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Abstract

We propose and analyse an interior point path-following method in func-
tion space for state constrained optimal control. Our emphasis is on proving
convergence in function space and on constructing a practical path-following
algorithm. In particular, the introduction of a pointwise damping step leads
to a very efficient method, as verified by numerical experiments.
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1 Introduction

The construction and analysis of efficient algorithms for state constrained optimal
control problems is still a considerable challenge. Presently, most popular methods
that admit a (partial) analysis in function space are path-following methods, such
as exterior penalty methods [7], Lavrentiev regularization [9, 10] and interior point
methods [13, 14, 15]. Except for [13] and partially [10] (for a fixed Lavrentiev
parameter) the available results are restricted to properties of the homotopy path,
such as its existence, convergence and continuity. Except for these two works, not
much is known about convergence of the associated path-following algorithms. This
includes the important question if it is at all possible to follow the homotopy path
by a practical algorithm, or if the sequence of iterates may stagnate far away from
the desired solution. Closely connected and even more relevant from a practical
point of view is the question how to choose homotopy parameters to obtain a fast
and robust algorithm. These questions can certainly not be answered by an analysis
of the path alone.

The aim of this paper is to propose and analyse an interior point method in
function space that is capable of solving state constrained optimal control problems
efficiently. The corresponding homotopy path has been analysed in [14, 15], so
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our emphasis here is on the Newton path-following method and on giving positive
answers to the above questions. We establish qualitative convergence results in
the following sense. Under suitable conditions there is a sequence of homotopy
parameters g that converges to 0 and a sequence of corresponding iterates xy
produced by a Newton corrector scheme that converges to the solution of the original
problem z,. The quantities used in the analysis, which yields convergence of the
scheme as an a-priori result, can be modelled and estimated inside a numerical
algorithm to yield a criterion for controlling the path-following algorithm efficiently.
This is done in the spirit of [4, Chapter 5], but modified in a way that fits into our
particular setting in function space.

To establish a rigorous analysis we essentially need estimates for two quantities.
The first one, which reflects the most basic analytic properties of the homotopy
path, is its local Lipschitz constant n(u). The second captures the nonlinearity
of the equations that define the homotopy path. This quantity, which governs
the local convergence behaviour of Newton’s method and in particular its radius
of convergence, is an affine covariant Lipschitz constant for the Jacobian, denoted
by w(p). Since good a-posteriori estimates are available for n and w, their role is
not a purely analytic one, but they establish a close connection between a-priori
theory and algorithmic implementation. In some sense, the algorithm is driven by
an a-posteriori counterpart of the convergence theory established in this work.

Compared to [13] we introduce, as an algorithmic modification, a pointwise
damping step, which prevents Newton’s method from leaving the feasible domain
and enhances the efficiency of the path-following scheme significantly. It is moti-
vated by the idea to exploit the pointwise structure of the problem and has several
useful interpretations. In our numerical experiments we observe that this modifi-
cation allows the solution of state constrained optimal control problems in a few
Newton steps.

Acknowledgement. The author wishes to thank Dr. Martin Weiser for helpful
discussions and the close cooperation during the development of the computational
framework.

2 A Class of State Constrained Optimal Control Prob-
lems

Let © be an open and smoothly bounded domain in R?, d = 1...3 and Q its closure.
Let Y denote the space of states and U the space of controls. Define Z :=Y x U
with z := (y, u) and consider the following convex minimization problem, the details
of which are fixed in the remaining section.

minJ(z) s.t. Ay—Bu=0
2€Z (1)
y<y.



We set Y = C(Q), and U = L(Q) for a measurable set Q equipped with an
appropriate norm. This setting includes optimal control problems subject to linear
elliptic partial differential equations with distributed control (Q = ), boundary
control (@ = 9N) and finite dimensional control (Q = {1,...,n}, equipped with
the counting measure).

We will now specify our abstract theoretical framework, which holds throughout
this work and collect a couple of basic results about this class of problems. Our
framework is placed in the context of convex analysis, whose fundamentals can e.g.
be looked up in [5].

Convex Functionals. For simplicity, let J be a quadratic tracking type func-
tional with Tychonov regularization term:

1 «
J(z) =5 lly - vall 7, + 5 ull,

Obviously, this functional is strictly convex and continuous in Z, and hence subd-
ifferentiable. Its subdifferential is single valued and given by

Z* 3 0J(z) = ( y_yd>.

au

Equality Constraints. The equality constraint Ay — Bu = 0 is introduced to
model a partial differential equation.

Let R be a reflexive Banach space and B : U — R be continuous. We assume
that A:Y D dom A — R is a linear operator, which is densely defined, closed that
maps dom A to R bijectively.

In the context of optimal control R is often the dual of a Sobolev space and the
operator B is usually defined as the adjoint of an embedding or a trace operator
(cf. e.g. the discussion in [8] or [15]).

We consider A as a model of a differential operator, which may be unbounded.
This depends of course on the choice of topology in Y. Closed, densely defined
operators between Banach spaces are a classical concept of functional analysis. They
generalize the concept of continuous operators and retain much of their structure. In
particular, there is an open-mapping theorem, a closed range theorem, and adjoint
operators are well defined. In this work and in [14, 15] only these basic properties
of A are needed for a successful analysis. A classical introduction to unbounded
operators is [6], but most elementary facts can also be found in standard textbooks
on functional analysis.

There is a simple correspondence between a bijective closed operator and its
inverse.

Lemma 2.1. For Banach spaces Y and R let A:Y D domA — R be a linear

operator. A is closed and bijective if and only if A possesses a continuous inverse
A1 R —domA CY in the sense that A=A = idgom 4 and AA™! = idp.



Proof. Assume first that a continuous inverse A~! exists. Then in particular A is
bijective. Let yr — y and r, = Ay — r. By surjectivity of A there is § € dom A:
Afj = r, hence Ay, — Ajj. We have to show y = §. Because A~ is continuous, we
conclude y, = A~ Ay, — A7YA§ = 7, hence y = §.

If in converse A is closed and bijective, then existence of a continuous inverse
follows from the open mapping theorem (cf. e.g. [17, Satz IV.4.4]), which not only
holds for continuous, but also for closed operators. [l

Hence, if the partial differential equation defined by Ay = f is uniquely solv-
able and admits an a-priori estimate, then A is closed and bijective. Hence, our
assumption of closedness of A holds, if the solution operator A~! maps R into
dom A C C(Q) continuously.

