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1 IntrodutionThe goal of ase hardening is to reate a workpiee surfae whih is resistant to externalstresses and abrasion, while its ase is still dutile in order to redue fatigue e�ets. Theproess will be explained in detail in the next setion. It exploits the solid-solid phasetransitions ourring during thermal treatment of steel and requires a ertain amountof arbon in the layer to be hardened. Aordingly, the �rst stage of ase hardening isa arburization step during whih the outer workpiee layer is enrihed by arbon. Theseond stage is a quenhing step during whih a hard and wear resistant boundary layer isahieved. Sometimes, before quenhing a period of slow di�usion is allowed. The goal ofthis paper is to derive and analyze a mathematial model apable to desribe the ompleteproess of ase hardening.Conerning ase hardening there is mostly engineering literature available (see [14, 15℄and the referenes therein). Carburization and quenhing are usually onsidered andstudied separately. There are papers onerning only the arburization (see, for example[4℄) and others regarding the quenhing of arburized steel (see [17℄, [21℄). Generally, inall of the engineering papers, a lot of attention is spent to determine the proess andmaterial parameters; nevertheless the question of �nding a onsistent and exhaustivedatabase for all the parameters ourring in the whole proess seems to be still open.There is a vast literature, for instane, about the di�usion oe�ient of arbon in iron,(see [22℄ and referenes therein), but muh less for the heat transfer oe�ient duringquenhing. Mathematial models for phase transitions in steel and in their appliationsto heat treatments like indution hardening, have been developed and analyzed, e.g., in[6℄, [9℄, [10℄, [12℄, [25℄. The model for the phase fration evolutions in the present paper,follows the one proposed in [9℄.The main novelty of this paper is the derivation and analysis of a mathematial model forthe omplete ase hardening proess, aounting for the oupling of temperature, phasetransitions and arbon di�usion. This allows to evaluate the e�et of additional di�usionof arbon prior to quenhing, whih ould a�et the �nal result (see [23℄). Thus, fromappliation point of view, a more aurate model might lead to a more e�ient proessguidane and redued energy onsumption.The paper is organized as follows: in the next setion we will derive the model. In Setion3 we present notations and assumptions. In Setion 4-5 we will prove existene anduniqueness of a weak solution. Setion 6 is devoted to numerial simulations; then, inSetion 7, we ollet our �nal onsiderations and remarks.2 The mathematial modelTo �x ideas we �rst give a sketh of the gas arburizing proess. Nowadays high-tehnologyindustry employs mostly low-arbon steels, with a arbon ontent around 0.2%. For thisreason the enrihment of arbon in a super�ial layer of the workpiee may be neessaryto make it resistant to fatigue. The soure of arbon is a arbon-rih furnae atmosphereprodued from many gaseous omponents, through several hemial reations (see [23℄ fortehnial details). The workpiee is kept in the furnae until the desired amount of arbonis di�used. After arburization the seond stage is quenhing, a rapid ooling whih an2



be performed by immersion in oil or water.In the boundary layer whih has been enrihed by arbon, the rapid ooling leads to thegrowth of martensite eventually yielding the desired hard and wear resistant layer or ase,whih explains why this heat treatment is alled ase hardening.

Figure 1: Equilibrium diagram of the system iron-arbon (right) as limit of the CCT-diagram with in�nite low ooling rate.The kinetis of the phase hange an be brie�y desribed as follows. Depending ontemperature, two di�erent lattie strutures an our: a body-entered-ubi (b...)and a fae-entered-ubi (f..) lattie. Above a ertain temperature As steel is in theausteniti phase, a solid solution of arbon in f... iron. Below As this lattie is nolonger stable. But before the lattie an hange its on�guration to form a b.. struture,arbon atoms have to di�use, due to the higher solubility of arbon in the f.. lattie.The result is pearlite, a lamellar aggregate of ferrite and ementite, soft and dutile. Uponhigh ooling rate arbon has no time to di�use and is trapped, forming a tetragonallydistorted b... lattie, alled martensite. Note that, depending on the ooling historyand the arbon onentration, also two other phases, ferrite and bainite, an our.The transformation diagrams of interest for the modelling of the phase frations evolution(see equations 2.1a,b below), during the ooling proess, are alled indeed ontinuousooling transformation (CCT) diagrams and desribe the transformation of austenite asa funtion of time for a ontinuously dereasing temperature. For istane, in the left-hand side of Figure 1, the CCT diagram for the steel AISI 1045 is shown. In otherwords a sample is austenitized and then ooled at a predetermined rate and the degreeof transformation is measured, for example by dilatometry. The start of transformationis de�ned as the temperature at whih 1% of the new mirostuture has formed. Thetransformation is ompleted when only 1% of the original austenite is left.In arburized steels the proess is strongly in�uened by the arbon ontent, whih varies3



Figure 2: Three-dimensional presentation of the transformation harateristi of a14NiCr14 steel, for ontinuous ooling, after austenization at 1023◦K (Symbols: ZWbainite, M martensite, P pearlite, F ferrite).from the arbon-enrihed super�ial layer to the ore. Thus, it annot be desribed byonly one ontinuous-ooling-transformation diagram. Figure 2 shows a ontinuous oolingdiagram desribing, for a given austenitizing ondition, the transformation at all arbonlevels in a arburized speimen. The ross setions for �xed arbon perentages giveCCT diagrams of the type of the one plotted in Figure 1 on the left. This �gure alsoshows that, with in�ntely-slow ooling, the CCT diagram is idential with the equilibriumdiagram for the hemial omposition of the steel. To avoid unneessary tehnialities forthe modelling, we assume that the ooling takes plae from the high temperature phaseaustenite with phase fration a to two di�erent produt phases, pearlite with fration pand martensite with fration m. A more elaborate model aounting for all the phasesourring during the heat treatment of steel an be found in [12℄.The evolution of the phases p and m an be desribed by the following system:
ṗ = (1 − p−m)g1(θ, c) (2.1a)
ṁ = [min{m(θ, c); 1 − p} −m]+g2(θ, c) (2.1b)

p(0) = 0 (2.1)
m(0) = 0 (2.1d)where c is the onentration of arbon. Here the braket [ ]+ denotes the positive partfuntion [x]+ = max{x, 0} and the dot means the derivative with respet to t. While the4



