2) − (µb,2, z2)}.

By fixing the second component of the new control variable z2 = zε,2 and considering the
mutual disjoint sets {x : µa,1(x) > 0} and {x : µb,1(x) > 0}, we obtain that

(J̃ ′(zε), zε) = (µa,1, a1) − (µb,1, b1) + (µa,2, zε,2) − (µb,2, zε,2)

and, consequently,

(µa,1, a1 − εuε,1 − yε,1) − (µb,1, b1 − εuε,1 − yε,1) = 0.

Fixing now the first component of z and proceeding in a similar manner we get that

(µa,2, a2 − εvε,2 − yε,2) − (µb,2, b2 − εvε,2 − yε,2) = 0.

Taking into account that, by definition, µa, µb ≥ 0 componentwise, the complementarity
system (4.11) follows. �

4.2. Convergence analysis. Our focus now is set on the convergence of the regularized
solutions of (4.3) in the case of a vanishing regularization parameter ε ↓ 0. Analogously
to Theorem (3.3), we address the existence of a solution of (4.3) converging strongly to a
given local solution (y∗, u∗) of (2.1) which will be established by invoking the assumption
on the quadratic growth condition for (y∗, u∗). However, compared to Theorem 3.3, the
mixing of the state and control variables within the explicit inequality constraints of (4.3)
raises some additional difficulties in the analysis. To show the existence result associated
with (4.3), we need some Slater-type assumption which is referred to as linearized Slater
condition.

Definition 4.2. Let (y∗, u∗) ∈ T such that ν >M(y∗). Then, we say that (y∗, u∗) satisfies
the linearized Slater condition if there exists an interior (Slater) point v0 ∈ L∞(Ω) such
that

(4.22) a(x) + δ ≤ S(u∗)(x) + (S′(u∗)T ′(u∗)v0)(x) ≤ b(x) − δ ∀x ∈ Ω,

for some fixed δ > 0.

Notice that since ν >M(y∗), Lemma 2.1 implies that there exists a neighborhood B(u∗)
of u∗ in U such that the control-to-state mapping associated with (2.3)-(2.4)

S : B(u∗) → H
3/2
div

is well define and twice continuously differentiable. Hence, thanks to the continuous

embedding H
3/2
div →֒ C(Ω), Definition 4.2 makes sense. Notice also that the L2-L∞-norm

gap involved in the definition above is necessitated by the pointwise state constraints. We
require this later for the proof of Theorem 4.2 below.

Assumption 4.3. We rely on the following assumptions:
16



1) The cost parameter in the objective functional of the regularized problem (4.3)
β = β(ε) satisfies

β = σ0ε
1+σ1

with some constants σ0 > 0 and 0 ≤ σ1 < 1.

2) The operator T : L2(Ω) → U is linear and continuous.

In order to make the dependence of the regularized problem on ε transparent, we refer
to the regularized problem (4.3) as (Pε). We start by verifying the following feasibility
property.

Lemma 4.1 (Feasibility property). Let Assumption 4.3 be satisfied. Further, suppose that
(y∗, u∗) ∈ T with ν >M(y∗) satisfying the linearized Slater condition. Then, there exists
a sequence {v0

k}
∞
k=1 ⊂ L∞(Ω) with the following properties:

(i) It holds that lim
k→∞

‖Tv0
k − u∗‖U = 0. Moreover, there exists some k̃ > 0 and an

open neighborhood B(u∗) of u∗ in U such that {Tv0
k}

∞
k=k̃

⊂ B(u∗) and the control-

to-state mapping associated with (2.3)-(2.4)

S : B(u∗) → H
3/2
div

is well-defined and twice continuously differentiable.

(ii) For every k > k̃, there is a real number εk such that (S(Tv0
k), v

0
k) is feasible for

(Pε) for all ε ≤ εk. In other words, it holds that

a ≤ εv0
k + S(Tv0

k) ≤ b ∀ε ≤ εk.

Proof. Since the range T (L2(Ω)) is dense in U and C(Ω) is dense in L2(Ω), we can find a
sequence {ak}

∞
k=1 in C(Ω) such that

(4.23) ‖u∗ − Tak‖U ≤
1

k
∀ k ∈ N.