We define E as the subspace of Y x U of all pairs (y, u) that satisfy Ay— Bu = 0.
It is closed, because it is the kernel of the closed operator (A, —B). Because A~! is
continuous we can eliminate y = A~'Bu. Then if follows from reflexivity of U that
F is weakly sequentially compact.

We exploit density of dom A in Y to define an adjoint operator A* by the
following standard construction. Here and in the following we denote by (,-) the
dual pairing. For every [ € R* the mapping y — (I, Ay) is a linear functional on
dom A. We define dom A* as the subspace of all [ € R* for which y — (I, Ay) is
continuous on dom A and can thus by density be extended uniquely to a continuous
functional on Y. Hence, for each [ € dom A* there is a unique linear functional
A*l € Y* for which

(I, Ay) = (A*l,y) Vy € dom A. (2)

This yields the definition of A* : R* D dom A* — Y™,
Because R is reflexive, dom A* is dense in R*. This is due to [6, Theorem I1.2.14].

Inequality Constraints. We assume that y € CY'(Q), which means that its
spacial derivatives are Lipschitz continuous. The inequality constraints in (1) are
interpreted to hold pointwise almost everywhere and they define a closed set G C Y.
We assume that there is a strictly feasible point Z = (y,u) that satisfies Ay— Bu = 0
and

0 < duin = essinf {y(t) — y(t)}. (3)

teQ)

We call such a condition a (uniform pointwise) Slater condition and Z a Slater
point. This condition together with the topology of Y defined by |||, is used in
the analysis of dual variables and subdifferentials and in the derivation of first order
optimality conditions.

Combined Functionals. It is a popular strategy in convex analysis to combine
the functional J and the constraints z € E and z € G to a single functional. This
is done via indicator functions. The indicator function xc(z) of a set C C Z is



defined by
0 : zeC
oo : otherwise.

xc(?) = {

If C' is non-empty, convex, and closed, then y¢ is a proper (x¢c #Z +00), convex, and
lower semi-continuous function. In particular, yg and yg enjoy these properties.

With the help of indicator functions we can rewrite (1) as an unconstrained
minimization problem defined by the following functional:

F:7Z—R:=RU{+o0} )
F:=J4+xe+ Xxc-

By our assumptions F' is a proper, lower semi-continuous, strictly convex, and
coercive functional and does thus admit a unique minimizer by weak compactness
of E (cf. e.g. [5][Proposition II.1.2])

3 Barrier Regularizations for State Constraints

Let us recapitulate known results about the regularization of state constrained op-
timal control problems with barrier functions. The proofs for the following results
can be found in [14, 15].

Definition 3.1. For all ¢ > 1 and g > 0 the functions I(z; u;q) : Ry — R defined

by
—pln(z) @ ¢g=1
Uz p3q) = e
e

are called barrier functions of order q. We extend their domain of definition to R by
setting (z; u; q) = oo for z < 0. We include finite sums of these barrier functions,
and define their order to be the maximum order of the summands. We denote their
derivatives, which are defined for 2 > 0 by I’ and 1" .

Usually we do not have to consider special values of ¢ or . In these cases we
may abbreviate the notation [(z; u; q) by I(z; u) or even I(z).

Using these barrier functions l(z; p; q) we construct barrier functionals b(y; p; q)
to implement constraints of the form i > 0 on a compact set B C Q by computing
the integral over I:

b(p59) : C(B) = R
y— / Uy(t); s q) dt.
B
It is easy to see that b is a well defined, extended real valued functional on C(B).

With these definitions we may regularize F' in (4) by replacing x¢ with b(y; ).
Hence,

Fu(2) = J(2) + x5(2) + b(y; ). (5)



We denote by b and b” the formal derivatives of b. Here,
(V' (25 159), 02) Z/Bl/(Z(t);u;q)&(t) dt, (6)

if the right hand side it is well defined. An analogous definition holds for b”. We
call these quantities formal derivatives, because in general they may not have the
properties of a derivative, and it is not even clear, a-priori if (6) is well defined, be-
cause for given z, §z I'(z; u; ¢)0z may not be an integrable function on B. However,
we have the following result:

Theorem 3.2. For all p > 0, problem (5) admits a unique solution (y(u),u(u)).
Moreover, the system (7)-(8)

0=y(u) —ya+A'p+m (7)
0=a-u(p) — Bp. (8)

admits a unique solution (p(u), m(p)) € R* x M(Q) satisfying the following condi-
tions.

The non-positive measure m(u) can be represented as the sum of a formal deriva-
tive of a barrier functional (which is in particular well defined) and a non-positive
measure m(p):

m(w.0) = [ Vdt+ [ v, (9
y=0
If =0, then the first term vanishes. The second term vanishes for y >y. Hence,

/ y(1) din(ys) = 0. (10)
Q

Moreover, the set of all m(u) is uniformly bounded in M(Q) on every fived interval

1 € [05 o).

Proof. This is a special case of [15, Theorems 2.6, 2.7]. O
Our next assertion captures the analytic properties of our of solutions. It holds

for general m(u), i.e., also if m(u) # 0.

Theorem 3.3. The set of solutions of (5) forms a path that converges to the
solution of (1) with the error estimates

J(y(w) = J(y«) < Cp (11)
ly() = yully + llup) —wll, < ey (12)

This path is locally Lipschitz continuous for each p > 0, and satisfies
ly () = y@)lly + () = w@)|lp, < el —vl. (13)

If u>v>pu/2, then
H 0" (y () (y(1) — y(l/))HL2 <ep VP — vl (14)



Proof. Equations (12) and (13) follow from [14, Theorem 5.3, 5.5], and [15, Theorem
2.8]. A close look at the proof of [14, Theorem 5.5], in particular equation (37) there
shows (14). O

As usual in interior point methods we will call this homotopy path of solutions
the central path.

Proposition 3.4. If y(u) is strictly feasible, then points (y(u),p(n)) € Y x R*
on the central path are characterized by being solutions of the following system of
equations in Y* x R

y—ya+bV(y;p) + A'p=0

15
Ay — BB*a 'p=0. (15)

Proof. We may use (8) to compute u = a~!B*p, and insert this into the state
equation, which yields the second row of (15). The first row of (15) follows from
(7) and the assumed feasibility of y(u), which implies m = b'(y; p). O

The system of equations (15) will be in the center of our considerations. Our
path-following method is based on solving this system approximately by Newton’s
method. For an analysis in function space it is therefore necessary to guarantee
strict feasibility of y(u).