Figure 3: Level urves of funtion m(θ, c).growth rate of pearlite ṗ is assumed to be proportional to the remaining austenite fration,the rate of martensite growth ṁ is zero if m exeeds either the non-perliti fration 1−p,or the threshold m depending on both temperature and arbon onentration. Indeedmartensite is produed at temperatures less than a valueMs but omplete transformationto martensite an be obtained only below some other temperature threshold Mf . Boththese temperatures depend on the loal value of arbon onentration. The quantity
m(θ, c) represents the maximum attainable value of martensite fration and an be de�nedas:

m(θ, c) =

{

0 θ > Ms(c)
1 θ < Mf (c)and by interpolation for intermediate temperatures. Sine there is no phase transitionfrom pearlite to martensite, the term min{m(θ, c); 1− p} represents the maximal frationof martensite that an be reahed at time t.The funtions g1 and g2 are positive given funtions that an be identi�ed from the time-temperature-transformation diagrams desribed before. The proess of arbon di�usionis governed by the following nonlinear paraboli equation:

∂c

∂t
− div((1 − p−m)D(θ, c)∇c) = 0.The fator (1 − p −m) in front of the di�usion oe�ient D(θ, c) re�ets the fat thatenrihment with arbon only takes plae in the austenite phase. The di�erene in arbonpotential between the surfae and the workpiee provides the driving fore for arbondi�usion into the piee. The arbon potential of the furnae atmosphere must be greaterthan the arbon potential of the surfae of the workpiee for arburizing to our. Henewe have the following boundary ondition:

−(1 − p−m)D(θ, c)
∂c

∂ν
= β(c− cp)5



where β, the mass transfer oe�ient, ontrols the rate at whih arbon is absorbed by thesteel during arburizing and cp is the arbon onentration in the furnae, usually namedarbon potential of the gas. ∂c
∂ν

denotes the outward normal derivative. The evolution oftemperature during the entire proess is desribed by the following nonlinear problem
ρα(θ)

∂θ

∂t
− div

(

k∇θ
)

= ρLp(θ)ṗ+ ρLm(θ)ṁ

−k
∂θ

∂ν
= h(θ − θΓ)

θ(x, 0) = θ0.Here ρ is the mass density, α the spei� heat, k the heat ondutivity of the material. Lpand Lm denote latent heats of the austenite-pearlite and the austenite-martensite phasehanges, respetively. θΓ is the temperature of the oolant and θ0(x) is the temperatureat the beginning of the proess. For simpliity ρ and k are taken onstant.In the tehnial proess, we have three di�erent time stages:
• Stage 1: arburization in a furnae, hene β 6= 0 and h = 0.
• Stage 2: di�usion period, with β = 0 and h 6= 0, serving as a linearized radiationlaw.
• Stage 3: quenhing with β = 0 and h 6= 0.From the mathematial point of view, without loss of generality, we will assume that βand h are time independent funtions. Then, the mathematial result to be formulatedin the following setion an be applied subsequently to the three proess stages, overingthe omplete ase hardening proess.3 Assumptions and main resultLet Ω ⊂ R

3 be an open bounded set with C2-boundary ∂Ω and QT := Ω × (0, T ) theorresponding time ylinder. We use the following notations for funtion spaes:
• W 1,∞(0, T ;L∞(Ω)) = { v ∈ L∞(0, T ;L∞(Ω)) : vt ∈ L∞(0, T ;L∞(Ω)) }.

• W r,s
p (QT ) = Lp(0, T ;W r

p (Ω)) ∩W s
p (0, T ;Lp(Ω)).For p = 2 we write W r,s

p (QT ) = Hr,s(QT ).
• We denote by V the spae H1(Ω) and by V ∗ the spae (H1(Ω))∗.
W (0, T ) = { v ∈ L2(0, T ;V ) : vt ∈ L2(0, T ;V ∗) }, endowed with the norm

‖v‖W (0,T ) =
(

T
∫

0

(‖v(t)‖2
V + ‖v′(t)‖2

V ∗)dt
)

1
2
.Throughout the paper we will use the following assumptions:6



(A1) ρ and k are positive onstants.(A2) α ∈ C(R). Lp, Lm ∈ L∞(R) and they are Lipshitz-ontinuous.(A3) θΓ is a positive onstant. h ∈ L∞(∂Ω) with h(x) ≥ 0 a.e. in ∂Ω. We assumethat θ0 ∈ H1(Ω) and c0 ∈ L2(Ω).(A4) g1, g2 are Lipshitz-ontinuous in both variables, moreover there are positive on-stants γ1, γ2 suh that 0 ≤ g1(θ, c) ≤ γ1, 0 ≤ g2(θ, c) ≤ γ2, ∀ θ, c ∈ R.(A5) m is Lipshitz-ontinuous satisfying m(θ, c) ∈ [0, 1] for every θ, c ∈ R.(A6) D(θ, c) is Lipshitz in both arguments and there are ostants γ3, γ4 suh that
0 < γ3 ≤ D(θ, c) ≤ γ4, ∀θ, c ∈ R.(A7) cp is a positive onstant. β ∈ L∞(∂Ω) with β ≥ 0 a.e. in ∂Ω.Summarizing the model equations of Setion 2, we onsider the following boundary valueproblem:

ρα(θ)
∂θ

∂t
− div

(

k∇θ
)

= ρLp(θ)pt + ρLm(θ)mt in QT (3.1a)
∂c

∂t
− div((1 − p−m)D(θ, c)∇c) = 0 in QT (3.1b)

pt = (1 − p−m)g1(θ, c) in QT (3.1)
mt = [min{m(θ, c); 1 − p} −m]+g2(θ, c) in QT (3.1d)

−k
∂θ

∂ν
= h(θ − θΓ) on ∂Ω × (0, T ) (3.1e)

−(1 − p−m)D(θ, c)
∂c

∂ν
= β(c− cp) on ∂Ω × (0, T ) (3.1f)
θ(x, 0) = θ0 in Ω (3.1g)
c(x, 0) = c0 in Ω (3.1h)
p(0) = 0 in Ω (3.1i)
m(0) = 0 in Ω. (3.1j)We are going to prove that, under the hypothesis above, the onsidered problem has aweak solution.Theorem 3.1 (Existene of a weak solution). Assume (A1)-(A7), then there exists aweak solution (θ, c, p,m) to problem (3.1a-j) suh that θ ∈ H2,1(QT ), c ∈W (0, T ), p,m ∈

W 1,∞(0, T ;L∞(Ω)), i = 1, 2.With slightly stronger assumptions on the data, we an also prove uniqueness.
7



Theorem 3.2 (Uniqueness). Suppose that (A1)-(A7) are satis�ed. Assume moreover that
α is onstant, D = D(θ), h, β ∈ W 1

