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Abstract

Building on a transformation formula that we previously found in con-

nection with Landau-Lifshitz-Gilbert equations, we present a strategy for uti-

lizing compensated compactness methods in the context of Ginzburg-Landau

approximation for harmonic maps and related problems in magnetism and su-

perconductivity. Its applicability is illustrated by a number of new examples.

1 Introduction

In recent analytical developments for harmonic maps and related evolution equa-
tions (like e.g. harmonic map heat flow, wave maps, Landau-Lifshitz equations),
methods of compensated compactness play a crucial role. In exploiting the sym-
metries of the target manifold, the geometric nonlinearity reveals its special anti-
symmetric structure necessary for such methods. This has first been observed and
used by Hélein [9] for proving regularity of harmonic maps in two space dimensions.
Indeed, for maps u : Ω ⊂ Rn → SN−1 of finite Dirichlet energy the nonlinearity
|∇u|2 u can equivalently by written as the product

b(u,∇u)∇u = (u ⊗∇u −∇u ⊗ u) ∇u (1.1)

Obviously, the factors have L2 bounds in terms of the Dirichlet energy. If in addition
u is weakly harmonic, i.e. u is a weak solution of

∆u + |∇u|2 u = 0

then the product (1.1) exhibits the so-called div-curl structure, i.e.

div b(u,∇u) = 0 and curl∇u = 0

in the sense of distributions. This structure is accompanied by improved prod-
uct estimates related to compensation phenomena of Jacobians and the H1-BMO
duality, see [13, 5] and [9] for a comprehensive discussion. Regualrity is then a
consequnce of higher integrability that now follows from linear theory.
The standard approximation for harmonic maps with spherical target is based upon
replacing the Dirichlet energy by the Ginzburg-Landau energy with a small penal-
ization parameter ε > 0

Eε(u) =
1

2

∫

Ω

|∇u|2 dx +
1

4ε2

∫

Ω

(1 − |u|2)2 dx.

This approach is particularly useful if one is concerend with energy divergence in
the presence of topological singularities that are enforced for instance by boundary
conditions. The corresponding Euler-Lagrange equations reads

∆u + Vε(u)u = 0 where Vε(u) =
1

ε2
(1 − |u|2).
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It clear from standard argumets that weak solutions uε ∈ H1(Ω; RN ) are smooth
in the interior. Investigating ε-uniform estimates, however, one observes that there
is no immediate relation between the nonlinearity Vε(u)u and the energy Eε(u), at
least if one tries to bound Vε(u) in a pointwise fashion. Aim of this note is show that
after suitable transformations Lε near the identity the approximate PDE exhibits
a div-curl structure as well, i.e. for weak solutions u = uε of the Euler-Lagrange
equation

Lε

(

Vε(u)u
)

= b(u,∇u)∇u + o(1) where Lε = 1 + o(1) as ε → 0,

making compensated compactness methods applicable in the approximate context
as well. We underline the strength of this observation by a compactness result
for approximate harmonic maps (Theorem 1), a transparent global proof of a well-
known result and a new bound in the regularity theory for complex Ginzburg-
Landau equations with vortices (Theorem 4), and a recent existence and regularity
result in the context of Landau-Lifshitz equations [11] where this approach has
sucessfully been used for the first time.

2 A transformation formula

Suppose that Ω ⊂ Rn is a smooth open set. For ε > 0 and functions f ∈ L2(Ω; Rn)
we consider critical points u ∈ H1(Ω; Rn) of the functional

Fε(u) =
1

2

∫

Ω

|∇u|2 dx +
1

4ε2

∫

Ω

(1 − |u|2)2 dx +

∫

Ω

f · u dx,

that is we consider weak solutions of the Euler-Lagrange equation

∆u + Vε(u)u = f with Vε(u) =
1

ε2

(

1 − |u|2
)

. (2.1)

In doing so we approximate harmonic maps with spherical targets and with a right-
hand-side f . In case Fε(uε) is uniformly bounded for a family of solutions it is
well-known and easy to show that for some null-sequence εk the corresponding
sequnce uεk

weakly converges to a solution of

∆u + |∇u|2u = (1 − u ⊗ u) f.

