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Abstract. The discontinuous Galerkin (dG) method provides a hierarchy of time dis-
cretization schemes for evolutionary problems. A dG time discretization has been proposed
for a variational inequality in the context of rate-independent inelastic material behaviour in
[Alberty, Carstensen: Discontinuous Galerkin Time Discretization in Elastoplasticity: Mo-
tivation, Numerical Algorithms and Applications, Comp. Meth. Appl. Mech. Engrg. 191
(2002)] with the help of duality in convex analysis to justify certain jump terms. Convincing
numerical experiments have already been displayed in the literature.
This paper establishes a mathematical a priori error analysis for the dG(1) scheme with
discontinuous piecewise linear polynomials in the temporal and first-order finite elements
for the spacial discretization. One novel key idea in the a priori convergence analysis is
an optimal trace estimate under convex constraints. The numerical investigation of the
empirical convergence rate in a benchmark concludes the paper.

1. Introduction and Overview

The dG(k) time discretization of elastoplastic evolution problems has recently been pro-
posed, implemented, and validated in [AC02]. One main motivation was to form a hierarchy
of time discretization schemes for further use in adaptive time-stepping control. Figure 1.1
displays the exact and approximate stress component in tangential component in the numeri-
cal benchmark of Section 5 as a function of time t. It follows that, in fact, the performance of
dG(1) appears significantly better than that of dG(0). It is known that the Crank-Nicholson
(CN) scheme is of quadratic order in time [AC00] but there are counter examples that CN
is superior over bE and the oscillations visible in Figure 1.1 clearly question that in practise.
In comparison, dG(1) looks much better than dG(0).

This paper justifies this superiority of dG(1) over dG(0) for smooth solutions and presents
an optimal mathematical analysis for the dG(1) scheme for elastoplasticity with hardening
in the weak primal and dual formulation from [HR99], briefly recalled in Section 2, in the
fully discrete setting when combined with a standard spatial finite element discretization of
lowest order. The resulting fully discrete scheme is a variational inequality in each time-step
given with all notational details below in Section 3.

The error analysis of Section 4 encounters one key difficulty: An optimal trace inequality
for an approximation under constraints for an affine and hence conforming approximation.
The estimate is isolated in Lemma 1.1 for an abstract framework and illustrated in Figure 1.2.
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Figure 1.1. Time evolution for one stress component σφ(1.0147, 0.0147, t) in
the benchmark example of Section 5 for the exact values and for various numer-
ical approximations, namely the backward Euler (bE), the Crank-Nicholson
(CN), and the dG(k) schemes for k = 0 and k = 1.

a ba+b
2

α = B

β

M

A

g

f

Figure 1.2. Illustration of Lemma 1.1 for some function f ∈ C∞(a, b; [α, β])

with integral mean M :=
∫ b
a
f(t) dt/(b − a) and some line segment g through(

(a+ b)/2, M
)

and with endpoints (a,A) and (b, B). The point is that f − g
has two zeros even if the affine g obeys the side restriction α ≤ g ≤ β and∫ b
a
g(x) dx = M(b− a).
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Lemma 1.1. Given a convex and closed subset K of a (real) Hilbert space H, any f ∈
H2(a, b;H) ∩ C(a, b;K) with integral mean M :=

∫ b
a
f(t) dt/(b− a) satisfies

(1.1) min {‖f(a)− A‖H : A,B ∈ K with A+B = 2M} ≤ (b− a)3/2‖f ′′‖L2(a,b;H).

The proof of Lemma 1.1 follows from the observation in the one-dimensional setting de-
picted in Figure 1.2. In order to obtain the optimal-order O((b − a)3/2), the straight line
segment with endpoints (a,A) and (b, B) of Figure 1.2 hits the displayed smooth function
f twice even under the constraint A,B ∈ K = [α, β] ⊂ R =: H and (A + B)/2 = M =∫ b
a
f(t) dt/(b− a).
The mathematical proof of Lemma 1.1 in the general context is given in Subsection 4.2

together with the complete mathematical analysis. A numerical benchmark in Section 5
confirms the estimate empirically even with some reduced regularity property and concludes
the paper with strong numerical evidence of the superiority of G(1) over G(0).

2. Mathematical Modeling of Elastoplasticity

This section is devoted to the strong form of a model example in elastoplasticity with hard-
ening and the weak primal and dual form [HR99]. The generalized stress and generalized
plastic strains are given as

Σ = (σ, χ) and P = (p, ξ).

The stress variable σ and the total (linear Green) strain,

ε(u) := symDu = (uj,k + uk,j)/2 j, k = 1, 2, . . . , d,

are linked with the irreversible plastic strain p through an additive split

ε(u) = C−1σ + p

of small strain plasticity. The fourth-order elasticity tensor C acts as

Cq = λ tr(q) 1 + 2µ q for all q ∈ Rd×d
sym

with trace tr(q) := q11 + · · ·+ qdd, the d× d unit matrix 1, and the Lamé constants λ, µ > 0.
The displacement field u is supposed to satisfy Dirichlet boundary conditions in the form

u = 0 on ΓD

for a fixed closed part ΓD of ∂Ω = Γ of positive d − 1 dimensional (surface) measure.
Equilibrium reads in local form

σ = σT and div σ + f = 0 in Ω

plus Neumann boundary conditions on the remaining part of the boundary

σn = g on ΓN := Γ\ΓD.
The internal energy assumes the form

F (e, ξ) := 1/2(e : Ce+ ξ ·Hξ)
for the aforementioned fourth-order elasticity tensor C and a symmetric and positive definite
hardening tensor H. Internal (hardening) variables ξ are written (symbolically) as m dimen-
sional vectors (e.g., the m components of a symmetric d× d tensor for kinematic hardening
or scalar, m = 1, for linear isotropic hardening). Hence, ξ, χ ∈ Rm and

H ∈ Rm×m
sym
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is identified with a symmetric and positive definite m×m matrix. Recall ε(u) = e + p and
notice

σ = ∂F (e, ξ)/∂e = Ce and χ = −∂F (e, ξ)/∂ξ = −Hξ.
The Prandtl-Reuß flow rule reads (Ṗ denotes the time derivative of P )

Ṗ ∈ NK(Σ) := {Q ∈ Rd×d
sym × Rm : ∀T ∈ K, Q ? (T − Σ) ≤ 0}

for the set of admissible generalized stresses K ⊂ Rd×d
sym×Rm determined by the yield function

(e.g., the von-Mises yield function) Φ : Rd×d
sym × Rm → R via

K := {T ∈ Rd×d
sym × Rm : Φ(T ) ≤ 0}.

