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Abstra
tA mathemati
al model for the 
ase hardening of steel is presented. Carbonis dissolved in the surfa
e layer of a low-
arbon steel part at a temperature suf-�
ient to render the steel austeniti
, followed by quen
hing to form a martensiti
mi
rostru
ture. The model 
onsists of a nonlinear evolution equation for the tem-perature, 
oupled with a nonlinear evolution equation for the 
arbon 
on
entration,both 
oupled with two ordinary di�erential equations to des
ribe the evolution ofphase fra
tions. We investigate questions of existen
e and uniqueness of a solutionand �nally present some numeri
al simulations.
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1 Introdu
tionThe goal of 
ase hardening is to 
reate a workpie
e surfa
e whi
h is resistant to externalstresses and abrasion, while its 
ase is still du
tile in order to redu
e fatigue e�e
ts. Thepro
ess will be explained in detail in the next se
tion. It exploits the solid-solid phasetransitions o

urring during thermal treatment of steel and requires a 
ertain amountof 
arbon in the layer to be hardened. A

ordingly, the �rst stage of 
ase hardening isa 
arburization step during whi
h the outer workpie
e layer is enri
hed by 
arbon. These
ond stage is a quen
hing step during whi
h a hard and wear resistant boundary layer isa
hieved. Sometimes, before quen
hing a period of slow di�usion is allowed. The goal ofthis paper is to derive and analyze a mathemati
al model 
apable to des
ribe the 
ompletepro
ess of 
ase hardening.Con
erning 
ase hardening there is mostly engineering literature available (see [14, 15℄and the referen
es therein). Carburization and quen
hing are usually 
onsidered andstudied separately. There are papers 
on
erning only the 
arburization (see, for example[4℄) and others regarding the quen
hing of 
arburized steel (see [17℄, [21℄). Generally, inall of the engineering papers, a lot of attention is spent to determine the pro
ess andmaterial parameters; nevertheless the question of �nding a 
onsistent and exhaustivedatabase for all the parameters o

urring in the whole pro
ess seems to be still open.There is a vast literature, for instan
e, about the di�usion 
oe�
ient of 
arbon in iron,(see [22℄ and referen
es therein), but mu
h less for the heat transfer 
oe�
ient duringquen
hing. Mathemati
al models for phase transitions in steel and in their appli
ationsto heat treatments like indu
tion hardening, have been developed and analyzed, e.g., in[6℄, [9℄, [10℄, [12℄, [25℄. The model for the phase fra
tion evolutions in the present paper,follows the one proposed in [9℄.The main novelty of this paper is the derivation and analysis of a mathemati
al model forthe 
omplete 
ase hardening pro
ess, a

ounting for the 
oupling of temperature, phasetransitions and 
arbon di�usion. This allows to evaluate the e�e
t of additional di�usionof 
arbon prior to quen
hing, whi
h 
ould a�e
t the �nal result (see [23℄). Thus, fromappli
ation point of view, a more a

urate model might lead to a more e�
ient pro
essguidan
e and redu
ed energy 
onsumption.The paper is organized as follows: in the next se
tion we will derive the model. In Se
tion3 we present notations and assumptions. In Se
tion 4-5 we will prove existen
e anduniqueness of a weak solution. Se
tion 6 is devoted to numeri
al simulations; then, inSe
tion 7, we 
olle
t our �nal 
onsiderations and remarks.2 The mathemati
al modelTo �x ideas we �rst give a sket
h of the gas 
arburizing pro
ess. Nowadays high-te
hnologyindustry employs mostly low-
arbon steels, with a 
arbon 
ontent around 0.2%. For thisreason the enri
hment of 
arbon in a super�
ial layer of the workpie
e may be ne
essaryto make it resistant to fatigue. The sour
e of 
arbon is a 
arbon-ri
h furna
e atmosphereprodu
ed from many gaseous 
omponents, through several 
hemi
al rea
tions (see [23℄ forte
hni
al details). The workpie
e is kept in the furna
e until the desired amount of 
arbonis di�used. After 
arburization the se
ond stage is quen
hing, a rapid 
ooling whi
h 
an2



be performed by immersion in oil or water.In the boundary layer whi
h has been enri
hed by 
arbon, the rapid 
ooling leads to thegrowth of martensite eventually yielding the desired hard and wear resistant layer or 
ase,whi
h explains why this heat treatment is 
alled 
ase hardening.

Figure 1: Equilibrium diagram of the system iron-
arbon (right) as limit of the CCT-diagram with in�nite low 
ooling rate.The kineti
s of the phase 
hange 
an be brie�y des
ribed as follows. Depending ontemperature, two di�erent latti
e stru
tures 
an o

ur: a body-
entered-
ubi
 (b.
.
.)and a fa
e-
entered-
ubi
 (f.
.
) latti
e. Above a 
ertain temperature As steel is in theausteniti
 phase, a solid solution of 
arbon in f.
.
. iron. Below As this latti
e is nolonger stable. But before the latti
e 
an 
hange its 
on�guration to form a b.
.
 stru
ture,
arbon atoms have to di�use, due to the higher solubility of 
arbon in the f.
.
 latti
e.The result is pearlite, a lamellar aggregate of ferrite and 
ementite, soft and du
tile. Uponhigh 
ooling rate 
arbon has no time to di�use and is trapped, forming a tetragonallydistorted b.
.
. latti
e, 
alled martensite. Note that, depending on the 
ooling historyand the 
arbon 
on
entration, also two other phases, ferrite and bainite, 
an o

ur.The transformation diagrams of interest for the modelling of the phase fra
tions evolution(see equations 2.1a,b below), during the 
ooling pro
ess, are 
alled indeed 
ontinuous
ooling transformation (CCT) diagrams and des
ribe the transformation of austenite asa fun
tion of time for a 
ontinuously de
reasing temperature. For istan
e, in the left-hand side of Figure 1, the CCT diagram for the steel AISI 1045 is shown. In otherwords a sample is austenitized and then 
ooled at a predetermined rate and the degreeof transformation is measured, for example by dilatometry. The start of transformationis de�ned as the temperature at whi
h 1% of the new mi
rostu
ture has formed. Thetransformation is 
ompleted when only 1% of the original austenite is left.In 
arburized steels the pro
ess is strongly in�uen
ed by the 
arbon 
ontent, whi
h varies3