Since the associated state y∗ of u∗ satisfies ν >M(y∗), Lemma 2.1 implies the existence of
an open neighborhood B(u∗) of u∗ in U such that the control-to-state mapping associated
with (2.3)-(2.4) is well-defined and twice continuously differentiable. Therefore, there
exists a a constant c0 > 0 such that

‖S′(u∗)(u∗ − Tak)‖H3/2 ≤ c0‖u
∗ − Tak‖U ∀k ∈ N.

Thus, setting (4.23) in the inequality above, we obtain

(4.24) ‖S′(u∗)(u∗ − Tak)‖H3/2 ≤
c0
k

∀ k ∈ N.

Let us now define the sequence {v0
k}

∞
k=1 in L∞(Ω) by

(4.25) v0
k := ak +

3c0
δk

v0 = ak +
c1
k
v0,

where v0 ∈ L∞(Ω) is the Slater point, see Assumption 4.3, and c1 := 3c0
δ . By (4.25) and

(4.23), we obtain that

(4.26) ‖Tv0
k − u∗‖U ≤ ‖Tak − u∗‖U +

c1
k
‖Tv0‖U ≤

1 + c1‖Tv0‖U
k

,

which implies that

(4.27) lim
k→∞

‖Tv0
k − u∗‖U = 0.

17



Hence, there exists an index number k̃ ∈ N such that

(4.28) Tv0
k ∈ B(u∗) ∀k ≥ k̃.

Since S : B(u∗) → H
3/2
div is continuously differentiable, the Taylor expansion of S at u∗

implies that

(4.29) S(Tv0
k) = S(u∗) + S′(u∗)(Tv0

k − u∗) +R(Tv0
k) ∀k ≥ k̃

where the remainder term R : B(u∗) → H
3/2
div satisfies

(4.30) lim
k→∞

‖R(Tv0
k)‖H3/2

‖Tv0
k − u∗‖U

= 0.

Further, in view of (4.26)

‖R(Tv0
k)‖H3/2 =

‖R(Tv0
k)‖

H3/2

‖Tv0
k − u∗‖U

‖Tv0
k − u∗‖U

≤
‖R(Tv0

k)‖
H3/2

‖Tv0
k − u∗‖U

(1 + c1‖Tv0‖U)
1

k
∀k ≥ k̃.

Thus, (4.30) implies the existence of an index number k0 ≥ k̃ such that

(4.31) ‖R(Tv0
k)‖H3/2 ≤

c0
k

∀k ≥ k0..

Next, let k ∈ N be arbitrarily fixed with k ≥ max{c1, k0} and we rewrite (4.29) as
follows:

S(Tv0
k) = S(u∗) + S′(u∗)(Tv0

k − u∗) +R(Tv0
k)

= S(u∗) + S′(u∗)(Tak + c1
k Tv0 − u∗) +R(Tv0

k)
= (1 − c1

k )S(u∗) + S′(u∗)(Tak − u∗) + c1
k (S(u∗) + S′(u∗)Tv0) +R(Tv0

k).

Since S(u∗) satisfies the inequality constraints in (2.1), the last equality together with
(4.24), (4.22) and (4.31) imply

(4.32) S(Tv0
k) ≤ (1 −

c1
k

)b+
c0
k

+
c1
k

(b− δ) +
c0
k

= b−
c0
k
,

where we used c1 = 3c0δ
−1. Thus

εv0
k + S(Tv0

k) ≤ ε‖v0
k‖L∞(Ω) + b−

c0
k

a.e. in Ω.

We choose now εk > 0 such that

ε‖v0
k‖L∞(Ω) ≤

c0
k

∀ε ≤ εk.

Consequently

εv0
k + S(Tv0

k) ≤ b a.e. in Ω, ∀ε ≤ εk.

By analogous arguments, for all sufficiently small ε

εv0
k + S(Tv0

k) ≥ a a.e. in Ω.