Strict feasibility. Because the barrier subgradients m(u) are uniformly bounded
in M(f2), we conclude uniform boundedness of p(u) in R* via (7) and thus also
of u(p) via (8). The space R* depends on the state equation considered in the
application and is often a Sobolev space W(£2). An example for an elliptic PDE
is analysed in [3]. This increased regularity of u(u) yields in turn better regularity
of y(u), say in some Sobolev space W*P together with a uniform norm-bound. In

view of the Sobolev-embedding theorems this motivates our following assumption:

Assumption 3.5. Assume that the set y(1) is uniformly bounded on some positive
interval (0; 0] in C4(Q) for some 0 < 3 < 2. Here C?(Q)) denotes the spaces of
Hoélder continuous functions for G < 1, and of differentiable functions with Holder-
continuous derivatives for 1 < 8 < 2.

Proposition 3.6. If Assumption 3.5 holds, then there is a positive integer q, and
a function ¢¥(p), depending on q and (3, which is strictly positive on every com-
pact positive interval [u; po] and monotonically decreasing such that the following
assertion holds: B

If y(u) is a point on the central path, induced by a barrier function of order q,
then

inf y(p)(t) —y = P(u). (16)
teQ)
Proof. This follows from [14, Lemma 6.1] and the following discussion there. O

Hence, by an appropriate choice of ¢ we can force the central path solutions to
be strictly feasible, approaching the bounds for y — 0 in a controlled fashion.



4 A Simple Newton Path-Following Method

Our aim in this section is to prove Theorem 4.9, a qualitative convergence result
for a class of Newton path-following methods in function space, applied to our state
constrained optimal control problem.

Our analysis is based on two quantities, which describe the behaviour of our
Newton path-following scheme. As for the structure of the central path, we use
its local Lipschitz constant n(u). Equation (13) provides us with the fairly good
estimate n(x) = O(p~Y?). To be able to capture the behaviour of the Newton
corrector, we give estimates for the Newton contraction ©(x; u), defined below. It
is hard to obtain sharp bounds for ©, and we will content ourselves with a rough
quantitative estimate. Refinements are conceivable, but highly technical. Note in
this context that for state constrained problems even qualitative results in function
space are very sparse in the literature. In compensation we describe in Section 6
a method to estimate the quantities n and © locally in order to drive an adaptive
path-following algorithm.

Our prototype is Algorithm 4.1. We will show in this section that a choice uy
is possible, such that Algorithm 4.1 is well defined and converges to the optimal
solution of the problem. In Section 6 we describe how to choose the sequence iy in
practice, based on a-posteriori quantities.

Algorithm 4.1.
select po > 0, and zp with yo sufficiently close to y(ug)
for k=0,...

Tp1 =z — F' (g, ) " F (g, i)

select 141

Let in the following X :=Y x R*. Reflexivity of R yields X* =Y* x R. F(x; u)
is given by (15). Throughout this section we assume that Assumption 3.5 holds,
and choose ¢ sufficiently large, such that (16) holds.

Let us define a domain of definition for F'. There are essentially two requirements
on z = (y,p). First, Ay € R and A*p € Y* have to be well defined. Thus we require
y € dom A, p € dom A*. Second, we need some feasibility condition for y, which
we address by the following restriction, using Assumption 3.5. We define a (strictly
feasible) neighbourhood Y,, of the central path by

Y, = p(p) - Br.(y(p)), (17)

for some fixed 0 < p < 1.
Now set the domain of definition of F' to D, := (dom ANY),) x domA* C X.
Then the following mapping is well defined:

F(z;p) : X DD, — X"

For our analysis we will choose the sequence p such that all iterates remain
in Y. InY), the relation c(y — y)(t) < (y(u) — y)(t) < C(y — y)(t) holds, which



we will use often in the following. This helps us to derive a-priori estimates for
O©(z;p). In a practical algorithm, where a-posteriori estimates are available, this
neighbourhood can be dropped.

4.1 Analysis of the Newton corrector

The formal linearization of this system at a point x € D,, reads

ooy T+ (yip) A*
F(; ) '_< A —a~1BB* |-

This is a formal linearization, because we do not specify in which sense F’(x;u)
is a derivative of F'(z;u). However, we will show that Newton’s method is locally
quadratically convergent, if this formal linearization is used in the role of the Jaco-
bian matrix.

Observe that in contrast to F'(x;p), F'(z; p) is defined for all z € Y, x U, not
only in D, and does not depend on p. For fixed z we have

F'(z;p)(-) : X D dom A x dom A* — X*.
Moreover, because A and A* are linear:

| (F'(a; ) = F'(%; ) 0|

vexr = |07 (y) = 6" (9))dy]

v 18
< ") - v @) 1s)

y= 19ylly -

Because 1" (y; ) is uniformly continuous in Y, we conclude that F’(z;p) depends
continuously on x (w.r.t. the operator norm) in this region.
We introduce the following local scaled norm for corrections Jy:

1+ 1"(y; ) (19)

18l = || 025y

Let us first establish the solvability of the linear system F”(z; u)dz = r, which reads

in detail:
I+ b"(y; 1) A oy _( ra
( A —a~'BB* op ) \ry )’ (20)

For our analysis it will be sufficient to consider the case rs = 0.

Theorem 4.2. Fory € Y, and v, € Y*, rs = 0 the system (20) admits a unique
solution (dy,dp) € X, with oy € dom A and dp € dom A*. The following estimate
holds:

(rav)

v vl

16yl + a2 1B*6pl| 1, < CSUP (21)

Here C is independent of x and p.



Proof. Consider the quadratic minimization problem:

1
min  ¢(g,a) := 3 ng

(g,a)eY xU

2 Qo i ) )
‘ 5 HUHU —(rq,y) s.t. Ay— Bu=0,

Lo 2

which can be written as min(q + xg)(g,@). By our assumptions this problem has

a unique solution (dy,du) € Y x U, and because ¢(0) = 0, we have ¢(dy, du) < 0.
Hence, we conclude

|ViFTa|, +aloul? < 2. op)

and thus, dividing by the square-root of the left hand side, using ||0y||y < C' [|0ul|;
(which holds, because Ady — Béu = 0) we obtain

||5y||xu + Oél/2 H(SUHU < O<7"a7(5y> < CSup (Tay?)> ) (22)
’ ”(5ny““ veY ”U”m,,u

It remains to connect this estimate to (20). Since ¢ is continuous on Y x U,
we can apply the sum-rule of convex analysis [5, Thm. I1.5.6] to derive optimality
conditions for our minimization problem. We obtain 0 € dq + dxg. Since ¢ is
Gateaux differentiable, dq(dz) = {((I + b")dy — rq,au)}. Using our assumptions
on A and B, [15, Proposition 2.5] yields Oxg = ran(A, —B)* and thus existence of
op € dom A*, which satisfies the equations

(I+V")oy+ A*Sp=r,
adu — B*ép = 0.