Figure 2: Three-dimensional presentation of the transformation 
harateristi
 of a14NiCr14 steel, for 
ontinuous 
ooling, after austenization at 1023◦K (Symbols: ZWbainite, M martensite, P pearlite, F ferrite).from the 
arbon-enri
hed super�
ial layer to the 
ore. Thus, it 
annot be des
ribed byonly one 
ontinuous-
ooling-transformation diagram. Figure 2 shows a 
ontinuous 
oolingdiagram des
ribing, for a given austenitizing 
ondition, the transformation at all 
arbonlevels in a 
arburized spe
imen. The 
ross se
tions for �xed 
arbon per
entages giveCCT diagrams of the type of the one plotted in Figure 1 on the left. This �gure alsoshows that, with in�ntely-slow 
ooling, the CCT diagram is identi
al with the equilibriumdiagram for the 
hemi
al 
omposition of the steel. To avoid unne
essary te
hni
alities forthe modelling, we assume that the 
ooling takes pla
e from the high temperature phaseaustenite with phase fra
tion a to two di�erent produ
t phases, pearlite with fra
tion pand martensite with fra
tion m. A more elaborate model a

ounting for all the phaseso

urring during the heat treatment of steel 
an be found in [12℄.The evolution of the phases p and m 
an be des
ribed by the following system:
ṗ = (1 − p−m)g1(θ, c) (2.1a)
ṁ = [min{m(θ, c); 1 − p} −m]+g2(θ, c) (2.1b)

p(0) = 0 (2.1
)
m(0) = 0 (2.1d)where c is the 
on
entration of 
arbon. Here the bra
ket [ ]+ denotes the positive partfun
tion [x]+ = max{x, 0} and the dot means the derivative with respe
t to t. While the4



Figure 3: Level 
urves of fun
tion m(θ, c).growth rate of pearlite ṗ is assumed to be proportional to the remaining austenite fra
tion,the rate of martensite growth ṁ is zero if m ex
eeds either the non-perliti
 fra
tion 1−p,or the threshold m depending on both temperature and 
arbon 
on
entration. Indeedmartensite is produ
ed at temperatures less than a valueMs but 
omplete transformationto martensite 
an be obtained only below some other temperature threshold Mf . Boththese temperatures depend on the lo
al value of 
arbon 
on
entration. The quantity
m(θ, c) represents the maximum attainable value of martensite fra
tion and 
an be de�nedas:

m(θ, c) =

{

0 θ > Ms(c)
1 θ < Mf (c)and by interpolation for intermediate temperatures. Sin
e there is no phase transitionfrom pearlite to martensite, the term min{m(θ, c); 1− p} represents the maximal fra
tionof martensite that 
an be rea
hed at time t.The fun
tions g1 and g2 are positive given fun
tions that 
an be identi�ed from the time-temperature-transformation diagrams des
ribed before. The pro
ess of 
arbon di�usionis governed by the following nonlinear paraboli
 equation:

∂c

∂t
− div((1 − p−m)D(θ, c)∇c) = 0.The fa
tor (1 − p −m) in front of the di�usion 
oe�
ient D(θ, c) re�e
ts the fa
t thatenri
hment with 
arbon only takes pla
e in the austenite phase. The di�eren
e in 
arbonpotential between the surfa
e and the workpie
e provides the driving for
e for 
arbondi�usion into the pie
e. The 
arbon potential of the furna
e atmosphere must be greaterthan the 
arbon potential of the surfa
e of the workpie
e for 
arburizing to o

ur. Hen
ewe have the following boundary 
ondition:

−(1 − p−m)D(θ, c)
∂c

∂ν
= β(c− cp)5



where β, the mass transfer 
oe�
ient, 
ontrols the rate at whi
h 
arbon is absorbed by thesteel during 
arburizing and cp is the 
arbon 
on
entration in the furna
e, usually named
arbon potential of the gas. ∂c
∂ν

denotes the outward normal derivative. The evolution oftemperature during the entire pro
ess is des
ribed by the following nonlinear problem
ρα(θ)

∂θ

∂t
− div

(

k∇θ
)

= ρLp(θ)ṗ+ ρLm(θ)ṁ

−k
∂θ

∂ν
= h(θ − θΓ)

θ(x, 0) = θ0.Here ρ is the mass density, α the spe
i�
 heat, k the heat 
ondu
tivity of the material. Lpand Lm denote latent heats of the austenite-pearlite and the austenite-martensite phase
hanges, respe
tively. θΓ is the temperature of the 
oolant and θ0(x) is the temperatureat the beginning of the pro
ess. For simpli
ity ρ and k are taken 
onstant.In the te
hni
al pro
ess, we have three di�erent time stages:
• Stage 1: 
arburization in a furna
e, hen
e β 6= 0 and h = 0.
• Stage 2: di�usion period, with β = 0 and h 6= 0, serving as a linearized radiationlaw.
• Stage 3: quen
hing with β = 0 and h 6= 0.From the mathemati
al point of view, without loss of generality, we will assume that βand h are time independent fun
tions. Then, the mathemati
al result to be formulatedin the following se
tion 
an be applied subsequently to the three pro
ess stages, 
overingthe 
omplete 
ase hardening pro
ess.3 Assumptions and main resultLet Ω ⊂ R

3 be an open bounded set with C2-boundary ∂Ω and QT := Ω × (0, T ) the
orresponding time 
ylinder. We use the following notations for fun
tion spa
es:
• W 1,∞(0, T ;L∞(Ω)) = { v ∈ L∞(0, T ;L∞(Ω)) : vt ∈ L∞(0, T ;L∞(Ω)) }.

• W r,s
p (QT ) = Lp(0, T ;W r

p (Ω)) ∩W s
p (0, T ;Lp(Ω)).For p = 2 we write W r,s

p (QT ) = Hr,s(QT ).
• We denote by V the spa
e H1(Ω) and by V ∗ the spa
e (H1(Ω))∗.
W (0, T ) = { v ∈ L2(0, T ;V ) : vt ∈ L2(0, T ;V ∗) }, endowed with the norm

‖v‖W (0,T ) =
(

T
∫

0

(‖v(t)‖2
V + ‖v′(t)‖2

V ∗)dt
)

1
2
.Throughout the paper we will use the following assumptions:6



(A1) ρ and k are positive 
onstants.(A2) α ∈ C(R). Lp, Lm ∈ L∞(R) and they are Lips
hitz-
ontinuous.(A3) θΓ is a positive 
onstant. h ∈ L∞(∂Ω) with h(x) ≥ 0 a.e. in ∂Ω. We assumethat θ0 ∈ H1(Ω) and c0 ∈ L2(Ω).(A4) g1, g2 are Lips
hitz-
ontinuous in both variables, moreover there are positive 
on-stants γ1, γ2 su
h that 0 ≤ g1(θ, c) ≤ γ1, 0 ≤ g2(θ, c) ≤ γ2, ∀ θ, c ∈ R.(A5) m is Lips
hitz-
ontinuous satisfying m(θ, c) ∈ [0, 1] for every θ, c ∈ R.(A6) D(θ, c) is Lips
hitz in both arguments and there are 
ostants γ3, γ4 su
h that
0 < γ3 ≤ D(θ, c) ≤ γ4, ∀θ, c ∈ R.(A7) cp is a positive 
onstant. β ∈ L∞(∂Ω) with β ≥ 0 a.e. in ∂Ω.Summarizing the model equations of Se
tion 2, we 
onsider the following boundary valueproblem:

ρα(θ)
∂θ

∂t
− div

(

k∇θ
)

= ρLp(θ)pt + ρLm(θ)mt in QT (3.1a)
∂c

∂t
− div((1 − p−m)D(θ, c)∇c) = 0 in QT (3.1b)

pt = (1 − p−m)g1(θ, c) in QT (3.1
)
mt = [min{m(θ, c); 1 − p} −m]+g2(θ, c) in QT (3.1d)