Moraly, an anti-symmetric multiplication of the equation by u makes the penalty
term disappear, so that one has for u = uε and any ε > 0

∇ · (u ∧∇u) = u ∧ f (2.2)

that is equivalent to the harmonic map equation if |u| = 1 is attained. In search for
a more direct view point our goal is to represent the nonlinearity Vε(u)u in terms
of the product Vε(u)u ∼ b(u,∇u)∇u where the anti-symmetric bilinear mapping
b(u,∇u) is defined by

bij
α (u, p) = uipj

α − ujpi
α for 1 ≤ i, j ≤ N and 1 ≤ α ≤ n. (2.3)

Observe that for solutions u = uε the div-curl structure encountered in the context
of harmonic maps is preserved on the ε-level:

div b(u,∇u) = u ⊗ f − f ⊗ u and curl∇u = 0
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It is clear that such a correspondence between Vε(u)u and b(u,∇u)∇u has to be
nonlocal, and it turns out that a suitable transformation is given by the singularly
perturbed differential operator

Lε = 1 −
1

2
ε2 ∆.

Basic manipulations yield the following transformation formula for Vε(u)u:

Proposition 2.1. For a sufficiently regular solution u = u(ε) of (2.1) the identity

Lε

(

Vε(u)u
)

= b(u,∇u)∇u −∇ ·

(

3

2

(

1 − |u|2
)

∇u

)

+ A(u) f(x) (2.4)

where Lε = 1−
1

2
ε2 ∆ and A(u) =

(

1 − |u|2
)

1 + u ⊗ u,

holds true in the sense of distributions.

Proof. Since (2.4) is scale invariant we may assume that ε = 1. We have

∆
(

V (u)u
)

= V (u)∆u − 4(u · ∇u)∇u − 2|∇u|2u − 2(u · ∆u)u,

where V (u) = V1(u). On the other hand, invoking the equation, we have

2(u · ∇u)∇u = −∇ ·
[(

1 − |u|2
)

∇u
]

− |V (u)|2u + V (u) f(x),

(u · ∆u)u = |V (u)|2u − V (u)u + (u · f(x))u,

V (u)∆u = V (u) f(x) − |V (u)|2u,

|∇u|2u = b(u,∇u)∇u + (u · ∇u)∇u.

With the last identity the above expansion for ∆
(

V (u)u
)

becomes

V (u)∆u − 2 b(u,∇u)∇u− 6 (u · ∇u)∇u − 2 (u · ∆u)u.

Substituting the other identities yields the formula to be proved.

The formula permits to directly pass to the limit in (2.1) after applying the operator
Lε to the equation. Indeed, for solutions u = uε with uniformly bounded energy
Fε(uε) ≤ c

Lε

(

f − ∆u
)

= b(u,∇u)∇u + (f · u)u −
3

2
∇ ·

(

(

1 − |u|2
)

∇u
)

+ (1 − |u|2) f(x).

For a subsequence εk → 0 we can assume that uk := uεk
→ u weakly in H1(Ω) and

strongly in L2(Ω) for some u ∈ H1(Ω; RN ) with |u| = 1. But then if f ∈ Lp(Ω) for
some p > n/2 we find that

∇ · b(uk,∇uk) = uk ⊗ f − f ⊗ uk ∈ H−1(Ω)

is precompact so that by the compensated compactness principle (cf. e.g. [14])

b(uk,∇uk)∇uk
∗
⇀ b(u,∇u)∇u as k → ∞.

Passing to the limit we find the following limit equation for maps u ∈ H1(Ω; SN−1)

∆u + b(u,∇u)∇u = fTan where fTan = (1 − u ⊗ u)f.

The latter argument only uses that Lε is formally self-adjoint and that Lεφ → φ
in say C2(Ω; RN ) for any test function φ ∈ C∞

0 (Ω; RN ). It is well-know that the
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asymptotic equation can be derived indirectly from (2.2). The indirect argument,
however, does not permit to deduce strong convergence properties of the gradient
in certain Lp norms. But this can be deduced from the transformation formula, as
will be shown in Theorem 1 below. In order to improve the strength of convergence,
we need to take into account uniform regularity properties of the inverse operator.
We will provide some selected estimates within the next section.