5 (∂Ω), θ0, c0 ∈ W 2
5 (Ω). Then the solution to (3.1a-j)is unique.Remark 1. The regularity assumptions on the boundary and initial values in the unique-ness theorem ould be weakened; to avoid unneessary tehnialities we assumed θΓ and

cp to be onstants, but they ould be in fat funtions of spae and time.4 Proof of Theorem 3.1The proof is arried out using a nested �xed point argument. We divide the proof inthree steps. The �rst is a preliminary lemma onerning the ODE system (3.1,d) only,for θ and c presribed. The seond step is the oupling of the ODE system and thetemperature equation, whih gives a solution p,m, θ depending on c and the third is thefurther oupling with the equation for c.We begin with onsidering the initial value problem
zt = f(z, θ, c) in QT (4.1a)

z(0) = 0 in Ω (4.1b)where z = (p,m)T and f = (f1, f2)
T denotes the right-hand side of (3.1,d).Lemma 4.1. Under the assumption (A4),(A5) the following statements are valid:(a) For every θ, c ∈ L2(QT ) problem (4.1a)-(4.1b) has a unique solution z suh that

p ≥ 0, m ≥ 0 and
‖|z|‖W 1,∞(0,T ;L∞(Ω)) ≤Mfor a onstant M independent from θ and c. Moreover, there exists a onstant cTsuh that

0 ≤ p(x, t) +m(x, t) ≤ cT < 1 for a.e. (x,t) in QT .(b) There are onstantsM1 ,M2 > 0 suh that for every θ1, θ2, c1, c2 ∈ Lp(QT ), for almostall t ∈ (0, T ) and all p ≥ 2 we have
‖|z1(t) − z2(t)|‖

p
W 1,p(Ω) ≤M1

t
∫

0

‖θ1 − θ2‖
p
Lp(Ω)ds +M2

t
∫

0

‖c1 − c2‖
p
Lp(Ω)ds (4.2)where pi, mi is the solution orresponding to (θi, ci), and | · | is the Eulidean normin R

2.Proof of Lemma 4.1. In order to prove (a) it is onvenient to rewrite problem (4.1a,b) as:
zt = F (z, t) in (0, T ) (4.3a)

z(0) = 0 (4.3b)8



with F (z, ·) = f(z, θ(·), c(·)).First of all we are going to show that the hypothesis of the existene theorem of Carathéodoryare satis�ed:(i)
t 7→ F (z, t) is measurable on (0, T ) for each z ∈ [0, 1] × [0, 1];

z 7→ F (z, t) is continuous on [0, 1] × [0, 1] for almost all t ∈ (0, T ).These onditions follow from the de�nition of F as a onsequene of the measurabilityof θ and c on (0, T ) and of the fat that g1(θ, c), g2(θ, c) are Lipshitz ontinuous in bothvariables.(ii) Using assumption (A4),(A5) we have
|Fi(z, t)| ≤ (1 + |p| + |m|)γi ≤ 3γi for i = 1, 2 on [0, 1] × [0, 1] × (0, T ).Aording to Carathéodory Theorem (f, eg., [26℄, p.1044) (4.3a,b) has a solution on sometime interval (0, T+).Next we are going to show that the solution is unique. To this end we have to prove that
|F (z1, t) − F (z2, t)| ≤ L|z1 − z2| ∀(z1, t), (z1, t) ∈ [0, 1] × [0, 1] × (0, T ). (4.4)Indeed, aording to the de�nition of F :

|F (z1, t) − F (z2, t)|
2 = |(1 − p1 −m1)g1(t) − (1 − p2 −m2)g1(t)|

2

+
∣

∣[min{m(t); 1 − p1} −m1]+g2(t) − [min{m(t); 1 − p2} −m2]+g2(t)
∣

∣

2
.Thanks to the boundedness of g1 and g2, we obtain

|(1 − p1 −m1)g1(t) − (1 − p2 −m2)g1(t)| ≤ γ1(|p1 − p2| + |m2 −m1|)and
|[min{m(t); 1 − p1} −m1]+g2(t) − [min{m(t); 1 − p2} −m2]+g2(t)|

≤ γ2|min{m(t); 1 − p1} −m1 − min{m(t); 1 − p2} +m2|.We shall now distinguish some ases.If either min{m(t); 1 − pi} = 1 − pi or min{m(t); 1 − pi} = m(t), for i = 1, 2, (4.4)immediately follows.If min{m(t); 1 − p1} = 1 − p1 and min{m(t); 1 − p2} = m(t) (the same holds for invertedindies), we have
γ2|min{m(t); 1 − p1} −m1 − min{m(t); 1 − p2} +m2|

≤ γ2(|m1 −m2| + |1 − p1 −m(t)|) ≤ γ2

(

|m1 −m2| + |p1 − p2|
)

. (4.5)Thus, there exists a positive onstant L suh that
|F (z1, t) − F (z2, t)| ≤ L|z1 − z2|.Hene we have proved uniqueness of z on (0, T+).Now, we de�ne Tǫ as the maximal time suh that the solution to (4.3a,b) exists and9



Z < 1 − ǫ on (0, Tǫ), where Z = p +m.The last step in order to prove point (a) of the lemma is to show that for any T > 0 thereexists an ǫ suh that |Z| ≤ 1 − ǫ in [0, T ].This will be done by means of a lassial omparison riterium for ODE (see for instane[16℄, Chap.I, Prop. 3.1).
Z = p+m satis�es, on [0, Tǫ):

Ż(t) = (1 − Z(t))g1(t) + [min{m(t); 1 − p(t)} −m(t)]+g2(t)

≤ g(t, Z(t)) := (1 − Z(t))(g1(t) + g2(t)),

Z(0) = 0.Now, if we onsider on [0, T ] the auxiliary problem:
V̇ (t) = (1 − V (t))(g1(t) + g2(t)) = g(t, V (t))

V (0) = 0the solution is given by
V (t) = 1 − e−

R t
0
(g1+g2)(s)ds ∀ t ∈ [0, T ]and we immediately have that there exists a onstant CT > 0 suh that:

0 ≤ V (t) ≤ CT < 1 on [0, T ).Notie that g(t, V (t)) = (1 − V (t))(g1(t) + g2(t)) is Lipshitz ontinuous on [0, T ) withrespet to V .Thus, hoosing ǫ = 1 − CT , we have
Z(t) ≤ V (t) ≤ 1 − ǫ on [0, T ].Sine Tǫ was hosen maximally suh that Z(t) ≤ 1−ǫ on [0, Tǫ], it follows that Tǫ ≥ T .