This completes the proof. �

Theorem 4.2. Let (y∗, u∗) ∈ Uad be a local solution of the original control problem (2.1)
satisfying Assumption 3.1 and the linearized Slater condition. Then, there exists a sequence
{(yε, vε)}ε>0 of local solutions of (Pε) such that

Tvε → u∗ strongly in U and yε = S(Tvε) → y∗ strongly in H
3/2
div

as ε→ 0.
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Proof. The proof is partially analogous to the one of Theorem 3.3 which is given by the
following steps:

Step 1: According to Assumption 3.1, it holds that ν > M(y∗) and hence Lemma 2.1
implies the existence of a neighborhood B(u∗) of u∗ in U such that the control-to-state
mapping associated with (2.3)-(2.4):

(4.33) S : B(u∗) → H
3/2
div

is well-defined and

(4.34) ν >M(S(u)) ∀u ∈ B(u∗).

Further Assumption 3.1 ensures also the existence of fixed constants σ, δ > 0 such that

(4.35) J(y∗, u∗) +
σ

2
‖u− u∗‖2

U ≤ J(y, u)

for all (y, u) ∈ Uad satisfying ‖u−u∗‖U ≤ δ. Now, consider the following auxiliary control
problem

(P r
ε )





min J (y, v)

subject to

(y, v) ∈ Ur,ε := {(y, v) ∈ U ε
ad | ‖Tv − u∗‖U ≤ r}

with some fixed constant 0 < r ≤ δ such that {Tv ∈ U | ‖Tv − u∗‖U ≤ r} ⊂ B(u∗).

Step 2: We demonstrate that the auxiliary problem (P r
ε ) admits a solution for all suf-

ficiently small ε > 0. First of all, since J (y, v) ≥ 0 for all (y, v) ∈ Ur,ε, the infimum
inf

(y,v)∈Ur,ε

J (y, v) exists in R
+
0 and is denoted by j. Next, thanks to Lemma 4.1, there exist

ε̂ > 0 and v̂ ∈ L2(Ω) such that (S(T v̂), v̂) is feasible for (P r
ε ) all ε ≤ ε̂. In the sequel, let

ε ≤ ε̂. Therefore, there exists an infimal sequence {yn, vn} ⊂ Ur,ε associated with (P r
ε ),

i.e., it satisfies:
lim

n→∞
J (yn, vn) = j

In particular, there exists a constant c > 0 such that

c ≥ J (yn, vn) =
1

2
‖yn − zd‖

2 +
α

2
‖Tvn‖

2
H

1
0(Γ1) +

β(ε)

2
‖vn‖

2 for all n ∈ N.

This implies that the sequences {yn}∞n=1, {Tvn}∞n=1 and {vn}∞n=1 are uniformly bounded
in L2(Ω), H1

0(Γ1) and L2(Ω), respectively. Now, since {Tvn}∞n=1 ⊂ B(u∗), it holds that
yn = S(Tvn) for all n; cf. (4.33). Moreover, by (4.34), it satisfies ν >M(yn) for all n ∈ N.
Therefore, invoking Proposition 2.1, we immediately obtain the uniformly boundedness of

{yn}∞n=1 in H
3/2
div . Hence, there exists subsequences {vnk

}∞k=1 and {ynk
}∞k=1 such that

vnk
⇀ vr

ε , weakly in L2(Ω), ynk
⇀ yr

ε , weakly in H
3/2
div .

Analogously to the proof of Theorem 2.2, it can be shown that (vr
ε , y

r
ε) is an optimal

solution to (P r
ε ).

Step 3: Let {εn}∞n=1 be a sequence of positive real numbers converging to zero and assume
that εn ≤ ε̂ for all n ∈ N. According to the claim verified in Step 2, there exists a sequence
{(yr

n, v
r
n)}∞n=1 of optimal solutions to (P r

εn
). Moreover, we have already mentioned in Step

2 that (ŷ, v̂) is feasible for (P r
εn

) for all n ∈ N. Consequently

(4.36) J (yr
n, v

r
n) ≤ J (ŷ, v̂) ∀n ∈ N.

This implies that

(4.37) J (ŷ, v̂) ≥ J (yr
n, v

r
n) =

1

2
‖yn − zd‖

2 +
α

2
‖Tvr

n‖
2
U +

β(εn)

2
‖vr

n‖
2 ∀n ∈ N.

19



Thus, {yn}∞n=1 and {Tvr
n}

∞
n=1 are uniformly bounded in L2(Ω) and U , respectively. In

addition, since {Tvr
n}

∞
n=1 ⊂ B(u∗), ν > M(yr

n) holds true for all n ∈ N. Therefore,

invoking again Proposition 2.1, we obtain the uniform boundedness of {yr
n}

∞
n=1 in H

3/2
div .