The transformation formula extends to evolution problems like e.g. the Ginzburg-
Landau approximation for the Landau-Lifshitz equation. In [11] a parabolic variant
of the transformation formula has been used for the first time in order to proof an
existence and regularity result. For spin fields u(t) : R3 → S2 the Landau-Lifshitz
equation reads

α ∂tu + βu ∧ ∂tu = ∆u + |∇u|2 u where α > 0.

For this hybrid heat and Schrödinger flow for harmonic maps we have the following
approximation scheme has been used by Alouges and Soyeur [1] for the construction
of global weak solutions for initial data u0 ∈ H1

loc(R
3; S2)

α ∂tu + βu ∧ ∂tu = ∆u + Vε(u)u. (2.5)

That Ginzburg-Landau approximation yields indeed partially regular (smooth away
from a closed subset of lower parabolic Hausdorff dimension in space-time) solutions
has been proved in [11] on by means of a perturbation argument and special trilinear
Sobolev inequalities (cf. [12]) that were applicable on the basis of the following
transformation formula:

Proposition 2.2. For sufficiently smooth solutions of (2.5) the formula

Pε

(

Vε(u)u
)

= b(u,∇u)∇u −
3

2
∇ ·

(

(

1 − |u|2
)

∇u
)

+
(

1 − |u|2
)

(

R(u) +
α

2

)

∂tu

where

Pε = 1 +
ε2

2
(α ∂t − ∆) and R(u) ξ = α ξ + β u ∧ ξ

holds true in the sense of distributions.

2.1 Uniform invertability of Lε

In case Ω = R
n the unbounded operator Lε : L2(Rn) → L2(Rn) admits, as a

consequence of Plancherel’s theorem, a uniformly L2-bounded inverse Kε. In real
space Kε is given by the convolution with a rescaled Bessel type potential Γε =
Γε(| · |) ∈ L1(Rn). More precisely, with

Γ(r) = F−1

(

ξ 7→ 1 +
1

2
|ξ|2

)

(x) where r = |x| and Γε(r) =
1

εn
Γ

(r

ε

)

we have

(KεF )(x) =

∫

Rn

Γε(|x − y|)F (y) dy.

This implies in particular the boundedness of Kε in Lp(Rn) for any 1 ≤ p ≤ ∞.
The same holds true for any bounded smooth domain Ω ⊂ Rn when imposing
homogeneous Dirichlet boundary conditions. Indeed, if

kε(x, y) = kε(y, x) for ε > 0 and x, y ∈ Ω

denotes the Green’s function of Lε in Ω so that kε(x, ·) = 0 on ∂Ω then the following
bounds hold true independently of ε > 0:
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Proposition 2.3. Suppose that Ω ⊂ Rn is a smooth bounded domain. Then the
Green’s function admits the pointwise estimate

0 ≤ kε(x, y) ≤ Γε(|x − y|) for any ε > 0 and x, y ∈ Ω.

For the operator (Kεf)(x) =
∫

Ω
kε(x, y)F (y) dy we have in particular

‖Kεf‖Lp ≤ C ‖f‖Lp for any 1 ≤ p ≤ ∞

for some constant that is independent of ε > 0. For the gradient we have moreover

ε

∣

∣

∣

∣

∂kε

∂y
(x, y)

∣

∣

∣

∣

≤ C

(

1 +
ε

|x − y|

)

Γε

(

|x − y|

2

)

(2.6)

for some universal constant C > 0 if ε > 0 is sufficiently small. In particular we
have

ε ‖Kε(∇ · F )‖Lp ≤ C ‖F‖Lp for any 1 ≤ p ≤ ∞

for some constant that is independent for 0 < ε < ε0.

Proof. The upper and lower bound for kε = kε(x, y) follows from the positivity
of the fundamental solution Γε and the maximum principle. The bound for the
associated operator Kε follows from the Hausdorff-Young inequality. Regarding the
gradinet estimate, we have the following basic elliptic estimate (cf. [8] section 3.4)

|∇ykε(x, y)| ≤
c

r
sup

Br(y)

|kε(x, ·)| (2.7)

that is merely a consequence of the maximum principle. We distinguish three cases.

If dist(y, ∂Ω) > |x−y|
2 we set r = |x−y|

2 then we deduce from (2.7)

∣

∣

∣

∣

∂kε

∂y
(x, y)

∣

∣

∣

∣

≤
c

|x − y|
sup

Br(y)

|kε(x, ·)| ≤
c

|x − y|
Γε

(

|x − y|

2

)

.