(b) Let us onsider again the equation zt = f(z, θ, c). Let zi be the solution to (4.1a,b),orresponding to θi, ci, i = 1, 2. Denoting z = z1 − z2, subtrating the equations andtaking the salar produt with the funtion |z|p−2z, we obtain:
1

p

∫

Ω

|z(t)|pdx =

t
∫

0

∫

Ω

(

f(z1, θ1, c1) − f(z1, θ2, c2)
)

· z|z|p−2dxds. (4.6)Invoking (A4), f is Lipshitz-ontinuous in all variables, thus, proeeding from (4.6),the onlusion follows through standard appliation of Young's inequality and Gronwalllemma. The proof is thus ompleted.Next, we de�ne
B(θ, c) := ρLp(θ)ṗ + ρLm(θ)ṁ, (4.7)where (p,m) depends on θ, c as haraterized by the previous lemma.10



Lemma 4.2. Suppose that (A2),(A4) hold. Then the operator B de�ned by (4.7) hasthe following properties(a) There exists a onstant B̄ independent of θ, c suh that, for all θ ∈ L2(QT ), c ∈
L2(QT )

‖B(θ, c)‖L∞(QT ) ≤ B̄.(b) Given c ∈ L2(QT ), let θk ⊂ L2(QT ) be any sequene onverging strongly in L2(QT )to θ ∈ L2(QT ). Then for every p ∈ [1,∞), we have
B(θk, c) → B(θ, c) strongly in Lp(QT ). (4.8)() There are onstants K1, K2 > 0 suh that for all θ1, θ2, c1, c2 ∈ L2(R × R) and foralmost all x ∈ Ω and every t ∈ (0, T )

t
∫

0

∣

∣B(θ1(x, s), c1(x, s)) −B(θ2(x, s), c2(x, s))
∣

∣

2
ds

≤ K1

t
∫

0

|θ1(x, s) − θ2(x, s)|
2 ds+K2

t
∫

0

|c1(x, s) − c2(x, s)|
2ds.Proof of Lemma 4.2. (a) follows diretly from assumptions (A2),(A4),(A5) and Lemma4.1 (a).(b) We have

ṗθ,c = (1 − p−m)g1(θ, c) (4.9)
ṁθ,c = [min{m(θ, c); 1 − p} −m]+g2(θ, c). (4.10)Let x ∈ Ω \N , with N ⊂ Ω of zero measure and onsider z = (p,m). By Lemma 4.1 (a),

‖ zθk
‖W 1,∞(0,T ;L∞(Ω))≤ M ∀k, thus ‖ zθk

‖W 1,p(0,T ;L∞(Ω))≤ M ∀k, ∀p < ∞. Thus, thereexists a subsequene, {θk′}, and some ẑ suh that
zθk′

(x, ·) → ẑ(x, ·) weakly − star in W 1,∞(0, T ).Thus, we have
żθk′

(x, ·) → ˙̂z(x, ·) weakly in Lp(0, T ) ∀p <∞, (4.11)
zθ′k

(x, ·) → ẑ(x, ·) strongly in C[0, T ]. (4.12)Sine the solution to (4.14d,e) is unique we have ẑ(x, ·) = zθ(x, ·) and the onvergeneholds for the whole sequene, hene we an onlude that zθk
(x, t) → zθ(x, t) pointwisein Q. Sine θk → θ strongly in L2(QT ), using assumption (A4), possibly extrating asubsequene, we have

ρLp(θk′)ṗθk′,c
+ ρLm(θk′)ṁθk′,c

→ ρLp(θ)ṗθ + ρLm(θ)ṁθ a.e in QT . (4.13)But, applying Lebesgue theorem, we get
B(θk′ , c) → B(θ, c) strongly in Lp(QT ).Sine the limit does not depend on the extrated subsequene the onvergene holds forthe whole sequene {θk}, hene we obtain (4.8).() follows diretly from assumption (A2) and Lemma 4.1 (b).11



Lemma 4.3. Let ĉ ∈ L2(0, T ;L2(Ω)). There exists a unique θ(ĉ) ∈ H2,1(QT ) and aunique z(ĉ) = (p(ĉ), m(ĉ)) ∈W 1,∞(0, T ;L∞(Ω)) ×W 1,∞(0, T ;L∞(Ω)), satisfying
ρα(θ)

∂θ

∂t
− div

(

k∇θ
)

= B(θ, ĉ) in QT (4.14a)
−k

∂θ

∂ν
= h(θ − θΓ) on ∂Ω × (0, T ) (4.14b)
θ(x, 0) = θ0 in Ω (4.14)

zt = f(z, θ, ĉ) in QT (4.14d)
z(0) = 0 in Ω. (4.14e)where f is de�ned as in (4.1a). Moreover, there exist λ1, λ2 > 0 suh that

‖θ1 − θ2‖
2
L2(0,t;L2(Ω)) ≤ λ1

t
∫

0

‖ĉ1 − ĉ2‖
2
L2(0,s;L2(Ω))ds (4.15)and

‖|z1 − z2|‖
2
L2(0,t;L2(Ω)) ≤ λ2

t
∫

0

‖ ĉ1 − ĉ2 ‖
2
L2(0,s;L2(Ω)) ds, (4.16)where (θi, ci) is the solution orresponding to ĉi, i = 1, 2.Proof of Lemma 4.3. Existene. We introdue the operator

P : L2(QT ) → L2(QT ),

θ = P θ̂,by demanding θ to be the solution of the linear paraboli problem
ρα(θ̂)

∂θ

∂t
− k△θ = B(θ̂, ĉ) in QT (4.17a)

−k
∂θ

∂ν
= h(θ − θΓ) on ∂Ω × (0, T ) (4.17b)
θ(x, 0) = θ0 in Ω. (4.17)Aording to lassial results about paraboli equations, problem (4.17a-) has a uniquestrong solution θ ∈ H2,1(QT ) (see, for instane, [18℄), therefore the operator P is well-de�ned.Moreover, thanks to Lemma 4.2 (a), there exists a onstant M > 0, independent of θ̂,suh that:

‖θ‖H2,1(QT ) ≤ M. (4.18)We shall now show the ontinuity of the operator P .Let θ̂n ⊂ L2(QT ) with θ̂n → θ̂ strongly in L2(QT ). De�ning θn = P θ̂n, in view of (4.18),
‖θn‖H2,1(QT ) ≤M . Thus, we an �nd a sub-sequene θ̂n′ suh that

θn′ → θ weakly in H2,1(QT ), strongly in L2(QT ), (4.19a)
θn′ → θ a.e. in QT . (4.19b)12