Throughout this paper, we distinguish between the scalar products ·, :, ?, defined for vectors
u, v, d× d matrices p, q, and generalized stresses or strains P,Q by u · v = u1v1 + · · ·+ udvd,

p : q :=
d∑

j,k=1

pjkqjk, and P ? Q := (p, ξ) ? (q, χ) = p : q + ξ · χ.

Given data f and g as functions in time [0, T ] and space, given consistent homogeneous
initial conditions (i.e., f = g = 0 for t = 0) the elastoplastic time-evolution determines
u, σ, χ, p and ξ as functions on [0, T ]× Ω with

σ = σT = C(ε(u)− p), div σ + f = 0, (ṗ, ξ̇) ∈ NK(σ, χ) in [0, T ]× Ω

and the boundary conditions

u = 0 on [0, T ]× ΓD and σn = g on [0, T ]× ΓN .

Following [HR99, Car97] the primal and dual formulation differ in the treatment of the
elastoplastic evolution law. Convex analysis [ET76, Zei88] allows an equivalent reformulation
via

Ṗ ∈ NK(Σ)⇔ Σ ∈ ∂ suppK(Ṗ ).

The first inclusion is defined above and, given K via a yield function Φ, reads

Φ(Σ) ≤ 0 and Ṗ ? (T − Σ) ≤ 0 for all T ∈ Rd×d
sym × Rm with Φ(T ) ≤ 0.

The second inclusion involves the support function

suppK(Q) := sup
T∈K

Q ? T = sup
Φ(T )≤0

Q ? T

and its subdifferential ∂ suppK . Indeed, Σ ∈ ∂ suppK(Ṗ ) reads

Σ ? (Q− Ṗ ) ≤ suppK(Q)− suppK(Ṗ ) for all Q ∈ Rd×d
sym × Rm.

Finally let χK denote the characteristic functional of K, i.e., χK(Σ) = 0 if Φ(Σ) ≤ 0, while
χK(Σ) = +∞ otherwise.

Throughout this paper, the combined kinematic and isotropic hardening is considered in
the von Mises yield function. Then, Rm ≡ R× Rd×d

sym and Σ = (σ, χ) with χ = (a, b) = −Hξ
for a ∈ R and b ∈ Rm and

Φ(σ, a, b) := | dev σ − dev b| − σy(1 +Ha) for Σ = (σ, a, b) ∈ Rd×d
sym × Rm.
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Here and throughout this paper,

H = diag(A,B) ∈ Rm×m forA > 0 andB ∈ R(m−1)×(m−1).

The material parameters σy > 0 and H ≥ 0 are fixed and constant in time and space. Then,

K = {(σ, a, b) ∈ Rd×d
sym × Rm | a ≥ 0 and Φ(σ, a, b) ≤ 0}

and the scalar product ? in Rm is represented by diag(A−1, B−1). Particular cases are
discussed in [HR99, AC00, Car99, Car97, ACZ99]. The hardening will be important for
control of Green strain in terms of the generalized stresses.

Proposition 2.1. [Car99] The functional suppK is the dual of the characteristic functional
χK of K and reads

suppK(p, α, β) =

{
σy|p| if tr p = 0 and p = −β and A−1α + σyH|p| ≤ 0,
∞ if not .

Moreover, the inclusion (σ, χ) ∈ ∂ suppK(p, ξ) in case p 6= 0 is equivalent to

p

|p|
=

dev(σ − b)
σy(1 +Ha)

and α = −k|p| for k := AσyH. �

The corresponding weak formulations of the complete model are derived by a principle
of virtual displacements or by testing with a test function. The two resulting variational
inequalities are summarized below; we refer to [HR99, ACZ99] for further details.

For a weak formulation, the test function spaces are based on standard Lebesgue and Sobolev
spaces, namely,

L2(Ω) := {v : Ω→ R : v measurable with
∫

Ω
|v|2 dx <∞},

H1(Ω) := {v ∈ L2(Ω) : ∂v/∂x1, . . . , ∂v/∂xd ∈ L2(Ω)}

and powers thereof (i.e., all components belong to the respective space); ∂v/∂xj is a weak
derivative [Zei88, Eva98]. Moreover,

V := {v ∈ H1(Ω; Rd) : v = 0 on ΓD} and L := L2(Ω; Rd×d
sym × Rn).

Then the weak primal formulation reads: Seek (u, p, ξ) : [0, T ]→ W 1,2(0, T ; Rd × Rd×d
sym ×

Rm) with homogeneous initial values and the Dirichlet boundary condition u(t) = 0 on ΓD
such that, for almost every time t ∈ (0, T ) and, for all v ∈ V and all (q, ζ) ∈ L, it holds∫

Ω

C(ε(u(t))− p(t)) : (ε(v)− ṗ(t) + q) dx−
∫

Ω

ξ(t) ·H(ζ − ξ̇(t)) dx

≤
∫

Ω

f(t) · v dx+

∫
ΓN

g(t) · v ds+

∫
Ω

suppK(q, ζ) dx−
∫

Ω

suppK(ṗ(t), ξ̇(t)) dx.

Hence, the dual formulation reads: Seek (u, σ, χ) : [0, T ] × Ω → Rd × Rd×d
sym × Rm with

homogeneous initial values and the Dirichlet boundary condition u(t) = uD on ΓD, such
5



that, for almost every time t ∈ (0, T ) and all v ∈ V , it holds

(2.1)

∫
Ω

σ(t) : ε(v) dx =

∫
Ω

f(t) · v dx+

∫
ΓT

g(t) · v ds

and Φ(σ(t), χ(t)) ≤ 0 such that, for all (τ, ψ) ∈ L2(Ω; Rd×d
sym×Rm) with Φ(τ, ψ) ≤ 0, it holds

(2.2)

∫
Ω

(
ε(u̇(t))− C−1σ̇(t)

)
: (τ − σ(t)) dx−

∫
Ω

χ̇(t) ?H−1(ψ − χ(t)) dx ≤ 0.