If otherwise dist(y, ∂Ω) ≤ |x−y|
2 but r = dist(y, ∂Ω) ≥ ε then (2.7) implies

∣

∣

∣

∣

∂kε

∂y
(x, y)

∣

∣

∣

∣

≤
c

ε
sup

Br(y)

|kε(x, ·)| ≤
c

ε
Γε

(

|x − y|

2

)

.

If finally dist(y, ∂Ω) < ε < |x−y|
2 and ε is sufficiently small we can assume that ∂Ω

is flat and y ∈ B+
ε (0). Standard boundary estimates (cf. [8] section 6.2) imply after

rescaling

sup
B+

ε (0)

∣

∣

∣

∣

∂kε

∂y
(x, ·)

∣

∣

∣

∣

≤
c

ε
sup

B+
2ε(0)

|kε(x, ·)| ≤
c

ε
Γε

(

|x − y|

2

)

.

This implies the bound in (2.6). Finally the bound Kε(∇ · F ) follows from

∫

Ω

kε(x, y)(∇ · F )(y) dy = −

∫

Ω

∂kε

∂y
(x, y) · F (y) dy,

(2.6) and the Hausdorff-Young inequality.

Proposition 2.4. Suppose that Ω ⊂ Rn is a bounded smooth domain and fε :
Ω → Cn is a family of vector fields of class Lp for some p ∈ (1,∞). Suppose that
u ∈ H2(Ω; C) is a weak solution of

Lε∆u = ∇ · fε in Ω
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subjected to boundary conditions

u − gε ∈ W 1,p
0 (Ω) and ∆u ∈ W 1,p

0 (Ω)

for functions gε so that Lεgε in W 1,p(Ω). Then u ∈ W 2,p(Ω) with an estimate

ε ‖∆u‖Lp + ‖∇u‖Lp ≤ C
[

‖fε‖Lp + ‖Lεgε‖W 1,p

]

that holds true for some universal constant C = C(Ω, p) independent of ε.

Proof. We only sketch the argument which is a straight foreward generalization of
well-known Schauder estimtes for second order equations in divergence form (cf.
e.g. [7]). We assume that gε = 0 and consider the linear operator T : f 7→ ∇u.
Then T extends to a bounded self-adjoint operator on L2(Ω). More specifically

ε2‖∆u‖2
L2 + ‖∇u‖2

L2 ≤ ‖f‖2
L2.

By duality it is sufficient to prove uniform boundedness in Lp for 2 < p < ∞. For
this purpose we prove, for bounded f ∈ L∞, a BMO estimate for ∇u. In view of
an interpolation argument by Stampacchia the claim follows. We only sketch the
argument for the local BMO estimate. Let BR be a ball that is strictly inside Ω
and r ∈ (0, R). Then we let

Φ(u, r) = ε2

∫

Br

|∆u − (∆u)Br |
2 dx +

∫

Br

|∇u − (∇u)Br |
2 dx

where (·)Br denotes the average, and claim the following decay estimate

Φ(u, r) ≤ C
(

(r/R)n+2Φ(u, R) + ‖f‖2
L∞rn

)

(2.8)

for some universal constant C > 0, i.e. a unifrom estimate for the mean oscillation
as claimed. Set u = v + w where v solves Lε∆v = 0 in BR and u = v on ∂BR so
that

Φ(u, r) ≤ Φ(v, r) + 2ε2

∫

BR

|∆w|2 dx + 2

∫

BR

|∇w|2 dx.

Standard Hilbert space regularity implies Φ(v, r) ≤ c(r/R)n+2Φ(v, R) and with
Hölder’s inequality

ε2

∫

BR

|∆w|2 dx +

∫

BR

|∇w|2 dx ≤ Rn sup |f |2

Utilizing a standard iteration procedure we deduce (2.8). The global estimate fol-
lows after flattening the boundary that yields a system with smooth coefficients on
half-balls where analog estimates apply.