The first row is identical to the first row of (20). The second row yields, du =
a~'B*6p. Inserting this into the equation Ady — Béu = 0 yields the second row of
(20), inserting it into (22) yields (21). O

Remark 4.3. Observe that the inverse Jacobian possesses a strong smoothing
property. In particular, ||dy||y- < ||7a|ly+. This is possible, because the correspond-
ing system of equations is a system of partial differential equations only. Such a
smoothing property is important for the robustness of function space oriented meth-
ods. The drawback of this primal formulation is that the nonlinearity of the barrier
terms is high.

The most popular interior point methods in finite dimensions are primal-dual
methods, which introduce additional algebraic equations. Then the resulting sys-
tem is only relatively mildly nonlinear. However, the presence of purely algebraic
equations spoils the smoothing property of the inverse Jacobian. In Section 5 we
propose an algorithmic variant that retains the smoothing property of the Jaco-
bian, but similarly to primal-dual methods alleviates the nonlinearity of the barrier
terms.

10



Since in Y}, all scaled norms [|dy|| +,u AT€ equivalent up to a constant, we introduce
the following scaled norm for simplicity:

— —1/2 px
”533”“ : H(Sy”m(ﬂ)vl‘ t Ha B 5]9‘ L2(Q)

Its scaling is fixed for fixed p. If p is decreased by a factor 0 < ¢ < 1, and
y(op) € Yy, then ||, and |||, are equivalent up to a constant Cny(c), which
tends to 1, as 0 — 1.

Next we capture the local behaviour of Newton’s method. For our analysis it is
sufficient to consider one single step of it.

Theorem 4.4. Let x(u) be the solution of the nonlinear equation F(x;u) =0. The
Newton mapping
N:XD>D,— X
T xy = x — F'(z;p0) " F(z; p)
defined by a Newton step yields x4 € dom A x dom A*.
Moreover, N extends uniquely and continuously to Y, x R*. For this extended
mapping still x; = N(x) € dom A* x dom A holds.
Define
[F" 5 1)~ (F" (5 i) (@ = (w)) — (F(a; ) = Fa(); o) )|,

Oleip) = o=zl

(23)

Then the following contraction estimate holds

o+ —z(p)ll, = O@; 1) |z — z()ll,, - (24)
Proof. Because F(x;pu) is well defined on D, and by Theorem 4.2, the Newton
correction 6z := F'(z; u) "' F(x; 1) is well defined, 6z € dom A* x dom A, and hence
Ty =z — dx, too.
Using F(x(p); ) = 0 and (23) we have
lz4 = 2(w)ll,, = ||z — 2(r) — F'(z; )" F ;)| ,
= || P (5 1)~ (F (2 ) (2 — () — (F (5 1) — F((p); )|
= O(z; ) lo = z(wll,

which yields (24) for all x € D,,.
Let us now extend our results from D, toY, x R*. We know that for x € D,

2y — o) = F'(z ) (F' s ) (& — o(u)) — (F (@ 1) — Fa(u); 1))
T ( b (y; 1) (y — y(w)) — (V' (ys 1) = V' (y(); 1)) >

0
= F'(a; )7 ( r“(()y) ) :

11

I



The last expression is not only well defined for x € D,,, but for all z € Y, x R*.
Moreover, r,(y) € Loo C Y*. Hence,

N(z) := F'(z;p) 71 < T“(()y) > + z(p) € dom A* x dom A
is well defined for all z € Y, x R* and coincides with N(x) on D, which is dense in
Y, x R*, because dom A is dense in Y and dom A* is dense in R*. It remains to show
that N depends continuously on x, which implies that it is the unique continuous
extension of N.

This is not hard, because r,(y) depends continuously on y, and F’(z; )" de-
pends continuously on x by the following argument (which is known as an operator
perturbation lemma).

First of all the identity

Fl(#) = (I = F'(z;0) " (F' (25 ) = F' (&))" F (507"

holds. By continuity of F'(z;u) with respect to x due to (18) and by invertibility
of F'(;p) we have T(5;5)() = F'(z; p)"\(F'(w; 1) — F'(5p)() € L(X) and
|T'(x;Z)|| — O for £ — x. This implies via construction of the Neumann series that
(I —T(x;%))~! — I for # — x, and hence continuity of F'(x;u)~! at 2. Now

|¥@ 5@, < 17 @z raw) = ra@lly-
| F (s )™ = (@5 0) 7] ra(@) ]y
and continuity follows by (18). O

Remark 4.5. Theorem 4.4 states that Newton steps can be canonically defined on
all of Y, x R* by unique continuous extension. This result is useful in Section 5,
where a pointwise modification is introduced, which is an L, perturbation. Theo-
rem 4.4 asserts that this perturbation does not interfere with the well definedness
of Newton steps.

Equation (24) gives us the interpretation of

g —awl,

o) = 2l

as a local Newton contraction. If ©(x; u) < k < 1 in a neighbourhood of z(u), then
Newton’s method converges. We will show now ©(x; u) = O(||x — x(u)]|,), which
implies local quadratic convergence of Newton’s method for each p > 0. Proving
local quadratic convergence alone, however, would not be sufficient in the context of
path-following. In addition we need a more quantitative result of the form (26) that
relates O(x; p) to p and that yields bounds from below on the radius of convergence
to conclude convergence of the overall path-following method.

12



Lemma 4.6. Let y1,y2 >y, and § := min {y1;y2}. For the barrier function l(y) =
I(y; p; q) the following pointwise estimate holds:

() (1 = y2) = (1) — V') < Fcy’l”@)(yl — )%, (25)

The constant ¢ depends only on q.