On the continuous level the dual and primal formulation are equivalent [ACZ99, HR99]. The
role of the time-derivative and the choice of variables are different. The unique existence of
solutions is well established [HR99, Joh76, Joh78, Suq88, Tem85] as well as regularity for
the stress variables [Ser93].

3. Discretization

This section is devoted to the motivation of discontinuous Galerkin time discretization
schemes for elastoplastic evolution problems. The point of departure is the definition of
a distributional derivate for discontinuous, but I-piecewise smooth test functions.

The time interval (0, T ] is partitioned in N subintervals Ij = (tj−1, tj] (open at the left and
closed at the right) of length kj, j = 1, . . . , J , according to

t0 = 0 < t1 < t2 < · · · < tJ = T ; I = {I1, I2, . . . , IJ}.
Define the set of I-piecewise smooth functions by

C1(I) := {v ∈ L∞(R) : v|Ij ∈ C1[tj−1, tj] and v|(−∞,0] := v(0−)}.
Piecewise uniformly continuous functions u allow for one-sided limits and the definition of
the jump

[u]j := u(t+j )− u(t−j ) with u±j := u(t±j ) := lim
t→t±j

u(t) for j = 0, . . . , J − 1.

(Throughout, u(0−) := 0 owing to homogeneous initial conditions whence [u]0 := u(0+).)
Since u|(tj−1,tj) is C1(tj−1, tj), there exists the time derivative uτ := ∂u/∂t on each (tj−1, tj) in
the classical sense as limit of difference quotients. The distributional derivative u̇ is defined
through ∫

R
u̇(t)v(t)dt = −

∫
R
u(t)v̇(t)dt

for all test functions v ∈ C∞c (R). With the delta distribution δtj at the point tj, it reads

u̇ = uτ +
J−1∑
j=0

[u]jδtj .

This explains the action of u̇ on differentiable test functions. An extension to discontinuous
test functions starts with globally continuous and piecewise C1 test functions vε which vanish
outside some fixed interval Ij. The functions vε are defined by a regularization of v with
suitable step functions χjε as depicted in Figure 3.1,

vε(t) := χjε(t)v(t).
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tj−1 − ε tj−1 tj − ε tj

1

Figure 3.1. Test function χjε

Thus, we obtain a formulation of a distributional derivative for the fixed interval Ij by
analyzing the equation∫

R
u̇(t)vε(t) dt =

∫ tj

tj−1−ε
uτ (t)vε(t) dt+ [u]j−1vε(tj−1)

in the limit ε→ 0. One obtains

lim
ε→0

∫
R
u̇(t)vε(t) dt =

∫
Ij

uτ (t)v(t) dt+ [u]j−1vε(t
+
j−1).

Extending this procedure to general v ∈ C1(I) by applying test functions vjε on each partin-
terval Ij, followed by a summation of the resulting terms leads to

lim
ε→0

∫
R
u̇

(
J∑
j=1

vjε

)
dt =

∫ T

0

uτ (t)v(t) dt+
J∑
j=1

[u]j−1v(t+j−1).

The spline space of discontinuous Galerkin functions of order k (abbreviated as dG(k)) is
defined through

Pk(I;X) =
{
u ∈ L∞([a, b], X) : ∀ j = 1, . . . , J, u|Ij ∈ Pk(Ij;X)

}
.

The homogeneous initial data are reflected in the convention that u(0−) = 0 for all discrete
values below. The domain Ω is partitioned into triangles and parallelograms for 2D and
tetrahedra for 3D. The resulting triangulation T is supposed to be regular in the sense
of Ciarlet [BS94, Cia78]. For each element T , Pk(T ) denotes the algebraic polynomials on
T of total degree ≤ k if T is a triangle or tetrahedron or of partial degree ≤ k if T is a
parallelogram. Then, the required finite element function spaces read

P`(T ; Rd) := {v ∈ L2(Ω) : ∀T ∈ T , v|T ∈ P`(T ; Rd)},
Vh := P1(T ; Rd) ∩ V,
Lh := P0(T ; Rd×d

sym × Rm),

Kh := P0(T ;K).

The finite element approximation is denoted by subindeces k and h (neglected for its con-
tinuous counterpart) as the underlying discretization is based on a partition I in time and
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a regular triangulation T in space. The following abbreviations are used throughout this
paper:

Qj := Ij × Ω and

∫
Ij

∫
Ω

. . . dx dt reads

∫
Qj

. . . dQ.

The discrete primal problem reads: Seek (uhk,Σhk, Phk) ∈ P1(I;Vh×Lh×Lh) such that
Σhk = (σhk, χhk), Phk = (phk, ξhk), phk = ε(uhk) − C−1σhk and ξhk = −H−1χhk and, for all
j = 1, . . . , J as well as all vhk ∈ P1(Ij;Vh), it holds

(3.1)

∫
Qj

σhk : ε(vhk) dQ =

∫
Qj

f · vhk dQ+

∫
Ij

∫
ΓN

g · vhk ds dt

and, for all Qhk ∈ P1(Ij;Lh), it holds∫
Qj

Σhk ? (Qhk − Phk,τ )dQ−
J∑
j=1

∫
Ω

(Σhk)
+
j−1 ? [Phk]j−1dx ≤ sup

Rhk∈P1(Ij ;Kh)

∫
Qj

Rhk ? QhkdQ

− sup
Shk∈P1(Ij ;Kh)

(∫
Qj

Shk ? Phk,τdQ+

∫
Ω

(Shk)
+
j−1 ? [Phk]j−1 dx

)
.(3.2)

The discrete dual problem reads: Seek (uhk,Σhk, Phk) ∈ P1(I;Vh ×Kh × Lh) such that
Σhk = (σhk, χhk), Phk = (phk, ξhk), phk = ε(uhk) − C−1σhk, and ξhk = −H−1χhk and, for all
j = 1, . . . , J as well as all vhk ∈ P1(Ij;Vh), it holds

(3.3)

∫
Qj

σhk : ε(vhk) dQ =

∫
Qj

f · vhk dQ+

∫
Ij

∫
ΓN

g · vhk ds dt

and, for all Thk ∈ P1(Ij;Kh), it holds

(3.4)

∫
Qj

Phk,τ ? (Thk − Σhk) dQ+

∫
Ω

[Phk]j−1 ? (Thk − Σhk)
+
j−1dx ≤ 0.