Testing (4.17a) by φ ∈ L2(0, t;H1(Ω)), we get
t

∫

0

∫

Ω

ρα(θ̂n′)θn′,s φ dx ds+ k

t
∫

0

∫

Ω

∇θn′∇φ dx ds

+

t
∫

0

∫

∂Ω

h(σ)(θn′ − θΓ)φ dσ ds −

t
∫

0

∫

Ω

B(θ̂n′ , ĉ)φ dx ds = 0. (4.20)By means of (4.19a,b) we an pass to the limit in last three terms of (4.20). We an breakthe �rst term in two terms
ρ

t
∫

0

∫

Ω

α(θ̂n′)θn′,sφ dx ds = ρ

t
∫

0

∫

Ω

α(θ̂n′)(θn′,s − θs)φ dx ds + ρ

t
∫

0

∫

Ω

α(θ̂n′)θsφ dx ds.Thanks to the ontinuity of α, we have that
α(θ̂n′)φ→ α(θ̂)φ a.e. in QTthus, using Lebesgue theorem, ρα(θ̂n′)φ → ρα(θ̂)φ strongly in L2(QT ) while θn′,s → θsweakly in L2(QT ). Thus, t

∫

0

∫

Ω

α(θ̂n′)(θn′,s − θs)φ dx ds→ 0 and
ρ

t
∫

0

∫

Ω

α(θ̂n′)θn′,sφ dx ds→ ρ

t
∫

0

∫

Ω

α(θ̂)θsφ dx ds.Hene we have obtained
ρ

t
∫

0

∫

Ω

α(θ̂)θsφ dx ds+ k

t
∫

0

∫

Ω

∇θ∇φ dx ds

+

t
∫

0

∫

∂Ω

h(σ)(θ − θΓ)φ dσ ds −

t
∫

0

∫

Ω

B(θ̂, ĉ)φ dx ds = 0.As the solution to the paraboli problem (4.17a-) is unique, we have
θ = P θ̂ a.e. in QTand, sine the limit does not depend on the extrated sub-sequene, it follows that

P θ̂n → P θ̂weakly in H2,1(QT ) and strongly in L2(QT ).Now, let
K := {u ∈ L2(QT ) :‖ u ‖H2,1(QT )≤M}.13



K is non-empty, onvex, losed and relatively ompat subset of L2(QT ) and F : K ⊂
L2(QT ) → K is a ontinuous mapping. By Shauder �xed point theorem, there existsa �xed point of the mapping F , i.e. there exists a weak solution θ ∈ H2,1(QT ) to (3.1a,e,f).Uniqueness and stability. Let

J(θ) :=

θ
∫

0

ρα(ξ)dξ. (4.21)Integration of (3.1a) with respet to time leads to
t

∫

0

B(θ, c)(x, s)ds = J(θ(x, t)) − J(θ0(x)) − k∆

t
∫

0

θ(x, s)ds. (4.22)Now, let θ1, θ2 ∈ H2,1(QT ) be solutions to (3.1a,e,g) orresponding to ĉ1, ĉ2 respetively.Inserting these solutions into (4.22), subtrating both equations, and testing by θ :=
θ1 − θ2, we �nd

t
∫

0

∫

Ω

(

s
∫

0

B(θ1(x, ξ), ĉ1(x, ξ)) − B(θ2(x, ξ), ĉ2(x, ξ))dξ
)

θ(x, s)dx ds

=

t
∫

0

∫

Ω

[J(θ1(x, s)) − J(θ2(x, s))]θ(x, s)dx ds + k

t
∫

0

∫

Ω

∇
(

s
∫

0

θ(x, ξ)dξ
)

∇θ(x, s)dx ds

+

t
∫

0

∫

∂Ω

(

s
∫

0

h(σ)θ(σ, ξ)dξ
)

θ(σ, s)dσ ds. (4.23)Conerning the last term we an see that
t

∫

0

∫

∂Ω

(

s
∫

0

h(σ)θ(σ, ξ)dξ
)

θ(σ, s)dσ ds =

t
∫

0

∫

∂Ω

h(σ)
(

s
∫

0

θ(σ, ξ) dξ
)

θ(σ, s) dσds

=
1

2

t
∫

0

∫

∂Ω

h(σ)
d

ds

(

s
∫

0

θ(σ, ξ) dξ
)2

dσds =
1

2

∫

∂Ω

h(σ)
(

t
∫

0

θ(σ, s)ds
)2

dσ.Thus, from (4.23) we get:
t

∫

0

∫

Ω

(

s
∫

0

B(θ1(x, ξ), ĉ1(x, ξ)) − B(θ2(x, ξ), ĉ2(x, ξ))(x, ξ))dξ
)

θ(x, s)dx ds

≥ ηρ

t
∫

0

∫

Ω

θ2(x, s)dx ds +
k

2

∫

Ω

∣

∣

∣
∇

t
∫

0

θ(x, s)ds
∣

∣

∣

2

dx

+
1

2

∫

∂Ω

h(σ)
(

t
∫

0

θ(σ, s)ds
)2

dσ ≥ ηρ

t
∫

0

∫

Ω

θ2(x, s)dx ds .14



Using Holder's and Young's inequalities and Lemma 4.1 () it follows that
∣

∣

∣

∣

∣

∣

t
∫

0

∫

Ω

(

s
∫

0

B(θ1(x, ξ), ĉ1(x, ξ)) − B(θ2(x, ξ), ĉ2(x, ξ))dξ
)

θ(x, s)dx ds

∣

∣

∣

∣

∣

∣

≤
1

4δ

t
∫

0

∫

Ω

(

s
∫

0

B(θ1(x, ξ), ĉ1(x, ξ)) − B(θ2(x, ξ), ĉ2(x, ξ))dξ
)2

dx ds

+ δ

t
∫

0

‖θ(x, s)‖2
L2(Ω) ds

≤
T

4δ

t
∫

0

∫

Ω

s
∫

0

(

K1|θ1(x, ξ) − θ2(x, ξ)|
2 + K2|ĉ1(x, ξ) − ĉ2(x, ξ)|

2
)

dξdx ds

+ δ

t
∫

0

‖θ(x, s)‖2
L2(Ω) ds

≤
CT

4δ

t
∫

0

‖θ‖2
L2(0,s;L2(Ω)) ds +

CT

4δ

t
∫

0

‖c‖2
L2(0,s;L2(Ω)) ds + δ

t
∫

0

‖θ(x, s)‖2
L2(Ω) ds.Thus, we have

ηρ

t
∫

0

∫

Ω

θ2(x, s)dx ds ≤
CT

4δ

t
∫

0

‖θ‖2
L2(0,s;L2(Ω))ds

+
CT

4δ

t
∫

0

‖c‖2
L2(0,s;L2(Ω)) ds+ δ

t
∫

0

‖θ(x, s)‖2
L2(Ω) ds.Choosing δ > 0 suh that ηρ− δ > 0 we have:

‖ θ ‖2
L2(0,t;L2(Ω))≤ α

t
∫

0

‖θ‖2
L2(0,s;L2(Ω))ds + β

t
∫

0

‖c‖2
L2(0,s;L2(Ω))dswith onstants α , β > 0.Hene, applying Gronwall lemma, we �nd a onstant C1 suh that