Proof. Since I’ is a sum of functions of the form p%y~9, it is twice differentiable
for positive y and all derivatives are monotonically decreasing in absolute value.
Hence, application of the fundamental theorem of calculus twice yields (25), taking
into account the rules of differentiation. O

Proposition 4.7. For each p > 0 Newton’s method converges locally quadratically
to the solution x(u). More precisely, there is a positive function w(p), which is
bounded on every compact positive interval, such that for v €Y, x R*

O ) < yeolp)lle — (0l (26)

together with the bound w(u) < cyp=t(u).
Proof. By definition of © we have, just as in the proof of Theorem 4.4

o < 1% _ HF/(Q““){(TQS”)#’

=l =zl [z —2(W)]l,,
with rq(y) = V" (y)(y — y(1)) — (¥'(y) — V'(y(n))). Because y € Y),, and thus

Cly(p) —y) <y—y <clylp) —y),

Lemma 4.6 gives us the pointwise estimate (dropping the argument t € €2):
2
P (y () (y — y(u))(

Ira(y)] < (@) (y — y()?] < =y

&
y—y

Let [Jv]ly = ||v]|, = 1 be arbitrary. Then by the Holder inequality

¢ " _ 221
((ras0)] < /Q T =5 VI~ )P
(

< letwm) =) | My = ylZ, 1ol
< ()l — 2w -

Hence, Theorem 4.2 yields
52l < ()™ |l — 2|7,

which implies (26). O
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By the fundamental theorem of calculus the quantity w(u) can be interpreted
as an affine invariant Lipschitz constant for F'(z;p). It is a measure for the non-
linearity of the problem at hand. Its prominent role for the analysis and control of
algorithms based on Newton’s method has been pointed out in [4]. The crucial fact
is that good computational a-posteriori estimates are available for ©® and thus for
w, as will be elaborated in Section 6.

4.2 Convergence of the Path-Following Method

In the following lemma we connect the continuity properties of the central path and
the convergence properties of the Newton corrector to obtain a convergent path-
following method. It turns out that all we need is an estimate for the Lipschitz
constant n(u) of the central path, and an estimate for the quantity w(u), defined
in (26), which governs the radius of convergence of Newton’s method. With these
two quantities we can show, using mostly algebraic arguments, that there is a
sequence g such that Algorithm 4.1 produces a sequence of iterates that remains
in a prescribed neighbourhood of the central path and converges to the solution
of the original problem. With this method it is principally possible but rather
technical to compute a rate of convergence. In the context of control constraints
this has been done in [12].

Lemma 4.8. Let the functions w(u), (i) be majorants for the quantities introduced
above. Assume further that on each interval [u, o] CJ0, pol, n(p) and w(p) are

bounded from above, and r(u) is a positive function, bounded from below.
If the initial value xo satisfies the inequality

lzo — x(po)l,,, < min {w(po)™",r(po)} (27)

then we can choose a sequence oy with 0 < o, = o(ug) < 1 depending only on
ui and the functions n, w, r such that Algorithm 4.1 produces iterates that remain
inside r(p)B(x(ug)) for each k and

s = (i)l < 5 i = w26) (25)
lzx — (i )l,,, < min {w ()™t r(ur)} - (29)
Moreover,
klingouk =0, klingo |2k — ], = 0.

Proof. Assume w.l.o.g. that w,n,r are continuous and thus uniformly continuous in
each interval [u, pol, and that r(u) tends to 0 for p — 0. Otherwise, we can easily
construct majorants of w,n and a positive minorant for r on ]0, 0] having these
properties.

We perform a proof by induction in k. Assume that xp € r(ux)B(z (1)) and
e — 2 ()], < @)™,
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which holds by (27) for £ = 0. Then by Theorem 4.4 one Newton step yields

1 _
leksr — 2(u)ll,, < swlm) ™

kT2
Reduction of py via a factor o = o(ug), setting pgy1 = opy gives us (recall that
Cn (o) describes the equivalence between the norms || - ||, and || - ||5p):
2ke1 = 2(pres 1)y, < ON(O) [[T0g1 — 2 (i), (30)

< ON(o)([zptr — (i), + N2 (pin) = 2(ppan)ll,,)  (31)
1 _
< (o) (3 )+ ) = ) )
To complete the induction we have to achieve

k1 = 2 (ki) ,hy,, < min{w(uee) ™ ()
Thus, we have to choose o < 1 such that simultaneously

Cov 0)n(3me) o = ks1) < (mkn) = (o) 57 o) (32)

O o (o) s — 1) < @)™ — On(o) o)™ (33)

By our boundedness and continuity assumptions on 7, w, and r, and because
Cn(o) — 1 for ¢ — 1 this is obviously possible since n(ux) < 0o, lim,_1 r(opu;) =
r(ug), and lim, 1 w(oue) ™t = w(uk)~t. Moreover, it is easy to verify that by our
boundedness and uniform continuity assumptions, for each p there is a opin (1) < 1
such that oy < omin(p) for all gy > p. Thus, p, < p after finitely many steps,
which implies pz, — 0. B B

The convergence result xp — x, follows now by (29) and the assumed conver-
gence of x(p) — . O

Theorem 4.9. If Assumption 3.5 holds, then for sufficiently high order q there is
a sequence iy — 0, and a sequence xp, — x, in X, such that Algorithm 4.1 is well
defined and yj, € Y,, . Moreover, the following estimate holds:

||yk - y*HY + H’Lbk — U*HU < C, /1 -

Proof. We have to verify the assumptions of Lemma 4.8. First, we choose

r(p) = min {ph(p); /11}

as in (17), which guarantees y;, € Y, . Boundedness of n(u) follows from (13) and
(14) and boundedness of w(u) was shown in Proposition 4.7. This yields existence
of a sequence pp — 0. The error estimate for the iterates then follows from (12)
and our choice for r(u). O

Finite dimensional interior point methods can invoke equivalence of norms in
R™ to prove linear convergence at a rate that quickly degenerates with increasing
dimension. These are the so called complexity estimates.
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5 A Pointwise Modification

Barrier methods rely on iterates that are feasible with respect to the inequality
constraints. Since in the barrier context Newton’s method approximates a rational
function by a linear one, Newton steps tend to be too large in direction towards
the constraints. So it is likely that iterates become infeasible. This issue should be
addressed algorithmically. Otherwise, this may restrict the speed of convergence of
practical algorithms.

In the following we propose a modification of Newton’s method, which may
be considered as a pointwise damping strategy. The idea exploits the pointwise
structure of the problem and guarantees feasibility of the iterates.

Consider the first row of the Newton equation F(z;u) + F'(z;p)dx = 0. It is
posed in Y* and reads

y=ya+t V(@) + AP+ T+ )+ —y) + A"(p+ —p) = 0. (34)
Our principle idea is to construct a modified feasible iterate yc that satisfies
yo —ya+b'(yo) + A'ps = 0. (35)

It is not obvious at first sight that this idea is sensible, because A*p, is not necessar-
ily a function. In particular, in the context of finite elements and weak formulations
(35) cannot be interpreted as a pointwise equation.