For this we may extract a subsequence of {(yr
n, Tv

r
n)}∞n=1 denoted again by {(yr

n, Tv
r
n)}∞n=1

which converges weakly in H
3/2
div ×U to a (ȳ, ū) ∈ H

3/2
div ×U . Let us demonstrate now that

the weak limit (ȳ, ū) is feasible for the original control problem (2.1). We have already
mentioned that the the trilinear form c : H1

div × H1
div × H1

div → R in (2.3) is weakly
sequentially continuous. Hence, an argument analogously to the proof of Theorem 2.2
implies that (ȳ, ū) ∈ T (T is defined in (2.19)). Moreover, due to the compactness of the
L2(Ω), it holds that yr

n → ȳ strongly in L2(Ω). On the other hand, the pair (yr
n, v

r
n) is

feasible for (P r
εn

) and consequently it holds that

a ≤ εnv
r
n + yr

n ≤ b a.e. in Ω ∀n ∈ N.

Therefore, it suffices to verify that εnv
r
n converges strongly in L2(Ω) to zero as n → ∞.

By virtue of Assumption 4.3

β(εn)

2
‖vr

n‖
2 =

σ0ε
1+σ1
n

2ε2n
‖εnv

r
n‖

2 =
σ0ε

σ1−1
n

2
‖εnv

r
n‖

2.

Setting this in (4.37)

σ0ε
σ1−1
n

2
‖εnv

r
n‖

2 ≤ J (ŷ, v̂)

and hence

‖εnv
r
n‖

2 ≤ ε1−σ1
n

2

σ0
J (ŷ, v̂),

which implies that εnv
r
n → 0 strongly in L2(Ω). Thus, we come to the conclusion that the

weak limit of {yr
n, Tv

r
n}

∞
n=1 is feasible, i.e., (ȳ, ū) ∈ Uad.

Step 4: We demonstrate that yr
n → y∗ strongly in H

3/2
div and Tvr

n → u∗ strongly in U . Since
the set

{u ∈ U | ‖u− u∗‖U ≤ r}

is weakly closed, we find that

(4.38) ‖ū− u∗‖U ≤ r ≤ δ.

By the latter inequality, (3.22) ensures that

(4.39) J(y∗, u∗) +
σ

2
‖ū− u∗‖2

U ≤ J(ȳ, ū).

In addition, according to Lemma 4.1, there exists a sequence {v0
k}

∞
k=1 ⊂ L∞(Ω) with the

following properties:

(A1) It holds that lim
k→∞

‖Tv0
k − u∗‖U = 0. Moreover, ‖Tv0

k − u∗‖ ≤ r for all n ∈ N.

(A2) For every k ∈ N, there is an index number nk such that

a ≤ εnv
0
k + S(Tv0

k) ≤ b ∀n ≥ nk.

Hence, (A1) and (A2) particularly implies that the pair (S(Tv0
k), v0

k) is feasible for (P r
εn

)
for all n ≥ nk. For this reason, since (yr

n, v
r
n) is an optimal solution for (P r

εn
), it follows

that

(4.40) J(yr
n, Tv

r
n) ≤ J(yr

n, Tv
r
n) +

β(εn)

2
‖vr

n‖
2 ≤ J(S(Tv0

k), Tv
0
k) +

β(εn)

2
‖v0

k‖
2,

for all n ≥ nk. Moreover, due to the lower semicontinuity of J , we obtain

(4.41) J(ȳ, ū) ≤ lim inf
n→∞

J(yr
n, Tv

r
n) ≤ lim sup

n→∞
J(yr

n, Tv
r
n) ≤ J(S(Tv0

k), v
0
k).
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On account of the continuity of J(S(T ·), ·), by passing to the limit k → ∞, (A1) and
(4.41) imply that

(4.42) J(ȳ, ū) ≤ lim inf
n→∞

J(yr
n, Tv

r
n) ≤ lim sup

n→∞
J(yr

n, Tv
r
n) ≤ J(S(u∗), u∗) = J(y∗, u∗).