‖θ1 − θ2‖
2
L2(0,t;L2(Ω)) ≤ C1

t
∫

0

‖ĉ1(s) − ĉ2(s)‖
2
L2(0,s;L2(Ω))ds. (4.24)Inequality (4.16) follows immediately from Lemma 4.1 (b) and estimate (4.15). The proofof Lemma 4.3 is thus ompleted. 15



Now, we are in a position to proof Theorem 3.1.Let us denote
µ(θ, c) := (1 − p−m)D(θ, c).We note that, in view of (A6) and Lemma 4.1 (b), µ is Lipshitz-ontinuous with respetto θ and c.We de�ne an operator

T : L2(QT ) −→ L2(QT ),

T ĉ = c, (4.25)by demanding c to be the solution of the paraboli problem
∂c

∂t
− div(µĉ∇c) = 0 in QT (4.26a)

−µĉ
∂c

∂ν
= β(c− cp) on ∂Ω × (0, T ) (4.26b)

c(x, 0) = c0 in Ω. (4.26)where µĉ = (1− pĉ −mĉ)D(θĉ, c), (θĉ, pĉ, mĉ) being the solution to (3.1a,,d) with respetto given ĉ. Denoting
a(c, φ; t) :=

∫

Ω

µĉ∇c∇φ dx +

∫

∂Ω

β c φ dσ,

〈f(t), φ〉 :=

∫

∂Ω

βcpφ dσ, φ ∈ H1(Ω)we have that problem (4.26a-) is equivalent to the following one. We seek a funtion csuh that, for all φ ∈ H1(Ω) and a.e in t ∈ (0, T )

〈 d

dt
c(t), φ

〉

+ a(c(t), φ; t) = 〈f(t), φ〉, (4.27a)
c(0) = c0, (4.27b)
c ∈W (0, T ), (4.27)where 〈 , 〉 denotes the duality between H1(Ω) and (H1(Ω))∗.In view of (A3),(A6),(A7), (4.27a-) admits a unique solution c (f [26℄, Prop. 30.10).Moreover, there exists a onstant M independent of ĉ, suh that:

‖c‖W (0,T ) ≤M. (4.28)To derive the ontinuity of the operator T , let {ĉn} ⊂ L2(0, T ;L2(Ω)), with ĉn → ĉstrongly in L2(QT ). De�ning cn = T ĉn, thanks to (4.28), we have ‖cn‖W (0,T ) ≤M . Thus,there exists a sub-sequene {ĉn′} suh that
cn′ −→ c weakly inW (0, T ). (4.29)16



We test (4.26a) by
Φ(x, t) = ψ(t)φ(x) with ψ ∈ C1(0, T ), ψ(T ) = 0, φ ∈ H1(Ω). (4.30)Denoting T ĉn′ := cn′, we have

T
∫

0

∫

Ω

cn′,s Φ dx ds+

T
∫

0

∫

Ω

µĉn′
∇cn′∇Φ dx ds+

T
∫

0

∫

∂Ω

β(cn′ − cp)Φ dσds = 0. (4.31)Conerning the �rst term in (4.31) we have
T

∫

0

∫

Ω

cn′,s Φ dx ds = −

∫

Ω

cn′(x, 0) Φ(x, 0)dx −

T
∫

0

∫

Ω

cn′ Φs dx ds.Now,
∫

Ω

cn′(x, 0) Φ(x, 0)dx =

∫

Ω

c0 Φ(x, 0)dx ,and, by virtue of (4.29),
T

∫

0

∫

Ω

cn′ Φs dx ds→

T
∫

0

∫

Ω

cΦs dx ds a.e. in QT .The seond term an be rearranged as
T

∫

0

∫

Ω

µĉn′
∇cn′∇Φ dx ds =

T
∫

0

∫

Ω

µĉn′
(∇cn′ −∇c)∇Φ dx ds +

T
∫

0

∫

Ω

µĉn′
∇c∇Φ dx ds.Sine µ is ontinuous and bounded as a funtion of c, possibly extrating a subsequene,we obtain: µĉn′

(x, t) → µĉ(x, t) a.e in QT , thus, using Lebesgue theorem, it onvergesstrongly in L2(QT ). Thus, we have
µĉn′

∇Φ → µĉ∇Φ strongly in L2(QT ).Moreover, (∇cn′ −∇c) → 0 weakly in L2(QT ) beause of (4.29), thus we obtain
T

∫

0

∫

Ω

µĉn′
∇cn′∇Φ dx ds→

T
∫

0

∫

Ω

µĉ∇c∇Φ dx ds.Applying the trae theorem, the last term in (4.31) onverges too.Thus, we an pass to the limit in (4.31) obtaining
−ψ(0)

∫

Ω

c0 φ(x)dx−

T
∫

0

∫

Ω

c ψsφ dx ds

+

T
∫

0

ψ

∫

Ω

µĉ∇c∇φ dx ds+

T
∫

0

ψ

∫

∂Ω

β(c− cp)φ dσds = 0. (4.32)
17



Consequently
T

∫

0

ψ
(

∫

Ω

cs φ dx +

T
∫

0

∫

Ω

µĉ∇c∇φ dx +

T
∫

0

∫

∂Ω

β(c− cp)φ dσ
)

ds = 0.The above is true for φ, ψ satisfying (4.32). Therefore (4.32) gives, a.e in t ∈ (0, T )

〈 d

dt
c(t), φ

〉

+ a(t; c(t), φ) = 〈F (t), φ〉 ∀φ ∈ H1(Ω).Sine the solution of (4.26a-) is unique, we an onlude
T ĉ = c,and, sine the limit does not depend on the extrated sub-sequene, it follows that

T ĉn → T c (4.33)weakly in W (0, T ) and strongly in L2(QT ).Now, let
K := {v ∈ L2(QT ) : ‖v‖W (0,T ) ≤M}.