However, subtraction of (34) and (35) yields a pointwise equation for yco that
depends on y and yy:

yo—y+1U(ye) —U(y) = (1 +1"(y))(y+ —y) almost everywhere in Q.  (36)

If py is sufficiently smooth, then (35) and (36) are equivalent. Hence, (36) extends
(35) for general p,. The idea is now to solve this equation pointwise, but to use
only those y¢, for which |yo — y| < |y+ — y|. We obtain a pointwise damping step.

In the case of a logarithmic barrier function (36) is a quadratic equation in y¢
and can be solved explicitely as such. For rational barrier functions we may use
iterative techniques, of which bisection is the simplest. Because this computation
is a pointwise operation to be performed at each node of the discretization, its
contribution to the overall computational effort is marginal.

5.1 Interpretation as a Pointwise Damped Primal Correction

In the following lemma we gather the basic properties of our pointwise modification.

Lemma 5.1. Let y € R be strictly feasible. Then for every yy € R (36) admits
a unique solution yc, which is strictly feasible. If yi < y, then yr < yo < y.
Otherwise y < y+ < yo. Moreover,

e — y+| < e(wly — yel?. (37)

Hence, foryy <y
lye —yi| < e(w)ly — y+ . (38)
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Proof. On (y,00) the function f(yc) := yc + U'(yc) is well defined, monotonically
increasing, continuous, lim,,_., = —o00, and limy, .., = +00. By the mean value
theorem this implies unique solvability of the equation f(yc) = r for any r € R
with yo € (y,00). By (36) and the fundamental theorem of calculus:

A+ @) s —9) = fuc) ~ 1) = [ A+ U@ o —v). (39)

Since I” is monotonically decreasing in y, this relation yields y, < yo < yfory, <y
and y < y; < yco otherwise. We may rewrite (39) as

yo —y+ =1"W)(y+ —y) — U'(ye) —1'(y)),

and hence

(e =y )X+ 1"W) =1"(W)(we —y) = U'(ye) = '(y)),
which, via Lemma 4.6 implies (37). O

In order to obtain a damping strategy we use (36) only for the case y; < y. In
this case Lemma 5.1 asserts that y. — yc¢ is indeed a pointwise damping. Moreover,
Theorem 4.9, which asserts local convergence of the undamped Newton corrector
in Lo and (38) assert that the damped Newton corrector converges with the same
properties as the undamped variant. In practice, however, the pointwise damped
variant is far more efficient.

Theorem 5.2 (Convergence Theorem for Damping). The conclusions of Theorem
4.9 remain valid, if a damping step (36) is used.

Proof. By Theorem 4.4 Newton steps are well defined for all y € Y,,. Because of
(38) the damping step is only a small perturbation of the undamped Newton step,
and, after a possible reduction of step size the results of Theorem 4.9 carry over. [

5.2 Interpretation as a Blended Primal-Dual Correction.

The pointwise modification (35) has another useful interpretation in terms of a dual
method. Let us introduce the variable v, defined by

v(t) = y(t) + ' (y(t); p).
We can solve this equation for y to obtain a nonlinear function y(v) with derivative

yo(v) = (T +6"(y(v); )

and a nonlinear system of equations in the variables p and v:

v—ys+Ap=0
Ay(v) —a " 'BB*p =0,
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which we will abbreviate by F(Z;u), setting # := (v,p). In contrast to F', which
is only defined for y <y, F'is well defined for all sufficiently smooth Z. Its (again
formal) linearization is given by

P = (e oo )

(T4 A* I+u")"" 0
“\ 4 —a'BB 0 1)

Although this formulation has the advantage of guaranteed feasibility, it suffers from
the poor regularity properties of this formulation. The presence of the nonlinearity
Ay(v) in F makes a pure dual method rather unstable.

If we consider the factorization of F'(Z;u)~! in (40), we see that performing
one Newton step for F'(z;u) and one correction of the form (36) is equivalent to
performing one Newton step for F'(Z; u) and computing y(v).

Hence, by our damping strategy we implicitly compute both the primal and the
dual Newton step and take the pointwise minimum in absolute value to obtain a
blended correction that has the favourable properties of both methods and avoids
their problems.

6 An Adaptive Path-Following Scheme

In this section we consider the construction of a practical path-following algorithm
that adaptively chooses the sequence ui. Our starting point is again the system
(15). Hence, our algorithm uses the state y and the adjoint state p as iteration
variables.

For efficient path-following several extensions of Algorithm 4.1 are useful. Most
importantly, we have to provide a practical criterion for the choice of the sequence
. If this choice is made, then performing one single Newton step is a too rigid
concept in practice. Rather, one should aim for some (loose) convergence criterion.
If the choice of ui was too aggressive, it may be useful to reject the path-following
step and select u; more conservatively, based on more accurate information. This
leads to Algorithm 6.1.

Our considerations are based on the ideas of [4, Chapter 5]. The main idea is
to introduce parameterized models for the quantities n(u) and O(z; u) (and closely
related w(p)) used in the a-priori analysis and supply computational estimates for
the parameters. This strategy guarantees a close connection between a-priori results
and the algorithmic realization and helps to take into account the special structure
of the function space problem. In the following we will introduce these models. For
additional details we refer to [12, Section 8.2].
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Algorithm 6.1.
select pp > 0, and x¢ with ||zg — z(uo)|| < 7(1o), k:=0
do (Homotopy Method)
%() = Tk, j =0
do (Newton Corrector)
0z « compute pointwise damped Newton step
(failure,converged) < estimate Newton contraction
if(nOt failure) i‘j+1 = i‘j + 553]'
ji=j+1
while not(converged or failure)
if(converged)
Tpt1 = Tj+1
Wi+1 < predict new step size
k:=k+1
if(failure)
1y, < reduce step size
while(termination criterion not reached)

For the evaluation of our algorithmic quantities we have to choose a norm. Our
convergence theory and numerical experience suggest to use a scaled local norm,
similar to ||-[|,, , defined in (19). Experience shows that it is favourable in practice
to drop the Lo, part and use the following Lo-type norm:

2
62l = 5z, = |[VI+ ¥y, +a /2B opl;

It is of practical importance that this norm can be evaluated easily and accurately.
In particular, we do not rely on the evaluation of norms of residuals. Correspond-
ing residual norms would be dual norms, which are cumbersome and expensive to
evaluate.