2.2 W
1,p compactness for approximate harmonic maps

Theorem 1. Suppose that Ω ⊂ Rn is a bounded smooth domain and

gε ∈ W 2,1(Ω; RN ) ∩ H1/2(∂Ω; SN−1)

with uniform bounds. Suppose that uε ∈ gε + H1
0 (Ω; RN ) satisfies

∆uε + Vε(uε)uε = 0 and Eε(uε) ≤ c

for a constant c > 0. Then (uε) ⊂ W 1,p(Ω; RN ) is relatively compact for any p < 2.
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Proof. First we infer from the weak maximum principle that |uε| ≤ 1. It is enough
to show that

∆(uε − g) = fε where ‖fε‖L1 ≤ c Eε(uε).

Then the claim follows by Murat’s Lemma (cf. e.g. [14], Theorem 3.4). But in view
of Proposition 2.1 we find that fε is given by

fε = Kε

(

b(uε,∇uε)∇uε

)

− ε
(

Kε∇ ·
)

(

3

2

(1 − |uε|
2)

ε
∇u

)

− ∆gε.

In view of Proposition 2.3 and Hölder’s inequality uniform L1 bounds follow.

3 Application to complex Ginzburg-Landau

Let Ω ⊂ R2 be a smooth, bounded, simply connected domain. Considering the
associated harmonic map problem with the unit circle S1 ⊂ C as target manifold,
i.e. looking for stationary points of E(u) = 1

2

∫

Ω |∇u|2 dx in H1(Ω; S1) one is faced
with topological obstructions if homotopically non-trivial boundary conditions are
imposed. Indeed, if g : ∂Ω ∼= S1 → S1 is smooth but with non-trivial degree, then
the set {u ∈ H1(Ω; S1) : u|∂Ω = g} is empty, since otherwise Hélein’s regularity re-
sult would conflict with Brouwer’s degree lemma. Accordingly, Brézis, Bethuel, and
Hélein proposed to study the corresponding (singular) Ginzburg-Landau problem

Eε(u) =
1

2

∫

Ω

|∇u|2 dx +
1

4ε2
(1 − |u|2)2 dx → min

(cf. the monograph [4]) and more generally corresponding solutions uε : Ω → C of
the Ginzburg-Landau equation with smooth Dirichlet data gε : ∂Ω → S1

∆uε + V (uε)uε = 0 in Ω with uε = gε on ∂Ω. (3.1)

The main observation is that as ε → 0 point singularities (vortices) develop at an
energy cost of the order ln(1/ε), that arrange according to a certain renormalized
energy only depending upon their position within Ω. Considering (3.1) this moti-
vates the following assumption: there are positive constants M0 and M1 so that, as
ε tends to zero

Eε(uε) ≤ M0 ln(1/ε) and ‖gε‖H1/2(∂Ω) ≤ M1. (3.2)

It turns out that below the critical exponent, uniform gradient bounds in case p <
n/(n − 1) follow from the equation and the logarithmic energy bound, a regularity
result, that plays a crucial role in the asymptotic analysis of solutions as ε tends
to zero. The following fundamental estimate has first been proved for n = 2 and
smooth boundary data by Bethuel, Brezis, and Hélein in the monograph [4]. The
following version holds true in any dimension under the assumptions (3.2):

Theorem 2 (Bethuel et al.[2]). Let 1 ≤ p < n
n−1 , then there is a constant C = C(p)

that only depends on M0, M1, Ω and p so that
∫

Ω

|∇uε|
p dx ≤ C(p).

The theorem is optimal in dimension n = 2. For n ≥ 3, however, the estimate
extends up to the end-point p = n/(n− 1), cf. [3, 6]. In addition, local gradient for
every p < 2 estimtes hold true in any dimension, cf. [6]. Since this rather aim for
a global view point for the boundary value problem, we oncentrate on the above
version. Then the main analytic ingredient in the proof from [2] stems form a variant
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of the important estimate for the jacobian by Jerrard and Soner. The proof in [2]
starts with a suitable decomposition of the domain Ω, according to the deviation
form the target. It turns out that our representation formula can circumvent this
decomposition and provides a transformation to a global elliptic standard problem.
Indeed, we show that any solution uε satisfies an equation of the form:

Theorem 3. Suppose that u = uε is a solution of (3.1) with bounds as in (3.2).
Then there is a complex vector field fε ∈ Lp(Ω; Cn) for any 1 ≤ p < n

n−1 with
bounds independent of ε and so that

Lε∆uε = ∇ · fε in Ω (3.3)

∆uε = 0 on ∂Ω (3.4)

uε = gε on ∂Ω. (3.5)

Indeed we will determine fε explicitly in (3.11) in terms of the energy components
and the current density j(uε) = det(u|∇u). Observe that the boundary condition
(3.4) results from the equation and the assumption that |gε| = 1. It identifies u = uε

as the unique solution of the problem. The result then follows from linear elliptic
regularity theory as in Propsition 2.4:

Theorem 4. Suppose that u = uε is a solution of (3.1) with bounds as in (3.2).
Assume in addition that for some 1 < p < n/(n− 1) and a constant M2 = M2(p)

ε ‖∆gε‖Lp + ‖∇gε‖Lp ≤ M2.