−k
∂θ

∂ν
= h(θ − θΓ) on ∂Ω × (0, T ) (3.1e)

−(1 − p−m)D(θ, c)
∂c

∂ν
= β(c− cp) on ∂Ω × (0, T ) (3.1f)
θ(x, 0) = θ0 in Ω (3.1g)
c(x, 0) = c0 in Ω (3.1h)
p(0) = 0 in Ω (3.1i)
m(0) = 0 in Ω. (3.1j)We are going to prove that, under the hypothesis above, the 
onsidered problem has aweak solution.Theorem 3.1 (Existen
e of a weak solution). Assume (A1)-(A7), then there exists aweak solution (θ, c, p,m) to problem (3.1a-j) su
h that θ ∈ H2,1(QT ), c ∈W (0, T ), p,m ∈

W 1,∞(0, T ;L∞(Ω)), i = 1, 2.With slightly stronger assumptions on the data, we 
an also prove uniqueness.
7



Theorem 3.2 (Uniqueness). Suppose that (A1)-(A7) are satis�ed. Assume moreover that
α is 
onstant, D = D(θ), h, β ∈ W 1

5 (∂Ω), θ0, c0 ∈ W 2
5 (Ω). Then the solution to (3.1a-j)is unique.Remark 1. The regularity assumptions on the boundary and initial values in the unique-ness theorem 
ould be weakened; to avoid unne
essary te
hni
alities we assumed θΓ and

cp to be 
onstants, but they 
ould be in fa
t fun
tions of spa
e and time.4 Proof of Theorem 3.1The proof is 
arried out using a nested �xed point argument. We divide the proof inthree steps. The �rst is a preliminary lemma 
on
erning the ODE system (3.1
,d) only,for θ and c pres
ribed. The se
ond step is the 
oupling of the ODE system and thetemperature equation, whi
h gives a solution p,m, θ depending on c and the third is thefurther 
oupling with the equation for c.We begin with 
onsidering the initial value problem
zt = f(z, θ, c) in QT (4.1a)

z(0) = 0 in Ω (4.1b)where z = (p,m)T and f = (f1, f2)
T denotes the right-hand side of (3.1
,d).Lemma 4.1. Under the assumption (A4),(A5) the following statements are valid:(a) For every θ, c ∈ L2(QT ) problem (4.1a)-(4.1b) has a unique solution z su
h that

p ≥ 0, m ≥ 0 and
‖|z|‖W 1,∞(0,T ;L∞(Ω)) ≤Mfor a 
onstant M independent from θ and c. Moreover, there exists a 
onstant cTsu
h that

0 ≤ p(x, t) +m(x, t) ≤ cT < 1 for a.e. (x,t) in QT .(b) There are 
onstantsM1 ,M2 > 0 su
h that for every θ1, θ2, c1, c2 ∈ Lp(QT ), for almostall t ∈ (0, T ) and all p ≥ 2 we have
‖|z1(t) − z2(t)|‖

p
W 1,p(Ω) ≤M1

t
∫

0

‖θ1 − θ2‖
p
Lp(Ω)ds +M2

t
∫

0

‖c1 − c2‖
p
Lp(Ω)ds (4.2)where pi, mi is the solution 
orresponding to (θi, ci), and | · | is the Eu
lidean normin R

2.Proof of Lemma 4.1. In order to prove (a) it is 
onvenient to rewrite problem (4.1a,b) as:
zt = F (z, t) in (0, T ) (4.3a)

z(0) = 0 (4.3b)8



with F (z, ·) = f(z, θ(·), c(·)).First of all we are going to show that the hypothesis of the existen
e theorem of Carathéodoryare satis�ed:(i)
t 7→ F (z, t) is measurable on (0, T ) for each z ∈ [0, 1] × [0, 1];

z 7→ F (z, t) is continuous on [0, 1] × [0, 1] for almost all t ∈ (0, T ).These 
onditions follow from the de�nition of F as a 
onsequen
e of the measurabilityof θ and c on (0, T ) and of the fa
t that g1(θ, c), g2(θ, c) are Lips
hitz 
ontinuous in bothvariables.(ii) Using assumption (A4),(A5) we have
|Fi(z, t)| ≤ (1 + |p| + |m|)γi ≤ 3γi for i = 1, 2 on [0, 1] × [0, 1] × (0, T ).A

ording to Carathéodory Theorem (
f, eg., [26℄, p.1044) (4.3a,b) has a solution on sometime interval (0, T+).Next we are going to show that the solution is unique. To this end we have to prove that
|F (z1, t) − F (z2, t)| ≤ L|z1 − z2| ∀(z1, t), (z1, t) ∈ [0, 1] × [0, 1] × (0, T ). (4.4)Indeed, a

ording to the de�nition of F :

|F (z1, t) − F (z2, t)|
2 = |(1 − p1 −m1)g1(t) − (1 − p2 −m2)g1(t)|

2

+
∣

∣[min{m(t); 1 − p1} −m1]+g2(t) − [min{m(t); 1 − p2} −m2]+g2(t)
∣

∣

2
.Thanks to the boundedness of g1 and g2, we obtain

|(1 − p1 −m1)g1(t) − (1 − p2 −m2)g1(t)| ≤ γ1(|p1 − p2| + |m2 −m1|)and
|[min{m(t); 1 − p1} −m1]+g2(t) − [min{m(t); 1 − p2} −m2]+g2(t)|

≤ γ2|min{m(t); 1 − p1} −m1 − min{m(t); 1 − p2} +m2|.We shall now distinguish some 
ases.If either min{m(t); 1 − pi} = 1 − pi or min{m(t); 1 − pi} = m(t), for i = 1, 2, (4.4)immediately follows.If min{m(t); 1 − p1} = 1 − p1 and min{m(t); 1 − p2} = m(t) (the same holds for invertedindi
es), we have
γ2|min{m(t); 1 − p1} −m1 − min{m(t); 1 − p2} +m2|

≤ γ2(|m1 −m2| + |1 − p1 −m(t)|) ≤ γ2

(

|m1 −m2| + |p1 − p2|
)

. (4.5)Thus, there exists a positive 
onstant L su
h that
|F (z1, t) − F (z2, t)| ≤ L|z1 − z2|.Hen
e we have proved uniqueness of z on (0, T+).Now, we de�ne Tǫ as the maximal time su
h that the solution to (4.3a,b) exists and9



Z < 1 − ǫ on (0, Tǫ), where Z = p +m.The last step in order to prove point (a) of the lemma is to show that for any T > 0 thereexists an ǫ su
h that |Z| ≤ 1 − ǫ in [0, T ].This will be done by means of a 
lassi
al 
omparison 
riterium for ODE (see for instan
e[16℄, Chap.I, Prop. 3.1).
Z = p+m satis�es, on [0, Tǫ):