Following the ideas of [16] it is possible and useful to take into account algorith-
mically that our scaled norm depends on p and x. We will, however, neglect this
issue here for simplicity.

6.1 A Model of the Central Path

A direct way to estimate the Lipschitz constant 1 would be using finite differences:

e (pe) = 2 (pe)|
(1] Bxact (k) = e — 10511 ] .

However, because the exact solutions of the central path are not available, we replace
them by finite differences of our computational values:

Mk — wppa|
) (pre) == i — el (41)
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The closer x and x(uk), the more accurate the estimate [n]. With this estimate we
may model n(u) by
u\ Y2
melp) = ) (£) (42)

Once [n](p) is computed we may also use it to estimate the remaining length of the
central path via integration of nas(u):

|2, — zll 2 2] (k) - porc- (43)

6.2 Estimating the Newton Contraction

An important feature of Algorithm 6.1 is the evaluation of a Newton step that
defines the corrector: ;11 < Z;. To capture the behaviour of Newton’s method
we derive a model for the contraction ©(z; ). For this purpose we consider (23),
which is of course computationally unavailable, because (1) is unknown. However,
after one Newton step x — x4 we may replace z(u) by x4+ in (23) and obtain

([ F" (a5 1)~ (F" (a5 ) (2 = 4.) = (F (a5 ) = Flags ) |

O (i) = e
_ @ = P p) " F (s p) — (w4 — F'(asp) " F(ags )]
[ — 2|
_ ey =74 ]
(Rt

where T, is the result of a simplified Newton step performed at = .

If we use our pointwise damping strategy we have to design a modification of
[O](x; 1) in terms of x¢, because x4 may be infeasible. The most obvious modi-
fication is to replace the result of a Newton step x — x4 by a pointwise damped
Newton step x — z¢, and the simplified Newton step at 1 — T4 by a pointwise
damped simplified Newton step x¢ — T¢:

lzc —Tcl|
0177 (z; p) == — =,
lz —zcll

By (38) the pointwise damped Newton steps merge into ordinary Newton steps
close to the solution, and the same holds for the simplified versions. So [0]F (z; )
is asymptotically equivalent to [O]" (x; 1) close to the solution.

If [©] is small enough, then the simplified Newton step needed for this evaluation
can be used to improve the quality of the solution. If direct sparse solvers are used
for the linear equations, then the additional computational effort needed is rather
small. We only have to assemble another right hand side and perform one forward-
backward substitution. In our implementation we even perform a second simplified
Newton step in case of very small [0], because this improves the efficiency slightly.

If iterative solvers are used, then the relative additional effort for a simplified
Newton step depends on the relation between assembly of the stiffness matrix,
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construction of a preconditioner and iterative solution. Also in this case the obtained
simplified Newton step can be used to improve the solution, or as a starting value
for the next iterative solution process.

Let us now concentrate on [0]7?. Since Newton’s method is a locally convergent
method it may happen that for bad initial values the iteration diverges. This
happens, if O(z;u) > 1. So it is natural to terminate the Newton corrector with
failure, if [©]7P (z; 1) > 1 in order to start a correction step with a more conservative
choice of p.

Next we derive a convergence criterion for the Newton corrector. Motivated
by the triangle inequality ||z — z.| < ||z — z¢|| + ||zc — || we may estimate the
distance r(x; p) := ||z — z(p)|| by setting

()25 1) == A+ [O177) o —acll,  [rl(zesp) = [0)7P(1 + [0]77) & — ac]|.

If [r](zc; p) is sufficiently small, then the Newton corrector is terminated success-
fully. A useful convergence criterion for a Newton correction method is to require

[r)(Zj415 1) < p||To — Zj11ll (44)

which means that the corrector has reduced the error about a factor p. Useful
choices are in a range of 0.01 to 0.5.

6.3 Step Size Selection

Proposition 4.7 suggests to model the Newton contraction O(x; ) by

O (5 p) := war ()l — z(p)|l; (45)

where we — similarly to nys — define

and, again replacing z(u) by z¢:

(017 (3 )

W) 1= k),
Jo— acl

Assume first that the corrector for py has terminated successfully. By the tri-
angle inequality we have

lzrs1 — ()|l < loper — 2(ue) || + l2(uer1) — z(ur)]|

Recalling that x4 = Tj41 the first summand is estimated by
@k — (i) [| = [ (@15 ),
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while the second summand is estimated via (42) as

(1) — () | = naa (e e — pisa-

To compute pgq1 it is sensible to aim for a certain contraction ©4, supplied by the
user, which should be achieved by the next Newton correction step. The requirement

O (Tht1; pkg1) = Oq yields

O4

Tpr1 — (g =
H +1 (M +1)” wM(Nk—l—l)

Inserting our estimates into these equations we obtain, setting o := g1/ pk:

O4
[w](pg)o=1/2"

Since [r](g41; p)s 7] (1k), [w](pr) are computationally available and Oy is given we
may compute o, and thus pp+1 = ouy from this equation.

If the corrector has terminated with a failure, we still have [r](zx; pr—1), [7] (tk—1),
and [w](pg) at hand. Note that [w](ug) is the result of the evaluation of the failed
Newton step and thus gives rise to a step size reduction. Hence we can compute o
analogously to the successful case with ur < opr—1 < pr—1, via

) (ks 1) + ) ()i (1 — o) o™ 1/2 =

[T](xkﬂik—l) + [n](ﬂk—l)ﬂk—1(1 — 0’)0'_1/2 — L

which serves as a step size reduction.

6.4 Termination Criteria

Depending on the application there are several termination criteria conceivable. For
example we may use (43) or a modification to obtain a stopping criterion in terms
of a norm of interest.

As an alternative we may stop if the estimated error in the functional is below
a certain bound. Theorem 3.3 provides us with a linear convergence result via
(11). By evaluation of the function values during the iteration we may estimate
the missing constant and arrive at a good estimate for the error in the functional.
Because the function values converge linearly in p the difference J(z(u)) — J(xy)
becomes small very quickly.

It is worth pointing out that interior point methods terminate at a feasible
suboptimal solution. This feature, not shared by exterior penalty methods, reliefs
users from the difficulty to decide how much infeasibility they are willing to accept.
Rather, users can balance between optimality and computational effort.