The jump terms in inequality (3.4) result from the aforementioned construction of the dis-
tributional derivative for the discontinuous test functions. This and the non-trivial imple-
mentation of the dG(1) discrete scheme is described in [AC02].

Theorem 3.1. The discrete primal problem and discrete dual problem are equivalent.

Proof. Let (uhk,Σhk, Phk) solve the discrete primal problem. Since P`(Ij;Lh) is a Hilbert

space, the linear functional associated with [Phk]j−1 has some Riesz representation Ṗhk ∈
P`(Ij;Lh) with∫

Qj

Thk ? Ṗhk dQ =

∫
Qj

Thk ? Phk,τ dQ+

∫
Ω

[Phk]j−1 ? (Thk)
+
j−1 dx for all Thk ∈ P`(Ij; Lh).

Then (3.2) reads, for all Qhk ∈ P`(Ij;Lh) and all Shk ∈ P`(Ij;Kh),∫
Qj

Σhk ? (Qhk − Ṗhk) dQ ≤ sup
Rhk∈P`(Ij ;Kh)

∫
Qj

Rhk ? Qhk dQ−
∫
Qj

Shk ? Ṗhk dQ.
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Some reformulations result in

(3.5)

∫
Qj

(Σhk − Shk) ? (Qhk − Ṗhk) dQ ≤ sup
Rhk∈P`(Ij ;Kh)

∫
Qj

(Rhk − Shk) ? Qhk dQ.

The substitution of Qhk ∈ P`(Ij;Lh) by Qh := λQhk with λ→∞ in (3.5) leads to

(3.6) 0 ≤ sup
Rhk∈P`(Ij ;Kh)

∫
Qj

(Rhk − Σhk) ? Qh dQ for all Qh ∈ P`(Ij;Lh).

Given almost every x ∈ Ω and Σhk(·, x) ∈ P`(Ij; Rd×d
sym×Rm) let Σ̂hk(·, x) denote its projection

onto P`(Ij;K) in the Hilbert space P`(Ij; Rd×d
sym × Rm) with respect to the scalar product of

L2(Ij; Rd×d
sym × Rm). Then, Qhk := Σhk − Σ̂hk in (3.6) yields that

‖Σ̂hk − Σhk‖2
L2(Qj) ≤ sup

Rhk∈P`(Ij ;Kh)

∫
Qj

(Rhk − Σ̂hk) ? (Σhk − Σ̂hk) dQ.

Since Rhk belongs to P`(Ij;Kh) and Σ̂hk is the projection onto this, the scalar product is

non-positive. Hence Σhk = Σ̂hk is admissible.

The choice Qhk = 0 in (3.5) yields, for all Shk ∈ P`(Ij;Kh),

(3.7)

∫
Qj

(Shk − Σhk) ? Ṗhk dQ ≤ 0.

Hence Ṗhk ∈ NKh
(Σhk) and (3.4) of the dual formulation is verified.

To prove the converse implication, suppose Φ(Σhk) ≤ 0 and (3.4) for all Thk ∈ P`(Ij;Kh).
This means

sup
Thk∈P`(Ij ;Kh)

∫
Qj

Thk ? Ṗhk dQj =

∫
Qj

Σhk ? Ṗhk dQj.

This implies the discrete variational inequality (3.2) for Qhk = 0. Finally, since Σhk ∈ Kh,∫
Qj

Σhk ? Qhk dQ ≤ sup
Rh∈P1(Ij ;Kh)

∫
Qj

Rhk ? Qhk dQ

for any Qhk ∈ P1(Ij;Lh). The sum of the two displayed inequalities is (3.2). �

4. A Priori Convergence Analysis

4.1. A Priori Error Estimate. Given the elasticity and hardening tensor C and H, let
A := diag(C−1,H−1) and the (possibly discontinuous) errors ∆ := Σ − Σhk with right and
left limit ∆±j at tj. The local mesh-sizes and time-step sizes h ∈ P0(T ) and k ∈ P0(T ) are
defined by

h|K := diam(K) for all K ∈ T and kIj := kj := diam(Ij) for all j = 1, 2, . . . , J.

The following is the main result and implies that the stress error converges like O(k3/2 + h).
There is no restriction on the time and space discretisation and all estimates are localised in
the form of local time-step size or local mesh-size times a derivative of the exact solution in
some Lebesgue norm.
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Theorem 4.1. Suppose that the exact solution and the data are smooth in the sense of

u ∈ W 3,1(0, T ;V ) ∩W 1,1(0, T ;H2(Ω; Rd)) and (Σ, f, g) ∈ H2(0, T ;L× V ∗ × V ∗).

Then it holds

‖A1/2∆−J ‖
2
L +

J∑
j=1

‖A1/2[∆]j−1‖2
L + max

j=1,...,J
‖A1/2∆±j−1‖2

L

≤ C
(
A)
(
‖k2ε(

...
u ), hD2u̇‖2

L1(0,T ;L2(Ω)×L2(Ω)) + ‖k3/2(A1/2Σ̈, f̈ , g̈)‖2
L2(0,T ;L×V ∗×V ∗)

)
.

The constant C(A) depends on all material constants as well as the shapes of the element
domains but not on their sizes.

For notational simplicity, all material constants A, A,B,C,H, H, σy are homogeneous, that
means, constant in space and time. We refer to [Car99] for variable material parameters in
space and a corresponding perturbation analysis.

4.2. Proof of Lemma 1.1.

Proof. Set F := f(a) ∈ K and M := (b− a)−1
∫ b
a
f(t)dt ∈ K and define g := f −M and the

shifted set S := K −M and notice G := g(a) = F −M .
Since −S is nonvoid, closed, and convex, there exists exactly one C ∈ −S with minimal
distance to G ∈ H,

δ := ‖G− C‖H = ‖f(a)− A‖H = dist(G,−S).