Ż(t) = (1 − Z(t))g1(t) + [min{m(t); 1 − p(t)} −m(t)]+g2(t)

≤ g(t, Z(t)) := (1 − Z(t))(g1(t) + g2(t)),

Z(0) = 0.Now, if we 
onsider on [0, T ] the auxiliary problem:
V̇ (t) = (1 − V (t))(g1(t) + g2(t)) = g(t, V (t))

V (0) = 0the solution is given by
V (t) = 1 − e−

R t
0
(g1+g2)(s)ds ∀ t ∈ [0, T ]and we immediately have that there exists a 
onstant CT > 0 su
h that:

0 ≤ V (t) ≤ CT < 1 on [0, T ).Noti
e that g(t, V (t)) = (1 − V (t))(g1(t) + g2(t)) is Lips
hitz 
ontinuous on [0, T ) withrespe
t to V .Thus, 
hoosing ǫ = 1 − CT , we have
Z(t) ≤ V (t) ≤ 1 − ǫ on [0, T ].Sin
e Tǫ was 
hosen maximally su
h that Z(t) ≤ 1−ǫ on [0, Tǫ], it follows that Tǫ ≥ T .

(b) Let us 
onsider again the equation zt = f(z, θ, c). Let zi be the solution to (4.1a,b),
orresponding to θi, ci, i = 1, 2. Denoting z = z1 − z2, subtra
ting the equations andtaking the s
alar produ
t with the fun
tion |z|p−2z, we obtain:
1

p

∫

Ω

|z(t)|pdx =

t
∫

0

∫

Ω

(

f(z1, θ1, c1) − f(z1, θ2, c2)
)

· z|z|p−2dxds. (4.6)Invoking (A4), f is Lips
hitz-
ontinuous in all variables, thus, pro
eeding from (4.6),the 
on
lusion follows through standard appli
ation of Young's inequality and Gronwalllemma. The proof is thus 
ompleted.Next, we de�ne
B(θ, c) := ρLp(θ)ṗ + ρLm(θ)ṁ, (4.7)where (p,m) depends on θ, c as 
hara
terized by the previous lemma.10



Lemma 4.2. Suppose that (A2),(A4) hold. Then the operator B de�ned by (4.7) hasthe following properties(a) There exists a 
onstant B̄ independent of θ, c su
h that, for all θ ∈ L2(QT ), c ∈
L2(QT )

‖B(θ, c)‖L∞(QT ) ≤ B̄.(b) Given c ∈ L2(QT ), let θk ⊂ L2(QT ) be any sequen
e 
onverging strongly in L2(QT )to θ ∈ L2(QT ). Then for every p ∈ [1,∞), we have
B(θk, c) → B(θ, c) strongly in Lp(QT ). (4.8)(
) There are 
onstants K1, K2 > 0 su
h that for all θ1, θ2, c1, c2 ∈ L2(R × R) and foralmost all x ∈ Ω and every t ∈ (0, T )

t
∫

0

∣

∣B(θ1(x, s), c1(x, s)) −B(θ2(x, s), c2(x, s))
∣

∣

2
ds

≤ K1

t
∫

0

|θ1(x, s) − θ2(x, s)|
2 ds+K2

t
∫

0

|c1(x, s) − c2(x, s)|
2ds.Proof of Lemma 4.2. (a) follows dire
tly from assumptions (A2),(A4),(A5) and Lemma4.1 (a).(b) We have

ṗθ,c = (1 − p−m)g1(θ, c) (4.9)
ṁθ,c = [min{m(θ, c); 1 − p} −m]+g2(θ, c). (4.10)Let x ∈ Ω \N , with N ⊂ Ω of zero measure and 
onsider z = (p,m). By Lemma 4.1 (a),

‖ zθk
‖W 1,∞(0,T ;L∞(Ω))≤ M ∀k, thus ‖ zθk

‖W 1,p(0,T ;L∞(Ω))≤ M ∀k, ∀p < ∞. Thus, thereexists a subsequen
e, {θk′}, and some ẑ su
h that
zθk′

(x, ·) → ẑ(x, ·) weakly − star in W 1,∞(0, T ).Thus, we have
żθk′

(x, ·) → ˙̂z(x, ·) weakly in Lp(0, T ) ∀p <∞, (4.11)
zθ′k

(x, ·) → ẑ(x, ·) strongly in C[0, T ]. (4.12)Sin
e the solution to (4.14d,e) is unique we have ẑ(x, ·) = zθ(x, ·) and the 
onvergen
eholds for the whole sequen
e, hen
e we 
an 
on
lude that zθk
(x, t) → zθ(x, t) pointwisein Q. Sin
e θk → θ strongly in L2(QT ), using assumption (A4), possibly extra
ting asubsequen
e, we have

ρLp(θk′)ṗθk′,c
+ ρLm(θk′)ṁθk′,c

→ ρLp(θ)ṗθ + ρLm(θ)ṁθ a.e in QT . (4.13)But, applying Lebesgue theorem, we get
B(θk′ , c) → B(θ, c) strongly in Lp(QT ).Sin
e the limit does not depend on the extra
ted subsequen
e the 
onvergen
e holds forthe whole sequen
e {θk}, hen
e we obtain (4.8).(
) follows dire
tly from assumption (A2) and Lemma 4.1 (b).11



Lemma 4.3. Let ĉ ∈ L2(0, T ;L2(Ω)). There exists a unique θ(ĉ) ∈ H2,1(QT ) and aunique z(ĉ) = (p(ĉ), m(ĉ)) ∈W 1,∞(0, T ;L∞(Ω)) ×W 1,∞(0, T ;L∞(Ω)), satisfying
ρα(θ)

∂θ

∂t
− div

(

k∇θ
)

= B(θ, ĉ) in QT (4.14a)
−k

∂θ

∂ν
= h(θ − θΓ) on ∂Ω × (0, T ) (4.14b)
θ(x, 0) = θ0 in Ω (4.14
)

zt = f(z, θ, ĉ) in QT (4.14d)
z(0) = 0 in Ω. (4.14e)where f is de�ned as in (4.1a). Moreover, there exist λ1, λ2 > 0 su
h that

‖θ1 − θ2‖
2
L2(0,t;L2(Ω)) ≤ λ1

t
∫

0

‖ĉ1 − ĉ2‖
2
L2(0,s;L2(Ω))ds (4.15)and

‖|z1 − z2|‖
2
L2(0,t;L2(Ω)) ≤ λ2

t
∫

0

‖ ĉ1 − ĉ2 ‖
2
L2(0,s;L2(Ω)) ds, (4.16)where (θi, ci) is the solution 
orresponding to ĉi, i = 1, 2.Proof of Lemma 4.3. Existen
e. We introdu
e the operator

P : L2(QT ) → L2(QT ),

θ = P θ̂,by demanding θ to be the solution of the linear paraboli
 problem
ρα(θ̂)

∂θ

∂t
− k△θ = B(θ̂, ĉ) in QT (4.17a)