Then we have
ε ‖∇2uε‖Lp + ‖∇uε‖Lp ≤ C(p)

where the constant C(p) only depends on M0, M1, M2, and p.

3.1 Relation with Jacobians and the Jerrard-Soner result

In the section we conclude the proof of Theorem 3. For complex functions u ∈
H1(Ω; C), the current j(u) is the 1-form defined by

j(u) = jα(u) dxα = det
(

u
∣

∣ ∂αu
)

dxα. (3.6)

The main connection with Ginzburg-Landau equations reflects in the following fact:
If uε is a solutions of (3.1), then the current satisfies the continuity equation

div j(uε) = ∂α jα(uε) = det
(

u
∣

∣∆u) = 0 (3.7)

in the sense of distributions. The latter continuity property can be expressed in
term of the quantity

b(u,∇u) = (u ⊗∇u −∇u ⊗ u)

from our previous discussion, that is essentially a scalar object for the target S1.

Lemma 3.1. For any ξ ∈ C ∼= R2 we have

b(u,∇u) ξ = j(u) ξ⊥ where ξ⊥ = (−ξ2, ξ1). (3.8)

In order to deduces an estimate for b(u,∇u) from the continuity equation (3.7) we
would need a bound for the vorticity: The jacobian J(u) is the 2-form defined by

J(u) =
1

2
curl j(u) =

1

2
det

(

∂αu
∣

∣ ∂βu
)

dxα ∧ dxβ . (3.9)
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Theorem 5 (Jerrard&Soner [10]). Let 0 < α < 1 and Ω ⊂ Rn a bounded smooth
domain. Suppose that (uε) admits the above energy bound. Then we have

‖J(uε)‖[Cα
0 (Ω)]∗ ≤ C(α)

for a constant independent of ε.

A extension of this result necessary for application to regularity has been proved
in [2], where global estimates for J(uε) in Cα(Ω)∗ are provided. By the Sobolev
embedding they imply in particular an estimate in W−1,p(Ω) = [W 1,p′

(Ω)]∗ for any
p′ > n so that p < n/(n − 1). In order to apply these arguments to (3.1) we make
use of the transformation formula that in view of (3.8) and the continuity equation
immediately tells

Lε

(

Vε(u)u
)

= ∇ ·

[

j(u)u⊥ +
3

2
V (u)∇u

]

. (3.10)

Thus Lε∆u = ∇ ·
(

j(u)u⊥ + 3
2 V (u)∇u

)

. Accordingly, we define for u = uε the
function

fε = j(u)u⊥ +
3

2
V (u)∇u. (3.11)

The aim is to give a uniform Lp estimate for fε. Notice that from the energy bound

‖V (u)∇u‖p
Lp ≤ ‖∇u‖L2‖V (u)‖L2p/(2−p) ≤ ε2−p ln(1/ε)p = o(1)

as ε → 0. The estimate for the first term in (3.11) is more involved and based on a
global version of Theorem 5 (cf.[2], Theorem 2Bis) that only involves H1/2 bounds
of boundary data in addition. We breifly sketch the argument from [2] and, for
simplicity, carry it out only in dimension n = 2. Recall that the maximum prinziple
implies that |u| ≤ 1, so we only need to derive a uniform Lp estimate for j(u). The
1-form j(u) solves the Hodge system

div j(u) = 0

curl j(u) = 2 J(u) ∈ W−1,p(Ω)

with boundary conditions in terms of g. This is a linear elliptic system of first order,
and standard elliptic regularity theory implies that, for p < 2, ‖j(uε)‖Lp ≤ C(p)
uniformly as ε → 0. Going back to (3.3) the fundamental estimate follows.
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