Since δ = 0 implies that the left hand side of (1.1) must be zero, we suppose δ > 0 in the
sequel. Set A = C +M ∈ K, hence G− C = F − A, and define N := (G− C)/δ ∈ H. The
function h ∈ H2(a, b; R), defined by

h(t) := 〈N, f(t)− b− t
b− a

A− t− a
b− a

(2M − A)〉H for a ≤ t ≤ b,

satisfies

δ = 〈N,G− C〉H = 〈N,F − A〉H = h(a) > 0,

(b− a)−1

∫ b

a

h(t)dt = 〈N,M − 1

2
A− 1

2
(2M − A)〉 = 0,

h(b) = 〈N, f(b)− 2M + A〉 = 〈N, g(b) + C〉.

Since g(b) = f(b) − M ∈ S, −g(b) ∈ −S and so by separation of G from −S with a
hyperplane through C and normal N ,

−h(b) = 〈N,−g(b)− C〉 ≤ 0.

In conclusion, the function h ∈ H2(a, b; R) satisfies

0 =

∫ b

a

h(t)dt ≤ (b− a) min{h(a), h(b)},
10



and so h as well as its derivative h′ vanish at least once in (a, b), i.e. h(ξ) = 0 = h′(η) for
some a ≤ ξ, η ≤ b. The fundamental theorem of calculus therefore proves

h(a) =

∫ a

ξ

(h′(t)− h′(η)) dt

∫ a

ξ

∫ t

η

h′′(s)ds dt.

Hölder’s inequality yields∫ t

η

|h′′(s)|ds ≤ ‖h′′‖L2(η,t)|t− η|1/2 ≤ ‖h′′‖L2(a,b)|t− η|1/2.

The combination of the previous expressions shows

|h(a)| ≤
∫ a

ξ

∫ t

η

|h′′(s)|ds dt ≤ ‖h′′‖L2(a,b)

∫ a

b

|t− η|1/2 dt ≤ ‖h′′‖L2(a,b)(b− a)3/2.

This, h(a) = ‖f(a)− A‖, and

‖h′′‖L2(a,b) = ‖〈N, f ′′〉H‖L2(a,b) ≤ |N | ‖f ′′‖L2(a,b;H) = ‖f ′′‖L2(a,b;H)

prove the assertion. �

4.3. Discrete Approximations Σ∗h,Σ
∗
k,Σ

∗
hk. Given the exact solution Σ, define Σ∗h ∈

H1(0, T ;Lh) as piecewise integral mean

Σ∗h(t)|K :=
1

|K|

∫
K

Σ(t, x) dx ∈ Kh for all times 0 ≤ t ≤ T and all K ∈ T .

A piecewise Poincaré inequality yields, at all times t, with all first-order partial derivations
DΣ of Σ and the mesh-size h ∈ P0(T ),

‖(Σ− Σ∗h)(t)‖L ≤ ‖hDΣ(t)‖L2(Ω).

The approximation Σ∗hk ∈ P1(T ;Lh) is defined I-piecewise through linear interpolation

Σ∗hk|Ij =
tj − t
tj − tj−1

Σ∗hk(t
−
j ) +

t− tj−1

tj − tj−1

Σ∗hk(t
+
j−1)

from a minimisation problem in Rd×d × Rm with optimal values

(Σ∗hk(t
−
j ),Σ∗hk(t

+
j−1)) = arg min

{
‖A1/2(A− Σ(tj−1))‖2

L | (A,B) ∈ K2
h

with A+B = 2k−1
j

∫
Ij

Σ(t) dt
}
.

Lemma 1.1 applies to this minimisation problem and leads to

(4.1)
J∑
j=1

‖A1/2(Σ∗hk − Σ∗h)
+
j−1‖2

L ≤
J∑
j=1

k3
j‖A1/2Σ̈∗h‖2

L2(Ij ;L).

Since time differentiation and piecewise spatial averages commute, Jensen’s inequality shows

‖A1/2Σ̈∗h(t)‖L ≤ ‖A1/2Σ̈‖L,
the previous estimate leads to

(4.2)
J∑
j=1

‖A1/2(Σ∗hk − Σ∗h)
+
j−1‖2

L ≤ ‖k3/2Σ̈‖2
L2(0,T ;L).

11



Finally, Σ∗k will denote the piecewise affine and globally continuous nodal interpolation of
the exact generalized stresses Σ in time.

4.4. Combination of Variational Inequalities. Evaluate (2.2) for T = Σhk and (3.4) for
Thk = Σ∗hk and recall P := (p, ξ) with p = ε(u) − C−1σ. The sum of the two inequalities
reads

(4.3)

∫
Qj

(
Phk,τ ? (Σ∗hk − Σhk) + Ṗ ? (Σhk − Σ)

)
dQ+

∫
Ω

[Phk]j−1 ? (Σ∗hk − Σhk)
+
j−1 dx ≤ 0.

Since Phk,τ ∈ P0(Ij;Lh) and Σ∗hk satisfies the integral mean property on Ij,∫
Qj

Phk,τ ? Σ∗hk dQ =

∫
Qj

Phk,τ ? Σ∗h dQ =

∫
Qj

Phk,τ ? Σ dQ.

Consequently, the first integral in (4.3) reads

(4.4)

∫
Qj

(Phk,τ − Ṗ ) ? (Σ− Σhk) dQ.

Recall P = (ε(u), 0) − AΣ, Phk = (ε(uhk), 0) − AΣhk, ∆ := Σ − Σhk and set δ := σ − σhk,
e := u− uhk. Then (4.4) reads∫

Qj

∆τ ? A∆ dQ−
∫
Qj

δ : ε(eτ ) dQ.

The equilibria (2.1) and (3.3) yield∫
Qj

δ : ε(vhk) dQ = 0 for all vhk ∈ P1(Ij;Vh).

Altogether, (4.4) reads, for all vhk ∈ P1(Ij;Vh),∫
Qj

∆τ ? A∆ dQ−
∫
Qj

δ : ε(uτ − vhk) dQ.

From continuity of u, σ, etc. in time, [∆]j = −[Σhk]j. Hence the second integral in (4.3)
with the jumps at tj−1 reads∫

Ω

[A∆− (ε(e), 0)]j−1 ? (Σ∗hk − Σhk)
+
j−1 dx.

Since

2

∫
Qj

∆τ ? A∆ dQ =

∫
Ij

∂

∂t
‖A1/2∆‖2

L dt = ‖A1/2∆−j ‖2
L − ‖A1/2∆+

j−1‖2
L,

the sum of resulting estimates for (4.3) over j = 1, . . . , `, ` ≤ J , leads to

∑̀
j=1

1

2

∫
Ij

∂

∂t
‖A1/2∆‖2

L dt+
∑̀
j=1

∫
Ω

[A∆− (ε(e), 0)]j−1 ? (Σ∗hk − Σhk)
+
j−1 dx

≤
∫

(0,t`)×Ω

δ : ε(uτ − vhk) dQ.