−k
∂θ

∂ν
= h(θ − θΓ) on ∂Ω × (0, T ) (4.17b)
θ(x, 0) = θ0 in Ω. (4.17
)A

ording to 
lassi
al results about paraboli
 equations, problem (4.17a-
) has a uniquestrong solution θ ∈ H2,1(QT ) (see, for instan
e, [18℄), therefore the operator P is well-de�ned.Moreover, thanks to Lemma 4.2 (a), there exists a 
onstant M > 0, independent of θ̂,su
h that:

‖θ‖H2,1(QT ) ≤ M. (4.18)We shall now show the 
ontinuity of the operator P .Let θ̂n ⊂ L2(QT ) with θ̂n → θ̂ strongly in L2(QT ). De�ning θn = P θ̂n, in view of (4.18),
‖θn‖H2,1(QT ) ≤M . Thus, we 
an �nd a sub-sequen
e θ̂n′ su
h that

θn′ → θ weakly in H2,1(QT ), strongly in L2(QT ), (4.19a)
θn′ → θ a.e. in QT . (4.19b)12



Testing (4.17a) by φ ∈ L2(0, t;H1(Ω)), we get
t

∫

0

∫

Ω

ρα(θ̂n′)θn′,s φ dx ds+ k

t
∫

0

∫

Ω

∇θn′∇φ dx ds

+

t
∫

0

∫

∂Ω

h(σ)(θn′ − θΓ)φ dσ ds −

t
∫

0

∫

Ω

B(θ̂n′ , ĉ)φ dx ds = 0. (4.20)By means of (4.19a,b) we 
an pass to the limit in last three terms of (4.20). We 
an breakthe �rst term in two terms
ρ

t
∫

0

∫

Ω

α(θ̂n′)θn′,sφ dx ds = ρ

t
∫

0

∫

Ω

α(θ̂n′)(θn′,s − θs)φ dx ds + ρ

t
∫

0

∫

Ω

α(θ̂n′)θsφ dx ds.Thanks to the 
ontinuity of α, we have that
α(θ̂n′)φ→ α(θ̂)φ a.e. in QTthus, using Lebesgue theorem, ρα(θ̂n′)φ → ρα(θ̂)φ strongly in L2(QT ) while θn′,s → θsweakly in L2(QT ). Thus, t

∫

0

∫

Ω

α(θ̂n′)(θn′,s − θs)φ dx ds→ 0 and
ρ

t
∫

0

∫

Ω

α(θ̂n′)θn′,sφ dx ds→ ρ

t
∫

0

∫

Ω

α(θ̂)θsφ dx ds.Hen
e we have obtained
ρ

t
∫

0

∫

Ω

α(θ̂)θsφ dx ds+ k

t
∫

0

∫

Ω

∇θ∇φ dx ds

+

t
∫

0

∫

∂Ω

h(σ)(θ − θΓ)φ dσ ds −

t
∫

0

∫

Ω

B(θ̂, ĉ)φ dx ds = 0.As the solution to the paraboli
 problem (4.17a-
) is unique, we have
θ = P θ̂ a.e. in QTand, sin
e the limit does not depend on the extra
ted sub-sequen
e, it follows that

P θ̂n → P θ̂weakly in H2,1(QT ) and strongly in L2(QT ).Now, let
K := {u ∈ L2(QT ) :‖ u ‖H2,1(QT )≤M}.13



K is non-empty, 
onvex, 
losed and relatively 
ompa
t subset of L2(QT ) and F : K ⊂
L2(QT ) → K is a 
ontinuous mapping. By S
hauder �xed point theorem, there existsa �xed point of the mapping F , i.e. there exists a weak solution θ ∈ H2,1(QT ) to (3.1a,e,f).Uniqueness and stability. Let

J(θ) :=

θ
∫

0

ρα(ξ)dξ. (4.21)Integration of (3.1a) with respe
t to time leads to
t

∫

0

B(θ, c)(x, s)ds = J(θ(x, t)) − J(θ0(x)) − k∆

t
∫

0

θ(x, s)ds. (4.22)Now, let θ1, θ2 ∈ H2,1(QT ) be solutions to (3.1a,e,g) 
orresponding to ĉ1, ĉ2 respe
tively.Inserting these solutions into (4.22), subtra
ting both equations, and testing by θ :=
θ1 − θ2, we �nd

t
∫

0

∫

Ω

(

s
∫

0

B(θ1(x, ξ), ĉ1(x, ξ)) − B(θ2(x, ξ), ĉ2(x, ξ))dξ
)

θ(x, s)dx ds

=

t
∫

0

∫

Ω

[J(θ1(x, s)) − J(θ2(x, s))]θ(x, s)dx ds + k

t
∫

0

∫

Ω

∇
(

s
∫

0

θ(x, ξ)dξ
)

∇θ(x, s)dx ds

+

t
∫

0

∫

∂Ω

(

s
∫

0

h(σ)θ(σ, ξ)dξ
)

θ(σ, s)dσ ds. (4.23)Con
erning the last term we 
an see that
t

∫

0

∫

∂Ω

(

s
∫

0

h(σ)θ(σ, ξ)dξ
)

θ(σ, s)dσ ds =

t
∫

0

∫

∂Ω

h(σ)
(

s
∫

0

θ(σ, ξ) dξ
)

θ(σ, s) dσds

=
1

2

t
∫

0

∫

∂Ω

h(σ)
d

ds

(

s
∫

0

θ(σ, ξ) dξ
)2

dσds =
1

2

∫

∂Ω

h(σ)
(

t
∫

0

θ(σ, s)ds
)2

dσ.Thus, from (4.23) we get:
t

∫

0

∫

Ω

(

s
∫

0

B(θ1(x, ξ), ĉ1(x, ξ)) − B(θ2(x, ξ), ĉ2(x, ξ))(x, ξ))dξ
)

θ(x, s)dx ds

≥ ηρ

t
∫

0

∫

Ω

θ2(x, s)dx ds +
k

2

∫

Ω

∣

∣

∣
∇

t
∫

0

θ(x, s)ds
∣

∣

∣

2

dx

+
1

2

∫

∂Ω

h(σ)
(

t
∫

0

θ(σ, s)ds
)2

dσ ≥ ηρ

t
∫

0

∫

Ω

θ2(x, s)dx ds .14



Using Holder's and Young's inequalities and Lemma 4.1 (
) it follows that
∣

∣

∣

∣

∣

∣

t
∫

0

∫

Ω

(

s
∫

0

B(θ1(x, ξ), ĉ1(x, ξ)) − B(θ2(x, ξ), ĉ2(x, ξ))dξ
)