If a quantitative discretization error estimate is available, then the error bounds
can be matched with the these estimates. For a-priori error estimates for inte-
rior point methods we refer to [8], while quantitative a-posteriori error estimates
together with an adaptive grid refinement strategy are subject of current research.
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7 Numerical Examples

In our numerical examples we will investigate the performance of the proposed
variants of interior point methods for some model problems. In particular, we are
interested in the qualitative convergence behaviour of the path-following scheme and
a-posteriori estimates for the quantities which govern the path-following method,
namely [n] and [w]. Further we are interested in the convergence behaviour of the
function values at the iterates. Finally we are interested in the efficiency of the
proposed method.

For a simple numerical example we consider an elliptic distributed control prob-
lem on the unit square 2 =]0;1[x]0;1[. For some co > p > 2 and 1/p+1/p' =1
we define

AW (Q) - WP (Q)*

y— Ay : (Ay,v) == / (Vy, Vv) + yo dt.
Q
It follows from regularity theory [1, Thm. 9.2] that A is an isomorphism. Moreover,
by p > 2 there exists a continuous Sobolev embedding W'?(Q) «— C(Q), which is
dense. These two results allow us to define A as a closed, densely defined, bijective
operator via Lemma 2.1:

A:C(Q) > WP(Q) — WP (Q)*.
The operator B is defined by
B : Ly(Q) — WP (Q)*

u +— Bu : (Bu,v) ::/uvdt.
Q

B is continuous by the Sobolev embedding theorems, if W' (Q) < Ly() is con-
tinuous, i.e. p’ > 1.

As for state constraints we choose 7 = 0.5 as an upper bound, for the definition
of the functional J we choose yg = 2- 21 - 22, « = 1072, As boundary conditions we
choose homogenous Neumann conditions. The optimal state has a relatively large
active set, and the Lagrange multiplier apparently consists of a regular part and a
line measure, concentrated at the boundary of the active set. The control reveals
an edge at the boundary of the active set.

As a second numerical example we change the boundary conditions to homoge-
nous Dirichlet conditions and choose 3 = 0.55. Inspection of the numerical solution
yields that the active constraint set seems to be concentrated on an single point with
a point measure as Lagrange multiplier. The adjoint state (and thus the control)
has a sharp peak at the active point.

The discretization of y and p is performed by linear finite elements as described
in [8] on a uniform triangular grid. The implementation is based on the DUNE
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library [2]. For the evaluation of the barrier integrals we use the trapezoidal rule, as
analyzed in [8]. The resulting linear systems of equations are solved by the direct
sparse solver PARDISO [11].

o - Jx()-I(x,) ——[nl(w

——lwl(w)

Figure 1: First problem. Left: Error in functional values. Right: Algorithmic
quantities.

——niw)
—— [l ||

= Ix)-I0x)

. . . . i i i i i . i i
10° 107 10° 10° 10" 10° 10° 10" 10" 107 10° 10° 10" 10° 107 107

Figure 2: Second problem. Left: Error in functional values. Right: Algorithmic
quantities.

Let us first have a look at the algorithmic quantities [n] and [w]. It will turn
out below that our method is able to perform very large reductions of u per step.
To obtain smooth plots we deliberately set the algorithmic parameters to very
conservative values (in particular ©4 = 0.05) in the following. We also choose
the stopping value for jiepq = 107% much smaller than appropriate for a practical
application.

Comparing Figure 1 to our theoretic results we conclude that the theoretic
predictions J(z(p)) — J(z+) = O(p) and n(u) = O(p~'/?) made in Theorem 3.3
correspond rather well to the computational estimates. A very close look at the
graphs suggests that the convergence is slightly faster in this particular problem.
In contrast the a-posteriori estimate [w](p) = O(p~/?) is much better than the
predicted bound from Proposition 4.7 for this particular problem.
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j\i 0 1 2 3 j\i 0 1 2 3
0 13 - - - 0 14 - - -
1 12 19 - - 1 12 12 - -
2 17 21 21 - 2 13 15 12 -
3 17 22 23 23 3 15 15 13 13

Figure 3: Number of Newton steps used by the various barrier functions I; j(y; p).
Left: First problem. Right: Second problem.

Figure 2, which corresponds to the case with a point functional shows a quite
different behaviour. While J(z(u)) — J(z+) = O(u) seems to hold asymptotically,
n(p) grows much more slowly than in our first example, while w(u) grows faster
and less regularly with local maximum near g = 1073. Observe how our algo-
rithm reduces the stepsize in this difficult region to be able to comply to our (very
restrictive) contraction demands. Summarizing, the second problem seems to be
more nonlinear than the first, while having a shorter central path. This underlines
the necessity of modeling the Newton nonlinearity as well as the properties of the
central path.

Let us turn to the efficiency of our algorithm. The results of [8] suggest that
for mesh sizes up to h = 27® the discretization error (at least for the first problem)
is above 2.5 -1073. Hence, the choice of 1073 as an accuracy requirement seems
appropriate. For the first problem our algorithm detects this accuracy around
p~5-1077, for the second problem this criterion is reached around p ~ 1075, The
error in the functional is around 107 in the first problem and around 10~ in the
second problem.

For the desired contraction ©,4 we now choose a more aggressive value ©45 = 0.8
and a relative accuracy p = 0.5 (cf. (44)) for the corrector. To assess the influence of
the order parameter ¢ on the computational performance we compute the solutions
of our problem with the help barrier functions of the form

J

L) =Y Wyipmq=1+k/2)
k=1

with 0 <4 < j < 3. The table indicates that for the first problem and for A = 2-8
low order barrier functions seem to be the more efficient than their higher order
counterparts. In particular, efficiency degrades, if low order terms are dropped. For
the second problem there seems to be no clear advantage for any type of barrier
function.

To inspect mesh dependence of our algorithm (using the pure logarithmic barrier
function from now on) test runs were performed for h = 27% for k = 4...9. While
the number of Newton steps used for the first problem appears to be constant, for
the second problem iteration counts increase slightly for finer discretizations. This
reflects the fact that the structure of the solution of the first problem is already
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well resolved on coarse grids, while for the second problem the peak in the control
is resolved only gradually when the grid is refined.

Problem \ k ‘ 4 5 6 7 8 9
#1 13 14 12 12 13 13
#2 9 m 112 14 13

Figure 4: Number of Newton steps depending on the mesh size h = 2%

Finally, for comparison we solved the first problem by a short step Newton path-

following method without pointwise modification, but with a save-guard damping
to prevent iterates from becoming infeasible. The total number of Newton steps
for h = 275 was 92, which is of course not competitive at all. The main problem is
that even close to the solution the homotopy steps are small, because the pointwise
nonlinearity introduced by the barrier functions is high.
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