12



Since 1
2
‖A∆−0 ‖2

L vanishes with ∆−0 = 0, the first terms on the left-hand side read

∑̀
j=1

1

2

(
‖A1/2∆−j ‖2

L − ‖A1/2∆+
j−1‖2

L

)
+
∑̀
j=1

∫
Ω

[A∆]j−1 ?∆+
j−1 dx

=
1

2
‖A1/2∆−` ‖

2
L +

∑̀
j=1

1

2
‖A1/2[∆]j−1‖2

L.

This leads to

LHS(`) :=
1

2
‖A1/2∆−` ‖

2
L +

∑̀
j=1

1

2
‖A1/2[∆]j−1‖2

L ≤
∑̀
j=1

∫
Ω

[A∆]j−1 ? (Σ− Σ∗hk)
+
j−1dx

+

∫
(0,t`)×Ω

δ : ε(u̇− vhk) dQ+
∑̀
j=1

∫
Ω

[ε(e)]j−1 : (σ∗hk − σhk)+
j−1 dx.(4.5)

4.5. Approximation Errors on RHS. Since [A∆]j−1 = −A[Σhk]j−1 is piecewise constant,
the first term on the right-hand side RHS(`) of (4.5) reads∫

Ω

[A∆]j−1 ? (Σ− Σ∗hk)
+
j−1 dx =

∫
Ω

[A∆]j−1 ? (Σ∗h − Σ∗hk)
+
j−1 dx.

A Cauchy inequality plus (4.2) from Subsection 4.3 shows∫
Ω

[A∆]j−1 ? (Σ− Σ∗hk)
+
j−1dx ≤

1

16
‖A1/2[∆]j−1‖2

L + 4‖A1/2(Σ∗h − Σ∗hk)
+
j−1‖2

L

≤ 1

16
‖A1/2[∆]j−1‖2

L + 4 k3
j‖A1/2Σ̈‖2

L2(Ij ;L).

The second term of RHS(`) from (4.5) reads∫
(0,t`)×Ω

δ : ε(u̇− vhk) dQ ≤ ‖(C−1/2(ε(u̇)− ε(vhk), 0)‖L1(0,T ;L) ‖C1/2(σ − σhk)‖L∞(0,t`;L).

Let Σ∗k = (σ∗k, χ
∗
k) denote the piecewise affine and globally continuous nodal interpolation of

the exact generalized stresses Σ in time. Then, the last term is bounded from above by

‖C1/2 (ε(u̇− vhk), 0)‖L1(0,T ;L)

(
‖C−1/2(σ − σ∗k)‖L∞(0,T ;L) + ‖C−1/2(σ∗k − σhk)‖L∞(0,t`;L)

)
≤ 9

2
‖C1/2(ε(u̇)− ε(vhk))‖2

L1(0,T ;L2(Ω)) +
1

2
‖C−1/2(σ − σ∗k)‖2

L∞(0,T ;L)(4.6)

+
1

16
max
j=0,...,`

‖C−1/2δ±j ‖2
L.

Up to the factor 1/16, the last term maxj=0,...,` ‖C−1/2δ±j ‖L2(Ω) stands for

max
{
‖C−1/2δ−0 ‖L2(Ω), ‖C−1/2δ+

0 ‖L2(Ω), ‖C−1/2δ−1 ‖L2(Ω), . . . , ‖C−1/2δ−` ‖L2(Ω)

}
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with initial error ‖C−1/2δ−0 ‖L2(Ω) and without the contribution ‖C−1/2δ+
` ‖ := 0. In conclusion,

16LHS(`) ≤
∑̀
j=1

‖[A1/2∆]j−1‖2
L + 64

J∑
j=1

k3
j‖A1/2Σ̈‖2

L2(Ij ;L)

+ 72‖C1/2(ε(u̇)− ε(vhk))‖2
L1(0,T ;L2(Ω)) + 8‖A1/2(Σ− Σ∗k)‖2

L∞(0,T ;L)(4.7)

+ max
j=0,...,`

‖C−1/2∆±j ‖2
L + 16

∑̀
j=1

∫
Ω

[ε(e)]j−1 : (σ∗hk − σhk)+
j−1 dx.

4.6. Estimation of Jump Term. Let fk ∈ P1(Ij;L
2(Ω; Rd)) and gk ∈ P1(Ij;L

2(ΓN ; Rd))
denote the L2-projection of f ∈ H2(Ij;L

2(Ω; Rd)) and g ∈ H2(Ij;L
2(ΓN ; Rd)), onto the

piecewise affine (globally continuous) functions in time such that∫
Qj

(f − fk) · v dQ = 0

for all v ∈ P1(Ij;L
2(Ω; Rd)) and∫

Ij

∫
ΓN

(g − gk) · v ds dt = 0

for all v ∈ P1(Ij;L
2(ΓN ; Rd)). Then, for all t ∈ Ij and all vh ∈ Vh, it holds∫

Ω

fk(t) · vh dx+

∫
ΓN

gk(t) · vh ds =

∫
Ω

σhk(t) : ε(vh) dx.

The key observation is that this holds for all times t. Since [e]j−1 ∈ Vh and limt→t+j−1
σhk(t)

satisfy the discrete equilibrium condition, this leads to∫
Ω

[ε(e)]j−1 : (σ − σhk)+
j−1 dx =

∫
Ω

(f − fk)+
j−1 · [e]j−1 dx+

∫
ΓN

(g − gk)+
j−1 · [e]j−1 ds

≤ ‖(f − fk)+
j−1‖V ∗‖[e]j−1‖V + ‖(g − gk)+

j−1‖V ∗‖[e]j−1‖V .

Standard approximation results (argue as in Lemma 1.1 without constraints) yield

‖(f − fk)+
j−1‖V ∗ = sup{

∫
Ω

(f − fk)+
j−1 · v dx : v ∈ V, ‖v‖V = 1} ≤ k

3/2
j ‖f‖L2(Ij ;V ∗)

plus an analog expression for (g − gk)+
j−1. Altogether, one obtains∫

Ω

[ε(e)]j−1 : (σ − σhk)+
j−1 dx ≤ ‖k3/2(f̈ , g̈)‖L2(Ij ;V ∗×V ∗)‖[e]j−1‖V .