θ(x, s)dx ds

∣

∣

∣

∣

∣

∣

≤
1

4δ

t
∫

0

∫

Ω

(

s
∫

0

B(θ1(x, ξ), ĉ1(x, ξ)) − B(θ2(x, ξ), ĉ2(x, ξ))dξ
)2

dx ds

+ δ

t
∫

0

‖θ(x, s)‖2
L2(Ω) ds

≤
T

4δ

t
∫

0

∫

Ω

s
∫

0

(

K1|θ1(x, ξ) − θ2(x, ξ)|
2 + K2|ĉ1(x, ξ) − ĉ2(x, ξ)|

2
)

dξdx ds

+ δ

t
∫

0

‖θ(x, s)‖2
L2(Ω) ds

≤
CT

4δ

t
∫

0

‖θ‖2
L2(0,s;L2(Ω)) ds +

CT

4δ

t
∫

0

‖c‖2
L2(0,s;L2(Ω)) ds + δ

t
∫

0

‖θ(x, s)‖2
L2(Ω) ds.Thus, we have

ηρ

t
∫

0

∫

Ω

θ2(x, s)dx ds ≤
CT

4δ

t
∫

0

‖θ‖2
L2(0,s;L2(Ω))ds

+
CT

4δ

t
∫

0

‖c‖2
L2(0,s;L2(Ω)) ds+ δ

t
∫

0

‖θ(x, s)‖2
L2(Ω) ds.Choosing δ > 0 su
h that ηρ− δ > 0 we have:

‖ θ ‖2
L2(0,t;L2(Ω))≤ α

t
∫

0

‖θ‖2
L2(0,s;L2(Ω))ds + β

t
∫

0

‖c‖2
L2(0,s;L2(Ω))dswith 
onstants α , β > 0.Hen
e, applying Gronwall lemma, we �nd a 
onstant C1 su
h that

‖θ1 − θ2‖
2
L2(0,t;L2(Ω)) ≤ C1

t
∫

0

‖ĉ1(s) − ĉ2(s)‖
2
L2(0,s;L2(Ω))ds. (4.24)Inequality (4.16) follows immediately from Lemma 4.1 (b) and estimate (4.15). The proofof Lemma 4.3 is thus 
ompleted. 15



Now, we are in a position to proof Theorem 3.1.Let us denote
µ(θ, c) := (1 − p−m)D(θ, c).We note that, in view of (A6) and Lemma 4.1 (b), µ is Lips
hitz-
ontinuous with respe
tto θ and c.We de�ne an operator

T : L2(QT ) −→ L2(QT ),

T ĉ = c, (4.25)by demanding c to be the solution of the paraboli
 problem
∂c

∂t
− div(µĉ∇c) = 0 in QT (4.26a)

−µĉ
∂c

∂ν
= β(c− cp) on ∂Ω × (0, T ) (4.26b)

c(x, 0) = c0 in Ω. (4.26
)where µĉ = (1− pĉ −mĉ)D(θĉ, c), (θĉ, pĉ, mĉ) being the solution to (3.1a,
,d) with respe
tto given ĉ. Denoting
a(c, φ; t) :=

∫

Ω

µĉ∇c∇φ dx +

∫

∂Ω

β c φ dσ,

〈f(t), φ〉 :=

∫

∂Ω

βcpφ dσ, φ ∈ H1(Ω)we have that problem (4.26a-
) is equivalent to the following one. We seek a fun
tion csu
h that, for all φ ∈ H1(Ω) and a.e in t ∈ (0, T )

〈 d

dt
c(t), φ

〉

+ a(c(t), φ; t) = 〈f(t), φ〉, (4.27a)
c(0) = c0, (4.27b)
c ∈W (0, T ), (4.27
)where 〈 , 〉 denotes the duality between H1(Ω) and (H1(Ω))∗.In view of (A3),(A6),(A7), (4.27a-
) admits a unique solution c (
f [26℄, Prop. 30.10).Moreover, there exists a 
onstant M independent of ĉ, su
h that:

‖c‖W (0,T ) ≤M. (4.28)To derive the 
ontinuity of the operator T , let {ĉn} ⊂ L2(0, T ;L2(Ω)), with ĉn → ĉstrongly in L2(QT ). De�ning cn = T ĉn, thanks to (4.28), we have ‖cn‖W (0,T ) ≤M . Thus,there exists a sub-sequen
e {ĉn′} su
h that
cn′ −→ c weakly inW (0, T ). (4.29)16



We test (4.26a) by
Φ(x, t) = ψ(t)φ(x) with ψ ∈ C1(0, T ), ψ(T ) = 0, φ ∈ H1(Ω). (4.30)Denoting T ĉn′ := cn′, we have

T
∫

0

∫

Ω

cn′,s Φ dx ds+

T
∫

0

∫

Ω

µĉn′
∇cn′∇Φ dx ds+

T
∫

0

∫

∂Ω

β(cn′ − cp)Φ dσds = 0. (4.31)Con
erning the �rst term in (4.31) we have
T

∫

0

∫

Ω

cn′,s Φ dx ds = −

∫

Ω

cn′(x, 0) Φ(x, 0)dx −

T
∫

0

∫

Ω

cn′ Φs dx ds.Now,
∫

Ω

cn′(x, 0) Φ(x, 0)dx =

∫

Ω

c0 Φ(x, 0)dx ,and, by virtue of (4.29),
T

∫

0

∫

Ω

cn′ Φs dx ds→

T
∫

0

∫

Ω

cΦs dx ds a.e. in QT .The se
ond term 
an be rearranged as
T

∫

0

∫

Ω

µĉn′
∇cn′∇Φ dx ds =

T
∫

0

∫

Ω

µĉn′
(∇cn′ −∇c)∇Φ dx ds +

T
∫

0

∫

Ω

µĉn′
∇c∇Φ dx ds.Sin
e µ is 
ontinuous and bounded as a fun
tion of c, possibly extra
ting a subsequen
e,we obtain: µĉn′

(x, t) → µĉ(x, t) a.e in QT , thus, using Lebesgue theorem, it 
onvergesstrongly in L2(QT ). Thus, we have
µĉn′

∇Φ → µĉ∇Φ strongly in L2(QT ).Moreover, (∇cn′ −∇c) → 0 weakly in L2(QT ) be
ause of (4.29), thus we obtain
T

∫

0

∫

Ω

µĉn′
∇cn′∇Φ dx ds→

T
∫

0

∫

Ω

µĉ∇c∇Φ dx ds.Applying the tra
e theorem, the last term in (4.31) 
onverges too.Thus, we 
an pass to the limit in (4.31) obtaining
−ψ(0)

∫

Ω

c0 φ(x)dx−

T
∫

0

∫

Ω

c ψsφ dx ds

+

T
∫

0

ψ

∫

Ω

µĉ∇c∇φ dx ds+

T
∫

0

ψ

∫

∂Ω

β(c− cp)φ dσds = 0. (4.32)
17



Consequently
T

∫

0

ψ
(

∫

Ω

cs φ dx +

T
∫

0

∫

Ω

µĉ∇c∇φ dx +

T
∫

0

∫

∂Ω

β(c− cp)φ dσ
)

ds = 0.The above is true for φ, ψ satisfying (4.32). Therefore (4.32) gives, a.e in t ∈ (0, T )

〈 d

dt
c(t), φ

〉

+ a(t; c(t), φ) = 〈F (t), φ〉 ∀φ ∈ H1(Ω).Sin
e the solution of (4.26a-
) is unique, we 
an 
on
lude
T ĉ = c,and, sin
e the limit does not depend on the extra
ted sub-sequen
e, it follows that

T ĉn → T c (4.33)weakly in W (0, T ) and strongly in L2(QT ).Now, let
K := {v ∈ L2(QT ) : ‖v‖W (0,T ) ≤M}.