K is onvex and ompat in L2(QT ) and F : K ⊂ L2(QT ) → K is a ontinuous mapping.By the Shauder �xed point theorem the proof is onluded.
25 Proof of Theorem 3.2We ommene with the following regularity result:Lemma 5.1. Under the assumptions of Theorem 3.2, the solutions θ, c to the initial-boundary values problems related to equations (3.1a,b) are in W 2,1

5 (QT ).Proof. Sine we proved the existene of at least one solution for the initial-boundary valueproblems related to equations (3.1a), (3.1b), we an now follow the approah developed byJ.A. Griepentrog, in the papers [7℄, [8℄ about linear paraboli equations with nonsmoothbounded oe�ients, in order to improve the regularity of the solutions under onsidera-tion.The oe�ients and the right-hand sides of the equations are indeed funtions in L∞(QT )and the oe�ients in the boundary onditions too.Moreover, in fat, the initial onditions are Lipshitz-ontinuous funtions and we anapply Th.3.4 and Th.6.8 of [7℄ and Th.6.1 of [8℄, whene we obtain that θ and c are in
C(Q̄T ).It follows that the right-hand sides of the ODEs (3.1,d) are ontinuous funtions, there-fore the orresponding solutions are ontinuously di�erentiable.Thus, the PDEs (3.1a,b) have ontinuous oe�ients and we an apply a lassial resultof Ladyzenskaja ([18℄, Th.9.1, page 341) whih yields: θ, c ∈ W 2,1

5 (QT ).18



Lemma 5.2. Assuming that α is onstant, we have that, for every c1, c2 ∈ L2(QT ), thereexists a onstant M > 0 suh that, for the orresponding θ1, θ2, it holds:
‖θ1 − θ2‖

2
H2,1(QT ) ≤ M‖c1 − c2‖

2
L2(QT ). (5.1)Proof. We onsider the heat equation of our system:

ραθt = k∆θ + ρLppt + ρLmmt. (5.2)We write (5.2) for θ1, c1, p1, m1 and θ2, c2, p2, m2. Subtrating, we see that the di�erenesatis�es the following system:
ραθt − k∆θ = ρ(Lp(θ1)p1,t − Lp(θ2)p2,t) + ρ(Lm(θ1)m1,t − Lm(θ2)m2,t)

−k∂θ∂ν = hθ

θ(x, 0) = 0.Applying again standard paraboli theory (f. [18℄, Th.6.1), invoking Lemma 4.2 (b) and(A2), (A3) we �nish the proof.Lemma 5.3. Let u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), then there holds
T

∫

0

‖u(t)‖10/3

L10/3(Ω)
dt ≤

(

T
∫

0

‖u(t)‖2

L6(Ω)
dt

)

‖u‖4/3

L∞(0,T ;L2(Ω))
.Proof. Owing to Riesz' onvexity theorem (f. [26℄, A113), we have

‖u‖Lr(Ω) ≤ ‖u‖1−Θ

Lq1 (Ω)
‖u‖Θ

Lq2 (Ω)
,for all u ∈ Lq1(Ω) ∩ Lq2(Ω) with 1 ≤ q1, q2 < ∞, 0 < Θ < 1, and 1

r
= 1−Θ

q1
+ Θ

q2
.Invoking the ontinuous embedding H1(Ω) ⊂ L6(Ω), the assertion follows by de�ning

q1 = 6, q2 = 2, Θ = 2
5
, and r = 10

3
.We are now in position to prove Theorem 3.2. We write equation (3.1b) for c1 and c2,subtrat, integrate over QT and test by c1 − c2. In the sequel we will use the followingnotations: c = c1 − c2, θ = θ1 − θ2, p = p1 − p2, m = m1 −m2.We have

1

2

∫

Ω

c2(t)dx+

t
∫

0

∫

Ω

(

(1 − p1 −m1)D(θ1)∇c1 − (1 − p2 −m2)D(θ2)∇c2

)

∇c dxds

+

t
∫

0

∫

∂Ω

βc2dσds = 0.
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Now,
t

∫

0

∫

Ω

(

(1 − p1 −m1)D(θ1)∇c1 − (1 − p2 −m2)D(θ2)∇c2

)

∇c dxds

=

t
∫

0

∫

Ω

(1 − p1 −m1)D(θ1)|∇c|
2dxds−

t
∫

0

∫

Ω

(p+m)D(θ1)∇c2∇c dxds

+

t
∫

0

∫

Ω

(1 − p2 −m2)(D(θ1) −D(θ2))∇c2∇c dxds . (5.3)Thus, we have
1

2

∫

Ω

c2(t)dx+K5

t
∫

0

‖∇c‖2
L2(Ω)dxds

≤

t
∫

0

∫

Ω

|p+m||D(θ1)||∇c2||∇c| dxds

+

t
∫

0

∫

Ω

|1 − p2 −m2||D(θ1) −D(θ2)||∇c2||∇c| dxds. (5.4)By means of Lemma 5.1, we know that c2 ∈ W 2,1
5 (QT ). Aording to Amann (f [2℄,Theorem 1.1), we have the embedding W 2,1

5 (QT ) →֒ C([0, T ];W 1
5 (Ω)). Thus, we anestimate the seond term in the right hand-side of (5.3) as:

t
∫

0

∫

Ω

|p+m||D(θ1)||∇c2||∇c| dxds

≤

t
∫

0

‖p+m‖L10/3(Ω)‖∇c2‖L5(Ω)‖D(θ1)‖L∞(Ω)‖∇c‖L2(Ω)ds

≤ δ

t
∫

0

‖∇c‖2
L2(Ω)ds+

K1

4δ

t
∫

0

‖p+m‖2
L10/3(Ω)ds. (5.5)Thanks to Lemma 4.1 (b), we get:

t
∫

0

‖p+m‖2
L10/3(Ω)ds =

t
∫

0





∫

Ω

|p+m|10/3dx





3/5

ds

≤ K1

t
∫

0





s
∫

0

∫

Ω

θ10/3dxdτ





3/5

ds + K2

t
∫

0





s
∫

0

∫

Ω

c10/3dxdτ





3/5

ds. (5.6)
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Now, we apply Lemma 5.3 and Young's inequality to the right-hand side of (5.6), obtain-ing:
t

∫

0





s
∫

0

∫

Ω

θ10/3dxdτ





3/5

ds ≤ K

t
∫

0





s
∫

0

‖θ‖2
H1(Ω)dτ





3/5

‖θ‖
4/5
L∞(0,s;L2(Ω))ds

≤
2

5
δ2

t
∫

0

s
∫

0

‖θ‖2
H1(Ω)dτds +

3

5δ2

t
∫

0

‖θ‖2
L∞(0,s;L2(Ω))ds. (5.7)An analogous estimate holds for the term t

∫

0

[

s
∫

0

∫

Ω

c10/3dxdτ

]3/5

ds.Regarding the third term in the right-hand side of (5.3), we have:
t

∫

0

∫

Ω

|1 − p2 −m2||D(θ1) −D(θ2)||∇c2|∇c dxds ≤ K3

t
∫

0

‖θ‖L6(Ω)‖|∇c|‖L2(Ω)ds

≤ δ3

t
∫

0

‖θ‖2
H1(Ω)ds +

K4

4δ3

t
∫

0

‖∇c‖2
L2(Ω)ds. (5.8)Summing up, from (5.3) ombined with (5.7) and (5.8), we �nd that