Applying (4.39) to the latter inequality

J(y∗, u∗) +
σ

2
‖ū− u∗‖2

U ≤ J(ȳ, ū) ≤ J(y∗, u∗)

which leads to

(4.43) Tvr
n ⇀ ū = u∗ weakly in U and J(y∗, u∗) = J(ȳ, ū).

The latter equality together with (4.42) implies that

lim
n→0

J(yr
n, Tv

r
n) = J(y∗, u∗),

which is equivalent to

(4.44) lim
n→∞

(1

2
‖yr

n − zd‖
2 +

α

2
‖Tvr

n‖
2
U

)
=

1

2
‖y∗ − zd‖

2 +
α

2
‖u∗‖2

U .

Invoking the compactness of the embedding H3/2(Ω) →֒ L2(Ω), the weak convergence
yr

n ⇀ ȳ in H3/2(Ω) as n→ ∞ ensures that

lim
n→∞

1

2
‖yr

n − zd‖
2 =

1

2
‖ȳ − zd‖

2.

Consequently

lim
n→∞

α

2
‖Tvr

n‖
2
U =

α

2
‖u∗‖2

U ,

and hence from the weak convergence (4.43), we obtain

(4.45) lim
n→∞

Tvr
n = u∗ in U .

The strong convergence of yr
n to y∗ follows then from the continuity of S : B(u∗) → H

3/2
div :

lim
n→∞

yr
n = lim

n→∞
S(Tvr

n) = S(u∗) = y∗ in H3/2(Ω).

In this way, we have just shown that (yr
n, Tv

r
n) converges strongly in H

3/2
div ×U to the local

solution (y∗, u∗) of (2.1) as n→ ∞.

Step 5: Lastly, we complete the proof by verifying that (yr
n, v

r
n) is a local solution to (Pεn)

for all sufficiently large n ∈ N. For this, let (y, v) ∈ U ε
ad be any pair satisfying ‖v−vr

n‖ ≤ r
2s

where s := ‖T‖L2(Ω)→U . Owing to the linearity and continuity of T

‖Tv − u∗‖U ≤ ‖T (v − vr
n)‖U + ‖Tvr

n − u∗‖U ≤
r

2
+ ‖Tvr

n − u∗‖U

Hence, since Tvr
n → u∗ strongly in U , there exists n̄ > 0 such that

‖Tv − u∗‖U ≤
r

2
+ ‖Tvr

n − u∗‖U ≤ r ∀n ≥ n̄.

This implies that (y, v) is feasible for (P r
εn

) for all n ≥ n̄. Consequently, for n ≥ n̄, we
have

J (yr
n, v

r
n) ≤ J (y, u).

Therefore, (yr
n, v

r
n) is a local solution to (Pεn) for all n ≥ n̄. �
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5. Numerical results

In this section we present some numerical experiments which illustrate the performance
of the Moreau-Yosida regularization technique applied to the boundary optimal control of
the Navier-Stokes equations with pointwise state constraints. The regularized problems
are solved by means of a semi-smooth Newton method (SSN) as developed in [19]. The
algorithm is based on a reformulation of the complementarity problem as an operator
equation involving the max and min functions. A main feature of this type of algorithms
is its local superlinear convergent behavior (cf. [19]).

The algorithm for the regularized Dirichlet control problem is stated next.

Algorithm 5.1.

(1) Initialization: choose (u0, y0, λ0) ∈ U × H
3/2
div × L2(Ω) and set n = 1.

(2) Until a stopping criteria is satisfied, set

Ab
n = {x : γ(yn−1 − yb) ≥ 0} Aa

n = {x : γ(yn−1 − ya) ≤ 0}

and
In = {x : γ(yn−1 − yb) < 0 < γ(yn−1 − ya)}.

Find the solution (yn, pn, un, λn, qn, µn) of:

−ν∆yn + (yn−1 · ∇)yn + (yn · ∇)yn−1 + ∇pn = f + (yn−1 · ∇)yn−1

div yn = 0

yn|Γ = g + Bun,

(5.1)

−ν∆λn − (yn · ∇)λn−1 − (yn−1 · ∇)λn+(∇yn−1)
Tλn + (∇yn)Tλn−1

+∇qn = zd − yn−µn − (yn−1 · ∇)λn−1 + (∇yn−1)
Tλn−1

div λn = 0

λn|Γ = 0,

(5.2)

(5.3) −α∆Γun = B⋆

(
−ν

∂λn

∂~n
+ qn~n

)
+ σn~n,

(5.4) µn =





γ(yn − yb) in Ab
n

0 in In

γ(yn − ya) in Aa
n,

and set n = n+ 1.