K is 
onvex and 
ompa
t in L2(QT ) and F : K ⊂ L2(QT ) → K is a 
ontinuous mapping.By the S
hauder �xed point theorem the proof is 
on
luded.
25 Proof of Theorem 3.2We 
ommen
e with the following regularity result:Lemma 5.1. Under the assumptions of Theorem 3.2, the solutions θ, c to the initial-boundary values problems related to equations (3.1a,b) are in W 2,1

5 (QT ).Proof. Sin
e we proved the existen
e of at least one solution for the initial-boundary valueproblems related to equations (3.1a), (3.1b), we 
an now follow the approa
h developed byJ.A. Griepentrog, in the papers [7℄, [8℄ about linear paraboli
 equations with nonsmoothbounded 
oe�
ients, in order to improve the regularity of the solutions under 
onsidera-tion.The 
oe�
ients and the right-hand sides of the equations are indeed fun
tions in L∞(QT )and the 
oe�
ients in the boundary 
onditions too.Moreover, in fa
t, the initial 
onditions are Lips
hitz-
ontinuous fun
tions and we 
anapply Th.3.4 and Th.6.8 of [7℄ and Th.6.1 of [8℄, when
e we obtain that θ and c are in
C(Q̄T ).It follows that the right-hand sides of the ODEs (3.1
,d) are 
ontinuous fun
tions, there-fore the 
orresponding solutions are 
ontinuously di�erentiable.Thus, the PDEs (3.1a,b) have 
ontinuous 
oe�
ients and we 
an apply a 
lassi
al resultof Ladyzenskaja ([18℄, Th.9.1, page 341) whi
h yields: θ, c ∈ W 2,1

5 (QT ).18



Lemma 5.2. Assuming that α is 
onstant, we have that, for every c1, c2 ∈ L2(QT ), thereexists a 
onstant M > 0 su
h that, for the 
orresponding θ1, θ2, it holds:
‖θ1 − θ2‖

2
H2,1(QT ) ≤ M‖c1 − c2‖

2
L2(QT ). (5.1)Proof. We 
onsider the heat equation of our system:

ραθt = k∆θ + ρLppt + ρLmmt. (5.2)We write (5.2) for θ1, c1, p1, m1 and θ2, c2, p2, m2. Subtra
ting, we see that the di�eren
esatis�es the following system:
ραθt − k∆θ = ρ(Lp(θ1)p1,t − Lp(θ2)p2,t) + ρ(Lm(θ1)m1,t − Lm(θ2)m2,t)

−k∂θ∂ν = hθ

θ(x, 0) = 0.Applying again standard paraboli
 theory (
f. [18℄, Th.6.1), invoking Lemma 4.2 (b) and(A2), (A3) we �nish the proof.Lemma 5.3. Let u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), then there holds
T

∫

0

‖u(t)‖10/3

L10/3(Ω)
dt ≤

(

T
∫

0

‖u(t)‖2

L6(Ω)
dt

)

‖u‖4/3

L∞(0,T ;L2(Ω))
.Proof. Owing to Riesz' 
onvexity theorem (
f. [26℄, A113), we have

‖u‖Lr(Ω) ≤ ‖u‖1−Θ

Lq1 (Ω)
‖u‖Θ

Lq2 (Ω)
,for all u ∈ Lq1(Ω) ∩ Lq2(Ω) with 1 ≤ q1, q2 < ∞, 0 < Θ < 1, and 1

r
= 1−Θ

q1
+ Θ

q2
.Invoking the 
ontinuous embedding H1(Ω) ⊂ L6(Ω), the assertion follows by de�ning

q1 = 6, q2 = 2, Θ = 2
5
, and r = 10

3
.We are now in position to prove Theorem 3.2. We write equation (3.1b) for c1 and c2,subtra
t, integrate over QT and test by c1 − c2. In the sequel we will use the followingnotations: c = c1 − c2, θ = θ1 − θ2, p = p1 − p2, m = m1 −m2.We have

1

2

∫

Ω

c2(t)dx+

t
∫

0

∫

Ω

(

(1 − p1 −m1)D(θ1)∇c1 − (1 − p2 −m2)D(θ2)∇c2

)

∇c dxds

+

t
∫

0

∫

∂Ω

βc2dσds = 0.
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Now,
t

∫

0

∫

Ω

(

(1 − p1 −m1)D(θ1)∇c1 − (1 − p2 −m2)D(θ2)∇c2

)

∇c dxds

=

t
∫

0

∫

Ω

(1 − p1 −m1)D(θ1)|∇c|
2dxds−

t
∫

0

∫

Ω

(p+m)D(θ1)∇c2∇c dxds

+

t
∫

0

∫

Ω

(1 − p2 −m2)(D(θ1) −D(θ2))∇c2∇c dxds . (5.3)Thus, we have
1

2

∫

Ω

c2(t)dx+K5

t
∫

0

‖∇c‖2
L2(Ω)dxds

≤

t
∫

0

∫

Ω

|p+m||D(θ1)||∇c2||∇c| dxds

+

t
∫

0

∫

Ω

|1 − p2 −m2||D(θ1) −D(θ2)||∇c2||∇c| dxds. (5.4)By means of Lemma 5.1, we know that c2 ∈ W 2,1
5 (QT ). A

ording to Amann (
f [2℄,Theorem 1.1), we have the embedding W 2,1

5 (QT ) →֒ C([0, T ];W 1
5 (Ω)). Thus, we 
anestimate the se
ond term in the right hand-side of (5.3) as:

t
∫

0

∫

Ω

|p+m||D(θ1)||∇c2||∇c| dxds

≤

t
∫

0

‖p+m‖L10/3(Ω)‖∇c2‖L5(Ω)‖D(θ1)‖L∞(Ω)‖∇c‖L2(Ω)ds

≤ δ

t
∫

0

‖∇c‖2
L2(Ω)ds+

K1

4δ

t
∫

0

‖p+m‖2
L10/3(Ω)ds. (5.5)Thanks to Lemma 4.1 (b), we get:

t
∫

0

‖p+m‖2
L10/3(Ω)ds =

t
∫

0





∫

Ω

|p+m|10/3dx





3/5

ds

≤ K1

t
∫

0





s
∫

0

∫

Ω

θ10/3dxdτ





3/5

ds + K2

t
∫

0





s
∫

0

∫

Ω

c10/3dxdτ





3/5

ds. (5.6)
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Now, we apply Lemma 5.3 and Young's inequality to the right-hand side of (5.6), obtain-ing:
t