Since [ε(e)]j−1 = −[ε(uhk)]j−1 is piecewise constant,∫
Ω

[ε(e)]j−1 : σ∗h dx =

∫
Ω

[ε(e)]j−1 : σ dx.

14



Consequently,∑̀
j=1

∫
Ω

[ε(e)]j−1 : (σ∗hk − σhk)+
j−1 dx

≤
∑̀
j=1

∫
Ω

[ε(e)]j−1 : (σ∗hk − σ∗h)+
j−1 dx+

∑̀
j=1

∫
Ω

[ε(e)]j−1 : (σ∗h − σhk)+
j−1 dx

≤
∑̀
j=1

‖C1/2[ε(e)]j−1‖L2(Ω)‖C−1/2(σ∗hk − σ∗h)+
j−1‖L2(Ω)

+
∑̀
j=1

k3/2‖(f̈ , g̈)‖L2(Ij ;V ∗×V ∗)‖[e]j−1‖V .

As in (4.2) of Subsection 4.3 we have

J∑
j=1

‖C−1/2(σ∗hk − σ∗h)+
j−1‖2

L2(Ω) ≤
J∑
j=1

‖A1/2(Σ∗hk − Σ∗h)
+
j−1‖2

L2(Ω) ≤ ‖k3/2A1/2Σ̈‖2
L2(0,T ;L).

(In the last step we used that the norm of the integral mean Σ̈h is bounded by the norm of
Σ̈ in L.) Altogether,

∑̀
j=1

∫
Ω

[ε(e)]j−1 : (σ∗hk − σhk)+
j−1 dx ≤

(∑̀
j=1

‖C1/2[ε(e)]j−1‖2
L2(Ω)

)1/2

‖k3/2A1/2Σ̈‖2
L2(0,T ;L)

+ 2

(∑̀
j=1

‖[e]j−1‖2
V

)1/2

‖k3/2(f̈ , g̈)‖L2(0,T ;V ∗×V ∗).

Korn’s inequality and the definiteness of the elastic material tensor C yield

‖[e]j−1‖V ≤
C1

2
‖C1/2[ε(e)]j−1‖L2(Ω)

with some hardening-independent constant C1, without loss of generality C1 ≥ 1. Therefore,

(4.8)
∑̀
j=1

∫
Ω

[ε(e)]j−1 : (σ∗hk − σhk)+
j−1 dx ≤ C1

(∑̀
j=1

‖C1/2[ε(e)]j−1‖2
L2(Ω)

)1/2

× ‖k3/2(A1/2Σ̈, f̈ , g̈)‖L2(0,T ;L×V ∗×V ∗).

4.7. Displacement Control through Hardening. The discrete dual formulation reveals
explicitly that Σhk = (σhk, χhk) ∈ P1(I;Kh) is admissible almost everywhere in Q. Moreover,
(3.7) in the equivalence proof reads, with appropriate interpretation,

Ṗhk|Ij×T ∈ NP`(Ij ;K)(Σhk|Ij×T ).

This is not a pointwise version of Proposition 2.1. In fact, the dG(1) discretization allows for
some averaged discrete material evolution law. This is a new difficulty in the error analysis
in comparison to backward Euler or to Crank-Nicholson schemes.
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Lemma 4.2. The discrete primal solution (phk, ξhk) with ξhk = (αhk, βhk) satisfies

tr phk = 0 and phk = −βhk almost everywhere in Q.

Proof. Notice that the discrete primal solution fulfils suppKh
(ṗhk, α̇hk, β̇hk) < ∞ as the dis-

crete dual formulation could not be satisfied otherwise. The support function reads

suppKh
(ṗhk, α̇hk, β̇hk) = sup

(
ṗhk : σhk + ahkA

−1α̇hk + bhk : B−1β̇hk

)
with the supremum taken over all (σhk, ahk, bhk) ∈ Rd×d

sym×R×Rd×d
sym such that Φ(σhk, ahk, bhk) ≤

0. The test functions (σhk, ahk, bhk) := (r ·1d×d, 0, 0) for r ∈ R and (σhk, ahk, bhk) = (M, 0,M)

with M := ṗhk+β̇hk ∈ P`(Ij;P0(T ; Rd×d
sym)) satisfy the condition Φ(σhk, ahk, bhk) ≤ 0 and yield

suppKh
(ṗhk, α̇hk, β̇hk) ≥ r · tr ṗhk and suppKh

(ṗhk, α̇hk, β̇hk) ≥ (ṗhk + β̇hk)
2, i.e.,

tr ṗhk = 0 and ṗhk = −β̇hk.
This holds for the Riesz representation ṗhk etc. of the distributional time derivation of phk
from the proof of Theorem 3.1. Hence, tr[phk]j−1 = 0 in Ω and tr(phk,τ ) = 0 in Qj. Together
with the initial conditions tr(phk) = 0, one concludes tr(phk) = 0 almost everywhere in Q.
The same arguments show phk = −βhk = −B−1bhk almost everywhere in Q. �

With Lemma 4.2 and the left-hand side LHS of (4.5), it holds

‖C1/2[ε(e)]j−1‖2
L2(Ω) = ‖C1/2[ε(uhk)]j−1‖2

L2(Ω) = ‖C1/2[phk + C−1σhk]j−1‖2
L2(Ω)

= ‖[−C1/2B−1bhk + C−1/2σhk]j−1‖2
L2(Ω)

≤ 2

∫
Ω

(∣∣[−C1/2B−1bhk]j−1

∣∣2 +
∣∣[C−1/2σhk]j−1

∣∣2) dx
≤ 2

∫
Ω

(∣∣C1/2B−1/2|[H−1/2χhk]j−1

∣∣2 +
∣∣[C−1/2σhk]j−1

∣∣2) dx
≤ 2 max{1, |C1/2B−1/2|}‖A1/2[∆]j−1‖2

L2(Ω).