The semi-smooth Newton algorithm is terminated when the norm of the increments reaches
the precision tol, whose value is typically set equal to tol = 10−5. The resulting linear
systems in each semi-smooth Newton iteration are solved exactly using Matlab’s sparse
solver.

For the numerical tests we utilize a forward facing step channel (see Figure 1). The
fluid flows from left to right with inflow boundary condition of parabolic type and outflow
stress free condition. The domain is discretized using an homogeneous staggered grid with
step h. Also a first order upwind scheme is used for the approximation of the convective
term.

The target of the control problem is to drive the fluid to an almost linear behavior given
by the Navier-Stokes flow with Reynolds number equal to 1 and, through the presence of
pointwise state constraints, reduce recirculations after the step. In that sense, the Re = 1
flow is chosen as desired state zd. The uncontrolled flow with Re = 800 depicted in Figure
2, illustrates the main recirculation zones in the channel.

22



Ω 

0 0.5 1 

0.5 

Figure 1. Foward facing step channel
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Figure 3. Example 1: optimal state

5.1. Example 1. In this example we impose a state constraint over the backward fluid
flow in sector ΩS depicted in Figure 2. In this manner a substantial reduction of the
recirculation after the step is expected. Specifically, the state constraint is given by y1 ≥
−10−7. The boundary part where the control acts consists of the lower wall after the step
between 0.625 and 0.75. This boundary sector is depicted in Figure 3 together with the
resulting optimal state.

With the parameter values α = 0.01, Re = 800, γ = 107, the semi-smooth Newton
algorithm stops after 15 iterations with the mesh step size h = 1/240. The control action
consists of the suction of fluid trough the boundary sector Γ1, This can be observed from
the zoom plot of the flow field given in Figure 4.

In Table 1 the behavior of the semi-smooth Newton method for different γ values is
presented. The remaining parameters are α = 0.01, h = 1/160 and Re = 800. As can be
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Figure 4. Example 1: optimal control

γ 102 103 104 105 106 107

iter. 6 6 7 8 9 14
active 24 21 16 12 10 6
J(y, u) 0.0057783 0.0057948 0.0060249 0.0072535 0.011384 0.019233

Table 1. Example 1, α = 0.01, 160 mesh nodes, Re=800.

Ω
s
 

Figure 5. Example 2: uncontrolled state, Re=1500

inferred from the data, the number of iterations increases together with the values of γ.
On the other hand, the size of the active set decreses as γ increases.

5.2. Example 2. In this example a Re = 1500 flow is controlled by means of a Dirichlet
boundary condition. The control acts on the same boundary sector as in Example 1. The
uncontrolled velocity field is depicted in Figure 5, where the larger size of the bubble can
be observed. The constraint y1 ≥ −10−7 is imposed in the subdomain Ωs also shown in
Figure 5.

The resulting optimal control, with γ = 105, is shown in detail in Figure 6. Differently
to Example 1, the optimal strategy in this case consists in injecting fluid on Γ1. The
semi-smooth Newton algorithm takes 11 iterations to converge.

In Table 2 the data for the semi-smooth Newton method with γ = 104, α = 0.1, Re =
1500, and h = 1/160 is given. The superlinear convergence rate of the method can be
inferred from the data.
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Figure 6. Example 2: zoom of the optimal control

It. |Aa
n| J(y, u) ‖yn − yn−1‖ NCP rate

1 0 1.17495 × 10−4 1.058 × 102 0 -
2 0 0.010345 22.25250 0 -
3 0 0.009259 8.991736 2.31616 × 103 22.2525
4 39 0.028324 2.424757 3.49444 × 102 0.404077
5 34 0.0365871 0.18168 32.60469 0.269665
6 32 0.0365832 0.002243 0 0.074929
7 32 0.0365846 3.2785 × 10−5 0 0.012350

Table 2. Example 2, α = 0.1, γ = 104, 160 mesh nodes, Re=1500.
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