∫

0





s
∫

0

∫

Ω

θ10/3dxdτ





3/5

ds ≤ K

t
∫

0





s
∫

0

‖θ‖2
H1(Ω)dτ





3/5

‖θ‖
4/5
L∞(0,s;L2(Ω))ds

≤
2

5
δ2

t
∫

0

s
∫

0

‖θ‖2
H1(Ω)dτds +

3

5δ2

t
∫

0

‖θ‖2
L∞(0,s;L2(Ω))ds. (5.7)An analogous estimate holds for the term t

∫

0

[

s
∫

0

∫

Ω

c10/3dxdτ

]3/5

ds.Regarding the third term in the right-hand side of (5.3), we have:
t

∫

0

∫

Ω

|1 − p2 −m2||D(θ1) −D(θ2)||∇c2|∇c dxds ≤ K3

t
∫

0

‖θ‖L6(Ω)‖|∇c|‖L2(Ω)ds

≤ δ3

t
∫

0

‖θ‖2
H1(Ω)ds +

K4

4δ3

t
∫

0

‖∇c‖2
L2(Ω)ds. (5.8)Summing up, from (5.3) 
ombined with (5.7) and (5.8), we �nd that

1

2

∫

Ω

c2(t)dx+K5

t
∫

0

∫

Ω

‖∇c‖2dxds

≤ K6

t
∫

0

‖θ‖2
H1(Ω)ds +K7

t
∫

0

‖θ‖2
L∞(0,s;L2(Ω))ds +

K4

4δ3

t
∫

0

‖∇c‖2
L2(Ω)ds. (5.9)Thus, by means of Lemma 5.2, for an appropriate 
hoi
e of δ3, we end up with:

1

2

∫

Ω

c2(t)dx+

t
∫

0

‖∇c‖2
L2(Ω)dxds ≤ K8

t
∫

0

‖c‖2
L2(Ω)ds. (5.10)The proof is 
on
luded applying Gronwall Lemma. 2The following table 
ontains the parameters involved in the 
omplete pro
ess.
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Value Unit Value Unit
ρ 7800 kg/m3 θ0 1150 K
α 385 J/Kg K c0 0.25 weight %
Lp 77000 J/Kg cp 1.2 weight %
Lm 82000 J/Kg θΓ 300 K

β (if t ≤ T1) 6e-5 m/s β (if T1 < t ≤ T ) 0 m/s

h (if t ≤ T1) 0 W/m2K h (if T1 < t ≤ T ) 10000 W/m2K

D 0.47exp(−1.6c− (37000 − 6600c)/(1.987T ))1e− 4 m2/s

k 35 W/mKTable 1: Pro
ess parameters.
6 Numeri
al resultsIn this se
tion we present some numeri
al simulations to demonstrate the e�e
t of gas
arburizing on a sample workpie
e. The simulations are based on our model (3.1a-j). Asa sample 
on�guration, we 
onsider the 
ross se
tion of a 
ylinder of radius 50mm. Notethat our initial temperature is 
hosen above the austenitization temperature su
h thatwe may assume it to be homogeneously austeniti
. Material parameters are taken fromthe data tables for the low-
arbon steel AISI 4130. The interval time (0, T ) of the wholepro
ess is divided as (0, Tc] ∪ [Tc, T ), where Tc denotes the ending time of 
arburization.For the pro
ess parameters we refer to Table 1. The expression for D(θ, c) is taken from[23℄, the value of h is taken from [14℄. For the fun
tion g1 we took the data of [5℄, 
f. Fig.4.

Figure 4: Plot of the transformation fun
tion g1, depending on the temperature θ.
g2 has been taken 
onstant as in [12℄, whi
h has been found su�
ient to des
ribe thekineti
s of the phase transition. The main 
oupling e�e
t is through the 
arbon dependentstart and end temperature of the martensite formation, Ms(c) and Mf (c) respe
tively,whi
h have been identi�ed from Figure 3. 22



The simulations were performed with Femlab, a software based on the �nite elementmethod.Fig. 5 is a view of a se
tor of the sample 
on�guration that we 
onsidered, after 
arburizingfor about 8 hours.

Figure 5: Snapshot of the simulation at time t = 30120 s (after 30000 se
onds 
arburizing and120 se
onds quen
hing) showing the 
arburizing e�e
t. In the right 
olumn 
arbon per
entageis indi
ated.
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ase depth versus 
arburizing time at four sele
ted temperatures.Graph based on data in table.
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As already said in the introdu
tion the pro
ess 
onsists at least of two stages: �rst, theworkpie
e is immersed in a 
arbon-ri
h atmosphere furna
e (the so-
alled 
arburizing);se
ondly, quen
hing is performed, through whi
h austenite is transformed into the hardphase martensite m, where the temperature gradient is high and into pearlite p wherethe temperature gradient is lower. In other words, the hardening o

urs 
lose to theboundary, while in the 
ore the softer phase pearlite is formed.The e�e
t of time and temperature on total 
ase depth (whi
h is usually spe
i�ed as thelayer at 
arbon 
ontent 0.4%) is shown in Figure 6.In Figure 7 we 
an observe the distribution of phase fra
tions at the end of a 
y
le of
arburizing and quen
hing.
Tc = 20000 s.
T = 20100 s.

0           0.006               0.012            0.018    
  Radial distance from boundary, [m]

Tc = 10000 s.
T = 10100 s.

0            0.006            0.012              0.018
    Radial distance from boundary, [m] 

Tc = 5000 s.
T = 5100 s.

0               0.006               0.012            0.018
    Radial distance from boundary,  [m] 

Tc = 3000 s.
T = 3100 s.

0          0.006           0.012          0.018

    Radial distance from boundary, [m] Figure 7: Phase fra
tions of martensite (red), pearlite (blue) and 
arbon per
entage 
urve(green), plotted against the radius of the 
ir
le, for di�erent 
arburizing times Tc and endtimes T , after a quen
hing time of 100 s.In the same �gure we 
an see how the formation of martensite depends on the 
arbon
on
entration, in a

ordan
e with the graphi
 of Figure 3 of the �rst se
tion, obtainedfrom experimental data. Indeed, as we 
an see in Figure 3, the martensite terminal tem-perature is well below zero, be
ause of the residual austenite at room temperature whi
h
annot be transformed into martensite, thus 100% of martensite is not a
hieved; in Figure7, derived from our simulations, the maximum of the martensite phase fra
tion is about24



65%. The maximum of the martensite fra
tion is not a
hieved on the surfa
e, but at thetotal 
ase depth, i.e. where the 
arbon 
on
entration 
orresponds to 0.4%.7 Con
luding remarksIn the present paper we have studied a mathemati
al model of 
ase hardening, in
ludingthe 
oupling between 
arbon di�usion equation, temperature evolution and phase transi-tions. From mathemati
al point of view, we have proved existen
e and uniqueness of asolution. First numeri
al results 
on�rm qualitative agreement with experiments. A moredetailed 
omparison requires more pre
ise data. To this end a 
ooperation with some en-gineering institutes has been started. The results will be published in a forth
oming paper.From pra
ti
al point of view, a redu
tion of energy 
onsumption and of pro
ess time aswell as in
reasing the pro
ess stability are of great interest. Therefore the developmentof an optimal 
ontrol strategy is under study.Referen
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