This and LHS(`) := 1
2
‖A1/2∆−` ‖2

L +
∑`−1

j=0
1
2
‖A1/2[∆]j‖2

L from (4.5) imply

∑̀
j=1

‖C1/2[ε(e)]j−1‖2
L2(Ω) ≤ 2 max{1, |C1/2B−1/2|}

∑̀
j=1

‖A1/2[∆]j−1‖2
L2(Ω)(4.9)

≤ 4 max{1, |C1/2B−1/2|}LHS(`).

4.8. Finish of the Proof. The combination of (4.7)-(4.9) yield

16LHS(`) ≤
∑̀
j=1

‖[A1/2∆]j−1‖2
L + 64‖k3/2A1/2Σ̈‖2

L2(0,T ;L)

+ 72‖C1/2ε(u̇− vhk)‖2
L1(0,T ;L) + 8‖A1/2(Σ− Σ∗k)‖2

L∞(0,T ;L) + max
j=0,...,`

‖A1/2∆±` ‖
2
L

+ 32C1LHS1/2(`) max{1, |C1/2B−1/2|}1/2‖k3/2(A1/2Σ̈, f̈ , g̈)‖L2(0,T ;L×V ∗×V ∗).
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Standard interpolation error estimates on nodal interpolants in time and space like Σ− Σ∗k
and u̇−vhk and absorbing LHS1/2(`) eventually lead to some A-depending constant C(A) > 0
such that it holds, for all ` = 1, 2, . . . , J ,

8‖A1/2∆−` ‖
2
L − max

j=0,...,`
‖A1/2∆±j ‖2

L + 7
∑̀
j=1

‖A1/2[∆]j−1‖2
L − LHS(`) ≤ RHS with

RHS := C(A)
(
‖(hD2u̇, k2ε(

...
u ))‖L1(0,T ;L2(Ω)×L2(Ω)) + ‖k3/2(A1/2Σ̈, f̈ , g̈)‖2

L2(0,T ;L×V ∗×V ∗)

)
.

With the further abbreviations M := maxj=0,...,J ‖A1/2∆±j ‖2
L, this reads

(4.10) 13 LHS(`) + ‖A1/2∆−`−1‖
2
L ≤M + RHS.

In the first case, suppose M = ‖A1/2∆−` ‖2
L for some index ` ∈ {0, . . . , J − 1}. Then,

(4.10) shows M ≤ RHS. In the second case, suppose M = ‖A1/2∆+
`−1‖2

L for some index
` ∈ {1, . . . , J}. Then, (4.10) also yields, for two consecutive values of `,

6 max{‖A1/2∆−`−1‖
2
L, ‖A1/2[∆]`−1‖2

L‖2} ≤M + RHS.

This and a triangle inequality lead to

M ≤ 2‖A1/2∆−` ‖
2
L + 2‖A1/2[∆]`−1‖2

L ≤ 2/3(M + RHS).

Consequently, in all cases
M ≤ 2 RHS.

This plus (4.10), for ` = J , shows the final result

LHS(J) +M ≤ 3 RHS. �

5. Numerical Experiments

The numerical experiments for the elastoplastic time evolution that lead to Figure 1.1 are
run for the axisymmetric ring Ω of Figure 5.1 while the volume force f vanishes, the applied
surface loads g1 and g2 describe some pure Neumann problem with a known analytical
solution given in closed form in [AC00, Alb01], where further details can be found which are
not recalled here for brevity.
The algorithmic details on the implementation are included in [AC02] and lead to the stress
evaluation of Figure 1.1. Some snap shots of the elastoplastic evolution computed with
the backward Euler (bE), Crank-Nicholson (CN) and dG(0) and dG(1) are displayed in
Figure 5.2. To discuss some convergence rates, the relative error

(5.1) e2
Q :=

∫ 1

0

∫
Ω

(
‖C−1/2(σ(x, t)− σhk(x, t))‖2 + ‖H−1/2(χ(x, t)− χhk(x, t))‖2

)
dx dt∫ 1

0

∫
Ω

(
‖C−1/2σ(x, t)‖2 + ‖H−1/2χ(x, t)‖2

)
dx dt

,

and the stress error

(5.2) e2
Ω :=

∫
Ω

‖C−1/2(σ(x, 1)− σhk(x, 1))‖2 dx

are computed at t = T = 1. The convergence history for the error eQ (left) and eΩ (right) is
diplayed in Figure 5.3 for dG(k) with k = 0 and 1. Several uniform spatial discretizations
are fixed and give rise to different curves. Each curve displays the error as a function of the
(uniform) time-step size k = 3−n for n = 2, 3, 4, 5 with both axis’ in logarithmic scaling.
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E = 70.000

ν = 0, 33

µ =
E

2(1 + ν)

λ =
νE

(1 + ν)(1− 2ν)

σy = 243

H2 = 1

g1(r, φ, t) = 240 sin(2πt)(cosφ, sinφ)

g2(r, φ, t) = −60 sin(2πt)(cosφ, sinφ)

κ1 =
2µ

2µ+ λ

κ2 = µ+ λ

ζ = κ1κ2 + H2

κ3 =
σy√
34

κ4 =
σyκ1κ2√

33ζ

Figure 5.1. Mechanical system and material parameters for the benchmark example.
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(b) CN at t = 1
3
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(c) dG(0) at t = 1
3
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(d) dG(1) at t = 1
3
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(e) bE at t = 61
81
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(f) CN at t = 61
81
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(g) dG(0) at t = 61
81
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(h) dG(1) at t = 61
81

Figure 5.2. Elastoplastic evolution for time step size, k = 3−4 at various times.

Notice that the convergence in time is from right to left. For a fine mesh, the empirical
convergence rate in time is close to 1 for dG(0) and in fact better than 1.7 for dG(1). The
value 1 and 2 for dG(`) and eΩ is no strict proof for a higher order of convergence, but an
indication that the pre-asymptotic range is very large.

Notice that the spatial regularity requests of this paper are not fully met in this example.
However, the elastoplastic interface is a ring with time depending radius an so affects a
minority of element domains only. Hence on may expect that the lack of regularity does not
dominate the convergence rates.
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Figure 5.3. Convergence for the error eQ (left) and eΩ (right) from (5.1)-(5.2)
as a function of the time-step size k = 3−2, . . . , 3−5 for various fixed uniform
space discretizations with dof = 6, . . . , 49536 degrees of freedom for the dis-
placements.
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