1

2

∫

Ω

c2(t)dx+K5

t
∫

0

∫

Ω

‖∇c‖2dxds

≤ K6

t
∫

0

‖θ‖2
H1(Ω)ds +K7

t
∫

0

‖θ‖2
L∞(0,s;L2(Ω))ds +

K4

4δ3

t
∫

0

‖∇c‖2
L2(Ω)ds. (5.9)Thus, by means of Lemma 5.2, for an appropriate hoie of δ3, we end up with:

1

2

∫

Ω

c2(t)dx+

t
∫

0

‖∇c‖2
L2(Ω)dxds ≤ K8

t
∫

0

‖c‖2
L2(Ω)ds. (5.10)The proof is onluded applying Gronwall Lemma. 2The following table ontains the parameters involved in the omplete proess.
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Value Unit Value Unit
ρ 7800 kg/m3 θ0 1150 K
α 385 J/Kg K c0 0.25 weight %
Lp 77000 J/Kg cp 1.2 weight %
Lm 82000 J/Kg θΓ 300 K

β (if t ≤ T1) 6e-5 m/s β (if T1 < t ≤ T ) 0 m/s

h (if t ≤ T1) 0 W/m2K h (if T1 < t ≤ T ) 10000 W/m2K

D 0.47exp(−1.6c− (37000 − 6600c)/(1.987T ))1e− 4 m2/s

k 35 W/mKTable 1: Proess parameters.
6 Numerial resultsIn this setion we present some numerial simulations to demonstrate the e�et of gasarburizing on a sample workpiee. The simulations are based on our model (3.1a-j). Asa sample on�guration, we onsider the ross setion of a ylinder of radius 50mm. Notethat our initial temperature is hosen above the austenitization temperature suh thatwe may assume it to be homogeneously austeniti. Material parameters are taken fromthe data tables for the low-arbon steel AISI 4130. The interval time (0, T ) of the wholeproess is divided as (0, Tc] ∪ [Tc, T ), where Tc denotes the ending time of arburization.For the proess parameters we refer to Table 1. The expression for D(θ, c) is taken from[23℄, the value of h is taken from [14℄. For the funtion g1 we took the data of [5℄, f. Fig.4.

Figure 4: Plot of the transformation funtion g1, depending on the temperature θ.
g2 has been taken onstant as in [12℄, whih has been found su�ient to desribe thekinetis of the phase transition. The main oupling e�et is through the arbon dependentstart and end temperature of the martensite formation, Ms(c) and Mf (c) respetively,whih have been identi�ed from Figure 3. 22



The simulations were performed with Femlab, a software based on the �nite elementmethod.Fig. 5 is a view of a setor of the sample on�guration that we onsidered, after arburizingfor about 8 hours.

Figure 5: Snapshot of the simulation at time t = 30120 s (after 30000 seonds arburizing and120 seonds quenhing) showing the arburizing e�et. In the right olumn arbon perentageis indiated.
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As already said in the introdution the proess onsists at least of two stages: �rst, theworkpiee is immersed in a arbon-rih atmosphere furnae (the so-alled arburizing);seondly, quenhing is performed, through whih austenite is transformed into the hardphase martensite m, where the temperature gradient is high and into pearlite p wherethe temperature gradient is lower. In other words, the hardening ours lose to theboundary, while in the ore the softer phase pearlite is formed.The e�et of time and temperature on total ase depth (whih is usually spei�ed as thelayer at arbon ontent 0.4%) is shown in Figure 6.In Figure 7 we an observe the distribution of phase frations at the end of a yle ofarburizing and quenhing.
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Tc = 3000 s.
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    Radial distance from boundary, [m] Figure 7: Phase frations of martensite (red), pearlite (blue) and arbon perentage urve(green), plotted against the radius of the irle, for di�erent arburizing times Tc and endtimes T , after a quenhing time of 100 s.In the same �gure we an see how the formation of martensite depends on the arbononentration, in aordane with the graphi of Figure 3 of the �rst setion, obtainedfrom experimental data. Indeed, as we an see in Figure 3, the martensite terminal tem-perature is well below zero, beause of the residual austenite at room temperature whihannot be transformed into martensite, thus 100% of martensite is not ahieved; in Figure7, derived from our simulations, the maximum of the martensite phase fration is about24



65%. The maximum of the martensite fration is not ahieved on the surfae, but at thetotal ase depth, i.e. where the arbon onentration orresponds to 0.4%.7 Conluding remarksIn the present paper we have studied a mathematial model of ase hardening, inludingthe oupling between arbon di�usion equation, temperature evolution and phase transi-tions. From mathematial point of view, we have proved existene and uniqueness of asolution. First numerial results on�rm qualitative agreement with experiments. A moredetailed omparison requires more preise data. To this end a ooperation with some en-gineering institutes has been started. The results will be published in a forthoming paper.From pratial point of view, a redution of energy onsumption and of proess time aswell as inreasing the proess stability are of great interest. Therefore the developmentof an optimal ontrol strategy is under study.Referenes[1℄ Amerian soiety for Metals, Atlas of Isothermal Transformation and Cooling Trans-formation Diagram, Ohio, (1977).[2℄ H. Amann, Compat embeddings of vetor-valued Sobolev and Besov spaes, Glas. Mat.Vol 35(55) (2000), 161�177.[3℄ M. Avrami, Kinetis of phase hange, J. Chem. Phys. 7�8�9 (1939, 1940, 1941).[4℄ R. Chatterjee-Fisher Ueberblik ueber die Moeglihkeiten zur Verkuerzung derAufkohlungsdauer, HTM H�¤rterei-Tehn. Mitt. 40 (1985) 1, 7-11.[5℄ K. Chelminski, D. Hömberg, D. Kern, On a thermomehanial model of phase transi-tions in steel, to appear in: Adv. Math. Si. Appl.[6℄ J. Fuhrmann, D. Hömberg, Numerial simulation of the surfae hardening of steel,Intern. J. Num. Methods Heat Fluid Flow, 9 (1999), 705�724.[7℄ J.A. Griepentrog, Sobolev-Morrey spaes assoiated with evolution equations, Adv. inDi�. Eq. 12, 7 (2007), 781�840.[8℄ J.A. Griepentrog, Maximal regularity for nonsmooth paraboli problems in Sobolev-Morrey spaes, Adv. in Di�. Eq. 12, 9 (2007), 1031�1078.[9℄ D. Hömberg, A mathematial model for the phase transitions in eutetoid arbonsteel, IMA J Appl. Math., 54 (1995), 31�57.[10℄ D. Hömberg, A mathematial model for indution hardening inluding mehaniale�ets, Nonlinear Anal. Real World Appl., 5 (2004), 55�90.25
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